
Bend Minimization of
Ortho-Radial Graph Drawings

Master Thesis of

Matthias Wolf

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Lukas Barth, M.Sc.
Dipl.-Inform. Benjamin Niedermann
Dr. Ignaz Rutter

Time Period: 9th June 2016 – 8th December 2016

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 7th December 2016

iii

Abstract

We study orthogonal drawings of 4-planar graphs on cylinders—so called ortho-radial
drawings. Equivalently these can be regarded as drawings on an ortho-radial grid
formed by concentric circles and rays from the center of these circles but excluding the
center itself. Ortho-radial drawings form a proper extension of orthogonal drawings
in the plane.

We present ortho-radial representations as a means to describe the shape of these
drawings without fixing the actual coordinates and edge lengths. Additionally, we
give conditions on the representation that are both necessary and sufficient for an
ortho-radial drawing to exist. Being able to describe the shape by ortho-radial
representations is a crucial step in order to apply Tamassia’s Topology-Shape-Metrics
framework to ortho-radial graph drawing.

Furthermore, we show that it is NP-complete to determine whether a given 4-planar
graph without a fixed embedding admits an ortho-radial drawing without edge bends.
But when one restricts oneself to cactus graphs, it is possible to find bend-minimal
drawings in linear time.

Deutsche Zusammenfassung

In dieser Arbeit werden orthogonale Zeichnungen von 4-planaren Graphen auf Zylin-
dern – so genannte ortho-radiale Zeichnungen – betrachtet. Diese können alternativ
auch als Zeichnungen auf ein radiales Gitter angesehen werden. Ein solches Gitter
besteht aus konzentrischen Kreisen und Strahlen, die vom gemeinsamen Zentrum der
Kreise ausgehen, ohne dabei jedoch das Zentrum selbst zu enthalten. Ortho-radiales
Zeichnen ist eine echte Erweiterung des orthogonalen Graphenzeichnens in der Ebene.

Um die Form der Zeichnung zu beschreiben, ohne jedoch Koordinaten oder Kantenlän-
gen festzulegen, werden ortho-radiale Beschreibungen vorgestellt. Für diese werden
außerdem Bedingungen aufgezeigt, welche sowohl notwendig als auch hinreichend
für die Existenz einer Zeichnung sind. Die Fähigkeit, die Form einer Zeichnung zu
beschreiben, ist ein entscheidender Schritt zur Anwendung von Tamassias Topology-
Shape-Metrics-Framework auf ortho-radiales Graphenzeichnen.

Zusätzlich wird gezeigt, dass es NP-vollständig ist zu entscheiden, ob ein gegebener
4-planarer Graph ohne feste Einbettung eine ortho-radiale Zeichnung ohne Kan-
tenknicke besitzt. Beschränkt man sich jedoch auf Kaktusgraphen, so kann in
Linearzeit eine knickminimale Zeichnung bestimmt werden.

v

Contents

1 Introduction 1
1.1 Contribution and Outline . 2
1.2 Related Work . 3

2 Preliminaries 5
2.1 Orthogonal and Ortho-Radial Drawings . 6
2.2 Rotation . 8
2.3 Flow Networks . 9

3 Ortho-Radial Representations 11
3.1 Labelings of Essential Cycles . 11
3.2 Definition of Ortho-Radial Representations 12
3.3 Properties of Labelings . 13
3.4 Characterization of Rectangular Graphs . 20
3.5 Rectangulation . 24

3.5.1 The Rectangulation Algorithm . 25
3.5.2 Preparation . 27
3.5.3 Correctness of the Rectangulation 29

4 Complexity of Ortho-Radial Embeddability 39

5 Drawing Cactus Graphs with the Minimum Number of Bends 43
5.1 The Cycle Tree . 43
5.2 Drawing Cycles . 47

5.2.1 The Cycle Drawing Algorithm . 48
5.2.2 Optimality of the Cycle Drawing Algorithm 52
5.2.3 Variants of the Cycle Drawing Algorithm 53

5.3 P -Drawings and Spines . 54
5.3.1 Properties of P -Drawings . 54
5.3.2 An Algorithm for Bend-Minimal Drawings with a Fixed Spine . . . 57

5.4 Finding an Optimal Spine . 58
5.4.1 Properties of Spines . 58
5.4.2 A Dynamic Program for the Heaviest Spine 60
5.4.3 Implementation in Linear Time . 63

6 Conclusion 67
6.1 Summary . 67
6.2 Future Work . 67

Bibliography 69

vii

1. Introduction

Visualization helps to understand the structure of the data and to extract useful information.
Moreover, data can often be described by graphs: They may directly represent existing
structures, e.g., road networks or other transportation networks, or they may formalize
more abstract relations. For instance, each person of a group could be represented by a
vertex and an edge between two vertices indicates that the two people know each other.
Therefore, automatic or manual drawing of graphs is a common task, for which different
drawing styles exist.

One often used style is orthogonal graph drawing, that is, edges are drawn as one or more
axis-parallel line segments. Figure 1.1(a) contains an orthogonal drawing of the octahedron
graph as an example. A bend is a point where the direction of an edge changes. During the
construction of orthogonal drawings one often seeks to minimize the area of the drawing or
the number of bends.

In this thesis we study orthogonal drawings of 4-planar graphs (planar graphs with maximum
degree at most 4) on cylinders such that no two edges cross. These drawings are also called
ortho-radial drawings. In Figure 1.1(b) the octahedron is drawn on the cylinder. Any
orthogonal drawing in the plane can be placed on a cylinder. But in ortho-radial drawings
there may also be cycles winding themselves around the cylinder—so called essential cycles.
Hence, ortho-radial drawings are a proper extension of orthogonal drawings. Moreover,
using essential cycles to draw a planar graph may reduce the required number of bends. For

(a) (b)

Figure 1.1: (a) An orthogonal drawing of the octahedron. (b) An ortho-radial drawing of
the octahedron.

1

1. Introduction

instance, any orthogonal drawing of a triangle in the plane includes at least one bend. On a
cylinder however the triangle may be drawn as an essential cycle by placing all vertices on
a circle whose center lies on the axis of the cylinder. The edges can then be simply drawn
as straight lines. In fact, any cycle may be drawn without bends in this way. Comparing
the two drawings of the octahedron in Figure 1.1, one notes that the ortho-radial drawing
has fewer bends than the orthogonal drawing. Moreover, no edge has more than two bends
in the ortho-radial drawing, whereas any orthogonal drawing of the octahedron needs at
least one edge with three bends [BK98]. This already shows that ortho-radial drawings of
a graph may have fewer bends than orthogonal drawings of the same graph.

Ortho-radial drawings can equivalently be seen as drawings on an ortho-radial grid, which
is formed by concentric cycles and arcs from the center of these cycles but excluding the
center. Drawings of this kind are also used to visualize geographic data. For instance,
it has been proposed to represent metro networks in this way [RNC16] and automatic
creation of such maps has been studied [Bar16, FLW14].

For the creation of orthogonal drawings the Topology-Shape-Metrics framework presented
by Tamassia [Tam87] is often used. This framework suggests a three step approach: First,
an embedding of the graph is fixed, then its shape is determined, and finally the coordinates
and edge lengths are assigned to obtain a drawing. A key part of the framework is the
ability to describe the shape abstractly by orthogonal representations without needing to fix
the concrete positions of the vertices and edges. Our goal is to apply the Topology-Shape-
Metrics framework to ortho-radial graph drawing. To this end we present ortho-radial
representations, which describe the shape of a graph. We furthermore characterize those
representations that describe shapes which can be drawn. To the best of our knowledge
such a characterization was previously only known for cycles and theta graphs, which are
formed by three paths between two vertices [HHT09].

1.1 Contribution and Outline

In Chapter 2 we give the definitions of terms that are used throughout this thesis, which
includes a formal definition of ortho-radial drawings.

We present ortho-radial representations in Chapter 3 as a means to describe the shape of
ortho-radial drawings of 4-planar graphs. Moreover, we characterize those representations
that describe shapes that can be drawn. We first prove this characterization for rectangular
graphs (cf. Section 3.4). To create drawings of representations of such graphs, we use
flow networks similar to those used for drawing rectangular graphs in the plane in the
Topology-Shape-Metrics framework [Tam87]. We then characterize the representation
for general 4-planar graphs in Section 3.5. By providing a procedure to rectangulate
ortho-radial representation we reduce the general characterization to the case of rectangular
graphs.

In Chapter 4 we prove that it is NP-complete to decide whether a given 4-planar graph
without a prescribed embedding admits an ortho-radial drawing without any edge bends.
Therefore, it is also hard to find bend-minimal drawings of arbitrary 4-planar graphs.

But when one restricts oneself to cactus graphs, drawings with the minimum number of
bends can be computed in linear time as shown in Chapter 5. The algorithm uses dynamic
programming on a tree that represents the structure of the input cactus graph.

Finally, Chapter 6 wraps up all the results of this thesis. Moreover, we state possible
directions of future research related to ortho-radial drawings.

2

1.2. Related Work

1.2 Related Work
Hasheminezhad et al. [HHT09] characterize the drawings of essential cycles: There is a
drawing of an essential cycle C with a fixed shape if and only if either all edges of C point
right or left, or at least one edge points up and one down. It is clearly necessary that all
cycles of a graph can be drawn individually in order for an ortho-radial drawing of the
whole graph to exist. They however also show that this is not sufficient, even when one
restricts oneself to graphs consisting of three paths with common start and endpoints—so
called theta graphs. For this graph class they also present a characterization of drawable
shapes: They distinguish between five cases, in which certain subpaths contain certain
shapes. A shape is then drawable if and only if any of the five cases applies. Note that
this approach is different from our characterization since we do not directly require certain
subgraph with specific shapes but use more general conditions.

In a rectangular ortho-radial drawing the outer and the central face are drawn as circles
and the other faces are rectangles. No edge bends occur in these drawings, as otherwise
the faces incident to a bend would not be rectangles. For a planar graph with maximum
degree 3 and a fixed embedding, it can be determined in linear time whether there is a
rectangular ortho-radial drawing of this graph [HHMT10]. This result was extended to a
linear time algorithm for rectangular drawings on a sphere using a grid that consists of
circles of latitude and meridians [HHM09].

Orthogonal drawings in the plane have been extensively studied with particular respect
to minimizing edge bends. Garg and Tamassia [GT95] showed that testing whether
an orthogonal drawing without edges exists is NP-complete. For 3-planar graphs and
series-parallel graphs however polynomial time algorithms were presented by di Battista
et al. [DBLV98]. Any 4-planar graph except for the octahedron can be drawn with at most
two bends per edge [BK98]. Testing whether one bend per edge is sufficient is possible in
quadratic time [BKRW14]. Moreover, variants in which different edges may have different
numbers of bends have been studied [BKRW14, BLR16].

In the case that an embedding of the graph is fixed the total number of bends can be
minimized by Tamassia’s flow network [Tam87], which can be solved in O(n3/2 logn) time,
where n denotes the number of vertices of the input graph [CK12].

Further topics that are related to graph drawing on a cylinder but which are not studied
in this thesis include cylindric visibility representations [TT91] and rectangular duals on a
cylinder [HHMT10].

3

2. Preliminaries

A graph G = (V,E) consists of a set V of vertices and a set E of edges. We refer to the
directed edge from a vertex v ∈ V to another vertex w ∈ V by vw. If H is a subgraph of G,
we denote the set of edges that belong to H by E(H). Similarly, V (H) denotes the set of
vertices of H. For a subset S ⊆ V of vertices, we denote the subgraph of G induced by S
by G[S]. In an embedding of a graph, the order of the incident edges around each vertex is
fixed. A plane graph is a planar graph with a fixed embedding. If the maximum degree
of all vertices in a planar graph is at most 4, it is said to be a 4-planar graph. Similarly,
4-plane graph refers to a 4-planar graph with a fixed embedding.

A path P in a graph G is a sequence of vertices v1 . . . vk such that G contains the edge
vivi+1 and no vertex appears twice. Similarly, a cycle is a sequence of vertices v1 . . . vkv1
such that G contains the edge vivi+1 for i = 1, . . . , k− 1 and vkv1. If a cycle C contains all
vertices only once except that the first and the last vertex are equal, it is a simple cycle.
Note that we follow the convention that paths cannot contain vertices multiple times but
cycles can. The cycles we consider are always directed—usually in clockwise direction. If
an embedding is fixed, C divides the plane into two parts. We call the area that is locally
to the right of C the interior of C and the area to its left the exterior. We include the
vertices and edges of C in both the interior and the exterior. If the cycles are directed
clockwise—as it is mostly the case—the interior is bounded and the exterior is not.

Two paths P = v1 . . . vk and Q = w1 . . . w` with vk = w1 can be joined together to form
P +Q = v1 . . . vkw2 . . . w`. For any path P = v1 . . . vk, we define its reverse P = vk . . . v1.
For a path P and vertices u and v on P , we denote the subpath of P from u to v (including
these vertices) by P [u, v]. For a cycle C that contains any edge at most once (e.g., if C is
simple), we extend the notion of subpaths as follows: For two edges e and e′ on C, the
subpath C[e, e′] is defined as the unique path on C that starts with e and ends with e′. If
the start vertex v of e identifies e uniquely, i.e., C contains v exactly once, we may write
C[v, e′] to describe the path on C from v to e′. Analogously, we may identify e′ with its
endpoint if this is unambiguous.

We represent a face as a cycle f in which the interior of the face lies locally to the right of f .
Note that f may not be simple since cut vertices may appear multiple times on f . But
no directed edge is used twice by f . Therefore, the notation of subpaths of cycles applies
to faces. Note furthermore that the cycle bounding the outer face of a graph is directed
counter-clockwise, whereas all other faces are bounded by cycles directed clockwise.

5

2. Preliminaries

(a) (b)

Figure 2.1: Equivalent drawings of the same graph. (a) Ortho-radial drawing of a graph
on a grid. (b) The same drawing interpreted as an orthogonal drawing on a
cylinder.

