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Dynamic graphs, i.e. graphs that change over time, appear in diverse scenarios,
for example in computer or social networks. When we solve a certain problem
on a dynamic graph, the solution has to be adjusted as the graph changes. We
require that the solution changes little over time, i.e. we require that the solutions
are similar with respect to a given similarity measure. We consider the following
problem SimMatch: Given two graphs, one being a modification of the other,
find a maximum matchings in each graph, such that the maximum matchings are
as similar as possible, i.e. the intersection of the matchings should be maximized.
Since we are given two graphs, we know the modification in advance, so this is an
offline problem.

In this work we show that SimMatch is NP-hard by a reduction from MaxCut.
We also proof that it is NP-hard to approximate SimMatch better than 50/51.
SimMatch remains NP-hard for rather restricted classes of graphs, e.g. cycles
and trees. Instances in which the number of maximum matchings in one graph is
bounded polynomially, can be solved in polynomial time: We present an algorithm
running in O(MM(G) ·

√
nm2) time, where MM(G) denotes the number of

maximum matchings of one graph.
We also present an ILP-formulation and a heuristic with a running time of

O(n2m + n3log n) for SimMatch, which we both evaluate in the experimental
part. In our test cases, the heuristic performs significantly faster than the ILP-
approach while having a relative low error rate.
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1 Introduction

A graph is an abstract representation of a set of objects (nodes) and the relation of
the objects to each other (edges between the nodes). There are many applications
in which graphs are used, e.g. networks. In a network we have a set of elements, in
which any set of two elements may be connected. Often we have a dynamic setting,
i.e. the network changes over time and with that the related graph. When solving
a problem for a graph that changes dynamically, all future modifications may be
known in advance, this is the offline problem, or the future modifications are not
known at the time where we want to compute a solution for the current graph, this
is the online problem. In this work we concentrate on the former case, the offline
problem. One possible application of the offline problem is as follows: If we know
the history of the modifications for a graph, we can analyze the development of the
solution for a problem on the sequence of graphs produced by the modifications.
Two successive graphs in the sequence, i.e. one graph is generated by modifications
of the other, should have similar solutions for the problem. Beside that the solution
should be as good as possible considering only the actual graph. Thus, we need
to make a trade-off for our solutions: the solutions should be as good as possible
according to the problem for each graph but should also not vary much over time.
Summarized: We want to compute solutions for a problem on several instances,
so that the solutions are as similar as possible (assuming that the instances are
somehow related). In this theses we analyze this problem for matchings.

A matching in a graph G = (V,E) is a subset of edges M ⊆ E, in which no two
edges are adjacent, i.e. no two edges share the same endpoint. There are many ap-
plications for finding matchings, here we want to give one example: We are given a
number of employees and we want to build teams of two people working together.
Some employees are expected to work efficiently together and some are not. If
we model the employees as nodes and insert edges between all nodes representing
two employees which form a good team, a matching in that graph will return a
possible pairing of employees. As we want to minimize employees without a team
partner, the matching should contain as many edges as possible. If there exists no
other matching with a larger number of edges, the matching is called maximum
matching. In general, there exists more than one maximum matching.

There are quite a number of algorithms for computing maximum matchings avail-
able. It has been one of the first non-trivial combinatorial problems for which
a polynomial time algorithm has been found [Edm65]. Today, one of the fastest
known algorithm for finding maximum matchings runs in O(

√
nm) time [MV80,
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Vaz94]. There exists an algorithm based on matrix multiplication with a running
time of O(n2.367) [MS04], but it is rather impractical.

As discussed before, we are analyzing the matching problem in a dynamic setting
as an offline problem. We search for maximum matchings in two graphs, so that
the matchings in both graphs are as similar as possible. As an input, we have two
graphs G1 = (V1, E1) and G2 = (V2, E2) which may share some edges and nodes,
i.e. V1 ∩ V2 6= ∅ and E1 ∩ E2 6= ∅. We want to find maximum matchings M1 and
M2 for G1 and G2, respectively, so that the two maximum matchings are similar
as possible, that means, |M1 ∩ M2| should be maximized. Note that although
|M1 ∩M2| should be maximized, M1 and M2 must remain maximum matchings.
We call this problem SimMatch (Simultaneous Matching). In Section 1.1 we
describe a more general version, but throughout this work we focus on the basic
problem SimMatch.

A dynamic version of the previous example with the employees can be modeled
as an instance of SimMatch. Again, we have a number of employees which
should form teams of two and some work efficiently together and some not. A
part of the employees is working the whole week (except Sunday), the other part
is only working half-time, some of these half-time workers is working from Mon-
day to Wednesday, some of them are working from Thursday to Saturday. We
now want to find an admissible pairing of employees for the period from Monday
to Wednesday and from Thursday to Saturday. In both periods, the number of
paired employees should be maximum. Also, it is advantageous that pairings last
the whole week and are preserved from Monday to Saturday. If we generate two
graphs, one graph for each period, and model the employees as nodes and insert
an edge between two nodes which represent employees that are good at working
together, as we did in the previous example, we generated a SimMatch instance.
The solution of the instance returns us pairings of employees, such that the num-
ber of pairings is maximum in each period and such that the number of pairings
lasting the whole week is maximized.

Beside this example, we want to mention another possible application of Sim-
Match, related to graph drawing. Drawing a graph is the mapping of nodes and
edges to graphical objects on the plain (usually points and lines, respectively) to
visualize it. There exist a lot of different graph drawing algorithms, one interesting
algorithm yielding good results can be found in [Wal03]. We propose to extend the
algorithm in [Wal03] in order to create similar drawings drawings for two similar
graphs. The algorithm in [Wal03] uses matchings to identify adjacent nodes and
contracts the graph iteratively according to the matchings. The coarsest graph is
given an initial layout and then the layout is refined for all graphs created during
the contraction, ending with the original one. If we want to compute a layout for
two graphs that are similar, we compute similar matchings in both graphs for each
step, this will hopefully also result in a similar layout. Finding similar matchings
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1.1 Problem

for two graphs that share some edges is our problem SimMatch, so if we can
solve SimMatch we can extend the graph drawing algorithm in [Wal03] to draw
similar graphs with a similar layout.

Beside the motivation of possible practical applications, the pure theoretical prob-
lem is already very interesting. To the best of our knowledge, the problem Sim-
Match (or the more general problem listed in Section 1.1) has not yet been
examined. This work closes this gap and analyses this problem. It is structured
as follows. At first, we give a formal description of the problem in the next Section
1.1. Preliminaries can be found in Section 1.2.

In Chapter 2 we analyze the complexity of SimMatch. We will show that Sim-
Match is NP-hard and prove this by a reduction from MaxCut. We will also see
that SimMatch remains NP-hard for certain restrictions on the graph structure,
namely, both graphs consist solely of cycles, both graphs are planar, both graphs
are connected, both graphs consist solely of simple paths and both graphs consist
of a single tree. We will also see that SimMatch is hard to approximate which
also applies to the restrictions.

In Chapter 3 we propose some solutions for SimMatch despite its NP-hardness.
We first give an ILP-formulation for SimMatch After that we present a heuristic
for SimMatch which runs in O(n2m + n3log n) time, but, unfortunately, leaves
us in general with no relative guarantee on the solution. Then we will show how
to efficiently enumerate all maximum matchings in a graph and use this in order
to solve certain instances of SimMatch optimally in polynomial time: Those in-
stance have a polynomially bounded number of different maximum matchings.

In Chapter 4 we evaluate our heuristic as well as our ILP approach on real in-
stances. We will see that the heuristic is very close to the optimal solution and
beats the ILP approach concerning running time. The ILP approach is applica-
ble on small instances while guaranteeing optimal results. The heuristic solves
instances up to values of 106 for n + m whereas the ILP is only able to solve
instances up to values of 104 for n + m.

In the last Chapter 5 we conclude our work and give some ideas about future
work, also pointing out some other possible simultaneous problems.

1.1 Problem

The formal definition of SimMatch is as follows:
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1.1 Problem
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Figure 1.1: SimMatch example

SimMatch
Input: Two graphs G1 and G2 sharing some common edges and

nodes
Output: Maximum matching M1 in G1 and M2 in G2 such that

|M1 ∩M2| is maximized

In detail the problem can be described as follows: We are given two graphs G1 =
(V1, E1) and G2 = (V2, E2) which share some nodes V ′ = V1 ∩ V2 and some edges
E′ = E1 ∩ E2 ⊆

(
V ′

2

)
. We want to find two maximum matchings M1 ⊆ E1 and

M2 ⊆ E2 in G1 and G2, respectively. M1 and M2 must be maximum, i.e. |M1| and
|M2| are maximum under all matchings in G1 and G2, respectively. Additionally,
the cardinality of the intersection of M1 and M2 must be maximum under all
maximum matchings in G1 and G2, i.e. there are no maximum matchings M ′

1 and
M ′

2 in G1 and G2, respectively, so that |M ′
1 ∩M ′

2| > |M1 ∩M2|.
In Figure 1.1 you find a small example instance of SimMatch. Figure 1.1(a)
shows the plain instance: We see two graphs G1 and G2, both having the same
nodes, only their edges differ. The size of a maximum matchings is 3 in both
graphs since there are 7 nodes and a matching with 3 edges is possible in both
graphs. Figure 1.1(b) shows the SimMatch instance with an optimal solution,
the matched edges are marked bold (blue). We have the same matching in both
graphs, M1 = M2 = {c, h, j}, i.e. the size of both matchings is 3, hence they are
maximum matchings. Also, the size of the intersection of the matchings is 3, which
is maximum, thus, the matchings M1 and M2 constitute an optimal SimMatch
solution.

Considering our problem definition of SimMatch, there are some variations pos-
sible. For example, in SimMatch the matchings must be maximum, and under
all pairs of maximum matchings, the cardinality of the intersection must be max-
imum. It could also be the other way around, i.e. |M1 ∩M2| must be maximum
and under all pairs of matchings that satisfy this requirement |M1|+ |M2| must be
maximum. There are also other trade-offs imaginable, in addition to that; also the
number of graphs could be extended. However, we focused on the basic problem
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1.1 Problem

version SimMatch during our work. As we will see this problem is already hard
and some results for SimMatch can be transferred to the more general version.
Before we describe the more general problem version, we want to state informally
what kind of problems we want to be able to describe with our general problem
version. All problems that can be described have the following in common: We
search for matchings in several graphs, the matchings and their intersections with
each other must satisfy certain requirements on the maximality of their cardinal-
ity in relation to each other. The following problem version allows to describe
such problems, note that during this work only the specific version of SimMatch
presented above is used unless otherwise stated. In what follows P(A) denotes the
power set of A.

SimMatch (General Version)
Input: n graphs G1, . . . , Gn sharing some common edges and

nodes, and a weight function w : E × P({1, . . . , n})→ R
with E =

⋃n
k=1 Ek

Output: Matchings M1, . . . ,Mn in G1, . . . , Gn, respectively, so
that ∑

e∈E,

s∈P({1,...,n}),
e∈

T
k∈s Mk

w(e, s)

is maximum.

This formulation allows us, beside weighting each edge differently, to set different
priorities for edges for different subsets of graphs. For example, if we have given
a sequence of Graphs G1, . . . , Gn, we can set w(e, {k, k + 1}) > 0 for 1 ≤ k < n to
reward taking the same edge in two matchings of two successive graphs.