2.1 Orthogonal and Ortho-Radial Drawings
In ortho-radial drawings the graph is placed on an ortho-radial grid. An example of such a
drawing is shown in Figure 2.1(a). An ortho-radial grid is formed by concentric circles and
N spokes, where N ∈ N is fixed.

• Concentric circles around the origin:

GC =
{

(x, y) ∈ R2 |
√
x2 + y2 ∈ N

}

• N spokes:

GS =
{

(r · cos 2πk
N , r · sin 2πk

N) | k ∈ {0, . . . , N − 1}, r ∈ [1,∞)
}

The point (0, 0) is called the center of the grid and we represent it by a cross in our figures
as for example in Figure 2.1(a). Note however that the center does not belong to the grid.
The distance of any point to the center is called the r-coordinate of that point.

In an ortho-radial drawing of a 4-planar graph G = (V,E) the graph is drawn on an
ortho-radial grid such that the vertices are placed at intersections of circles and spokes
and the edges are represented by curves on the grid (cf. Figure 2.1(a)). Formally, an
ortho-radial drawing ∆ = (δV , δE) consists of two functions:

• δV : V → GC ∩GS maps the vertices to their coordinates.

• δE : E × [0, 1]→ GC ∪GS maps the edges to curves.

These functions must satisfy certain properties:

1. The function δV is injective.

2. For e ∈ E the function δe defined by δe(x) = δE(e, x) is continuous.

3. For vw ∈ E it is either δE(vw, 0) = δV (v) and δE(vw, 1) = δV (w), or δE(vw, 0) =
δV (w) and δE(vw, 1) = δV (v).

6

2.1. Orthogonal and Ortho-Radial Drawings

Up

Down

RightLeft

Figure 2.2: The possible edge
directions.

C

C ′

Figure 2.3: The cycle C is essential, whereas C ′ is non-
essential.

The first condition ensures that no two different vertices are drawn at the same point.
By the second condition each edge is drawn as one curve without jumps and the third
condition makes sure that all edges start and end at the correct vertices.

Ortho-radial drawings can also be thought of as orthogonal drawings on a cylinder. Fig-
ure 2.1 shows two equivalent ortho-radial drawings of the same graph—one on an ortho-radial
grid and one on a cylinder. Edge segments that are originally drawn on rays from the
center are parallel to the axis of the cylinder, whereas segments that are originally drawn
as arcs on a cycle around the center are drawn on cycles parallel to the ends of the cylinder.

Each directed edge in an ortho-radial drawing can point in four directions as shown in
Figure 2.2: Edges directed away from the center point up, whereas edges directed towards
the center point down. Otherwise, the edges are drawn as arcs of circles around the center.
They point right, if they are directed clockwise, and left otherwise. Edges pointing left or
right are also said to be horizontal and edges pointing up or down are said to be vertical.

There are two fundamentally different ways how a cycle C can be drawn: The center may
lie in the interior or the exterior of C. In the former case we say a cycle is essential and in
the latter case it is non-essential. For instance, in Figure 2.3 the cycle C is essential and
C ′ is non-essential.

In an ortho-radial drawing ∆ of G, there are two special faces: One unbounded face,
called the outer face, and the central face containing the center of the drawing. These
two faces are equal if and only if ∆ contains no essential cycles. All other faces of G are
called regular. Ortho-radial drawings without essential cycles are equivalent to orthogonal
drawings [HHT09]. That is, any such ortho-radial drawing can be transformed to an
orthogonal drawing of the same graph with the same outer face and vice versa.

A face f in an ortho-radial drawing is a rectangle if and only if its boundary does not make
any left turns. That is, if f is a regular face, there are exactly 4 right turns, and if f is the
central or the outer face, there are no turns at all. Note that by this definition f cannot be
a rectangle if it is both the outer and the central face.

7

2. Preliminaries

1

(a) 90◦

0

(b) 180◦

−1

(c) 270◦

−2

(d) 360◦

Figure 2.4: The rotations for turns of different angles.

2.2 Rotation
For two edges uv and vw that enclose the angle α ∈ {90◦, 180◦, 270◦, 360◦} at v (such that
the measured angle lies locally to the right of uvw), we define the rotation rot(uvw) =
2− α/90◦. In Figure 2.4 the rotations for different turns are shown: The rotation is 1 if
there is a right turn at v, 0 if uvw is straight, and −1 if a left turn occurs at v. If u = w,
it is rot(uvw) = −2.
We define the rotation of a path P = v1 . . . vk as the sum of the rotations at its internal
vertices.

rot(P) =
k−1∑
i=2

rot(vi−1vivi+1)

Similarly, for a cycle C = v1 . . . vkv1, its rotation is the sum of the rotations at all its
vertices (where we define v0 = vk and vk+1 = v1).

rot(P) =
k∑
i=1

rot(vi−1vivi+1)

Let v be a vertex on a face f and u and w be the vertices before and after v on f ,
respectively. Then, we define the rotation of v in f by

rotf (v) = rot(uvw).

When splitting a path at an edge, the sum of the rotations of the two parts is equal to the
rotation of the whole path.
Observation 2.1. Let P be a path from vertex s to vertex t. For all edges e ∈ E(P) it
holds that

rot(P) = rot(P [s, e]) + rot(P [e, t]).

Furthermore, reversing a path changes all left turns to right turns and vice versa. Hence,
the sign of the rotation is flipped.
Observation 2.2. For any path P it is

rot(P) = − rot(P).

The third observation analyzes what happens if one makes a detour as shown in Figure 2.5.
Observation 2.3. Let P be a path from v to w and xy ∈ P an edge such that x is an
internal vertex of P .
(a) If xy lies locally to the left of P , it is

rot (P [v, x] + xy) + rot (yx+ P [x,w]) = rot (P)− 2.

(b) If xy lies locally to the right of P , it is

rot (P [v, x] + xy) + rot (yx+ P [x,w]) = rot (P) + 2.

8

2.3. Flow Networks

v w

x

y

P

(a)

v w

x

y

P

(b)

Figure 2.5: The situation of Observation 2.3. If one makes a detour via xy (without
accounting for the 360◦-turn at y), the rotation changes by −2 if xy is to the
left of P , or +2 if xy lies to the right.

2.3 Flow Networks
A flow network is a directed graph N = (V,A) with

• a demand function d : V → Z,

• a function for the lower bound of the flow l : A→ N0, and

• a function for the upper bound of the flow u : A→ N0 ∪ {∞}.

A feasible flow in N is a function f : A→ N0 such that the following conditions are met:

1. For each node v ∈ V it is
∑
uv∈A f(uv)−

∑
vw∈A f(vw) = d(v).

2. For each arc a ∈ A it is l(a) ≤ f(a) ≤ u(a).

The first condition ensures that the flow is preserved at the nodes. By the second condition
the amount of flow along an arc respects the capacity of the arc. Note that our definition of
flow networks does not include a cost function, since we are only interested in the existence
of feasible flows and do not require minimum cost flows. The existence of a feasible flow
can be tested in polynomial time as shown, for example, in [CLRS01].

9

3. Ortho-Radial Representations

Instead of dealing with the drawing of a graph itself, it is often simpler to work with a
representation that fixes the general shape of the drawing but not the exact lengths and
positions of edges and vertices. In this chapter we present a representation for ortho-radial
drawings of 4-planar graphs, which extends the orthogonal representations introduced by
Tamassia [Tam87]. We furthermore present a set of conditions for these representations
that are both necessary and sufficient for the existence of an ortho-radial drawing. Hence,
algorithms for ortho-radial drawings (e.g., for bend minimization) do not need to deal with
coordinates on the grid. Instead, they may work with the representations.

3.1 Labelings of Essential Cycles
Before we give the definition of ortho-radial representations, we introduce labelings of
essential cycles with respect to an edge on the outer face. These labelings prove to be a
valuable tool to ensure that the drawings of all cycles of the graph fit together.

Let ∆ be an ortho-radial drawing of a 4-planar graph G. We fix an edge e∗ = rs, called
the reference edge, on the outer face directed such that the outer face lies locally to its left.

Definition 3.1 (Labeling). Let C be a simple, essential cycle in G directed such that it
contains the central face in its interior, and let P be a path from s to a vertex v on C. The
labeling `PC of C induced by P is defined for each edge segment e of an edge on C by

`PC(e) = rot(e∗ + P + C[v, e]).

This definition is illustrated in Figure 3.1. Two such paths P and Q from s to vertices on C
are equivalent (in symbols P ≡C Q) if the labelings induced by these paths agree on all

P

v
e

C[v, e]

C

e∗ sr

Figure 3.1: The labeling of e induced by P is `PC(e) = rot(e∗ + P + C[v, e]).

11

3. Ortho-Radial Representations

edge segments of C, i.e., `PC(e) = `QC(e) for all segments e of C. We are mostly interested
in labelings that are induced by paths that intersect C only at their endpoints and we call
such paths elementary.

Note that the labeling does not depend on the exact coordinates of the vertices or the edge
lengths but only on their relative positions. Hence, to determine the labeling of a cycle C
induced by a path P , it is sufficient to know the directions of e∗ and the edges on C and P .
In Section 3.3 we further investigate the properties of labelings.

3.2 Definition of Ortho-Radial Representations
In this section, we define ortho-radial representations, which extend orthogonal representa-
tions as described by Tamassia [Tam87]. The main differences are additional constraints to
ensure essential cycles can be drawn and minor adjustments to the rotation of the exterior
and the central face.

Definition 3.2 (Ortho-Radial Representation). An ortho-radial representation of a con-
nected plane graph G with maximum degree 4 consists of a list H(f) of triples (e, s, a)
for each face f , where e is an edge on f , s a binary string and a ∈ {90, 180, 270, 360}.
Additionally, the outer face and the central face are fixed, and an edge e∗ directed such that
the outer face lies to its left—called the reference edge—is given.

We interpret the fields of a triple in H(f) in the following way: e denotes an edge on f
directed such that f lies to the right of e. The string s describes the bends encountered
when moving along e, i.e., the k-th bit of s describes the k-th bend on e beginning at the
bend that is closest to the starting point of e. We interpret 0 as a right bend (angle of 90◦)
and 1 as a left bend (angle of 270◦). The field a represents the angle inside f from e to the
following edge in degrees.

Using this information we define the rotation of such a triple t = (e, s, a) as

rot(t) = zeroes(s)− ones(s) + 180− a
90 ,

where zeroes(s) and ones(s) are the numbers of 0 and 1 in s, respectively. That is, the
rotation includes both the turns on the edge and the angle to the next edge. The rotation
of a face is then defined as

rot(f) =
∑

t∈H(f)
rot(t).

Note that an ortho-radial representation fixes the rotation of all paths. Therefore, an
ortho-radial representation determines the labelings of essential cycles.

Definition 3.3. An ortho-radial representation is valid if the following conditions hold:

1. The sum of the angles around each vertex (as given by the values of the a-fields of all
incoming edges) is 360.

2. If two triples (e, s, a) and (e′, s′, a′) refer to the same edge but in different directions
(i.e., e′ = e), s′ can be obtained by reversing s and replacing all ones with zeros and
vice versa.

3. For each face f , it is

rot(f) =

4, f is a regular face,
0, f is the outer or the central face but not both,
−4, f is both the outer and the central face.

12

3.3. Properties of Labelings

4. For each simple, essential cycle C in G, there is a labeling `PC of C induced by an
elementary path P such that either `PC(s) = 0 for all segments s of edges of C, or
there are segments s+ and s− on C such that `PC(s+) > 0 and `PC(s−) < 0.

Conditions 1 and 3 ensure that the sum of the angles at vertices and inside the faces
are correct. Condition 2 makes sure that the two descriptions of the bends of an edge
are consistent. The last condition guarantees that all cycles in the graph can be drawn
together consistently. For an essential cycle C that does not satisfy this condition, either
all labels of segments on C are non-negative or all are non-positive. In the former case C
is called decreasing and in the latter case increasing. Note that an increasing (decreasing)
cycle contains an edge with a negative (positive) label. Cycles with label 0 everywhere are
neither in- nor decreasing.

If an ortho-radial representation Γ contains no essential cycles, Condition 4 is vacuously true
and the other conditions ensure that Γ is also a valid orthogonal representation. Therefore,
orthogonal representations can be viewed as a strict subset of ortho-radial representations.

Although the definition of ortho-radial representation supports edge bends, it is often more
convenient to assume that no edges have bends. We can easily achieve this by adding
dummy vertices at the bends, which yields a subdivision of the graph. From here on, we
assume in the remainder of the chapter that no edge bends exist.

An ortho-radial representation fixes the direction of all edges: To determine the direction
of an edge e, we consider a path P from the reference edge to e including both edges.
Different such paths may have different rotations but we can observe that these rotations
differ by a multiple of 4.

Observation 3.4. For any two paths P and Q starting with the reference edge and ending
with the same edge e, we have rot(P) ≡ rot(Q) mod 4.

An edge e is directed right, down, left, and up if rotP is congruent to 0, 1, 2, and 3
modulo 4, respectively. If e lies on an essential cycle C, one can consider the label `QC(e)
induced by any path Q instead of explicitly choosing a path P since the labels are defined
as rotations of such paths.

Having introduced all necessary definitions we are able to state our main theorem, which
characterizes those ortho-radial representations for which a drawing exists. The remainder
of this chapter is devoted to the proof of this theorem.

Theorem 3.5. Let G be a 4-planar graph and Γ an ortho-radial representation of G. The
representation Γ is valid if and only if there is an ortho-radial drawing of G respecting Γ.

Before we turn to the proof, we analyze the properties of labelings in the following section.
Section 3.4 then contains a proof of the characterization for the case that all faces are
rectangles. In Section 3.5 we extend this result to arbitrary graphs by showing how valid
ortho-radial representations of arbitrary graphs can be rectangulated.

3.3 Properties of Labelings
Orthogonal and ortho-radial representations mainly differ by the additional constraint
on the labelings of essential cycles. Therefore, we need to study the properties of these
labelings. Throughout this section G is a 4-planar graph with ortho-radial representation Γ,
which satisfies Conditions 1–3 of Definition 3.3. That is, Γ is valid except that it might
contain increasing or decreasing cycles. By Observation 3.4 an ortho-radial representation

13

3. Ortho-Radial Representations

v
w

x
y

p

C[w, y]

e∗

e

(a)

e∗

x
y

v
w

p

C[w, y]

(b)

Figure 3.2: The situation of Lemma 3.7. (a) The edge xy does not lie on C[p, w] and
P ′ contains no duplicate edges. (b) The edge xy lies on C[p, w] and P ′ goes
around C completely.

fixes the directions of all its edges. Thus, an ortho-radial representation also fixes the
labelings of essential cycles.

We start with a simple observation that follows from the fact that the rotation of essential
cycles is 0.

Observation 3.6. For any two edges e and e′ on a simple, essential cycle C, it holds that

rot(C[e, e′]) = `C(e′)− `C(e).

Our first goal is to show that two elementary paths to the same essential cycle C induce
identical labelings of C. As a first step, we prove that two paths are already equivalent if
the labels for one edge are equal. Thus, to test whether two paths are equivalent, it suffices
to check the labels of only one edge.

Lemma 3.7. Let C be a simple, essential cycle and P and Q two paths from the endpoint
of the reference edge to vertices on C. If there is an edge e on C such that `PC(e) = `QC(e),
then P and Q are equivalent.

Proof. Denote the endpoints of P and Q on C by p and q, respectively. Let e = vw be an
edge on C such that `PC(vw) = `QC(vw), which implies by the definition of the labeling

rot(e∗ + P + C[p, vw]) = rot(e∗ +Q+ C[q, vw]). (3.1)

For any edge e′ = xy on C, we obtain P ′ = P +C[p, vw] +C[w, y] and Q′ = Q+C[q, vw] +
C[w, y] by adding C[w, y] to the end of the two paths to e. Equation 3.1 then implies

rot(e∗ + P ′) = rot(e∗ +Q′). (3.2)

If xy 6∈ C[p, w] (as illustrated in Figure 3.2(a)), it is C[p, y] = C[p, vw] + C[w, y] and
therefore `PC(e′) = rot(e∗ + P ′). Otherwise, P ′ contains C completely and rot(e∗ + P ′) =
rot(e∗ + C[p, y]) + rot(C) = `PC(e′), since C is essential and hence it is rot(C) = 0. This
case is shown in Figure 3.2(b).

Analogously, we obtain `QC(e′) = rot(e∗ +Q′). In conjunction with Equation 3.2 we get in
total

`PC(e′) = rot(e∗ + P ′) = rot(e∗ +Q′) = `QC(e′). (3.3)

Hence, the labelings induced by P and Q are equal.

14

3.3. Properties of Labelings

P

Q

w x
v y

e

e′

C

Figure 3.3: The situation of Lemma 3.8. The paths P and Q use different sides of the
cycle C and the edges e and e′ cut P and Q in two parts.

In the lemma above it is assumed that the labelings coincide at one edge. In order to find
such an edge, we analyze the rotations of different paths from the reference edge to one
edge on an essential cycle. Under mild conditions all these paths that end with the same
edge have the same rotation. To show this, we compare two paths from the reference edge
to the cycle. These paths may split at some point and meet again later (cf. Figure 3.3).
That is, they use two different paths along a cycle. Note that this cycle is different from
the cycle the paths end on. The following lemma shows that the rotation of the paths are
equal if the paths leave the cycle on the correct side.

Lemma 3.8. Let C be a simple cycle in G. Consider two vertices w and x on C and
edges vw 6∈ E(C) and xy 6∈ E(C) to and from these vertices, respectively. Let P =
vw + C[w, x] + xy and Q = vw + C[w, x] + xy.

(a) If C is a non-essential cycle and vw and xy lie in the exterior of C, or

(b) if C is an essential cycle and vw lies in the exterior of C and xy in the interior,

then it is rot(P) = rot(Q).

Proof. To prove the equality, we show in the following that rot(P) − rot(Q) = 0. We
first cut the paths in two parts each and analyze them separately. To this end we choose
arbitrary edges e on P [w, x] and e′ on Q[w, x] as shown in Figure 3.3. By Observation 2.1
it is

rot(P)− rot(Q) = rot(P [v, e])− rot(Q[v, e′])
+ rot(P [e, y])− rot(Q[e′, y]). (3.4)

By definition it is P [v, e] = vw + C[w, e] and Q[v, e′] = vw + C[w, e′]. Therefore, we can
calculate that difference of the rotations as follows:

rot(P [v, e])− rot(Q[v, e′]) = rot(P [v, e]) + rot(Q[e′, v])
= rot(vw + C[w, e]) + rot(C[e′, w] + wv)
= rot(C[e′, e])− 2 (3.5)

The last equality follows from Observation 2.3, since vw lies in the exterior of C and
therefore locally to the left of C[e′, e]. In a similar spirit one obtains an equation for the
second part:

rot(P [e, y])− rot(Q[e′, y]) = rot(C[e, e′]) + c (3.6)

Here, c represents a constant, which depends on whether xy lies in the exterior of C
(Case (a); c = −2) or in the interior (Case (b); c = 2).

Substituting Equations 3.5 and 3.6 in Equation 3.4, we get

rot(P)− rot(Q) = rot(C[e′, e]) + rot(C[e, e′])− 2 + c. (3.7)

15

3. Ortho-Radial Representations

v w

C2

C ′
x

y

Q

P
sr

t

u

C1

Figure 3.4: Two paths P and Q from s to t, which lie between the essential cycles C1
and C2. Here, the cycle C ′ formed by P [w, x] and Q[x,w] is non-essential.

Note that the paths in the equation above together form the cycle C. Hence, it is
rot(C[e′, e]) + rot(C[e, e′]) = rot(C) and the equation simplifies to

rot(P)− rot(Q) = rot(C)− 2 + c. (3.8)

In (a) the cycle C is non-essential and therefore it is rot(C) = 4. Moreover, we have c = −2.
Plugging these values in Equation 3.8, we get rot(P)− rot(Q) = 0.

Similarly, in (b) it is c = 2 and rot(C) = 0 since C is essential. Therefore, Equation 3.8
again gives the desired result.

Applying this result repeatedly, we show that the label of an edge e on an essential cycle C
induced by two elementary paths P and Q is the same, i.e., `PC(e) = `QC(e). We can even
prove a slightly more general result, where the paths do not need to start at the reference
edge but must stay between two essential cycles C1 and C2, which is illustrated in Figure 3.4.
If one is interested in paths from the reference edge, one can choose the cycle bounding the
outer face as C1.

Lemma 3.9. Let C1 and C2 be two essential cycles in G such that C2 lies in the interior
of C1. Fix an edge rs on C1 and an edge e = tu on C2. Let P and Q be two paths starting
at s and ending at t such that both paths lie in the interior of C1 and in the exterior of C2.
Then, it is

rot(rs+ P + tu) = rot(rs+Q+ tu).

Proof. Let k be the number of directed edges on P that do not lie on Q. We prove the
equivalence of P and Q by induction on k. If k = 0, Q contains P completely. Since both
paths have the same start and endpoint, P and Q are equal. Hence, the claim follows
immediately.

If k > 0, there is a first edge vw on P such that the following edge does not lie on Q.
Let x be the first vertex on P after w that lies on Q and let y be the vertex on Q + tu
that follows x immediately. This situation is illustrated in Figure 3.4. As both P and Q
end at t, these vertices always exist. Consider the cycle C ′ = P [w, x] +Q[x,w]. We may
assume without loss of generality that the edges of C ′ are directed such that the outer face
lies in the exterior of C ′ (otherwise we may reverse the edges and work with C ′ instead).
Note that Q[x, t] cannot intersect C ′ (except for x), since the internal vertices of P [w, x]
do not lie on Q by the definition of x and Q does not intersect itself. Therefore, xy lies on
the same side of C ′ as C2.

If C ′ is non-essential, it does not contain the central face, and hence, C ′ cannot contain C2
in its interior. Thus, both vw and xy lie in the exterior of C ′. By Lemma 3.8(a), we have

rot(vw + P [w, x] + xy) = rot(vw +Q[w, x] + xy). (3.9)

16

3.3. Properties of Labelings

r se∗

p
q

P

Q

C

v

Figure 3.5: The situation of Lemma 3.10. Two paths P and Q from the reference edge to
vertices on the essential cycle C. Both paths lie in the exterior of C but only
Q is elementary.

If C ′ is essential, C2 lies in the interior of C ′. Therefore, vw lies in the exterior of C ′ and
xy in its interior or boundary. Thus, Lemma 3.8(b) states that

rot(vw + P [w, x] + xy) = rot(vw +Q[w, x] + xy). (3.10)

In both cases it follows from P [s, w] = Q[s, w] that

rot(rs+ P [s, x] + xy) = rot(rs+Q[s, x] + xy). (3.11)

For Q′ = P [s, x] +Q[x, t] it therefore holds that

rot(rs+Q+ tu) = rot(rs+Q′ + tu). (3.12)

As Q′ includes the part of P between w and x, it misses fewer edges from P than Q does.
Hence, the induction hypothesis implies

rot(rs+ P + tu) = rot(rs+Q′ + tu). (3.13)

Thus, Equations 3.12 and 3.13 yield the desired result:

rot(rs+ P + tu) = rot(rs+Q+ tu) (3.14)

Combining the previous lemma with Lemma 3.7 shows that the labelings induced by
elementary paths are equal.

Lemma 3.10. Let C be an essential cycle in G and let e∗ = rs be the reference edge. If P
and Q are paths from s to vertices on C such that P and Q lie in the exterior of C, they
are equivalent. In particular, elementary paths are equivalent.

Proof. First assume that one of the paths, say Q, is elementary as shown in Figure 3.5. Let
p and q be the endpoints of P and Q, respectively, and let v be the vertex following p on C
when C is directed such that the central face lies in its interior. We define Q′ = Q+C[q, p].
It is easy to verify that both P and Q′ are paths and lie in the exterior of C. Therefore, it
follows from Lemma 3.9 that

`PC(pv) = rot(e∗ + P + pv) = rot(e∗ +Q′ + pv) = `QC(pv).

Thus, P and Q are equivalent by Lemma 3.7.

If neither P nor Q are elementary, choose any elementary path R to a vertex on C. The
argument above shows that P ≡C R and R ≡C Q, and thus P ≡C Q.

17

3. Ortho-Radial Representations

e1

e2

C

C ′

e∗

(a)

e∗ 0

0

0

2
2

4

1

-1

3

3

1

10

v

w

(b)

Figure 3.6: (a) The essential cycles C and C ′ have both common edges with different labels
(`C(e1) = 4 6= 0 = `C′(e1)) and ones with equal labels (`C(e2) = `C′(e2) = 0).
(b) The labels of the cycle C. All labels of C[v, w] are positive.

In the remainder of this section all labelings are induced by elementary paths. By the
lemma above, the labelings are independent of the choice of the elementary path. Therefore,
we drop the superscript P and write `C(e) for the labeling of an edge e on an essential
cycle C.

If an edge e lies on two simple, essential cycles C and C ′, the labels `C(e) and `C′(e) may
not be equal in general. In Figure 3.6 the labels of the edge e1 are different but e2 has
label 0 on both cycles. Note that e2 is incident to the central face of the subgraph of G
formed by the two cycles C and C ′. In the following lemma we show that this is a sufficient
condition for the equality of the labels. It is however not a necessary condition as an edge
that is not incident to the central face may be labeled the same for both cycles.

Lemma 3.11 (Intersection Lemma). Let C and C ′ be two essential cycles and let H =
C+C ′ be the subgraph of G formed by these two cycles. Let v be a common vertex of C and
C ′ on the central face of H and consider the edge vw on C. Denote the vertices before v
on C and C ′ by u and u′, respectively. Then, it is

`C(uv) + rot(uvw) = `C′(u′v) + rot(u′vw).

In particular, if vw belongs to both C and C ′, the labels of e are equal, i.e., `C(vw) =
`C′(vw).

Proof. Let f be the cycle bounding the central face of H and we first assume that not only
v but the whole edge vw lies on f . Let P and Q be elementary paths from the endpoint s
of the reference edge to vertices t and t′ on C and C ′, respectively. Define P̃ = P + C[t, v]
and Q̃ = Q+ C ′[t′, v]. The paths P̃ and Q̃ lie in the exterior of f . Thus, Lemma 3.9 can
be applied to P̃ and Q̃:

rot(e∗ + P̃) + rot(uvw) = rot(e∗ + P̃ + vw)
= rot(e∗ + Q̃+ vw) = rot(e∗ + Q̃) + rot(u′vw) (3.15)

18

3.3. Properties of Labelings

By the definition of labelings it is `C(uv) = rot(e∗ + P̃) and `C′(u′v) = rot(e∗ + Q̃).
Substitution into the previous equation gives the desired result:

`C(uv) + rot(uvw) = `C′(u′v) + rot(u′vw) (3.16)

If vw does not lie on the central face, then the edge vw′ on C ′ does lie on the central face,
where w′ denotes the vertex on C ′ after v. By the argument above we have

`C(uv) + rot(uvw′) = `C′(u′v) + rot(u′vw′). (3.17)

Since vw lies locally to the left of both uvw′ and u′vw′, it is

rot(uivw) = rot(uivw′)− α, (3.18)
rot(uivw) = rot(uivw′)− α (3.19)

for the same constant α ∈ {1, 2}. Hence, we get

`C(uv) + rot(uvw) + α = `C′(u′v) + rot(u′vw) + α. (3.20)

Canceling α on both sides gives the desired result.

If vw lies on both C and C ′, Observation 3.6 implies `C(uv) + rot(uvw) = `C(vw) and
`C′(u′v) + rot(u′vw) = `C′(vw). Hence, the result above can be simplified to `C(vw) =
`C′(vw).