Of course, the simple version is included in the general version. If we have only
n = 2 graphs G1 and G2 and set w for every e ∈ E as

w(e, s) =


|E|+ 1 if s = {1} or s = {2}
1 if s = {1, 2}
0 if s = ∅

this corresponds to the basic SimMatch with G1 and G2 as input. In an optimal
solution M1 and M2 must be maximum matchings. Assume that, without loss of
generality, M1 would be not a maximum matching. Hence there exists a maximum
matching M ′

1 with |M ′
1| > |M1| and

∑
e∈M ′

1
w(e, {1}) ≥

∑
e∈M1

w(e, {1})+|E|+1.
So replacing M1 by M ′

1 will increase our sum due to w(e, {1}) by at least |E|+ 1
and decrease our sum due to w(e, {1, 2}) by at most |E| since there are at most |E|
edges. This means that the sum is not maximum, contradicting our assumption
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1.2 Preliminaries

that M1 and M2 is an optimal solution. Hence M1 and M2 must be maximum
matchings. w(e, {1, 2}) = 1 ensures that under all pairs of maximum matchings
the one with the largest intersection |M1 ∩M2| is taken.

1.2 Preliminaries

A graph G is represented by a pair (V,E) such that V is a set of nodes and
E ⊆

(
V
2

)
is a set of edges which represents a relation between the nodes. For

an edge e = {u, v} ∈ E with u, v ∈ V , we say the nodes u and v are adjacent
and e and u are incident (also e and v). In the following, we use only undirected
graphs if not otherwise stated. The degree of a node u in an undirected graph is
the number of its incident edges and is denoted by deg(u). If we refer to m or n
within the text n usually represents the number of nodes and m the number of
edges in the associated graph, i.e. for a graph G = (V,E) n = |V | and m = |E|.
A path in a graph is a sequence of nodes (v1, v2, . . . , vn) with edges connecting the
nodes {v1, v2}, {v2, v3}, . . . , {vn−1, vn}. By adding the edge {vn, v1} we obtain a
cycle. A matching M ⊆ E in a graph G = (V,E) is a subset of edges without two
different edges sharing one endpoint. A matching M ⊆ E in a graph G = (V,E)
is a maximum matching if there exists no matching M ′ in G with |M ′| > |M |. A
matching M ⊆ E in a graph G = (V,E) is a maximal matching if there exists no
edge e ∈ E which can be added to M so that M ∪ {e} is still a matching. We
deal mostly with maximum matchings and not with maximal matchings during
this work. P(A) denotes the power-set of a set A.

11



2 Complexity

There are often several ways to solve a problem. Sometimes it is useful to analyse
the problem from a theoretical point of view before taking a path into a specific
direction to solve the problem. The direction of the path may expose as a dead
end and the used tools as inappropriate. Even the problem itself may turn out to
be unsolvable.

SimMatch is not unsolvable. But there are some limitations if we want to com-
pute an exact solution. It is helpful to know about this limitations if we want to
understand algorithmic solutions for SimMatch. This chapter discusses those and
the theoretical complexity of SimMatch. As we will see the problem is NP-hard,
which means that there does not exist any algorithm which solves SimMatch in
polynomial time, unless P=NP (see [GJ79] for some classic introduction to NP-
completeness in general). This may be surprising as finding a maximum matching
in a single graph is solvable in polynomial time [Edm65]. The fact that SimMatch
is NP-hard requires us to use some alternative approaches to get a solution, which
is part of Chapter 3 in which we propose a heuristic.

In the first section of this chapter, we will show that SimMatch is NP-hard by
reducing an already known NP-hard problem, namely MaxCut, to it. We will
also show that SimMatch remains NP-hard for some relatively strong restrictions
on the graph structure. In the succeeding section we will see that the problem is
even more difficult: Every polynomial time approximation can not approximate
better than 50/51, unless P=NP.

2.1 NP-hardness

In the first part of this section we show that SimMatch is NP-hard by reducing
MaxCut to it. Later we will show that the problem remains NP-hard for some
restrictions on the graph structure, namely both graph consist of cycles, are planar,
are connected, consist solely of simple paths or each consist of a single tree.
The common way to prove that a problem is NP-hard is to show that the related
decision problem is NP-complete. So in the following we will analyze the related
decision problem of SimMatch, which is stated as follows.

12



2.1 NP-hardness

SimMatch (Decision Problem)
Instance: Two graphs G1 and G2 sharing some edges and nodes and

a positive integer K.
Question: Is there a maximum matching in G1 and G2 with both

matchings sharing at least K matched edges?

Note that in the further text we do not explicitly differentiate between the decision
problem and the original SimMatch problem introduced in Section 1.1 as it should
be quite clear which problem is referred to in the text.
The first part to proof the NP-completness of SimMatch is to show that Sim-
Match is in NP. That means we need to check if SimMatch can be solved by a
non-deterministic algorithm in polynomial time.

Lemma 2.1.1. SimMatch ∈ NP

Proof. Given an instance of SimMatch, we non-deterministically “guess” a solu-
tion which consists of two sets with edges including the matched edges. To verify
that this solution is a “Yes”-instance we need to check the following:

1. Both sets are matchings, i.e. no two edges in each set share the same end-
points.

2. Both matchings are maximum, i.e. the number of edges in each set comply
with the maximum number of edges possible, this value can be computed in
polynomial time, see [Edm65].

3. The cardinality of the intersection is at least K.

These steps can be done in polynomial time. Hence it follows that SimMatch ∈ NP.

Next we show the NP-hardness of SimMatch by reducing an already known
NP-hard problem to it. We present a reduction from MaxCut to SimMatch.
MaxCut is known to be NP-complete [GJS74] and can be stated as follows:

MaxCut (Decision Problem)
Instance: Graph G = (V,E), positive integer K
Question: Is there a partition of V into disjoint sets A and B such

that the number of edges from E that have one endpoint
in A and one endpoint in B is at least K?

Lemma 2.1.2. MaxCut is reducible to SimMatch

Proof. First, we give a polynomial transformation from a MaxCut instance to
a SimMatch instance. After that we will show that the transformation yields a
“Yes”-instance if and only if the MaxCut instance is a “Yes”-instance.

13



2.1 NP-hardness

Without loss of generality we consider only MaxCut instances in which every
node has at least one incident edge. Nodes with degree zero can be included into
an arbitrary partition in the solution as they do not have further influence. Before
we go into the detail of the transformation we give a short overview of the general
idea: The nodes of the MaxCut instance are transformed into cycles, those cycles
build up G1. The edges are also transformed into cycles forming the graph G2.
The important part is that node cycles of G1 and edge cycles of G2 share some
edges. Edges are shared between the cycle of an edge and the two cycles of the
nodes which are incident to the edge. Now we explain how this transformation
corresponds to the original problem. All constructed cycles have an even number
of edges. For such cycles there are exactly two maximum matchings possible. In
a node cycle the matching represents whether we assigned the node to set A or
to set B. If two nodes that are connected by an edge are assigned to different
sets, the matching in the cycle that corresponds to the connecting edge can have
a higher correspondence with the matchings in the two cycles of the nodes and
therefore leads to a higher objective value. In this case the matchings of the edge
cycle and the two node cycles can have an intersection of two. If the two nodes are
assigned to the same set, the intersection can only be one. This is quite similar
to the MaxCut instance, the only difference here is that the solution value is
increased by only one for an edge if its two incident nodes lie in different sets. If
the incident nodes lie in the same sets the solution value is not increased at all.
Thus the objective value needs to be modified slightly. Now we show that such a
transformation is really possible by describing its construction in detail.
We transform the MaxCut instance (G = (V,E),K) into a SimMatch instance
(G1 =

⋃
v∈V

{node cycle cv}, G2 =
⋃

{u,v}∈E

{edge cycle c{u,v}},K ′).

Node Cycles Every v ∈ V is transformed into a node cycle cv of length 4 ·deg(v)
located in G1. The cycles have an even number of edges and thus, for each
cycle there are exactly two possible maximum matchings (half of the edges can
be matched). Each of those matchings in a cycle cv corresponds to whether we
put v to the set A or B (in MaxCut). Let the edges in this cycle be numbered
from 1 to n, so that two consecutive numbered edges are adjacent (including n
and 1). We call every odd numbered edge an A-edge, every even numbered edge a
B-edge. In a maximum matching either all A-edges are matched, indicating that
v is included in set A, or all B-edges are matched, indicating that v belongs to set
B. If the A-edges are matched we say v is assigned to set A and vice versa. As
the length of the node cycle is four times the degree of the node, cv has four edges
for each incident edge. We group them such that for each incident edge we have
four consecutive edges on our cycle.

Edge Cycles To get some relation with the size of a certain partition in the
MaxCut instance, we transform every edge {u, v} ∈ E of the MaxCut instance

14



2.1 NP-hardness

. . . . . .

. . .. . .

A-edge

B-edge

B-edge

A-edge

new

new

edge cycle

node cycles

Figure 2.1: Edge Cycle

to a cycles c{u,v} of length 6. These cycles are named edge cycles and build up G2.
They do not solely consist of new edges, they share edges (and their incident nodes)
with node cycles of G1. Both node cycles cv and cu in G1 hold four consecutive
edges for our edge {u, v}. We only use the inner two edges of such four consecutive
edges. This ensures that they are not influenced by neighbouring edge cycles and
thus the edge cycle remain independent within G2. The two inner edges consist
of one A-edge and one B-edge. So the edge cycle is made up of two A-edges and
two B-edges, one each of cv and cu, plus two new edges. One new edge is adjacent
to the A-edge of cv and the B-edge of cu, the other one connects the B-edge of cv

and the A-edge of cu.
In summary, a cycle c{u,v} looks like this: The A-edge of cv followed by the B-
edge of cv, a new edge, the A-edge of cu followed by the B-edge of cu, the other
new edge closing the cycle. The assembly of the edge cycle can also be seen in
Figure 2.1 (In Figure 2.2 you see an example of a complete transformation). The
idea about this cycle is the following: As for the node cycles, we also have two
possible maximum matchings in the edge cycles in G2. The edge cycle c{u,v} in G2

connects the two node cycles cu and cv of G1. The size of the intersection of the
matching for G1 and G2, considering one of these edge cycles c{u,v} in G2, can be
either one (1), two (2) or zero (0) depending on how we match the corresponding
node cycles cu and cv in G1. There are two possibilities for each node cycle: match
the A- or the B-edge. This represents whether we put the node into set A or into
set B. The intersection has size one (1), if both corresponding node cycles cu and
cv are matched in the same way (both A-edge or both B-edge). In this case it is
irrelevant how we match the edge cycle. The size of the intersection is two (2), if
the corresponding node cycles are matched different and the edge cycle is matched
in the right way, zero (0) if the matching in the edge cycle is misplaced. This is
easy to check by analysing all possible cases for an edge cycle seen in Figure 2.1.
The edge cycle is independent of other cycles and therefore we will never take the
matching with an intersection of zero elements.

15



2.1 NP-hardness

Looking back to the MaxCut instance, if we have an edge with one endpoint
in A and one in B in a solution, the objective value (number of edges having
one endpoint in A and one in B) increases by one. In the SimMatch instance,
the objective value (cardinality of the intersection of the matchings in G1 and G2)
may increase by two. But in the SimMatch instance the objective value increases
also by one for every edge not satisfying the condition that the endpoints are in
different sets. That means we have one extra element in the intersection of M1

and M2 for every edge, independent of how we partitioned the nodes. Therefore
we set K ′ = K + |E|.

Clearly the transformation can be performed in polynomial time. In Figure 2.2
you find a small sample transformation, an optimal solution for the example Max-
Cut and SimMatch instance is shown in Figure 2.3 where the (blue) bold edges
belong to the solution set. After the proof, we give some information about the
example.

Now we show that the transformation is sound, i.e., the transformed instance of
SimMatch is a “Yes”-instance if and only if the original instance of MaxCut is
a “Yes”-instance.
If the MaxCut instance is a “Yes”-instance, there exists a partition of the nodes
in A and B, so that we have at least K edges with one endpoint in A and the other
in B. We are now able to set the matching in the transformed SimMatch instance
as follows: In every node cycle we set the matching according to the partition in
the MaxCut instance. As seen above, the intersection with the matching of the
edge cycles is two for every edge with one endpoint in A and one in B and one for
every other edge. Therefore the size of the intersection is at least K + |E|. Hence,
we have a “Yes”-instance.
If the MaxCut instance is a “No”-instance, the transformed SimMatch instance
is also a “No”-instance, for the following reason: If the SimMatch instance was a
“Yes” instance, there would exist matchings so that the size of the intersection is
at least K + |E|. That means there must be at least K edge cycles which have a
matching intersection of two because every edge cycle has at most an intersection
of two and there are |E| ones of them. To have an intersection of two one of its
related node cycles is assigned to set A and the other one to set B. If we use
a partition in MaxCut which is determined by the matchings of the cycles in
SimMatch, we have K edges having one endpoint in A and one endpoint in B.
That means the MaxCut instance was a “Yes”-instance, which contradicts the
assumption.

The following theorem follows directly from Lemma 2.1.1 and 2.1.2:

Theorem 2.1.3. SimMatch is NP-complete.

In addition to the formal description of the transformation we give a concrete
example of a transformation shown in Figure 2.2. Figure 2.2(a) shows the orig-
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Figure 2.2: Example transformation to SimMatch instance.
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Figure 2.3: Example transformation with (an) optimal solution.
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2.1 NP-hardness

inal MaxCut instance. This is transformed to the SimMatch instance in Fig-
ure 2.2(b), there you can see the five node cycles corresponding to a, b, c, d and
e which make up the graph G1. Between those, there are seven edge cycles which
are part of G2. The node cycles consist of A-edges and B-edges and in every node
cycle there is one marked with A and one with B. Whether an edge is an A-edge
or an B-edge can be deduced from those (A-edges and B-edges are alternating).
In Figure 2.3 an optimal solution is shown for both instances. In 2.3(a) the solution
for the MaxCut is illustrated, every node is set to partition A or to partition B.
The bold (blue) edges have one endpoint with a node in set A and one in set B,
these edges are part of the solution. The size of the solution is 5, two edges could
not be taken. Below in 2.3(b) we see the corresponding solution in the SimMatch
instance, in every cycle every second edges is matched, those matched edges are
marked bold. The thickest (blue) edges lie within the intersection of the matchings
of G1 and G2, these edges are part of both matchings. Every edge cycle, which
corresponds to an edge of MaxCut where one endpoint is a node part of set A
and one is a node part of set B, has two edges which lie in the intersection. All
other edge cycles have only one edge lying in the intersection. This sums up to
the solution size 5 · 2 + 2 = 12.

NP-hard Restrictions After we have seen that SimMatch is NP-hard we may
ask if there are cases which are easy to solve. Or the other way around, we might
ask which restrictions leave the problem NP-hard. As we will see, the restrictions
on the graph structure can be relatively strong without violating NP-hardness
for the respective class of graphs. However, if the number of different maximum
matchings is fixed or bounded polynomially, it is possible to solve the problem in
polynomial time, see Section 3.3. Here we will concentrate on restrictions which
leave the problem NP-hard. We first list all observed restrictions which leave the
problem NP-hard, after that we explain why this holds.

• G1 and G2 consist of cycles

• G1 and G2 are planar

• G1 and G2 are connected

• G1 and G2 consist solely of simple paths

• G1 and G2 each consist of a single tree

G1 and G2 consist of cycles Take a look back at the reduction in Section 2.1
and to Figure 2.2. The construction returns instances in which the graphs consist
solely of cycles.

G1 and G2 are planar Similar to the class of graphs above, the reduction in
Section 2.1 already returns instances in which the graphs are planar and therfore
belong to this class.
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Figure 2.4: Converting A Cycle (Top) To A Path (Bottom)

G1 and G2 are connected To show that the problem remains NP-hard if each
graph is connected we just modify the resulting graphs from the reduction in
Section 2.1. Those graphs consist of simple cycles which have a perfect matching.
Now we modify each graph. In both graphs, G1 and G2, we add two new nodes
that are connected by a new edge. We now connect one of these nodes to a node of
each cycle by inserting additional edges. It is clear that the resulting graph still has
a perfect matching. By taking the newly inserted edge, all nodes can be matched.
For a maximum matching it is necessary to match this edge, otherwise we would
not be able to get a perfect matching, as we would miss one of the new nodes.
This modification does not change anything except that there is one additional
edge which is always matched, there is no further influence. That means that
the reduction still works. The modification connects the graph, so this restriction
leaves the problem NP-hard.

G1 and G2 consist solely of simple paths This is a quite strong restriction for
our graphs. Nevertheless this restriction leaves the problem NP-hard. We will
again modify our reduction from Section 2.1 in a way that it meets our restriction
and still works. The transformed graphs from the reduction consist solely of cycles.
We transform each cycle from graphs G1 and G2 to a simple path. An important
property of the cycles was that there are exactly two different maximum matchings
possible. In both possible matchings every second edge is included (alternating).
In our transformation to a path, we want to retain this property for these edges,
we name them cycle edges. Let mc be the number of cycle edges, mc is even. We
transform each cycle to a path in which the cycle edges form the middle of the
path ordered by their sequence within the cycle starting at one arbitrary edge. We
enlarge this path by adding mc plus one edges to each end of the path. The result
for a cycle with four edges can be seen in Figure 2.4. Note that we also insert
edges (=paths with length one) to the graph in which the transformed cycle is not
located. These edges are part of the constructed path and therefore present in
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2.1 NP-hardness

both graphs. Every second edge from the edges which where added at both ends
from the path to the cycle edges is part of both graphs. Those edges are marked
bold (and blue) in Figure 2.4.

Now we explain the idea of the constructed path. The number of nodes in this
path is odd, therefore exactly one node is unmatched in a maximum matching
(none of the matched edges is incident to this node). The unmatched node should
not lie within the cycle edges, because if it does, the cycle edges are not matched
alternatingly, and this is what we want to preserve. We try to force that the
unmatched node is at one end of the path as then the cycle edges are matched
alternatingly. At which end the unmatched node is located will decide which half
of the cycle edges is matched. To assist letting an end note unmatched, we added
the single edges to the other graph. These edges must always be included in a
maximum matching in the other graph. With those, the matching intersection
regarding only the transformed cycle is increased by mc/2, since when we let the
appropriate end node unmatched, the matched cycle edges stay the same and the
intersection is enriched by the added single edges at one side of the path.

So note that with this selection, the size of the intersection of the matchings within
one transformed cycle can be as high as mc/2 + size of intersection of the cycle.
In contrast, when we let a node in the path unmatched which is incident to a cycle
edge, the intersection can be at most mc/2 since none of the single edges can be
matched in both graphs and there are mc cycle edges where at most half of them
can be matched.

We will now use parts of the reduction from Section 2.1 and modify it in a way
that the SimMatch instance has two graphs consiting solely of simple paths
and we are still able to solve MaxCut with it. So let us consider an instance
of MaxCut, (G = (V,E),K). We apply the transformation used in the proof
of Lemma 2.1.2 on this instance. This give us the SimMatch instance T =
(G1 =

⋃
v∈V

{node cycle cv}, G2 =
⋃

{u,v}∈E

{edge cycle c{u,v}},K + |E|), where G1

and G2 consist solely of cycles. We now transform every single cycle to a path
as described above, this results in G′

1 =
⋃
v∈V

{node cycle cv transformed to path}

and G′
2 =

⋃
{u,v}∈E

{edge cycle c{u,v} transformed to path}. Additionally we need

to change K + |E|. As described above, we are able to get the same size for
the matching intersection for the paths as for the cycles plus mc/2 for every
transformed cycle, where mc is the number of edges in the cycle. Looking back
to the MaxCut instance, we are able to observe that every edge in E generates
4 edges in 2 node cycle each and 6 edges in one edge cycle. This makes a total of
14 edges. That means, every edge in E increases our objective value by 7, so we
change K + |E| to K + 8|E|. So this is our SimMatch instance which consists
only of paths and can be used to solve MaxCut: T ′ =(G′

1, G
′
2,K + 8|E|).
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2.1 NP-hardness

We now show that a “Yes”-instance of MaxCut is transformed to a “Yes”-
instance of SimMatch and a “No”-instance is transformed to a “No”-instance.
First we show that a “Yes”-instance of MaxCut is transformed to a “Yes”-
instance of SimMatch. So let the MaxCut instance be a “Yes”-instance. Then,
as shown in the proof of Lemma 2.1.2, the transformation to a SimMatch instance
T consisting of cycles produces “Yes”-instance, too. That means, the intersection
of our matchings is at least K + |E|. As shown above, in our instance T ′ where
the graphs consists solely of paths, we are then able to find maximum matchings
in both graphs with an intersection of K + 8|E|: Just match the cycle edges in T ′

as in T , leaving one node unmatched at the end of a path where it is possible like
described previously. This gives us an extra intersection of mc/2 edges per path
and thus 7|E| edges, over all. This leads us to an intersection of K + 8|E|, so T ′

is a “Yes”-instance.
Now consider the MaxCut instance to be a “No”-instance. Then, as stated in the
proof of Lemma 2.1.2, the transformation to the SimMatch instance T produces
a “No”-instance, that means, there are no matchings M1 and M2 for G1 and G2,
respectively, so that |M1 ∩M2| ≥ K + |E|. We now assume that T ′ is a “Yes”-
instance and lead it to a contradiction by proving that T is a “Yes”-instance. If
T ′ is a “Yes”-instance there are matchings for G1 and G2 with an intersection
of at least K + 8|E|. With those matchings, we can construct a solution for T
although T is a “No”-instance. Consider a path in the graph where the cycle
edges are not matched alternatingly. This is only possible if a node incident to a
cycle edge is unmatched. We change the unmatched node on this path so that the
cycle edges are matched alternatingly. Considering the construction of the path,
we see that the maximal matching intersection is at most mc/2 if an edge incident
to the cycle edges is unmatched. We now change the matched edges on that path
so that the unmatched node is located at an arbitrary end of the path. The new
matching intersection for that path is now at least mc/2, that means the size of
the intersection of the matchings did not decrease.
We apply this change to every path where the cycle edges are not matched alter-
natingly and we still have an intersection of at least K + 8|E|. As now all cycle
edges are matched alternatingly, we can use the matching solution from T ′ for T
by just dropping all non-cycle edges. Due to the construction, at most 7|E| edges
in the matching solution from T ′ are non-cycle-edges (at most mc/2 for each trans-
formed cycle resulting in a total of 7|E| edges), that means that we have deduced
maximum matchings for T with an intersection of at least K + |E|. It follows that
T is a “Yes”-instance. This contradicts our assumption that T is a “No”-instance.
Hence, SimMatch is still NP-hard when both input graphs are restricted to solely
consist of paths.

G1 and G2 each consist of a single tree Maybe surprising, the SimMatch even
remains NP-hard if we restrict both graphs to be a single tree, i.e. connected graphs
without cycles. One could have expected that there is some dynamic programming
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Figure 2.5: Connecting Paths To A Tree

approach as in general finding matchings in a tree is relatively easy. However, the
problem remains NP-hard. To prove this, we modify the reduction above in which
we restricted Graph G1 and G2 to consist solely of simple paths. We will transform
each graph to a single tree without changing the essential structure. In each graph,
we insert a new node. We also insert an edge between one endpoint of each path
and the new inserted node. Additionally, we insert another new node and an edge,
called extra edge, connecting the node with the other new nodes. So the added
edges and nodes on its own form a star graph, where all edges but one share one
node with one path. The transformation can be seen in Figure 2.5, the part below
the dashed line consists of the paths, the part above are the newly inserted edges
and nodes. The resulting graph is a tree.