Intuitively, positive labels can often be interpreted as going downwards and negative labels
as going upwards. In Figure 3.6(b) all edges of C[v, w] have positive labels and in total
the r-coordinate decreases along this path, i.e., the r-coordinate of v is greater than the
r-coordinate of w. Yet, the edges on C[v, w] point in all possible directions—even upwards.
One can still interpret a maximal path with positive labels as leading downwards with the
caveat that this is a property of the whole path and does not impose any restriction on the
directions of the individual edges.

Using this intuition, we expect that a path P going down (positive labels) cannot intersect
a path Q going up (negative labels) such that P starts below Q and ends above it. In the
following lemma, we show that this assumption is indeed correct if we restrict ourselves to
intersections on the central face—a situation that is depicted in Figure 3.7.

u

u′

v

w≤ 0

≥ 0

C

C ′

w′

(a)

u′

u

v

w≥ 0

C

C ′

w′

≤ 0

(b)

Figure 3.7: Possible intersection of two cycles C and C ′ at v. (a) The labels of the incoming
edges satisfy `C(uv) ≥ 0 and `C′(u′v) ≤ 0. The edges vw and vw′ may be
exchanged. (b) The labels of the outgoing edges satisfy `C(vw) ≥ 0 and
`C′(vw′) ≤ 0. The edges uv and u′v may be exchanged.

19

3. Ortho-Radial Representations

Lemma 3.12. Let C and C ′ be two simple, essential cycles in G sharing at least one
vertex. Let H = C + C ′ be the subgraph of G composed of the two cycles C and C ′ and
denote the central face of H by f . Take subpaths uvw of C and u′vw′ of C ′ with the same
vertex v in the middle such that v lies on f .

(a) If `C(uv) ≥ 0 and `C′(u′v) ≤ 0, u′v lies in the interior of C.

(b) If `C(vw) ≥ 0 and `C′(vw′) ≤ 0, vw′ lies in the exterior of C.

Proof. (a) Since the central face f lies in the interior of both C and C ′ and v on the
boundary of f , one of the edges vw and vw′ lies on f . We denote this edge by vx and it is
either x = w (as in Figure 3.7(a)) or x = w′. By the Intersection Lemma we have

`C(uv) + rot(uvx) = `C′(u′v) + rot(u′vx). (3.21)

Applying `C(uv) ≥ 0 and `C′(u′v) ≤ 0, we obtain

rot(uvx) ≤ rot(u′vx). (3.22)

Therefore, u′v lies to the right of or on uvx and thus in the interior of C.

(b) Assume that vw′ does not lie in the exterior of C. That is, vw′ lies locally to the
right of uvw. Therefore, vw′ lies on f , and the Intersection Lemma implies together with
Observation 3.6 that

0 ≥ `C′(vw′) = `C′(u′v) + rot(u′vw′)
= `C(uv) + rot(uvw′). (3.23)

Since vw′ lies locally to the right of uvw, it is rot(uvw) < rot(uvw′) and therefore

0 ≥ `C(uv) + rot(uvw′)
> `C(uv) + rot(uvw) = `C(vw). (3.24)

Here, the last equality follows from Observation 3.6. But this contradicts the assumption
`C(vw) ≥ 0. Hence, vw′ must lie in the exterior of C.

3.4 Characterization of Rectangular Graphs
Our overall goal is to show that a graph with a given ortho-radial representation can be
drawn if and only if the representation is valid (cf. Theorem 3.5). In this section we prove
the characterization for rectangular graphs, i.e., graphs whose faces are all rectangles. This
result is extended in Section 3.5 to the characterization for arbitrary graphs.

To produce a drawing from an ortho-radial representation Γ of a graph G, we need to assign
consistent edge lengths. To this end we use two flow networks—one for the vertical and
one for the horizontal edges. These networks are straightforward adaptions of the networks
used for drawing rectangular graphs in the plane, which are presented in [DBETT99], for
instance. In the following, the words vertex and edge refer to the vertices and edges of the
graph G, whereas node and arc are used for the flow networks. Additionally, face always
refers to a face of G.

The network Nver = (Fver, Aver) with nodes Fver and arcs Aver for the vertical edges contains
one node for each face of G except for the central and the outer face. All nodes have a
demand of 0. For each vertical edge e in G there is an arc ae = fg in Nver, where f is the
face to the left of e and g the one to its right when e is directed upwards. The flow on fg

20

3.4. Characterization of Rectangular Graphs

(a) Nver (b) Nhor

Figure 3.8: The flow networks Nver and Nhor for an example graph G, which are used to
assign the lengths to the vertical and horizontal edges of G, respectively. For
simplicity, the edge from the outer to the central face in Nhor is omitted.

has the lower bound l(fg) = 1 and the upper bound u(fg) =∞. An example of this flow
network is shown in Figure 3.8(a).

To obtain a drawing from a flow in Nver, we set the length of a vertical edge e to the flow
on ae. The conservation of the flow at each node f ensures that the two vertical sides of
the face f have the same length.

In a similar fashion the network Nhor is built to assign lengths to the horizontal edges.
There is a node for all faces of G including the central and the outer face. Each horizontal
edge e of G induces an arc ae = fg in Nhor, where f is the face to the right of e when e
points to the right and g the face to the left of e. Additionally, Nhor includes one arc from
the outer to the central face. Again, all arcs require a minimum flow of 1 and have infinite
capacity. The demand of all nodes is 0. Figure 3.8(b) shows an example of such a flow
network.

Theorem 3.13. Let G = (V,E) be a plane graph with ortho-radial representation Γ
satisfying Conditions 1–3 of Definition 3.3 such that all faces are rectangles. Let Nver and
Nhor be the flow networks as defined above. Then, the following statements are equivalent:

(i) There is an ortho-radial drawing of Γ.

(ii) There are feasible flows in Nhor and Nver.

(iii) No S ⊆ Fver exists such that there is an arc from Fver \ S to S in Nver but not vice
versa.

(iv) Γ is valid.

Proof. (i) ⇒ (iv): Let ∆ be an ortho-radial drawing of G preserving the embedding
described by Γ. Since Γ already satisfies Conditions 1–3 of Definition 3.3, we only need to
show that Γ contains neither increasing nor decreasing cycles. Let C be a simple, essential
cycle directed such that the center lies in its interior. We construct a path P from the
reference edge to a vertex on C such that the labeling of C induced by P attains both
positive and negative values.

21

3. Ortho-Radial Representations

v
e∗

s C

P

1
0

1

0

0

0 x

Figure 3.9: The path P from s to v—constructed backwards by going only up or left—does
not intersect the interior of C. The rotations of the edges on P relative to e∗
are 0 or 1.

In ∆ either all vertices of C have the same r-coordinate, or there is a maximal subpath Q
of C whose vertices all have the maximum r-coordinate among all vertices of C. In the
first case we may choose the endpoint v of the path P arbitrarily, whereas in the second
case we select the first vertex of Q as v.

We construct the path P backwards (i.e., the construction yields P) as follows: Starting
at v we choose the edge going upwards from v if it exists, or the one leading left. Since all
faces of G are rectangles, at least one of these always exists. This procedure is repeated
until the endpoint s of the reference edge is reached. An example of the constructed path
is shown in Figure 3.9.

To show that this algorithm terminates, we assume that this was not the case. As G is
finite, there must be a first time a vertex w is visited twice. Hence, there is a cycle C ′
in ∆ containing w such that all edges of C ′ go left or up. As all drawable essential cycles
with edges leading upwards must also have edges that go down [HHT09], all edges of C ′
are horizontal. By construction no edge incident to a vertex of C ′ leads upwards. But the
only cycle with this property is the one enclosing the outer face since G is connected. This
cycle however contains the reference edge and therefore the algorithm halts.

This not only shows that the construction of P ends, but also that P is a path (i.e., the
construction does not visit a vertex twice). However, P might be not elementary, since it
may intersect C multiple times (e.g., in Figure 3.9 the path P contains two vertices of C: v
and x). But v has the smallest r-coordinate among all vertices of P and the largest among
those on C. Thus, no part of P lies inside C. Hence, Lemma 3.10 guarantees that the
labeling `PC induced by P coincides with the labeling `C induced by any elementary path.

Let v′ be the vertex following v on C. By construction of P the labeling of vv′ induced by P
is 0. If all edges of C are horizontal, this implies `PC(e) = 0 for all edges e of C. Otherwise, we
claim that the edge e− = uv directly before the maximal horizontal subpath Q containing v
and the edge e+ = wx directly following Q on C have labels −1 and +1, respectively. Since
all edges on Q are horizontal and e+ goes down, we have rot(C[v, x]) = 1 and therefore
`PC(e+) = 1. Similarly, we obtain `PC(uv) = `PC(vv′)− rot(uvv′) = −1 from rot(uvv′) = 1.

(iv) ⇒ (iii): Instead of proving this implication directly, we show the contrapositive. That
is, we assume that there is a set S ⊆ Fver of nodes in Nver such that S has no outgoing but
at least one incoming arc. From this assumption we derive that Γ is not valid, as we find
an increasing or decreasing cycle.

22

3.4. Characterization of Rectangular Graphs

S
a

a′

C

C ′

Figure 3.10: A set S of nodes in a graph G such that Nver[S] has no outgoing but two
incoming arcs a and a′. The set of faces S corresponding to the nodes in S are
shaded with blue. Note that the edge on C at the bottom is curved because
G does not admit an ortho-radial drawing.

Without loss of generality, S can be chosen such that Nver[S] is weakly connected. If Nver[S]
is not weakly connected, at least one weakly-connected component of Nver[S] possesses an
incoming arc and we can work with this component instead. As each node of S corresponds
to a face of G, S can also be considered as a collection of faces of G. To distinguish between
the two interpretations of S, we refer to this collection of faces by S. Our goal is to show
that the outermost or the innermost boundary of S forms an increasing or decreasing cycle
in the original graph G. Figure 3.10 shows an example of such a set S of nodes. Here, the
arcs a and a′ lead from a node outside of S to one in S. These arcs cross edges on the
outer boundary C of S, which point upwards.

Each node of S has at least one outgoing arc, which must end at another node of S. Hence,
S contains a cycle, and therefore S separates the outer and the central face of G. Thus, the
cycle C that constitutes the outermost boundary of S, i.e., the smallest cycle containing
all faces of S in its interior, is essential. Similarly, we define C ′ as the cycle forming the
innermost boundary of S. By assumption there is an arc a from a node entering S from
the outside. Since Nver[S] is weakly connected, S has no holes and the edge e crossed by a
either lies on C or C ′. In the former case e points up, whereas in the latter case e points
down. If e lies on C, we prove in the following that C is an increasing cycle. Similarly, one
can show that C ′ is a decreasing cycle if e lies on C ′. We only present the argument for C
as the one for C ′ is similar.

We first observe that no edge on C is directed downwards, since the arc ae corresponding
to a downward edge e would lead from a node in S to a node outside of S. To restrict the
possible labels for edges on C, we construct an elementary path P from the endpoint s of
the reference edge to a vertex on C. The construction is similar to the one we used above,
but this time the construction works forwards starting at s. If the current vertex lies on C,
the path is completed. Otherwise, we append the edge going down if it exists, or the one
that goes to the right. As above one can show that this procedure produces a path P . It is
even elementary, because we stop when a vertex on C is reached.

Let v be the endpoint of P and w the vertex on C following v. By construction it is
rot(e∗ + P) ∈ {0, 1}. Therefore, we have `C(vw) = 0 if vw points right or `C(vw) = −1
if it points up. Since no edge on C has a label that is congruent to 1 modulo 4 (i.e., no

23

3. Ortho-Radial Representations

edge points down) and the labels of neighboring edges differ by −1, 0 or 1, we obtain
`C(e′) ∈ {−2,−1, 0} for all edges e′ ∈ C. In particular, it is `C(e′) ≤ 0. But the edge e
crossed by the arc a points upwards and therefore `C(e) = −1. Hence, C is an increasing
cycle and Γ is not valid.

(iii) ⇒ (ii): We claim that Nhor always possesses a feasible flow. To construct a flow, note
that Nhor without the arc from the outer face g to the central face f is a directed acyclic
graph with f as its only source and g as its only sink. For each arc a 6= gf in Nhor there is
a directed path Pa from f to g via a. Adding the arc gf , we obtain the cycle Ca = Pa + gf .
We let one unit flow along each of these cycles Ca. Adding all these flows gives the desired
flow in Nhor. By construction each arc a lies on at least one cycle (namely Ca), and hence,
the minimum flow of 1 on a is satisfied.

To construct a feasible flow in Nver we again compose cycles of flow. In order to find a
directed cycle containing an arc fg, we define the set Sg of all nodes h for which there
exists a directed path from g to h in Nver. By definition there is no arc from a vertex in Sg
to a vertex not in Sg. As Nver satisfies (iii), Sg does not have any incoming arcs either.
Hence, it is f ∈ Sg and there is a directed path from g to f . Closing this path with the
arc fg results in a cycle of Nver, which we denote by Cfg.

Repeating this process for all arcs of Nver, we obtain the set C of the cycles Ca for a ∈ Aver.
We set the flow ϕ(a) on each arc a as the number of the cycles in C containing a. Since a
lies on Ca, the flow on a is at least 1. As ϕ is the sum of unit flows along cycles, the flow
is conserved at all nodes, i.e., the sum of the flows on incoming arcs of a node f is equal to
the flow on arcs leaving f . Therefore, ϕ is a feasible flow in Nver.

(ii) ⇒ (i): Given a feasible flow ϕ in Nver, we set the length of each vertical edge e of G
to the flow ϕ(ae) on the arc ae that crosses e. For each face f of G the total length of its
left side is equal to the total amount of flow entering f . Similarly, the length of the right
side is equal to the amount of flow leaving f . As the flow is preserved at all nodes of Nver,
the left and right sides of f have the same length. Similarly, one obtains the length of the
horizontal edges from a flow in Nhor.

By [HHT09] any ortho-radial drawing of a graph satisfies Conditions 1–3 of Definition 3.3.
Therefore, the theorem above implies the characterization of drawable ortho-radial repre-
sentations for rectangular graphs.

Corollary 3.14 (Special Case of Theorem 3.5 for Rectangular Graphs). Let G be a 4-planar
graph and Γ an ortho-radial representation of G such that all faces are rectangles. The
representation Γ is valid if and only if there is an ortho-radial drawing of G respecting Γ.

3.5 Rectangulation

In the previous section we proved that there is an ortho-radial drawing if and only if the
ortho-radial representation is valid for the case of rectangular graphs. We extend this result
to arbitrary graphs by reduction to the rectangular case. Throughout the section, Γ is a
valid ortho-radial representation of a 4-planar graph G. As before we assume that Γ does
not contain any edge bends, which can be achieved by adding dummy vertices at the bends.

In order to use the characterization of rectangular graphs from the previous section, we
augment G such that all faces become rectangles. The algorithm for this rectangulation
is presented in the following section. In Section 3.5.2 we prove some preliminary results,
which are needed for the correctness proof in Section 3.5.3.

24

3.5. Rectangulation

v

u

w

s

r

x y

C ′′

C ′

Figure 3.11: The outer and the central face are rectangulated by adding cycles of length 3.
The cycle C ′ is connected to an edge xy that has label 0 and C ′′ is connected
to a new vertex w on the old reference edge rs. The edge uv is selected as the
new reference edge.

3.5.1 The Rectangulation Algorithm
The rectangulation algorithm gets a graph G and an ortho-radial representation Γ of G as
input and outputs an augmentation of Γ whose faces are all rectangles. This augmentation
works solely with the ortho-radial representation and does not fix any coordinates or edge
lengths.

The first step of the rectangulation deals with the outer and the central face. By definition
they are rectangular if they are bounded by essential cycles without any turns. For the
central face g we identify an edge e on the simple cycle C bounding g such that it is
`C(e) = 0. Since Γ is valid and C is an essential cycle, such an edge must exist. We then
insert a new essential cycle C ′ of length 3 without turns inside g and connect one of its
vertices to a new vertex on e. The new cycle C ′ now forms the boundary of the central
face (cf. Figure 3.11).

Similarly, we surround the graph by a new cycle C ′′ of length 3 such that all edges of
the cycle point right. We furthermore insert an edge from a vertex v ∈ V (C ′′) to a new
vertex w on the reference edge such that the new edge points downwards (cf. Figure 3.11).
But in the resulting representation the reference edge does not lie on the outer face anymore.
Hence, we need a new reference edge and we choose that edge of C ′′ which ends at v. This
does not change the labelings of the essential cycles because any elementary path from the
old reference edge rs can be transformed into an elementary path from the new reference
edge by prepending vws.

Having rectangulated the outer and the central face, we proceed to the regular faces. By
definition a face is a rectangle if and only if it does not have any left turns. Hence, each
left turn must get a new incident edge. We add these edges one after another by first
picking an arbitrary non-rectangular face f and then a suitable left turn at a vertex u on f .
Finally, we add an edge from u to a suitable—possibly new—vertex z of f .

Before we describe how to choose these vertices, we define an augmented ortho-radial
representation, which is obtained from Γ by adding one edge. For a vertex u at a left

25

3. Ortho-Radial Representations

u

wv z

(a) Γu
vw

u w

v

C

x

z

(b) Γu
vw

u

w

v

C ′

x

z

(c) Γu
wx

Figure 3.12: Examples of augmentations. (a) The inserted edge uz points upwards and
Γuvw is valid. (b) The representation Γuvw is not valid, since the insertion of the
new edge introduces a decreasing cycle C. (c) Using the candidate wx instead
gives the valid representation Γuwx. The cycle C ′, which uses the same edges
outside of f as C before, is neither in- nor decreasing.

turn of f and any edge e of f , the augmentation is an ortho-radial representation Γue of
the augmented graph G + uz, where z is a new vertex on e: The augmentation Γue is
obtained from Γ by inserting the edge uz, which points in the same direction as the edge
of f entering u. Examples of such augmentations are shown in Figure 3.12. The new edge
uz lies in the interior of f and splits f in two faces. As the rotation of these new faces
must be 4, one cannot arbitrarily select e.

Observation 3.15. The representation Γuvw satisfies Conditions 1–3 of Definition 3.3 if
and only if rot(f [u, vw]) = 2.

To find a suitable edge, we define candidate edges as the set C of all edges e on f , for which
it is rot(f [u, e]) = 2. According to Observation 3.15 the candidates are exactly those edges
e for which Γue might be valid, and when choosing a candidate we only have to ensure that
no increasing or decreasing cycles exist.

Using the definitions given above, we describe in the following how to insert one edge.
Repeating this process eventually yields a representation, in which all faces are rectangles.
Note that the description below is based on several properties of valid ortho-radial rep-
resentations. For now, we assume them without proof. We justify these assumptions in
Section 3.5.3, where we prove the correctness of the algorithm.

Let f be a regular face that is not a rectangle. As it is rot(f) = 4 in valid ortho-radial
representations, there are 4 more right turns on f than left turns. Hence, there is a left
turn on f at a vertex u such that the two following turns on f are right turns. We then
determine the candidate edges for u. Note that since f makes a left turn at u, there is
exactly one edge e on f entering u. If this edge e points up or down, we pick the first
candidate vw and build the augmentation Γuvw. Figure 3.12(a) illustrates this situation for
uz pointing up. Note that v is the vertex at which f makes the second right turn after u.
Thus, the face of Γuvw including v and w is a rectangle.

If e points left or right, one cannot simply pick the first candidate as this might intro-
duce increasing or decreasing cycles. For example, Γuvw contains a decreasing cycle in
Figure 3.12(b). Therefore, the new vertex z must lie on another edge—in this example one
can choose wx as shown in Figure 3.12(c). Therefore, we consider the candidates in the
order in which they appear on f after u. The following description assumes that e points
right. If e points left, the roles of in- and decreasing cycles must be exchanged.

For a candidate vw we first check whether Γuvw contains a decreasing cycle. If this is the
case, we move on to the next candidate. Otherwise, we additionally check for increasing
cycles in Γuvw. If there are no increasing cycles either, the augmentation Γuvw is valid. In that

26

3.5. Rectangulation

z1z2 u2 u1

Figure 3.13: The face f is shaped such that the edge that shall be inserted from a left turn
must point to the left or to the right. The left turn at u1 is followed by two
right turns and the left turn at u2 is preceded by two right turns.

case we continue with subdividing the next face. However, if Γuvw contains an increasing
cycle, we go back to the candidate v′w′ before vw. One of v and w′ has no incident edge
to its left and we call this vertex z. If there is no edge to the left of both v and w′, it is
v = w′, so z is uniquely determined. We augment Γ by inserting the edge uz such that this
edge points to the right.

Degree-1 vertices are treated as an edge e between two left turns. Note that e may be a
candidate. If we insert an edge to a new vertex on e, e.g., when building the augmentation Γue ,
we use the degree-1 vertex as an endpoint instead.

In the rectangulation algorithm we distinguish between inserting a new edge that points up
or down and inserting an edge that points left or right. In the first case we always choose
the first candidate vw, whereas in the second case more checks are necessary. Therefore,
one might always prefer the first case. However, faces can be shaped such that only the
second case occurs, even if one additionally searches for left turns that are preceded (and
not only followed) by two right turns. For example, the U-shaped face in Figure 3.13 only
admits the insertion of new edges that point left or right.

3.5.2 Preparation

In this section we study some properties of ortho-radial representations, which are used
in the correctness proof in Section 3.5.3. The rectangulation algorithm heavily uses
augmentations of Γ. Such an augmentation Γuvw is obtained from Γ by adding a new
vertex z on vw and the edge uz subdividing a face f . In order to study the properties
of Γuvw, we often restrict ourselves to subgraphs of a certain structure: Namely, we work
with the subgraph H = C + f ′ that consists of an essential cycle C and a regular face f ′ of
Γuvw, where f ′ is one of the two new faces that were created by subdividing f .

f ′
C ′

C

P

Q

ee

a
bb

(a)

f ′
C ′

C

P

Q

ee

b

a

b C ′

(b)

Figure 3.14: The situation in Lemma 3.16. (a) The edge e does not lie on the outer face.
(b) The edge e does not lie no the central face.

27

3. Ortho-Radial Representations

Lemma 3.16. If an edge e belongs to both a simple, essential cycle C and a regular face f ′,
there is a simple essential cycle C ′ not containing e such that C ′ can be decomposed into
two paths P and Q, where P or P lies on f ′ and Q = C ∩ C ′.

Proof. Consider the graph H = C + f ′ composed of the essential cycle C and the regular
face f ′. In H the edge e cannot lie on both the outer and the central face. If e does not lie
on the outer face, we define C ′ as the cycle bounding the outer face but directed such that
it contains the center in its interior (see Figure 3.14(a)). Otherwise, C ′ denotes the cycle
bounding the central face, which is illustrated in Figure 3.14(b).

Since C lies in the exterior of f ′, the intersection of C with C ′ forms one contiguous path Q.
Setting P = C −Q yields a path that lies completely on f ′ (it is possible though that P
and f ′ are directed differently). In Figure 3.14 the paths P and Q are separated by the
vertices a and b.

Using this lemma, we can construct an essential cycle C ′ without the new edge uz from an
essential cycle C including uz. Moreover, C and C ′ have a common path P , which lies on
the central face of H. Hence, the Intersection Lemma implies that the labelings of C and
C ′ are equal on P .

Corollary 3.17. For essential cycles C, C ′ and the path P = C ∩ C ′ from the previous
lemma, it is `C(e) = `C′(e) for all edges e on P .

Another useful observation deals with two intersecting essential cycles, where the labeling
of one cycle is identically 0.

Lemma 3.18. Let C and C ′ be two essential cycles that have at least one common vertex.
If all edges on C ′ are labeled with 0, C is neither increasing nor decreasing.

Proof. The situation is illustrated in Figure 3.15. If the two cycles are equal, the claim
clearly holds. Otherwise, we show that one can find two edges on C such that the labels of
these edges have opposite signs.

Let vw be an edge of C but not of C ′ such that v lies on the central face f̃ of H = C +C ′,
and denote the vertex before v on C ′ by u. By the Intersection Lemma it is

`C(vw) = `C′(uv) + rot(uvw) = rot(uvw). (3.25)

The second equality follows from the assumption `C′(uv) = 0. Let y be the first common
vertex of C and C ′ on the central face f̃ after v. That is, f̃ [v, y] is a part of one of the

y

C ′

C -1xw

v

zu

1

f̃

Figure 3.15: The situation of Lemma 3.18. All edges of C ′ are labeled with 0. In this
situation there are edges on C with labels −1 and 1.

28

3.5. Rectangulation

cycles C and C ′ and intersects the other cycle only at v and y. We denote the vertex on C
before y by x and the vertex after y on C ′ by z. Again by the Intersection Lemma we have

`C(xy) = `C′(yz)− rot(xyz) = − rot(xyz). (3.26)

By construction vw and xy lie on the same side of C ′. Hence, uvw and xyz both make
a right turn if vw and xy lie in the interior of C ′ and a left turn otherwise. Thus, it is
rot(uvw) = rot(xyz) 6= 0, and Equations 3.25 and 3.26 imply that `C(uv) and `C(xy) have
opposite signs. Hence, C is neither in- nor decreasing.

In the following lemma we give a sufficient condition when a candidate exists after a given
edge.

Lemma 3.19. Let f be a regular face of G and u be any vertex on f . If e is an edge
on f such that rot(f [u, e]) ≤ 2, there is a candidate on f [e, u], i.e., an edge e′ such that
rot(f [u, e′]) = 2.

Proof. For each edge e′ on f we determine the value of r(e′) = rot(f [u, e′]). By assumption
it is r(e) ≤ 2. Moreover, for the last edge e′′ on f [e, u] it is r(e′′) = rot(f)− rotf (u) ≥ 3.
Here, we use that f is a regular face (i.e., rot(f) = 4) and the rotation rotf (u) at the
vertex u in f is at most 1.

When going from an edge ei to the next edge ei+1, the value assigned to these edges
increases by at most 1, i.e., r(ei+1) ≤ r(ei) + 1. Therefore, there exists an edge e′ between e
and e′′, i.e., on f [e, u], such that r(e′) = 2.

3.5.3 Correctness of the Rectangulation

In this section we prove that the rectangulation procedure described in Section 3.5.1
produces a valid ortho-radial representation whose faces are all rectangles. The structure
of this section follows the structure of the algorithm.

The algorithm fixes a regular face f and a vertex u on f such that f makes a left turn at u
and the two following turns are right ones. Then, a set of candidate edges is calculated
and two cases are distinguished: Either the edge of f entering u points up or down, or it
points left or right. In the first case, we always choose the first candidate edge vw and
construct Γuvw, which is valid by the following lemma:

u

v z w

f ′

C ′
C

P

Q

Figure 3.16: The situation in Lemma 3.20. The edge uz is inserted such that it points
upwards and z lies on the first candidate vw.

29

3. Ortho-Radial Representations

Lemma 3.20. Let vw be the first candidate edge after u. If the edge on f entering u points
up or down, Γuvw is a valid ortho-radial representation of the augmented graph G+ uz.

Proof. Assume that Γuvw contains a simple increasing or decreasing cycle C. As Γ is valid,
C must contain the new edge uz in either direction (i.e., uz or zu). Let f ′ be the new
rectangular face of G+ uz containing u, v and z, and consider the subgraph H = C + f ′

of G + uz. According to Lemma 3.16 there exists a simple essential cycle C ′ that does
not contain uz. Moreover, C ′ can be decomposed into paths P and Q such that P lies
on f ′ and Q is a part of C (cf. Figure 3.16). The goal is to show that C ′ is increasing or
decreasing. We present a proof only for the case that C is an increasing cycle. The proof
for decreasing cycles can be obtained by flipping all inequalities.