Now consider a matching in such a graph. If the extra edge is included in such a
matching, the possibilities for the rest of the matching do not differ at all from the
matching in the graph consisting solely of paths. If the extra edge is not matched,
one of its adjacent edges need to be matched. This edge is adjacent to a path with
an even number of edges. It can not be adjacent to a path with an odd number
of edges since then there would be an additional node unmatched. Instead of this
edge, we could have also matched the extra edge without making any difference for
the intersection of the maximum matchings. That means that the modification of
the graph did not change the possibilities of the matchings within the paths nore
did it modify the resulting intersection of the matchings. Hence, the previously
presented reduction still works. Thus SimMatch is NP-hard even if both input
graphs are trees.
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2.2 Inapproximability

2.2 Inapproximability

As seen in the last section SimMatch is NP-hard and unless P=NP there is no
efficient way to find solutions that are close to the optimum. But we may still
find a method to solve the general problem near-optimally. Unfortunately, this is
restricted to some level as we will see in this section.
As the problem is NP-hard, we are interested in finding a PTAS (polynomial-
time approximation scheme) which would give us a an ε-approximation for any
fixed ε in polynomial time. Unless P=NP, there does not exist such an algorithm
and even an approximation within a specific range is not possible as we will see
in the following. To prove this, we will draw on the fact that MaxCut has an
approximation gap [TSSW00].

Theorem 2.2.1 ([TSSW00]). For any ε > 0 it is NP-hard to approximate Max-
Cut to within 16

17 + ε

Based on this theorem, we can deduce a lower bound for SimMatch. This lower
bound value will be different from 16

17 as we will argue with the transformation of
Section 2.1 and during the transformation the optimal objective value changes.
The techniques used to prove the following inapproximability bound can be found
in detail in Vazirani’s book about approximation algorithms [Vaz03].

Theorem 2.2.2. For any ε > 0 it is NP-hard to approximate SimMatch to
within 50

51 + ε.

Proof. Let I be a MaxCut instance and I ′ the corresponding SimMatch instance
generated by the reduction described in Section 2.1. Here OPT (I) and OPT (I ′)
denote the size of an optimal MaxCut and an optimal SimMatch solution, re-
spectively. It is clear that for a class of MaxCut instances I and some fixed
value k, it is NP-hard to decide whether OPT(I) ≥ k or OPT(I) < 16

17k. If it was
possible, we could find a better approximation than 16

17 which would contradict
Theorem 2.2.1. We will see that the reduction from an instance I of MaxCut
to an instance I ′ of SimMatch preserves this gap, in the sense that it is also
NP-hard to approximate SimMatch better than a certain factor as a constant
factor approximation of SimMatch leads to a constant factor approximation of
MaxCut due to the reduction. When we transform an instance I of MaxCut
to an SimMatch instance I ′, OPT(I) changes to OPT(I ′) = OPT(I) + m where
m := number of edges in I. Now we can not decide in polynomial time for all k
whether OPT(I ′) ≥ k + m or OPT(I ′) < 16

17k +m. If we were able to decide it for
every k, we could use this to decide OPT(I) ≥ k or OPT(I) < 16

17k for every k in
polynomial time, which contradicts Theorem 2.2.1.
We know that m and k are related, of course m ≥ k since a maximum cut can not
be greater than the number of edges in a graph. Maybe less obvious it holds that
k ≥ m

2 . The size of a maximum cut is always at least as large as half of the number
of its edges: If we scan the nodes in arbitrary order and place each node to the set
where fewer of the adjacent nodes are part of already yields a cut with a size of
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at least m
2 . Hence k = β ·m with β ∈ [12 ..1]. That means we can not distinguish

between OPT(I ′) ≥ k + m = (β + 1)m and OPT(I ′) < 16
17k + m = (16

17β + 1)m.
The factor within which we can not approximate is therefore

(16
17β + 1)
(β + 1)

This term is maximized for β = 1
2 and therefore always lower than 50

51 . This implies
our approximation gap.

Note that this inapproximability gap remains for some of the restrictions on Sim-
Match presented at the end of Section 2.1. The 50/51-inapproximability remains
for instances where the graphs consisting solely of cycles, instances with planar
graphs and instances with connected graphs. The reduction for those instances is
similar to the reduction used in Theorem 2.2.2, that means, during the reduction
OPT (I ′) = OPT (I) + m still holds (with I being an MaxCut instance, I ′ being
the reduced SimMatch instance and m the number of edges in the MaxCut
instance).
For the other two restrictions, the graphs consist solely of simple paths and the
graphs consist of a single tree, the reduction gives us OPT (I ′) = OPT (I) + 8m.
We are still able to give an inapproximability factor with the approach in Theo-
rem 2.2.2, but the factor is weaker. For those instances it is NP-hard to approxi-
mate for every ε > 0 within 288/289 + ε.

Due to Theorem 2.2.2, it is unlikely to find a PTAS for SimMatch and there even
exists a gap which is preventing one from getting too close to the optimal solution.
At the utmost we are able to get as close as 50

51 = 0.9803 for a set of instances but
there is still a chance of getting a polynomial algorithm which provides us with,
e.g., a 0.5-approximation. Even that may be impossible because there could exists
a tighter lower bound. An interesting question would be if 50

51 is tight. It is possible
that this lower bound may be improved, for example by using another gadget or by
sparing the detour on MaxCut. The approximation gap could also be improved
by using a specific class of MaxCut instances for which Theorem 2.2.1 still holds
but the optimum size of MaxCut is always a factor bigger than half of the edges.
To show that this bound can not be considerably further improved we have to find
an algorithm with an approximation factor as high as possible. This has not been
done yet and at the moment it is unclear wether such an approximation actually
exists. Hence the gap between 0 and 50

51 is still open.
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3 Algorithmic Approaches

In Chapter 2 we have seen that it is hard to compute an optimal solution for
SimMatch. In this chapter we propose ways to find solutions for SimMatch
instances despite their NP-hardness. For some instances it may be an option
to search for the optimum solution even if there is the possibility of getting an
exponential running time. When instances are small or the instances are not
really “hard”, this approach may be applicable. We will formulate SimMatch
as an integer linear program (ILP) which can be solved with classic methods.
An optimal solution of the ILP yields an optimal solution of SimMatch. We
will also show how the ILP can be improved if we use the fact that we know
the size of the maximum matchings. After this we will present a heuristic for
solving the SimMatch problem. The heuristic may be more applicable in real
world instances. We first introduce the heuristic and how it works. Then we show
that, unfortunately, it is not an approximation and leaves us in general with no
relative guarantee to the optimum solution. In the last section we present a class
of SimMatch instances that can be solved in polynomial time. We also give an
algorithm that solves instances of this class polynomially. This class consists of
instances where (at least) one graph has a polynomial bounded number of different
maximum matchings. In general the number of different maximum matchings is
exponential and therefore this algorithm is only applicable for special cases.

3.1 ILP formulation of SimMatch

A straightforward solution for SimMatch is modeling it as an integer linear pro-
gramming (ILP) problem. This is a fast and intuitive way to obtain a solution
which is optimal. There are a lot of techniques and programs available for solving
ILPs, often only requiring a reasonable amount of time. However, solving ILPs
is known to be NP-hard and is therefore in general not efficient, unless P=NP.
We now give the constraints and variables of the ILP-formulation based on the
SimMatch instance (G1, G2,K), with G2 = (V2, E2), G1 = (V1, E1) and E1, E2

sharing some edges.

For every edge {i, j} in Ek for k ∈ {1, 2} let X{i,j},k be the corresponding binary
variable. If X{i,j},k is 1, this means that the edge is part of the matching in graph
Gk.

X{i,j},k ∈ {0, 1} k ∈ {1, 2}, {i, j} ∈ Ek, i < j
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3.1 ILP formulation of SimMatch

To ensure that the matching is valid in G1 and G2, we add the following constraints
for every node i ∈ Vk:

∑
{i,j}∈Ek

X{i,j},k ≤ 1 k ∈ {1, 2}, i ∈ Vk

We also need to measure the size of the solution, that is, the number of edges
which are matched in both graphs. So for all edges {i, j} ∈ E1 ∩ E2 that exist in
both graphs, we introduce a new binary variable B{i,j} (B=’Both’) that should
only be 1 if the corresponding edge is matched in both graphs.

B{i,j} ∈ {0, 1} {i, j} ∈ E1 ∩ E2, i < j

With the following constraints, B{i,j} can only be 1 if the corresponding edge is
matched in G1 and G2, that means if X{i,j},1 and X{i,j},2 are 1.

X{i,j},1 + X{i,j},2 − 2 ·B{i,j} ≥ 0 {i, j} ∈ E1 ∩ E1, i < j

Maximizing the sum over all X{i,j},k would already induce a valid maximum
matching for G1 and G2. However, among all these matchings in G1 and G2,
we want to find the matchings with the biggest intersection, which is measured
by the variables B{i,j}. To get a valid solution, we need to take care that the sum
over all edge variables X{i,j},k is maximum independent of any reward given for
taking the same edge in both graphs with variable B{i,j}. After it is ensured that
the sum over all X{i,j},k variables is maximum, the rewards from variable B{i,j}
should be maximized. We can achieve this by taking care that all rewards from
B{i,j} together are not as good as increasing a single X{i,j},k variable by one. The
sum of all B{i,j} is at most b|V1∩V2|/2c. This leads us to the following sum which
has to be maximized by the ILP solver:(⌊

|V1 ∩ V2|
2

⌋
+ 1

)
·

∑
k∈{1,2}

{i,j}∈Ek,i<j

X{i,j},k +
∑

{i,j}∈E1∩E2

i<j

B{i,j} (basic)
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3.2 Heuristic

As already said, the objective function ensures that the matchings in both graphs
are maximum. This can also be achieved with a constraint if we already know the
size of the maximum. We now give an alternative ILP-formulation which has one
more constraint and a different objective function. If we insert a constraint which
forces the maximum size of the matchings, the maximum size does not need to be
ensured by the objective function. Instead, the constraint directly ensures that the
right number of X{i,j} variables is set to 1. In the experimental studies only this
improved version is used, because it can be solved much faster by the ILP-solver
than the basic version. However, we must determine the maximum size of the
matchings. This can be done polynomially in O(

√
nm) time [MV80, Vaz94]. Let

M(G1) and M(G2) be the size of a maximum matching in G1 and G2, respectively.
For the improved version we replace the basic objective function from above with
the following inequality∑

{i,j}∈Ek,i<j

X{i,j},k = M(Gk) k ∈ {1, 2} (improved)

and a new objective function which has to be maximized:∑
{i,j}∈E1∩E2

B{i,j} (improved)

In both versions we can directly obtain a solution for the SimMatch instance
after solving the ILP:

M1 := {{i, j} ∈ E1 | X{i,j},1 = 1}

M2 := {{i, j} ∈ E2 | X{i,j},2 = 1}

The ILP enables us to get an optimal solution for SimMatch. However, solving
the ILP may require exponential running time. In the next section we present a
heuristic for SimMatch with running time O(n2m + n3log n).

3.2 Heuristic

We now present and analyze a heuristic for the SimMatch problem. A heuristic
is a method that tries to find a solution to a problem but does not necessarily give
any formal guarantees on the running time of the algorithm or on the quality of
the solution. As we will see, our heuristic runs in polynomial time but is not able
to provide a relative guarantee compared to the optimal solution.
The algorithm works in turns where it fixes the matching in one graph and op-
timizes the matching in the second graph to fit better with the currently fixed
matching of the other graph. The best fitting matching is a matching where the
following properties are maximized, the first named properties with higher prior-
ity: number of edges in the matching, number of edges in the matching shared
with the fixed matching from the other graph, number of edges in the matching
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shared with the other graph. After one turn, the two graphs switch their roles.
This process is iterated until no further improvement can be done. Now we give
a more formal description of the heuristic.

The heuristic will do the following steps with G1 = (V1, E1) and G2 = (V1, E1) as
input: At first, set M1 and M2 to be the empty set, both representing matchings in
G1 and G2, respectively. Now recalculate M1 in G1, but take a maximum matching
where the number of matched edges also appearing in the matching of G2 (which
is fixed at the moment and may contain edges in later steps) is maximum. With
second priority, among all those matchings take only those where the number of
the matched edges which are also in G2 (not caring if the edge is matched in G2)
is maximum. Before we will explain how to achieve this, we state the constraints
more formally:
Set M1 to a maximum matching such that for all other maximum matchings M ′

1

of G1 both of the following hold:

|M1 ∩M2| ≥ |M ′
1 ∩M2| (3.1)

|M1 ∩M2| = |M ′
1 ∩M2| ⇒ |M1 ∩ E2| ≥ |M ′

1 ∩ E2| (3.2)

Now we show how to find such a matching. We use a matching where some edges
have higher priorities, this is possible by using weighted matchings. We give a short
introduction to weighted matchings: In a weighted matching, a number is assigned
to every edge (its weight) by a function w : E → N0. A maximum matching M
in the weighted case is a matching which maximizes w(M) =

∑
e∈M w(e)). Such

a matching can be computed in O(nm + n2log n) time [Gab90].
To obtain the desired matching we create a weighted matching instance whose
solution satisfies the two properties above. In order to accomplish this, we set the
edge weights w : E1 → N0 as follows1. Let k := b|V1 ∩ V2|/2c.

w(e) =


k(k + 2) + k + 3 if e ∈M2

k(k + 2) + 2 if e ∈ E2 \M2

k(k + 2) + 1 if e /∈ E2

(3.3)

Lemma 3.2.1. A maximum weight matching M1 in G1 with weight function w is
a maximum matching and satisfies requirements (3.1) and (3.2).

Proof. First we want to state that the number of edges which can be matched in
E1 ∩ E2 is at most k, since in every matching the number of matched edges is at
most half of the number of nodes. For a valid weighted matching result M1, the
weight function w ensures the following three properties with decreasing priority:

(1) The number of edges in M1 is maximum: If we took one edge less, our objective
sum would be decreased by at least k(k+2)+1 for this edge. This loss can not be

1lowering the weights (a little) is possible, but it seems not to be a significant improvement
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compensated with higher weighted edges, as there can be taken at most k edges
with higher weights and each of those can at most return an extra of k +2, result-
ing in (k+2)k which is not enough. This ensures that M1 is a maximum matching.

(2) The number of edges in M1 which are also in M2 is maximum: If we took one
edge less which exists in M2, that would be a loss of at least k + 1. This can not
be compensated by changing some edges in E1 \ E2 to higher weighted edges in
E1 ∩ E2 \M2, as there can be taken at most k edges changed to higher weights
and those weigh only 1 more. This ensures requirement (3.3).

(3) The number of edges in M1 which are also in E2 but not in M2 is maximum:
Taking one edge less which exists in E2 but not in M2 would yield at least 1 less
compared to other edges.

This corresponds exactly to our previously required properties and therefore we
can find a compatible matching M1 by solving the stated weighted matching.

Above, we computed a new matching M1 while fixing the matching M2. Now we
do the same the other way round. M1 is fixed and we compute M2 as described
above (M1 and M2 switch roles). After this, we check the size of the solution
|M1 ∩M2| and compare it to the value before the recomputation of M1 and M2.
If the size did increase, we repeat the recomputation of M1 and M2 until the size
does not increase any more. During one step, |M1 ∩M2| can not decrease as the
newly computed matching M1 will not have fewer edges which are also in M2.
This is due to the fact that the old M1 is also a valid solution and therefore the
new matching has at least as many common edges with M2 as the previous one.
The same argument holds for M2 and therefore each step either increases the size
of the solution or levels with it. If the size does not change the algorithm stops and
returns M1 and M2. So the maximum number of iterations is bounded by the size
of the optimum solution which is bounded by min(n1, n2), where n1 = |V1| and
n2 = |V2|. The result may depend on which matching is computed first. Therefore
we start the process once with G1 and start it afterwards with G2. Then we take
the best of both results. The complete algorithm Sim-Match-Heuristic is listed
in pseudo code below.

The running time for the whole heuristic is determined by the computation of the
weighted matching during the iterations. The weighted matchings can be com-
puted for each Graph G1 and G2 in O(nm + n2log n), see [Gab90]. As mentioned
above, the number of iterations is at most min(n1, n2), so the worst case running
time of the heuristic is O(min(n1, n2)(n1m1 + n2

1log n1 + n2m2 + n2
2log n2)) =

O(min(n1, n2)(nm + n2log n)) ⊆ O(n2m + n3log n), with n = |V1| + |V2| and
m = |E1|+ |E2|.

30



3.2 Heuristic

Sim-Match-Heuristic(Graph : G1, G2)
1 f ← 1 � first
2 s← 2 � second
3 M ′

1,M
′
2 ← ∅

4 for i← 1 to 2
5 do Mf ,Ms ← ∅
6 repeat
7 s← |Mf ∩Ms|
8 for j ← 1 to 2
9 do k ← b|V1 ∩ V2|/2c

10 for each e ∈ Ef

11 do if e /∈ Es then w[e]← k(k + 2) + 1
12 if e ∈ Es \Ms then w[e]← k(k + 2) + 2
13 if e ∈ Es ∩Ms then w[e]← k(k + 2) + k + 3
14 Mf ← maximum weighted matching in

Gf with weightings w
15 exchange f ↔ s
16 until s = |Mf ∩Ms|
17 if |Mf ∩Ms| ≥ |M ′

1 ∩M ′
2|

18 then M ′
1 ←Mf and M ′

2 ←Ms

19 exchange f ↔ s
20 return (M ′

1,M
′
2)

The algorithm above is not an approximation but a heuristic. This implies that
in general we can not give any general guarantee on the quality of the heuristic
solution in comparison to the optimum solution. We will give an example where
the optimum solution has size 1 and the heuristic may yield a solution of size 0.
This example can easily be extended by simply duplicating the graphs, leading
us to an optimal solution of size n and a heuristic returning 0. Thus, the quality
of our heuristic can be arbitrarily bad compared with the optimum. The idea of
the example has been attained by a random test case during the experimental
tests where the heuristic returned 0 instead of an optimal 1. We extracted the
essential structure and simplified the test case in a way that it becomes human
readable preserving the difference between heuristic and optimum. The example
graph with its optimum solution and heuristic solution is shown in Figure 3.1.
First take a look at the plain graph on the left side. Both graphs, G1 and G2,
share the same ten nodes, graph G1 consists of the solid edges, G2 of the dashed
edges. They share three edges in the middle part. In (b) a matching for both
graphs is illustrated, the bold marked edges represent the matched edges. This is
an optimal solution for SimMatch as we have three matched edges in both graphs
which satisfies an maximum matching and we have got one common matched edge,
which cannot be further improved. Any attempt to match two edges in common
will not allow us to take a maximum matching for both graphs.
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G1

G2

(a)

G1

G2

optimal

(b)

G1

G2

heuristic step 1

(c)

G1

G2

heuristic step 2

(d)

Figure 3.1: Heuristic Worst Case (a) base graph (b) optimal solution
(c) heuristic step 1 (d) heuristic step 2

In (c) and (d) a potential run of the heuristic is illustrated by an intermediate
result in (c), where G1 is matched, and by the final in (d), where additionally G2

is matched. In step 1 the maximum matching of G1 includes one edge which is also
present in G2, more is not possible. In step 2 a maximum matching in G2 can not
include any edge that is currently matched in G1. The given maximum matching
maximizes the number of edges which also exist in G1 to one. The heuristic
algorithm would stop and return those two matchings, as the size |M1 ∩M2| is
equal to zero. It does not matter in which graph we start to compute a matching
as both graphs are symmetric, so starting with G2 would yield the same result.
Note that, however, it is not mandatory that the heuristic finds the solution with
an empty intersection, it can also find the optimal solution if the found matching
in the first step is equal to the optimal matching.

As stated previously, the example can be sized up by duplicating G1 and G2.
The duplicated graphs can even be connected as seen in Figure 3.2, just let the
middle edge of the newly added three edges be matched in the heuristic and for
the optimum solution. Summarized, we can create instances where the optimum
solution is n and the heuristic returns zero. This means our heuristic provides us
with no guarantee in theory. However, in Chapter 4 we will see that it performs
quite well in practice.
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G1

G2

Figure 3.2: G1 and G2 sample doubled with connection

3.3 Polynomial Time Solvable Instances

In this section we persue the question, whether there are classes of instances that
can be solved efficiently. We present and analyse a restriction where the problem
can be solved in polynomial time. Section 2.1 contains a list of restrictions that
leave SimMatch NP-hard.

SimMatch instances in which the number of possible maximum matchings in G1

or G2 is bounded polynomially can be solved in polynomial time. Only one of
those graphs must have the property, the other one can be arbitrary. Graphs in
which the number of maximum matchings is bounded polynomially include for
example graphs consisting of a single path or a single cycle. Note that there are
other trivial cases in which SimMatch is easy to solve, like both graphs do not
share a common edge or share only a constant number of edges (just try to match
every subset of the shared edges).
We first show that paths and cycles indeed only have a polynomial number of
maximum matchings.
If the graph is is a path there are two cases: The path consists of an odd number
or an even number of edges. If we have an odd number of edges there is only one
possibility for a maximum matching: match the two outer edges and then every
second edge resulting in a perfect matching. If we have an even number of edges
one node will remain unmatched. This unmatched node determines the rest of
the matching as all other nodes need to be matched. That means there exist as
many maximum matchings as nodes.
If the graph is a cycle we have a similar situation. An even number of edges results
in a perfect matching, there are two of them. An odd number of edges leaves one
node unmatched, here we have got as many possible maximum matchings as nodes.

Now we assume that one of the graphs of our input has only a polynomial number
of maximum matchings. In our algorithm we use this fact to iterate over all
those maximum matchings and for each of them find the best fitting maximum
matching in the other graph. Among all these maximum matching pairs, we will
select the pair with the largest intersection. Before we present this algorithm,
we need to show that it is possible to iterate over all maximum matchings in
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3.3 Polynomial Time Solvable Instances

a graph in polynomial time if the number of maximum matchings is bounded
polynomially. It has been shown that it is possible to enumerate all maximum
matchings in bipartite graphs in O(n) time per matching [Uno97], but apparently
there is no known algorithm for efficiently enumerating all maximum matching in
general graphs.

We present now an algorithm, Enumerate-Maximum-Matchings, that enu-
merates all maximum matchings in a graph in O(MM(G) ·

√
nm2) time, where

MM(G) denotes the number of maximum matchings in the graph G. This
helper algorithm will be used in the Sim-Match-One-Limited-Graph algo-
rithm which solves SimMatch in polynomial time for instances in which one
graph has a polynomially bounded number of maximum matchings.
Enumerate-Maximum-Matchings uses branch and bound techniques to effi-
ciently enumerate all possible maximum matchings. It iterates over all edges in
a fixed order while storing a set of edges which will be completed by remaining
edges to form a maximum matching. If a maximum matching is still possible when
adding the current observed edge to the set, it adds this edge and continues this
path, if a maximum matching is still possible when omitting the current observed
edge, it removes this edge and also continues this path (branching). If a maximum
matching is not possible any more when adding or omitting the observed edge,
this path is pruned and no longer followed. Whether or not a maximum matching
is still possible with an already taken set of edges and a remaining set of possible
edges can be checked easily with a general maximum matching algorithm, which
can be computed in O(

√
nm) time [MV80, Vaz94]. We simply check whether the

size of a maximum matching in the set of possible edges (without edges adjacent
to edges of the already taken set) plus the number of edges in the already taken set
has as many edges as a maximum matching in the whole graph. We only follow a
path if a maximum matching is possible within that branch, the length of a path
is always m, where m = |E|. Hence our search includes only paths to leaves which
represent maximum matchings, every step in a path needs at most O(

√
nm) time

to check whether this path is still admissible, every path has length m which leads
to an overall running time of O(MM(G) ·

√
nm2).