For each edge e on Q the labels `C(e) and `C′(e) are equal by the Intersection Lemma, and
hence it is `C′(e) ≤ 0. For an edge e ∈ P , there are two possible cases: e either lies on the
side of f ′ parallel to uz or on one of the two other sides. In the first case, the label of e is
equal to the label `C(uz) (or to `C(zu) if C contains zu instead of uz). In particular, the
label is negative.

In the second case we first note that `C′(e) is even, since e points left or right. Assume for
the sake of contradiction that `C′(e) was positive and therefore at least 2. Then, let e′ be
the first edge on C ′ after e that points to a different direction. Such an edge exists, since
otherwise C ′ would be an essential cycle whose edges all point to the right but they are
not labeled with 0. This edge e′ lies on Q or is parallel to uz. Hence, the argument above
implies that `C′(e′) ≤ 0. However, `C′(e′) differs from `C′(e) by at most 1, which requires
`C′(e′) ≥ 1. Therefore, `C′(e) cannot be positive.

We conclude that all edges of C ′ have a non-positive label. If all labels were 0, C would not
be an increasing cycle by Lemma 3.18. Thus, there exists an edge on C ′ with a negative
label and C ′ is an increasing cycle in Γ. But as Γ is valid, such a cycle does not exist, and
therefore C does not exist either. Hence, Γuvw is valid.

If the edge entering u points left or right, multiple candidates may be checked. In the
following we assume that the edge entering u points right. Starting with the first candidate
after u we try the candidates in the order in which they appear on f . When considering a
candidate vw, we first check whether Γuvw contains a decreasing cycle. If a decreasing cycle
exists, we move on to the next candidate and repeat this process. This process comes to
an end because there is no decreasing cycle in the augmented graph for the last candidate
edge.

Lemma 3.21. Let vw be the last candidate edge before u. Then, Γuvw contains no decreasing
cycle.

Proof. The face f is split in two parts when uz is inserted. Let f ′ be the face containing v
and f ′′ the one containing w. Assume that there is a simple decreasing cycle C in Γuvw.
Then, either uz or zu lies on C. We use a similar strategy as in the proof of Lemma 3.20
to find a decreasing cycle in Γ, which contradicts that Γ is valid.

Consider the graph H = f ′′ + C composed of the decreasing cycle C and f ′′. Lemma 3.16
shows that there exists an essential cycle C ′ in H that can be decomposed into a path P
on f ′′ and Q = C ∩ C ′ (see Figure 3.17). We show in the following that C ′ is a decreasing
cycle. But all edges of C ′ are already present in Γ, contradicting the assumption that Γ is
valid. For all edges e ∈ E(Q) we have `C(e) = `C′(e) ≥ 0 by Corollary 3.17.

To show that edges on P also have non-negative labels, we assume this was not the case,
i.e., there is an edge xy ∈ P such that `C′(xy) < 0. We present a detailed argument for the

30

3.5. Rectangulation

u

x y c
b

v′

w′

f ′

f ′′

z

a

d

C

C ′
P

Q

Figure 3.17: The situation in the proof of Lemma 3.21. The cycle C is decreasing and it is
assumed that `C′(xy) < 0.

case that C uses uz (and not zu). Then, P is directed such that f ′′ lies to the left of P .
A similar argument applies to the case that C uses zu.

Our goal is to show that there must be a candidate on f after y and in particular after
the last candidate vw. We first assume rot(f [u, yx]) < 3 to derive the contradiction and
prove this bound afterwards. Then, there is a candidate on f [yx, u] by Lemma 3.19. In
particular, this candidate comes after vw, contradicting the assumption that vw is the last
candidate.

Moreover, not all labels of edges on C ′ can be 0, since C would not be decreasing
(cf. Lemma 3.18). Thus, C ′ is a decreasing cycle that consists solely of edges of G.
But as Γ is valid such a cycle cannot exist, showing that Γuvw contains no decreasing cycle
either.

It remains to show the upper bound rot(f [u, yx]) < 3. Let ab and cd be the last and the
first edge of Q, respectively. In order to simplify the descriptions of the paths we use below,
we assume without loss of generality that ab and cd have no common endpoints. This
property does not hold only if Q has at most two edges, in which case we may subdivide
an edge of Q to lengthen Q.

Applying Lemma 3.8 to C[a, d] and C ′[a, d], we get

rot(C[a, d]) = rot(C ′[a, d]). (3.27)

Splitting the paths at uz and xy, respectively, the total rotation does not change (cf. Ob-
servation 2.1).

rot(C[a, d]) = rot(C[a, uz]) + rot(C[uz, d]) (3.28)
rot(C ′[a, d]) = rot(C ′[a, xy]) + rot(C ′[xy, d]) (3.29)

Combining the previous equations gives

rot(C[a, uz]) + rot(C[uz, d])− rot(C ′[a, xy])− rot(C ′[xy, d]) = 0. (3.30)

As C ′[xy, d] = f ′′[xy, c] + cd, we get

rot(C ′[xy, d]) = rot(f ′′[xy, c] + cd) = − rot
(
dc+ f ′′[c, yx]

)
. (3.31)

The last equality follows from the fact that the rotation of the reverse of a path is the
negative rotation of the path (cf. Observation 2.2). Applying Lemma 3.9 to C[uz, d] and
f ′′[uz, c] + cd with C as outer cycle and C ′ as inner cycle, we get

rot(C[uz, d]) = rot(f ′′[uz, c] + cd). (3.32)

31

3. Ortho-Radial Representations

Substituting Equations 3.31 and 3.32 into Equation 3.30 yields

rot(C[a, uz]) + rot(f ′′[uz, c] + cd)− rot(C ′[a, xy]) + rot(dc+ f ′′[c, yx]) = 0. (3.33)

Note that if one joins f ′′[uz, c] + cd and dc+ f ′′[c, yx] together, the resulting path is almost
f ′′[uz, yx] except for the detour via d. Observation 2.3 therefore implies

rot
(
f ′′[uz, c] + cd

)
+ rot

(
dc+ f ′′[c, yx]

)
= rot(f ′′[u, yx])− 2. (3.34)

Substituting this equality into Equation 3.33 results after rearranging in

rot(f ′′[u, yx]) = 2 + rot(C ′[a, xy])− rot(C[a, uz]). (3.35)

By Observation 3.6 the rotations on an essential cycle can be expressed as the difference of
labels. Here, we have rot(C ′[a, xy]) = `C′(xy)−`C′(ab) and rot(C[a, uz]) = `C(uz)−`C(ab).
Additionally ab lies on Q, and therefore it is `C(ab) = `C′(ab). Hence, it is

rot(f ′′[u, yx]) = 2 + `C′(xy)− `C′(ab)− `C(uz) + `C(ab)
= 2 + `C′(xy)− `C(uz)
< 2. (3.36)

Here, the last inequality follows from the assumptions `C′(xy) < 0 and `C(uz) ≥ 0. By the
construction of Γuvw the rotations of f [u, yx] and f ′′[u, yx] differ by exactly 1:

rot f [u, yx] = rot f ′′[u, yx] + 1 < 3 (3.37)

Above, we assumed that C uses uz in that direction. If zu lies on C, a similar argument
shows that C ′ would also be a decreasing cycle, contradicting that assumption that Γ is
valid.

If a candidate vw was found such that there is no decreasing cycle in Γuvw, we additionally
check for increasing cycles. If also no increasing cycle is found, we permanently insert the
edge and continue the augmentation process with Γuvw. As Γuvw has neither increasing nor
decreasing cycles, it satisfies Condition 4 of Definition 3.3. Together with Observation 3.15
this shows that Γuvw is valid.

If Γuvw contains an increasing cycle, we prove in the following that there exists a vertex z on
f between the previous and the current candidate such that the insertion of uz completes
a cycle whose edges only point to the right. As a first step towards this result, we show
that the previous candidate exists, i.e., the current candidate is not the first one.

Lemma 3.22. Let u be a vertex on f at which f has a left turn, and let vw be the first
candidate edge. If vw points down, Γuvw does not contain any increasing cycles.

Proof. Let f ′ be the new rectangular face of Γuvw containing u, v and z, and assume that
there is an increasing cycle C in Γuvw. This cycle must use either uz or zu. Similar to the
proof of Lemma 3.20, we find an increasing cycle C ′ in Γ, contradicting the validity of Γ.

To this end, we construct the graph H as the union of C and f ′. By Lemma 3.16, there
exists a simple essential cycle C ′ without uz and zu that can be decomposed into a path P
on f ′ and a path Q ⊆ C \ f ′. All edges of Q have non-positive labels by the Intersection
Lemma. We show in the following that the edges of P also have non-positive labels.

If C contains uz, there are three possibilities for an edge e of P , which are illustrated
in Figure 3.18: The edge e lies on the left side of f ′ and points up, e is parallel to uz,

32

3.5. Rectangulation

v

z

w
u

e1

e2

f ′

C ′

C

Figure 3.18: Situation of Lemma 3.22: The increasing cycle C contains uz. There are three
possibilities for edges on C ′ that lie not on C: They lie on the left side of f ′
(like e1), on the top (like e2), or on the right side, which is formed by vz.

or e = vz. In the first case it is `C′(e) = `C(uz) − 1 < 0 and in the second case it is
`C′(e) = `C(uz) ≤ 0. If e = vz, C cannot contain zv and therefore we have zw ∈ E(C)
and `C′(e) = `C(zw) < 0. In all three cases the label of e is at most 0.

If C contains zu, the label of zu has to leave a remainder of 2 when it is divided by 4, since
zu points to the right. As the label is also at most 0, we conclude `C(zu) ≤ −2. The edges
of P lie either on the left, top or right of f ′. Therefore, the label of any edge e on P differs
by at most 1 from `C(zu), and thus we get `C′(e) ≤ 0.

Summarizing the results above, we see that all edges on C ′ are labeled with non-positive
numbers. The case that all labels of C ′ are equal to 0 can be excluded, since C would
not be an increasing cycles by Lemma 3.18. Hence, C ′ is an increasing cycle, which was
already present in Γ, contradicting the validity of Γ. Thus, no such increasing cycle C
in Γuvw exists.

Having ensured that the previous candidate exists, we show in the following that we always
find a vertex z on f between the previous and the current candidate and a path P from z
to u whose edges point right. In other words, the insertion of uz completes the cycle P +uz,
whose edges all point to the right.

Lemma 3.23. Let vw and v′w′ be two candidate edges such that no candidate is between
them, i.e., the path Q on f between these candidates does not contain any candidate edge.
Furthermore, assume that Γuvw contains a decreasing cycle and Γuv′w′ an increasing cycle.
Then, there is a path P in G containing w, v′ and u such that the edges point to the right.
More precisely, P starts at w or v′ and ends at u, and either Q or Q forms the first part
of P . Moreover, the start vertex of P has no incident edge to its left.

Proof. Let z be the new vertex inserted in Γuvw and z′ the one in Γuv′w′ . Since both uz and
uz′ point to the right, there is no augmentation of Γ containing both edges. We need to
compare Γuvw and Γuv′w′ though. Therefore, we use the following construction, which models
all important aspects of both representations: Starting from Γ we insert new vertices z
on vw and z′ on v′w′. We connect u and z by a path of length 2 that points to the right
and denote its internal vertex by x. Furthermore, a path of length 2 from x via a new
vertex y to z′ is added. The edge xy points down and yz′ to the right. This construction
is depicted in Figure 3.19. In the resulting ortho-radial representation Γ̃ the edge uz is
modeled by the path uxz and uz′ by uxyz′.

Take any simple decreasing cycle in Γuvw. As Γ is valid, this cycle must contain either uz
or zu. We obtain a cycle C in Γ̃ by replacing uz with uxz (or zu with zxu). Note that ux

33

3. Ortho-Radial Representations

z

z′

x

y

u

v

w

w′

v′

Figure 3.19: The structure that is used to simulate the insertion of both uz and uz′ at the
same time. The edge uz is replaced by the path uxz and uz′ by uxyz′.

u
w = v′

v

w′

(a)

u w

v

w′

v′Q

(b)

u
v′

v

w′

w
Q

(c)

Figure 3.20: There are three possibilities how the path between w and v′ can look like:
(a) w = v′, (b) all edges point right, and (c) all edges point left. In the first
two cases the edge uw is inserted and in (c) uv′ is added.

and xz have the same label as uz, and the labels of all other edges on the cycles stay the
same. Therefore, C is a decreasing cycle.

Similarly, there exists a simple increasing cycle in Γuv′w′ , which contains uz′ or z′u. Replacing
uz′ with uxyz′ (or z′u with z′yxu) we get a cycle C ′ in Γ̃. Note that C ′ might not be an
increasing cycle as `C(xy) might be positive. But the labels of all other edges are at most 0
and there exists an edge with a negative label. In other words, outside of f the cycle C ′
behaves exactly like an increasing cycle.

For now, we assume that the original cycles use uz and uz′ in these directions. At the end
of the proof we shall see that this is in fact the only possibility. The proof is structured as
follows: First, we show `C(ux) = `C′(ux) = 0. This also determines the labels of C and
C ′ in the interior of f . In a second step, we find that at least one of the vertices w and
v′ has no incident edge to the left and the other vertex lies on both C and C ′. Note that
w = v′ is possible. In this case, w = v′ has all the mentioned properties. Moreover, we
prove that the path Q on f between w and v′ (of length 0 if w = v′) is straight and can be
used as the first part of the desired path P . From this information we infer that there are
three possibilities as shown in Figure 3.20: Either it is w = v′, all edges on f between w
and v′ point right, or they all point left. Finally, we show that outside of f , the cycles C
and C ′ are equal. In particular, all their edges point to the right and we can use them as
the second part of the desired path P .