The algorithm Enumerate-Maximum-Matchings operates on a graph G =
(V,E) in which the edges are numerated from 1 to m, E = {1, . . . ,m}. The
function MMStillPossible(M,k) in lines 3 and 5 returns true, iff a maximum
matching in G is still possible by completing the set M with edges of {k, k +
1, . . . ,m} \ {edges adjacent to M}. Thus recursive branching in line 4 and 6 is
only done if there is still at least one maximum matching solution possible in
this path. Invoking the function with Enumerate-Maximum-Matchings(∅, 1)
returns a set including all maximum matchings in the graph G.
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3.3 Polynomial Time Solvable Instances

Enumerate-Maximum-Matchings(set : M, int : k)
1 if ( k > m ) then return {M}
2 res← ∅
3 if ( MMStillPossible(M ∪ {ek}, k + 1) )
4 then res← res ∪Enumerate-Maximum-Matchings(M ∪ {ek}, k + 1)
5 if ( MMStillPossible(M,k + 1) )
6 then res← res ∪Enumerate-Maximum-Matchings(M,k + 1)
7 return res

With this helper algorithm which enumerates all maximum matchings in polyno-
mial time per matching, we can now describe the algorithm solving SimMatch in
polynomial time in instances, in which the number of maximum matchings in one
graph is bounded polynomially. Below, we list the pseudo code of the algorithm.
Without loss of generality, G1 has at most a polynomial number of maximum
matchings.

Sim-Match-One-Limited-Graph(LimitedGraph : G1, ArbitraryGraph : G2)
1 M1,M2 ← ∅
2 mmset1 ← Enumerate-Maximum-Matchings(∅, 1) in G1

3 for each matching M ′
1 in mmset1

4 do for each edge e in E2

5 do if e ∈M ′
1

6 then w[e]← |E2|+ 2
7 else w[e]← |E2|+ 1
8 M ′

2 ← maximum weighted matching in G2 with weights w
9 if |M ′

1 ∩M ′
2| ≥ |M1 ∩M2|

10 then M1 ←M ′
1

11 M2 ←M ′
2

12 return (M1,M2)

The algorithm iterates over all possible matchings in G1. Enumerating all max-
imum matchings in line 2 requires only polynomial time since enumerating all
maximum matchings is possible in O(

√
nm2) time per matching as shown previ-

ously. For each of those matchings M ′
1 it searches in G2 for a maximum matching

M ′
2 which shares a maximum number of edges with M ′

1. This is done via weighting
the edges. Maximum weighted matchings (

∑
e∈M w(e) maximized) can be com-

puted in O(nm + n2log n) time [Gab90]. Each edge in E2 has weight |E2|+ 1, if
the edge is also in matching M ′

1 it is weighted |E2|+ 2. This ensures that we get
a maximum cardinality matching in G2. Omitting edges can not compensated by
taking fewer edges with higher weight as there are only |E2| of them and missing
one decreases the weight by at least |E2| + 1, taking the heavier weighted edges
only gains one extra weight. Thus we get the matching with the highest value and
therefore among all maximum matchings in G2 the matching M ′

2 with the biggest
intersection with M ′

1. Among all possible maximum matchings M ′
1 we take the
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3.3 Polynomial Time Solvable Instances

pair (M ′
1,M

′
2) with the biggest value of M ′

1 ∩M ′
2. This yields an optimal solution

for SimMatch.
Each step of the for-loop in line 4 of Enumerate-Maximum-Matchings requires
O(nm+n2log n) time due to computing the maximum weighted matching, result-
ing in a running time for the whole for-loop of O(MM(G1) · (nm + n2log n)),
where MM(G1) denotes the number of maximum matchings in G1. Enumer-
ating all maximum matchings in line 2 dominates the running time of the algo-
rithm, therefore the overall running time of Sim-Match-One-Limited-Graph is
in O(MM(G1) ·

√
nm2). Clearly, if the number of maximum matchings in G1 is

bounded polynomially, so is the running time of the algorithm.
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4 Experimental Evaluation

In the previous chapter we presented some algorithmic approaches for SimMatch
and analyzed the complexity of these approaches. However, the performance on
practical instances is often quite different. In this chapter we will measure the
practical performance on instances that are likely to appear in practical applica-
tions. We will test two approaches which have been introduced in the last chapter:

• ILP

• Heuristic

The ILP approach has been introduced in Section 3.1: First, we formulate the
SimMatch instance as an ILP, then we solve the ILP which gives us an optimal
solution for SimMatch. Since SimMatch is NP-hard we can not hope to obtain
an optimal solution in polynomial time for all instances. This is also reflected in
the experiments, for large instances the ILP reaches the timelimit and does not
return within reasonable time. Here, the ILP does not provide us with an optimal
solution and are not able to compare it with the heuristic.
The heuristic has been presented in Section 3.2, its running time is polynomial
(O(n2m + n3log n)) but it does not provide us with a theoretical guarantee on
the solution. So in some instances the objective value differs from the optimum
obtained from the ILP.

Performing one test case consists of several steps:

1. Creating the instance

2. Running the algorithm

3. Analysing the result

An important and non-trivial part of the experiments is the creation of the in-
stances, which consist of two graphs. The results heavily depend on the type of
the input instance. As the SimMatch instances are quite specific, there does not
exist a library with appropriate test cases (to the best of our knowledge), so we
have to create them ourselves. In Section 4.1 we will discuss two graph generators.
In Section 4.2 we will describe the rest of the framework for the experiments (run-
ning the algorithm), this includes the used tools, some hints on the implementation
and parameters measured during the test.
Finally, in Section 4.3, we analyse the results of the experiments and give some
interpretation. The results include running time of the heuristic and ILP, the
quality (size) of the solution and some parameters of the heuristic.
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4.1 Graph Generator

When testing the ILP and the heuristic, the sample generation is an important
part. For some problems there exist collections of instances which are used for
benchmarking. This makes it possible to compare different algorithms more objec-
tively. Unfortunately, we could not find any collection of instances for matchings
in graphs in general and we believe there are no appropriate instances available.
Thus, we create our own samples. We describe the generation as clear as possible
so that the reconstruction of equivalent samples is possible. Every SimMatch
instance consists of two graphs. Our sample generation can be split into two
different steps. The first step is creating one of the two graphs with a random
algorithm described later. The second step is creating the other graph. The other
graph could be created independently from the first graph (with the same random
algorithm) with a random identification between the nodes of both graphs.

However, considering real problems and application, it is more likely that the
second graph depends somehow on the first graph, e.g. a network that changes
over time. We will model the dependency by modifying the first graph, resulting
in the second graph. That means, we add edges and/or remove edges. The
modification can vary from changing only a small amount (e.g. constant) of edges
up to a large amount (e.g. half of the edges). This will result in more interesting
and more difficult SimMatch instances compared to independent generation of
the graphs. If the graphs in the SimMatch instance have a certain amount of
similar edges, the instance is distinct from a pure maximum matching problem.
To get this amount of similar edges using two independently created graphs, the
graphs need to be quite dense. A high density allows taking a number of different
edges, which satisfy the maximum matching condition, making it easier to select
edges increasing the intersection of matched edges between both graphs. In this
setting our heuristic almost always finds the optimal solution as we will see in the
results.

First Graph: We use two different methods to create the first graph.

• Erdős-Renyi-Generation

• Planar-Graph-Generation

We use the Erdős-Renyi-Generator from the Boost Graph Library and the Planar-
Graph-Generator from the LEDA R© library. The Erdős-Renyi-Generator works as
follows: Given n and m describing the number of nodes and edges, the generator
creates a graph G = (V, ∅) with n nodes. Then, m edges are inserted, equally
likely for every pair or nodes u, v ∈ V with u 6= v. The generation listed in pseudo
code looks as follows:

38



4.1 Graph Generator

Erdős-Renyi-Generator(n, m)
1 V ← {1, 2, . . . , n}
2 E ← ∅
3 while |E| < m
4 do u, v ← random nodes of V
5 if u 6= v and {u, v} /∈ E
6 do E ← E ∪ {{u, v}}
7 return G = (V,E)

Creating planar graphs and meeting certain requirements is a difficult problem on
its own. As for our test cases the quality and the distribution of the generated pla-
nar graphs is not crucial, it is sufficient to use the planar-graph-generator from the
LEDA R© library. We just want to note that the LEDA R© planar graph generator is
not capable of creating every possible planar graph. Also, it prefers certain types of
planar graphs. The generator is listed in pseudo code Planar-Graph-Generator.

Planar-Graph-Generator(n, m)
1 V ← {1, 2, . . . , n}
2 if n = 1
3 then E ← ∅
4 if n = 2
5 then E ← {{1, 2}}
6 if n ≥ 3
7 then create a triangle and compute embedding
8 for i← 4 to n
9 do choose one face in G = (E, V ) randomly and insert i

into this facet, triangulate G afterwards (add 3 edges)
10 while |E| > m
11 do E ← E \ {random edge of E}
12 return G = (V,E)

The generator first creates a maximal planar graph with n nodes by iteratively
inserting a node into an already existing random facet and adds three edges to
this node for triangulation afterwards (Lines 1-9). After this, it randomly deletes
edges until m edges remain and return the graph.

Second Graph: As stated previously, beside creating the second graph with the
same method as the first one, we create it by editing the first graph. We use the
following modifications:

add k edges Adding k edges to a graph is done by choosing a random edge equally
under all edges which are not yet present in the graph and add it until we
have added k edges.

add k edges and delete k edges Add and delete edges is done similar, first add k
edges, then delete edges by picking random edges from the present edges in
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Table 4.1: Varied Parameters For Creating The Instances

First Graph Second Graph
same method as first graph

Planar n m delete k edges
Erdős-Renyi add and delete k edges k

k-distance

Table 4.2: Parameters n, m and k
n m k

{20} Planar: {10, . . . , 54}
Erdős-Renyi: {10, . . . , 190} {10, log m,

{50, 100, 150, . . . , 104} Planar: {n, 2n, b5n/2c}
√

m, bm/2c}
Erdős-Renyi: {2n, bnlog nc, bn

√
nc}

the graph. The number k will be chosen dependent on the number of edges
present in the graph, it will vary from a constant up to n

√
n.

k-distance, preserving planarity on planar graph The k-distance modification is
a little different: Randomly choose k-times two nodes u, v with u 6= v of V .
If {u, v} ∈ E remove {u, v} from E, otherwise add {u, v} to E. If the first
graph is planar, only add {u, v} if it does not violate planarity, if it does,
do nothing and retry. Note that this can be very expensive as it often fails
to insert an edge. We check whether the graph remains planar when adding
{u, v} by using the boyer -myrvold -planarity-test of the Boost Graph Library
which runs in linear time with respect to the number of nodes.

independent creation The second graph is created with the same method as the
first graph. The identification of the nodes is done randomly.

In Table 4.1 you see a summary of all varied parameters for the creation of the
instances. The values for the parameters n, m and k are listed in the addi-
tional Table 4.2, we also describe them here: We created test cases with n ∈
{20} ∪ {50, 100, 150, . . . , 10′000}. We set m depending on n and the graph type
of the first graph (note that for planar graphs: n ≥ 3 ⇒ m ≤ 3n − 6). If
n = 20 we set m to m ∈ {10, 11, 12, . . . , 190}, if the first graph is planar only
to m ∈ {10, 11, 12, . . . , 54}. If n 6= 20, we used m ∈ {n, 2n, b5n/2c} for pla-
nar graphs, for Erdős-Renyi graphs we used m ∈ {2n, bnlog nc, bn

√
nc}. The

size k for the modification of the second graph was varied dependent on m:
k ∈ {10, log m,

√
m, bm/2c}.
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4.2 Framework

Our framework is used to test the performance of the ILP-approach and the
Heuristic-approach on SimMatch instances. To this extent we measure the run-
ning time and the quality for an implementation of the ILP and the heuristic on
an appropriate set of random instances. The creation of the instances is described
in Section 4.1. In this section we describe the rest of the framework.
The whole framework runs on a Linux platform (all used tools are also available
for Windows). For the implementation we use the programming language C++
and the C++ standard library. Beside the basics provided by the C++ standard
library, we use the following more specific tools:

1. Boost Graph Library (1.35.0) for handling graphs, see [SL02]

2. C++ algorithm library LEDA R© (5.0.1), see [MN99]

3. ILOG CPLEX R© (11.2.0) ILP-solver 1

Within the program the graphs are stored in the boost graph format to support
reusability of the code and to allow the use of some already existing graph manip-
ulation tools without the need of a wrapper. The use of the boost graph format
has some overhead, but in our case this is negligible and the benefits are worth it.
The Boost Graph Library includes many useful algorithms like Dijkstra, maximum
matching or planarity test. Boost also supports handling the graphs in the DOT
language, we use this as our primary graph format. A number of graph visual-
ization software supports the DOT language format which is practical when we
want to analyze the graphs manually. The DOT language allows setting attributes
for nodes, edges or the whole graph. For our graphs, we give each edge a string
attribute “color”, which could be either “black” or “red”. This is used to store the
computed matching directly within the DOT -file. If the color of an edge is red,
this means the edges is matched, if it is “black”, the edge is unmatched. The color
attribute is recognized by most graph visualization software resulting in colored
edges. This provides also a fast way for manually analysing the given solutions.
Figure 4.1 shows a small example graph extracted from one of our test instances.
The red edges represent matched edges, the matchings is maximal and every node
is insident to one matched edge.

Beside the Boost Graph Library, we additionally use the library LEDA. LEDA
provides some algorithms which are missing in the Boost Graph Library. In our
case we required an algorithm solving weighted matchings and creating planar
graphs, which are currently not supported by Boost. The worst case running time
for the weighted matching algorithm of LEDA is in O(nmlog n). This is slightly
worse than the best known algorithm (O(nm + n2log n), [Gab90]) but will be

1The ILOG CPLEXR© ILP-solver is a commercial application. There exists also a free open
source tool, lpsolve, for solving the ILPs
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Figure 4.1: Example Graph From Our Test Cases, n = 20,m = 30

sufficient for our purpose.

The third tool is the ILOG CPLEX ILP-solver which is used to solve ILPs. This
solver is able to solve integer linear programs for many instances very efficiently.
It is possible to use the ILP solver with text input files describing the ILP, but we
will use the C++ application interface provided by the solver, invoking the solver
within our application.

Now we will describe the implementation of the algorithms, starting with the ILP
algorithm.

ILP Algorithm We implemented the simplified version of the ILP as described
in Section 3.1. Our used tools considerably reduce the required work for the
implemention the ILP is (and the heuristic). The ILP algorithm is implemented
as follows. The graphs are read from file and stored in our graph format compatible
with the Boost Graph Library. Then we invoke the maximum matching algorithm
from the Boost Graph Library for each graph, which runs in O(nmlog n). The
maximum size of a matching is needed to create the simplified version of the ILP.
The simplified version needs significantly less time to be solved by the solver.
After creating the ILP we solve it with ILOG CPLEX. The resulting solution for
SimMatch can be easily induced from the solution of the ILP. Note that it is
useful to set a maximum time limit for solving the ILP as sometimes the ILOG
CPLEX solver will not return in appropriate time. Also note that we only accept
an optimal solution for the ILP.

Heuristic The heuristic is implemented as in the pseudo code in Algorithm
Sim-Match-Heuristic in Section 3.2. We use the maximum weighted matching
algorithm from LEDA which has a worst-case running time of O(nmlog n) time.
Note that the graphs need to be stored in the LEDA graph format to use the
weighted matching algorithm. The limitations for this implementation is not the
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running time but the correctness of the LEDA maximum weighted matching al-
gorithm. If there are too many nodes and edges (n + m > 107) the algorithm will
not work because of precision problems (rounding issues). This also depends on
the edge weights. There is no danger of unnoticed false answers as the maximum
weighted matching solutions are always checked per certificate at the end.

Finally, we discuss the overall process of performing a test case and the measured
parameters. The different steps of a test case are as follows: First we create the
instance, then we execute once the heuristic and once the ILP algorithm on the
instance. Then, we analyze the solution of the algorithms. For both algorithms,
we measured the running time and the size of the solution value. For the heuristic,
we measured additional parameters such as the number of iterations and whether
it is useful to start the iterations once with G1 and once with G2.
As solving the ILP sometimes requires a large amount of time, we set a time limit
of 600 seconds for solving the ILP. This time limit was reached for many instances.
For these instances we have no result of the ILP algorithm, and since only the ILP
guarantees returning an optimal solution, we have no information of the optimal
solution for these instances.

All the test cases where run under a machine with an Intel Xeon CPU E5430
2.66 GHz processor and eight cores computing with 64 bit. The machine had 32
GB of main memory and had the Linux operating system SuSE 11.0-64 installed.
Note that we did not make the full use of the eight cores as our implementation
uses only one processor at a time.

4.3 Test Results

In Section 3.1 and 3.2 we presented an ILP approach and a heuristic to solve
SimMatch. With the experiments we want to test how the ILP algorithm and
the heuristic perform on instances and whether they are applicable.
First, we present the measured data with charts and data tables and discuss them,
in the end we will give a short summary and an overall interpretation. As described
in Section 4.1, the input instances vary on several orthogonal parameters, such
as the type of the graph (planar or not), the number of nodes (n), the number
of edges (m) and the type of generator used for the second graph. A summary
can be found in Table 4.1 and 4.2. Often we do not discuss the different types
of graphs separately if the results do not show significant differences in the graph
types. However, if there is a noteable dependency between the analyzed data and
the type of the instances, we will discuss the results seperately.
Before we compare the Heuristic and the ILP, we first present some observations of
the heuristic run. To understand these results, it may be necessary to take a look
back to the Sim-Match-Heuristic algorithm in Section 3.2. As described, the
heuristic repeats improving the matching M1 and M2 for G1 and G2, respectively,
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Heuristic: Number Of Iterations
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Figure 4.2: Heuristic Number Of Iterations

as long as |M1 ∩M2| increases (repeat loop starting in line 6). In every round
M1 and M2 are recomputed. We measure the number of elapsed rounds: First
with G1 as the first graph and then with G2 as the first graph yielding (possibly)
two different values. In Figure 4.2 the number of iterations is visualized with a
histogram and a table. As we can see, the number of iterations does not exceed
five for all test cases. Most of the test cases (≈80%) have two iterations, about
20% have three iterations, and only very few have one, four or five iterations. It
is clear, that there are not many test cases with only one iteration as the iteration
continues if |M1 ∩M2| increases and for most test cases |M1 ∩M2| is larger than
0 after the first iteration. So most test cases have only 2 or 3 iterations, only very
few have 4 or 5 iterations even if the size of the graphs goes up to 104 nodes and
106 edges. Also taking into consideration that we measured 26 · 103 cases let us
suspect that the number of iterations is far less than the worst case assumption n.
The number of iterations seems to be constant or at least very slowly growing for
our test cases. If the number of iterations was indeed constant in the average case,
the average case running time complexity would be O(nm+n2log n), which is the
same complexity as for weighted maximum matchings. Whether this is true might
be an interesting question for further analysis. Especially when the heuristic or the
used maximum weighted matching algorithm is provided with some randomness,
it might be possible to find a tighter bound for the average case for the number
of iterations than n.

Another interesting part of the heuristic is the question, whether it is worth com-
puting a SimMatch solution iteratively two times. The iterative recomputation
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Heuristic Solution Difference Starting With G1 Or G2
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Figure 4.3: Difference Between Starting With G1 Or G2 In The Heuristic

of the matchings in both graphs is done twice, first with G1 as the first graph
for which a matching is computed, then with G2 as the first graph (line 3 in the
pseudo code). If the size of the objective value does not differ between those two
runs it would be sufficient to perform only one computation which decreases the
running time by almost the a factor of 2. In Figure 4.3 we visualized the difference
of the size of SimMatch solution between the two iterative runs, starting once
with G1 and once with G2. The right histogram shows only the test cases in which
a difference between both runs exists in order to get a higher y-scale resolution.
In most cases (94%) both runs yield a solution with an equal value, 3% have a
difference of 1, about 1.5% a difference of 2 and than the number of cases decreases
by half when the difference increases by one, i.e. it seems that the number of test
cases decreases exponentially with the size of the difference.
The mean relative difference from the regular heuristic solution would be only
0.174% if we always choose the graph which yields a lower or equal objective value
when starting with it the one iterative run. On the other hand, as we will see, the
mean relative error of the heuristic to the optimal solution is also only 0.113%.
That means performing both runs can decrease the heuristic error noticeable.
Therfore it is worth performing both runs if it is important to be very close to the
optimal solution. Also note that the part of performing both runs can be easily
parallelized in order to run at the same time on two different processors. However,
our implementation uses only one thread.
The most interesting experiments are: How good are that the heuristic solutions,
i.e. how far away are they from an optimal solution and how fast can they be
computed (also in comparison to the ILP approach)? First, we address the former
case, that means we analyze the difference of an optimal solution to the heuristic
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Difference Heuristic To Optimal Solution
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Figure 4.4: Heuristic vs Optimum

solution for our instances. If the ILP algorithm runs properly it returns an optimal
solution. However, the ILP algorithm does not always returns successfully as
during the solving of the ILP with the ILOG CPLEX R© solver may exceed our
time limit. We set the time limit to 600 seconds for merely solving the ILP
without counting anything else like reading in the graph files. When the graph
files exceed a certain size, the ILP normally does not finish within the time limit.
In our experiments we could get optimal ILP solutions for graphs with n + m up
to 80′000.
For all instances for which the ILP algorithm does return an optimal solution,
we can compare this solution to the heuristic solution. As expected, if the ILP
algorithm runs properly, its solution is always greater or equal to the heuristic
solution as it is an optimal solution. In Figure 4.4 we visualized the difference
between the optimal solution obtained by the ILP algorithm and the heuristic
solution. This is the absolute error of the heuristic for single instances. In Figure
4.4(a) the heuristic error is plotted versus the size of the graph instances, which
here is the mean of n + m of both graphs. Most errors take place with smaller
instances (n + m < 10′000) but also note that most of the instances for which
an optimal solution exists are of smaller size. In Figure 4.4(b) the heuristic error
is plotted versus the size of the optimal solution. Most of the errors occur for
instances with an optimum value between 0 and 1′000. For exactly which type of
instances the errors occurs will be discussed later in more detail.
In Figure 4.5 you can see the relative approximation factor of the heuristic, on the
right side a subset with a higher resolution. The worst quality for all instances
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Figure 4.5: Relative Error Of The Heuristic

was a 0.5 approximation, i.e. the solution value of the heuristic was only half of
the optimal value. However, a 0 approximation would have been possible as seen
in Figure 3.1. On the average, the approximation of our heuristic is very good.
The mean relative error is only 0.113%. The heuristic finds almost always an
optimal solution, that is in more than 98% of the test cases. When the heuristic
is not optimal, it is mostly off by one. Beneath this low error rate, we found
another interesting fact: If both graphs have enough edges, then there exist a
maximum matching in both graphs for which the intersection covers all nodes of
one of the graph (possibly except one node), the heuristic did always return the
optimal solution in our test cases. More precise: If the optimum value is at least
bmin(n1, n2)/2c (which is an upper bound for the optimum solution), the heuristic
did return an optimal solution for all of our test cases. 3075 of our test cases meet
the condition for the optimum value. This could be interpreted as follows: If the
heuristic can choose between several combinations of maximum matchings which
intersection size is maximum, it is easy for the heuristic to find an optimal solution.