To show `C(ux) = `C′(ux), we consider the graph H = C + C ′ formed by the two cycles
C and C ′ and denote its central face by f̃ . By the Intersection Lemma it suffices to
show that ux lies on f̃ . Assume for the sake of contradiction that this was not the case.
Then, xy, xz and yz′ do not lie on f̃ either. Hence, f̃ is formed completely by edges in
E(C[z, u]) ∪ E(C ′[z′, u]). As C and C ′ were constructed by subdividing edges of simple
cycles, they are simple themselves. Therefore, the edges of f̃ do not all belong to the same

34

3.5. Rectangulation

z

z′

x

y

u

f̃

a

b a′

C

C ′

Figure 3.21: The hypothetical situation that ux does not lie on the central face f̃ . The
edge ab lies on both f̃ and C but not on C ′ and a′b is the edge on C ′ that
ends at b.

z
x

u

w

v

C

t

w′
z′
v′

(a)

z
x

u

t
w

v

C

(b)

Figure 3.22: The face f makes a left turn at w. (a) The path C[w, t] makes a right turn
at v′. But then C[z′, u] + uz′ would be a decreasing cycle in Γuv′w′ . (b) The
path C[w, t] is straight and it is t = v′.

cycle. Hence, there is an edge ab on f̃ such that b lies on both C and C ′ but ab only
belongs to C and not to C ′ (cf. Figure 3.21). Since C is a decreasing cycle, it is `C(ab) ≥ 0.

Moreover, let a′ be the vertex before b on C ′. Since C ′ is almost an increasing cycle, we
get `C′(a′b) ≤ 0 unless it was a′b = xy. But this is impossible since y does not lie on f̃ .
Lemma 3.12 therefore implies that a′b lies in the interior of C. But then ab would not lie
on f̃ , contradicting the choice of ab. Thus, ux is part of f̃ .

Hence, the Intersection Lemma applies to ux and we obtain

0 ≤ `C(ux) = `C′(ux) ≤ 0.

Thus, we have `C(ux) = `C′(ux) = 0 and therefore also `C(xz) = `C′(yz′) = 0. Hence, C
contains zw, because otherwise zv would be labeled with −1. Similarly, we see that z′v′
lies on C ′.

As a next step we prove that one of v′ and w has no incident edge to its left and the other
vertex lies on both C and C ′. This is the case if v′ = w, since any subgraph to the left of
this vertex would contain a candidate. Remember that we treat degree-1 vertices as two
left turns with an edge in between and this edge can be a candidate. Therefore, even in
the extreme case, where the subgraph to the left of v′ = w is just one path that points left,
we find a candidate—namely the leftmost endpoint of the path.

35

3. Ortho-Radial Representations

z′

x
u

t

C ′

y
w′

v′

v

w

Figure 3.23: If f makes a right turn at w, it makes a left turn at v′. The longest common
path C ′[v′, t] on C ′ and f contains w and all its edges point to the right.

If w 6= v′, f makes either a left or a right turn at w. If f makes a left turn at w, C makes a
left turn there as well. Let t be the vertex at which C leaves f after w. In other words, t is
the last vertex of C such that C[w, t] lies on f . This situation is illustrated in Figure 3.22.

We show that C[w, t] contains v′ and that all edges of C[w, v′] point to the right. If C[w, t]
makes turns, the first turn cannot be a left turn, since the edge following the turn would lie
on C and be labeled with −1. If the first turn is a right turn, the edge following the turn is
the candidate v′w′. But then Γuv′w′ would contain the decreasing cycle C[z′, u] + uz′, which
contradicts the choice of v′w′ (cf. Figure 3.22(a)). Hence, it remains the case in which
C[w, t] is straight, which is illustrated in Figure 3.22(b). The edge following t on C must
point right. Therefore, f makes a right turn at t implying t = v′. In all possible cases, v′
lies on both C and C ′ and the path Q = C[w, v′] is straight and points to the right. Note
that there is no edge incident to the start vertex w of Q, since f makes a left turn at w.

If f makes a right turn at w, we consider the edge wa ∈ E(f) following this turn.

rot(f [u,wa]) = rot(f [u, vw]) + rot(vwa) = 2 + 1 = 3

Since v′w′ is a candidate, it is rot(f [u, v′w′]) = 2. When walking along f the rotation
changes by at most 1 per step, when degree-1 vertices are treated as two steps. Hence,
it is rot(f [u, e]) ≥ 3 for all edges e between vw and v′w′ and f makes a left turn at v′.
Otherwise, there would be another candidate in between.

As C ′ enters v′ on the edge z′v′ from below, C ′ must leave v′ to the right. Thus, there
is a part of C ′ starting at v′ that lies on f . Let t be the last vertex on C ′ such that
C[v′, t] = f [v′, t], which is illustrated in Figure 3.23. Similar to the case above, we analyze
the first turn of C ′[v′, t] if it exists, and show that w lies on this path. Moreover, we shall
see that all edges of this path point to the right. Because C ′ is an increasing cycle and
the first edge of C ′[v′, t] is labeled with 0, the first turn cannot be a right turn. If it is a
left turn, the left turn must occur at w. Note that in this case Γuvw contains an increasing
cycle. We shall see that this situation actually cannot occur, but we cannot exclude this
possibility yet. If C ′[v′, t] makes no turns, the edge on C ′ after t also points to the right
and the edge on f incident to t is the candidate vw. Hence, the path Q = C ′[v′, w] points
completely to the right. Furthermore, there is no edge incident to the left of v′ because f
makes a left turn at v′.

In all cases we found a (possibly empty) path Q from v′ to w or vice versa, whose edges
point to the right. Moreover, the endpoint t of this path lies on both C and C ′. The
path Q is the initial part of the desired path P . To construct the remaining part of P , we
prove in the following that it is C[t, u] = C ′[t, u]. Moreover, we show that all edges on this
path point to the right.

Assume for the sake of contradiction that it was C[t, u] 6= C ′[t, u]. Let ab be the last edge
of C[t, u] that does not lie on C ′ and let a′b be the edge of C ′ entering b. By Lemma 3.12

36

3.5. Rectangulation

the edge a′b lies in the interior of C. But then consider the last common vertex c of C and
C ′ before b. We denote the edges of C and C ′ starting at c by cd and cd′, respectively. As
a′b lies in the interior of C, so does cd′. But according to Lemma 3.12 the edge cd′ lies in
the exterior of C, a contradiction. Thus, all edges of C[t, u] lie on C ′[t, u] as well. Since
these are both paths from t to u, this means that they are equal. To shorten the notation,
we refer to C[t, u] as R.

Since `C(ux) = `C′(ux), it is `C(e) = `C′(e) for all edges e on R. Moreover, as C is a
decreasing and C ′ an (almost) increasing cycle, these labels are 0. In particular, all edges
on R point to the right.

Thus, P = Q+R is a path containing both v′ and w and ends at u, such that all edges
of P point to the right, which concludes the proof for the case when both C and C ′ use
the edge ux in this direction.

It remains to show that neither C nor C ′ can contain xu. By an argument similar to the
one above, we know that xu lies on the boundary of the central face f̃ of H = C + C ′.
Since C and C ′ contain f̃ in their interiors, any edge e on one of them incident to f̃ is
directed such that f̃ lies locally to the right of e. If C and C ′ used ux in different directions,
this implies that f̃ lies locally to the right of both ux and xu, which is impossible.

Hence, if xu lies on one cycle, it lies on the other one, too. In this case, it is `C(xu) =
`C′(xu) = 0. But xu points to the left and therefore its label must leave a remainder of 2
when divided by 4. Thus, the assumption that both C and C ′ contain ux is justified as
none of the other cases can occur.

There are three possible ways how the vertices w and v′ can be arranged on P (cf. Fig-
ure 3.20): Either w = v′, w comes before v′, or v′ comes before w. In any case we denote
the start vertex of P by z. According to the lemma above, no edge is incident to the left
of z. Hence, the insertion of the edge uz such that it points right gives a new ortho-radial
representation Γ′, which is valid by the following lemma.

Lemma 3.24. Let Γ′ be the ortho-radial representation that is obtained from Γ by adding
the edge uz pointing to the right. Then, Γ′ is valid.

Proof. By construction, Γ′ satisfies Conditions 1–3 of Definition 3.3.

Let C ′ = P + uz be the new cycle whose edges point right. It is `C′(e) = 0 for each edge e
of C ′. No essential cycles without uz or zu is increasing or decreasing, since they are
already present in the valid representation Γ. If an essential cycle C contains uz or zu and
in particular the vertex u, Lemma 3.18 states that C is neither increasing nor decreasing.
Thus, Γ′ also satisfies Condition 4 and is therefore valid.

Putting all results of this section together we see that the rectangulation algorithm presented
in Section 3.5.1 works correctly. That is, given a valid ortho-radial representation Γ, the
algorithm produces another valid ortho-radial representation Γ′ such that all faces of Γ′
are rectangles and Γ is contained in Γ′. Combining this result with the characterization for
rectangular graphs (Corollary 3.14) we get one implication of Theorem 3.5:

Theorem 3.25. Let Γ be a valid ortho-radial representation of a graph G. Then, there is
a drawing of G respecting Γ.

This theorem shows one implication of the characterization of ortho-radial drawings by
valid ortho-radial representations presented in Theorem 3.5. The other implication is
proved by the following theorem:

37

3. Ortho-Radial Representations

e∗

(a)

u

u′

z′

z

(b)

Figure 3.24: (a) The result of the geometric rectangulation of an ortho-radial graph drawing.
The edges of the original graph are drawn in solid black and the edges inserted
during the rectangulation in dashed blue. The reference edge e∗ is chosen as
an edge on the outermost circle. (b) The rectangulation of a face. The edges
uz and u′z′ are added to divide the face into rectangles.

Theorem 3.26. For any drawing ∆ of a 4-planar graph G there is a valid ortho-radial
representation of G.

Proof. We first note that any drawing ∆ fixes an ortho-radial representation up to the
choice of the reference edge. Let Γ be such an ortho-radial representation where we pick
an edge e∗ on the outer face as the reference edge such that e∗ points to the right and
lies on the outermost circle that is used by ∆ (as in Figure 3.24(a)). By [HHT09] the
representation Γ satisfies Conditions 1–3 of Definition 3.3. To prove that Γ also satisfies
Condition 4, i.e., Γ does not contain any increasing or decreasing cycles, we show how
to reduce the general case to the more restricted one, where all faces are rectangles. By
Corollary 3.14 the existence of a drawing and the validity of the ortho-radial representation
are equivalent for rectangular graphs.

Given the drawing ∆ we augment it such that all faces are rectangles. This rectangulation
is similar to the one described in Section 3.5.1 but works with a drawing and not with a
representation. We first insert the missing parts of the innermost and outermost circle that
are used by ∆ such that the outer and the central face are already rectangles. For each left
turn on a face f at a vertex u, we then cast a ray from v in f in the direction in which the
incoming edge of u points (cf. Figure 3.24(b)). This ray intersects another edge in ∆. Say
the first intersection occurs at the point p. Either there already is a vertex z drawn at p or
p lies on an edge. In the latter case, we insert a new vertex, which we call z, at p. We then
insert the edge uz in G and update ∆ and Γ accordingly.

Repeating this step for all left turns we obtain a drawing ∆′ and an ortho-radial represen-
tation Γ′ of the augmented graph G′ (see Figure 3.24(a) for an example of ∆′). As the
labelings of essential cycles are unchanged by the addition of edges elsewhere in the graph,
any increasing or decreasing cycle in Γ would also appear in Γ′. But by Corollary 3.14
the representation Γ′ is valid, and hence neither Γ nor Γ′ contain increasing or decreasing
cycles. Thus, Γ satisfies Condition 4 and is valid.

38

4. Complexity of Ortho-Radial
Embeddability

Garg and Tamassia [GT95] showed that it is NP-complete to decide whether a 4-planar
graph admits an orthogonal drawing without any edge bends (Othogonal Embeddabil-
ity). In this chapter, we study the analogous problem for ortho-radial drawings and prove
that it is NP-complete as well. We say a graph G admits an ortho-radial (or orthogonal)
embedding if there is an embedding of G such that G can be drawn ortho-radially (or
orthogonally) without bends.

Definition 4.1 (Ortho-Radial Embeddability). Does a 4-planar graph G admit an
ortho-radial embedding?

To show that Ortho-Radial Embeddability is NP-hard, we reduce Planar Mono-
tone 3-SAT, which was shown to be NP-hard by de Berg and Khosravi [dBK12], to
Ortho-Radial Embeddability.

Definition 4.2 (Planar Monotone 3-SAT). Given a Boolean formula Φ in conjunctive
normal form such that each clause contains exactly three literals, which are either all
positive or all negative and a planar representation of its variable-clause-graph in which
the variables are placed on one line, the clauses with only positive literals above that line
and the clauses with only negative literals below this line, is Φ satisfiable?

To reduce from Planar Monotone 3-SAT to Ortho-Radial Embeddability we first
construct an equivalent instance G of Orthogonal Embeddability as described by
Bläsius et al. [BBR14]. We then build a structure around G yielding a graph G′ such that
in any ortho-radial representation of G′ the representation Γ of G does not contain any
essential cycles. In other words, Γ is actually an orthogonal representation of G. Hence, an
ortho-radial embedding of G′ can only exist if G admits an orthogonal embedding. We
may assume without loss of generality that G is connected, as otherwise, we handle each
component separately.

The construction of G′ from G is based on the fact that there is only one way to ortho-
radially draw a triangle C, i.e., a cycle of length 3, without bends: as an essential cycle
on one circle of the grid. We build a graph H consisting of three triangles called C1, C2
and C3 and denote the vertices on Ci by ui, vi and wi. Furthermore, H contains the edges
u1u2 and u2u3. In Figure 4.1 the black edges belong to H.

39

4. Complexity of Ortho-Radial Embeddability

P

G

C1

C2

C3

z

u3

u1

u2

v1

w2
w3

v2
v3

w1

(a)

P

G

C1

C2

C3

z

u3

u1

u2

v1
w2

w3

v2

v3

w1

(b)

Figure 4.1: Possible embeddings of G′: (a) G lies between C1 and C2. (b) G lies between
C2 and C3. In both cases G contains no essential cycles. The roles of C1 and
C3 can be exchanged.