We will now analyze for which type of graphs the heuristic is most error prone. We
distinguish several different parameters of the type of instance generation listed
in Table 4.1. We could observe the most interesting differences if we differentiate
the type of creation of the first graph, i.e. planar or Erdős-Renyi creation, and the
type of creation of the second graph, i.e independent of the first, delete k edges,
add and delete k edges or k-distance. In Figure 4.6 we have visualized the heuristic
error differentiated by the type of the first graph and the type of the second graph.
On the top right of the graphics is listed the number of observations. Figure 4.6(a)
consists of histograms showing the percentage of the heuristic error for different
graph types. Erdős-Renyi graph generation with the second graph being created
independently is most error prone, thereafter, when the second graph is created by
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Figure 4.6: Heuristic Error Distinguished By Graph Type
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adding and deleting k edges from the first graph, there is also a higher error rate.
k-distance and delete are quite similar modifications since if the first graph
is sparse, it is likely most of the steps of the k-distance is just adding one edge.
Note, that k-distance, if the first graph is planar, is a little bit more complicated
as inserting edges must not violate planarity. An interesting fact is that we have
not a single instance with an error if the first graph is planar and the second was
created by deleting k edges of the first graph. In general it seems that there is not
a high error rate if one graph is a subgraph of the other, i.e. one graph differs from
the other only by additional edges. This is the case if the second graph is created
by deleting edges and it is likely if the second graph is created by k-distance and
the first graph is sparse or very dense.
In Figure 4.6(b) you can see the heuristic error plotted versus the size of the
optimum differentiated by graph types. Focusing only on the distribution of the
size of the optimum, we see that if both graphs are generated independently and
planar, the size of the optima is very low. As a planar graph is always sparse,
there is not a high chance of having many edges present in both graphs. For most
graph types, most errors occur when the size of the optimum is below 1′000. Only
for planar graphs with the second graph created by adding and deleting edges, the
errors are spread more widely. This may be due to the fact that our planar graphs
with a lot of nodes never can not have much edges (if n ≥ 3 then m ≤ 3n − 6 in
planar graphs) and thus adding and deleting edges may have a bigger influence.
Remember that despite some differences of the absolute errors between the differ-
ent type of instances, the mean relative error of the heuristic is still small.

The next interesting part of the experiments is the running time of the heuristic
and the ILP algorithm. The running time strongly depends on the size of the
graphs in the instance, but especially for the ILP algorithm some instances need
far more time to be solved in comparison to other instances of the same size. In
Figure 4.7 we plotted the running time in seconds versus the size of the graphs
(mean of n + m) for the ILP algorithm and the heuristic. Notice that we did not
include the running time of the ILP algorithm when it exceeded the time limit,
which was set to 600 seconds. As we can see, the heuristic uses far less running
time than the ILP. Also, for a lot of instances (probably “difficult” ones) the ILP
uses considerably more running time than other instances of the same size. For
some instances with n + m ≈ 5′000 the ILP uses up to 600 seconds while the
heuristic uses only about 1 second. The running time of the ILP is very high for
some instances and appears to be not practical any more for instances exceeding
a certain size.
In Figure 4.8 we visualized only the running time of the heuristic to get a higher
resolution. In Figure 4.8(a) we use the same scale for the x-axes as in Figure 4.7
to allow better comparison. In contrast to the ILP, the heuristic was able to solve
instances with n + m > 80′000 without exceeding the time limit of 600 seconds.
The running time of all instances the heuristic solved can be seen in Figure 4.8(b).
Those instances go up to 1′000′000 for n + m.
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In Figure 4.9 we fit the running time of the
heuristic with the linear function c(n + m)
and the quadratic function c(n + m)2 by
the least squares method. When we fit the
running time with a linear function, the
running time grows too fast. When we fit
it with a quadratic function, it grows too
slow. So the growth of the running time
with n + m seems to be subquadratic but
also superlinear. The running time of the
heuristic on our instances seems to lie be-
tween c(n + m) and c(n + m)2. When we
compared this to our theoretical complex-
ity O(n2m+n3log n) the practical running
time appears to be far less. As discussed
during the first presented results of the ex-
periments, it might be admissible to assume that the heuristic only needs a con-
stant number of iterations to improve the maximum matchings in both graphs.
Taking also into account that the maximum weighted matching algorithm can
run faster than its worse case complexity O(nm + n2log n) for practical instances
explains the conservative growth of the running time of the heuristic.

We now want to give a short summary of our experimental results. At the begin-
ning we saw that the number of iterations for improving the maximum matchings
in both graphs does not exceed 5. For over 98% of the instances the heuristic
performs only 2 or 3 iterations so it appears that the number of iterations is grow-
ing much slower, if not being constant, than the theoretical upper bound n for
practical instances.

After that we checked whether it is worth to start the iterative process of improving
the maximum matchings twice (once starting with G1, then with G2). On the
average it saves about half of the relative heuristic error, so it does pay off unless
it is very important to decrease the running time.

Then we analysed the error of the heuristic, that is, the value of the ILP solution,
which is optimal, minus the value of the heuristic solution. The mean relative error
is very low (0.113%), in more than 98% of the test cases the heuristic found an
optimal solution. The biggest absolute error was 5 while the size of the computed
optimal solutions reached up to 10′000. Most of the errors occurred when each of
the two graphs has edges the other one has not, or the other way around, when
one graph is subgraph of the other the heuristic did produce less errors.

Finally, we analyzed the running time of the ILP algorithm and the heuristic. The
running time of the ILP is higher than the one of the heuristic and appears to
be very fast growing. While the ILP was able to solve instances up to 10′000 for
n+m, the heuristic solved instances up to 1′000′000 for n+m. The running time
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of the heuristic appears to grow by c(n+m)k, with c being constant and 1 < k < 2.

The next chapter concludes this work and summarises the results made so far, it
will also point out some ideas for future work.
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5 Conclusion and Outlook

This work deals with the problem of finding two maximum matchings in two simi-
lar graphs, so that the cardinality of the intersection of the matchings is maximum.
We name the problem SimMatch. In this chapter we give a short summary of
our work. After that, we present some ideas for future work. For future work,
we think about extending certain parts of our work related to SimMatch and
we also propose to extend the idea of simultaneous problems to other areas than
matchings.

5.1 Summary

The main idea of this work has been to analyze the problem of finding matchings
simultaneously in graphs that share some edges and nodes, so that the matchings
are similar. We formulated this as the problem SimMatch, that is, find two
maximum matchings in two graphs, so that the intersection of the matchings is
maximum.
Our theses about SimMatch consists of three parts: The complexity of Sim-
Match, approaches to solve SimMatch and the experimental part, in which we
tested some approaches to solve SimMatch.
In the complexity analysis, we proved that SimMatch is NP-hard by reducing
the problem MaxCut to it. We also showed that for the following restrictions
on the graph structure the problem remains NP-hard: both graphs consist solely
of cycles, both graphs are planar, both graphs are connected, both graphs consist
solely of simple paths and both graphs consist of a single tree. We also found
an approximation gap for SimMatch: It is NP-hard to approximate SimMatch
closer than 50/51 with respect to its optimal solution. The approximation gap
remains for the restrictions on the graph structure listed above, merely, for graphs
consisting of a single paths or single trees, we can only show a gap of 288/289.
In the second part, we presented some approaches for solving SimMatch. We
presented two versions of an ILP-formulation, for which the optimal solution cor-
responds to an optimal solution of SimMatch. For the ILP version that can be
solved faster by our ILP-solver in the experimental part, the size of a maximum
matching in the graphs must be used. The running time for solving those ILPs
is not polynomially, unless P=NP. We also presented a heuristic for SimMatch
which runs in polynomial time (O(n2m + n3log n)). Unfortunately, the heuristic
leaves us in general with no relative guarantee on the solution.
Instances, in which one graph has a polynomially bounded number of maximum
matchings can be solved in polynomial time, or more precisely: We presented an
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algorithm which solves SimMatch in O(min(MM(G1),MM(G2)) ·
√

nm2) time,
where MM(G) denotes the number of maximum matchings in graph G.
The last part of this work consists of experiments. We implemented the ILP
approach and the heuristic and tested them on random instances. The graphs
in our instances varied in several parameters. Although the heuristic does not
give any theoretical guarantees on the optimal solution, it performed very well in
the experiments. The mean relative error rate compared to the optimum is only
0.113% and in more than 98% of the test cases the heuristic found an optimal
solution. The ILP approach always returns an optimal solution, however, this
approach is only feasible for instances with graphs with 10′000 ≥ n + m, as for
larger instances, and even for some instances with n + m ≤ 10′000, it exceeded
our time limit. So for small instances the ILP approach is applicable. In contrast,
the running time of the heuristic is growing quite conservatively, the heuristic did
solve instances with up to 1′000′000 for n + m.
In the next section we give an outlook on possible future work.

5.2 Future Work

By reducing MaxCut to SimMatch we have shown the NP-hardness of Sim-
Match. We also used the reduction to prove the inapproximability of SimMatch.
With the work of [TSSW00], which proves an approximation gap of 16/17 for
MaxCut, we proved an approximation gap of 50/51 for SimMatch in Section
2.2. We think that this bound is not necessarily tight. It may be improved by us-
ing another reduction (maybe by reducing it from a completely different problem
with an approximation gap) or by using a method not based on [TSSW00].
Or the other way around: What is the tightest bound one could find, i.e. what
is a lower bound for an approximation? At the moment it is unclear where the
lower bound lies, it can lie between 0 and 50/51. Getting a lower bound con-
structional can be achieved by finding an approximation for SimMatch with a
relative guarantee on the solution. In Section 3.2 we presented a heuristic, which,
unfortunately, does not provide us with a relative guarantee on the solution. We
propose two ways which may result in an approximation for SimMatch:
One way would be the relaxation of the ILP-formulation we have given in Section
3.1. That means, relaxing the integrality constraints on the variables in a way,
that the solution of the LP indicates a solution of the ILP which still guarantees us
a relative factor for the solution in comparison to the optimal solution. Examples
of this technique can be found in Vazirani’s book [Vaz03].
Our other proposal to get an approximation is using random algorithms. Maybe
it is possible to provide our heuristic with some randomness when searching for
maximum matchings, which could lead to an approximation with an expected
relative guarantee on the solution.
Beside improving the knowledge of the complexity of SimMatch and finding an
approximation, it would also be interesting to see SimMatch used in some ap-
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plications. For example including the heuristic in the graph drawing algorithm of
[Wal03], as described in the introduction, Section 1.

These are our ideas for future work directly related to SimMatch. Now, we
discuss more general possible future work. In Section 1.1 we defined the problem
SimMatch, but beside that, we gave a more general version of the problem.
During our work, we focused on the specific problem SimMatch, not on the
general version. So another problem is extending this work to the more general
version, some result may be adapted while others must be modified or developed
newly from scratch.
Aside from the problem of finding matchings simultaneously, there are other si-
multaneous problems, which have not been analysed yet. Simultaneous matchings
are only one part of the framework of simultaneous problems, so there remain a
lot of problems for analysis. Concluding, we give three examples of additional
possible simultaneous problems:

• Simultaneous Cut: Find a minimum (maximum) cut in several graphs, so
that the intersection of the cuts is maximized.

• Simultaneous Covering Set: Find a covering set in several graphs, so that
the intersection of the covering sets is maximized.

• Simultaneous Coloring: Find a coloring with k (=4?) colors in several
graphs, so that the number of nodes, having the same color in the graphs,
is maximized
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