To connect H and G, we identify a vertex z in G, called the port of G such that either
there is an orthogonal embedding of G with z on the outer face and the angle at z in the
outer face is at least 180◦ or G does not admit an orthogonal embedding. We shall see
later how such a vertex can be identified in polynomial time. We connect z and v2 by a
path P whose length is equal to the number of edges in G and denote the resulting graph
by G′ (cf. Figure 4.1).

Lemma 4.3. The graph G′ admits an ortho-radial embedding if and only if G admits an
orthogonal embedding with the port z on the outer face such that the angle at z in the outer
face is at least 180◦.

Proof. Let Γ′ be a valid ortho-radial representation of G′ without edge bends. In Γ′ all three
cycles C1, C2 and C3 are essential cycles. Hence, C2 lies between C1 and C3. Furthermore,
G either lies inside the area enclosed by C1, C2 and u1u2 (as in Figure 4.1(a)), or in the
area enclosed by C2, C3 and u2u3 (as in Figure 4.1(b)). Therefore, G cannot contain
any essential cycles. Hence, the ortho-radial representation of G can be interpreted as an
orthogonal representation, and thus, G admits an orthogonal embedding. Since P ends
at the port z and intersects G only at z, the angle at z in the outer face of G must be at
least 180◦.

Let Γ be an orthogonal representation of G without bends such that z lies on the outer
face and the angle at z in the outer face is at least 180◦. We interpret Γ as an ortho-radial
representation of G and extend it to a representation of G′ as follows: We embed H such
that C1 lies in the interior of C2, which in turn lies in C3. We place G between C1 and C2
as shown in Figure 4.1(a). Since Γ has no bends, the path P connecting G and H needs to
make at most as many turns as there are edges incident to the outer face of G. As the
length of P is equal to the number of edges of G, we can place P such that all turns occur
at vertices, i.e., P contains no edge bends. Moreover, P can be placed completely in the
exterior of G because the angle at the port z has at least 180◦.

The construction of G′ relies on the fact that we find a vertex z in G such that placing z on
the outer face of G does not restrict the possible embeddings too much. In order to show

40

x1 x2 x3 x4

¬x1 ¬x2 ¬x3 ¬x4

c3 = ¬x2 ∨ ¬x3 ∨ ¬x4

c2 = x1 ∨ x2 ∨ x3

c1 = x1 ∨ x3 ∨ x4

(a)

x4x1 x2 x3

c2

c1

c3

(b)

Figure 4.2: (a) An instance Φ of Planar Monotone 3-SAT. (b) A schematic drawing of
the graph G constructed from Φ. The orange-shaded parts correspond to the
clauses and the red-shaded ones to the variables. The dashed blue lines refer to
edges with exactly one bend.

how z can be chosen, we present some details of the reduction from Planar Monotone
3-SAT to Orthogonal Embeddability by Bläsius et al. [BBR14].

The idea behind the reduction is to rebuild the variable-clause graph of Φ and represent
the truth values by edge bends. Figure 4.2 provides an example of this construction.
Bläsius et al. introduce edges that must have exactly one bend (1-edges) and represent
true and false as bends in different directions. In our figures, 1-edges are drawn as dashed
blue lines (e.g., in Figure 4.2(b)). However, instances of Orthogonal Embeddability
cannot contain 1-edges and the gadget shown in Figure 4.3(c) is used instead. Flipping the
embedding of this gadget changes the direction of the bend.

We choose the port z on a part of G that corresponds to one of the outermost clauses (e.g.,
on c1 or c3 in Figure 4.2). The gadget they use to represent clauses, is shown in Figure 4.3(a).
Note that the boxes are not vertices but occurrences of the graph in Figure 4.3(b). Consider
the gadget for one of the outermost clauses in the variable-clause graph. We choose any
degree-2 vertex of the box in the corner as out port z (cf. Figure 4.3(a)). By the following
lemma this vertex has the desired properties.

Lemma 4.4. Let z be the port of G as selected above. Then, exactly one of the following
is true:

1. There is an orthogonal embedding of G in which z lies on the outer face and the angle
at z in the outer face has at least 180◦.

2. The graph G does not admit any orthogonal embedding.

Proof. If G admits an orthogonal embedding, then Φ is satisfiable [BBR14]. But then, G
can be embedded like the variable-clause graph of Φ. In particular, z lies on the outermost
clause gadget. By the choice of z this implies that z also lies on the outer face of the whole
graph G. Moreover, the angles in the drawing can be chosen such that the angle at z in
the outer face has at least 180◦.

Finding such a vertex z was the missing piece in the reduction from Planar Monotone
3-SAT to Orthogonal Embeddability.

41

4. Complexity of Ortho-Radial Embeddability

z

(a)

≡

(b)

≡

(c)

Figure 4.3: (a) The clause gadget. The dashed blue edges must have exactly one bend. The
dotted edges indicate where the clause gadget is connected to the remainder
of G. (b) The subgraph each box stands for. (c) The gadget that represents
edges that must have exactly one bend. By flipping the embedding one can
achieve both bends to the left and to the right.

Theorem 4.5. Ortho-Radial Embeddability is NP-complete.

Proof. Clearly, Ortho-Radial Embeddability lies in NP.

The construction presented above first transforms an instance Φ of Planar Monotone
3-SAT to an instance G of Orthogonal Embeddability and then to an instance G′ of
Ortho-Radial Embeddability. By Lemma 4.3 the graph G′ admits an ortho-radial
embedding if and only if G admits an orthogonal embedding with z on the outer face.
According to Lemma 4.4 this is in turn equivalent to the existence of an orthogonal
embedding of G without requiring z to lie on the outer face. Bläsius et al. [BBR14] prove
that G admits an orthogonal embedding if and only if Φ is satisfiable. In total, this implies
that Φ and G′ are equivalent. Furthermore, the reduction runs in polynomial time. As
Planar Monotone 3-SAT is NP-hard [dBK12], Ortho-Radial Embeddability is
NP-hard as well.

One might wonder why we do not directly reduce Orthogonal Embeddability to
Ortho-Radial Embeddability but instead start from Planar Monotone 3-SAT.
This is due to the fact that we need to connect the triangles to a vertex of the instance G
of Orthogonal Embeddability. Therefore, we must find a vertex z on G that can
lie on the outer face. That is, if G admits an orthogonal drawing, there is an orthogonal
drawing of G such that z lies on the outer face. We cannot identify such a vertex easily
on arbitrary instances. For instances created by the reduction from Planar Monotone
3-SAT, however, we can exploit the structure to find a suitable vertex.

42

5. Drawing Cactus Graphs with the
Minimum Number of Bends

As we have seen in the previous chapter, it is NP-complete to decide whether an arbitrary
4-planar graph can be drawn ortho-radially without bends when one is allowed to choose
the embedding. In particular, minimizing the number of bends in an ortho-radial drawing
is hard. But if one restricts oneself to certain graph classes, there are polynomial time
algorithms that minimize the number of bends. For instance, any tree can be drawn
orthogonally—and therefore also ortho-radially—without any bends.

In this chapter we present a linear time algorithm that solves the bend minimization
problem for cactus graphs with maximum degree 4. A connected graph is a cactus graph
if and only if no pair of vertices lies on more than one simple cycle. In other words, two
simple cycles in a cactus graph share at most one vertex. These properties ensure that no
vertex with degree at most 4 lies on more than two simple cycles.

Observation 5.1. In a cactus graph with maximum degree 4 no three cycles share a
common vertex.

We first describe how the structure of cactus graphs can be captured in a tree—the so
called cycle tree. In Section 5.2 we present the Cycle Drawing Algorithm, which draws
individual cycles ortho-radially with the minimum number of bends. We then show how
these cycles can be combined when it is given which cycle may be drawn as essential cycles
and which only as non-essential cycles (cf. Section 5.3). Finally, we present a dynamic
program to decide which cycles shall be drawn as essential cycles in Section 5.4.

5.1 The Cycle Tree
Clearly, each tree is a cactus graph. But even the structures of general cactus graphs are
quite similar to trees. We formalize this resemblance by the following construction: Given
a cactus graph G with maximum degree 4, let C = {C1, . . . , Ck} be the set of all simple
cycles in G. In the cycle tree each simple cycle Ci ∈ C is represented by a cycle vertex ci.
Each vertex of G that is not part of any simple cycle also belongs to the cycle tree as a
regular vertex. The cycle tree is an undirected graph T = (VT , ET), where VT is the set
of cycle and regular vertices; see Figure 5.1 for an example of a cycle tree. There is an
edge between two different vertices a and b of T if and only if at least one of the following
conditions holds:

43

5. Drawing Cactus Graphs with the Minimum Number of Bends

c2

c5

c3

v1
v2

c1

v3

v4

v6

c4
v5

Figure 5.1: The cycle tree of a cactus graph G. The original graph is drawn in gray. Here,
the regular vertices are v1, . . . , v4 and the cycle vertices are c1, . . . , c5. The
correspondences of edges in the cycle tree and edges and vertices of G are
indicated by red dashed lines.

1. Both a and b are regular vertices and they are adjacent in G (e.g., v1v2 in Figure 5.1).

2. Exactly one of a and b is a cycle vertex for a cycle C and the other vertex is adjacent
to a vertex of C in G (e.g., c1v3, c1v4 and c2v2 in Figure 5.1).

3. Both a and b are cycle vertices for cycles C and C ′, resepectively, and there is an
edge e in G between a vertex of C and one of C ′ that does not belong to any cycle
of G (e.g., c1c2 and c2c3 in Figure 5.1).

4. Both a and b are cycle vertices for cycles C and C ′ and these cycles have a common
vertex (e.g., c2c5 and c3c4 in Figure 5.1).

Note that if any of the Conditions 1–3 holds for an edge e ∈ E(T), there is exactly one
edge e′ ∈ E(G) of the original graph G that induces e. We say that e′ is the original edge
corresponding to e. These correspondences are indicated by dashed red lines in Figure 5.1.
If Condition 4 holds for an edge e (e.g., c3c4 in Figure 5.1), there is no such corresponding
original edge and we call e a virtual edge. There is however a vertex v ∈ V (G) that lies on
both cycles represented by the endpoints of e and we call v the original vertex corresponding
to e. For instance, in Figure 5.1 the vertex v5 corresponds to the virtual edge c3c4.

Lemma 5.2. The cycle tree of a connected cactus graph with a maximum degree of at
most 4 is a tree.

c2

a b

c3c1 C

(a)

C ′C1

C2

C3

a b

wv

(b)

A′ B′

C ′

v

(c)

A′ B′

C ′

e

(d)

Figure 5.2: Illustrations for the proof of Lemma 5.2. (a) A hypothetic cycle C in the cycle
tree. (b) The cycle C ′ in the graph G constructed from C. (c) The edge a′b′
between the cycle vertices of A′ and B′ is virtual and corresponds to v. (d) The
edge a′b′ is not virtual and corresponds to the edge e ∈ E(G).

44

5.1. The Cycle Tree

C C ′

P2

P1

Q

P
v

w

Figure 5.3: Situation of Lemma 5.3. The path P intersects the cycle C twice. The paths
P [v, w] and Q together form another cycle C ′.

Proof. Let T be the cycle tree of a 4-planar cactus graph G and assume for the sake
of contradiction that there is a simple cycle C in T . To derive a contradiction, we first
construct a cycle in G by replacing all cycle vertices on C with paths as follows: Let
b ∈ V (C) be a cycle vertex for a cycle B and consider the edges ab and bc on C that are
incident to b. If these edges are non-virtual, they correspond to edges of G, which end at
vertices of B. If they are virtual, they directly correspond to vertices of B. In any case,
they determine two (possibly equal) vertices v and w of B. In Figure 5.2(b) these vertices
are shown for C2. We arbitrarily choose a path on B from v to w and replace b with that
path. After replacing all cycle vertices in this fashion, we obtain a simple cycle C ′ in G as
shown in Figure 5.2(b).

Since regular vertices do not lie on simple cycles of G by definition, there cannot be any
regular vertices on C ′. Therefore, all vertices of C are cycle vertices. Since C is simple and
has at least length 3, we can choose an edge a′b′ ∈ E(C) such that neither a′ nor b′ are cycle
vertices for C ′. Let A′ and B′ be the cycles represented by a′ and b′, respectively. If a′b′ is
virtual, there is a common vertex v on both A′ and B′ as illustrated in Figure 5.2(c). By
construction of C ′ this vertex v must also lie on C ′. As A′, B′ and C ′ are three distinct
simple cycles and any two cycle have at most one vertex in common, v must have a degree
of at least 6—two edges per cycle—contradicting the maximum degree of 4.

Hence, a′b′ is not virtual and corresponds to an edge e of G (cf. Figure 5.2(d)). By con-
struction, this edge lies on C ′, and therefore, it does not induce the edge a′b′, contradicting
the correspondence between a′b′ and e. In this situation the cycle tree would only contain
the edge a′c′ and b′c′ but not the edge a′b′. Thus, the assumption that there is a simple
cycle in T is false. As G is connected and the construction of T preserves this connectivity,
we conclude that T is a tree.

The following lemma investigates the relationship between paths and simple cycles of G
that will allow us to define a projection of paths from G to T .

Lemma 5.3. Fix a simple cycle C in a cactus graph G. For any path P in G the
intersection P ∩ C forms a subpath of P (or is empty).

Proof. Assume for the sake of contradiction that C ∩ P is not one path. Then C ∩ P
contains (at least) two paths P1 and P2. We may assume without loss of generality that
P1 occurs before P2 on P and no vertex of P between these paths lies on C. Let v be the
last vertex of P1 and w be the first vertex of P2 (cf. Figure 5.3). By construction the path
P [v, w] intersects C only at v and w. As both v and w lie on C, there is a path Q on C
from w to v. Joining P [v, w] and Q together yields a simple cycle C ′. The intersection of
C and C ′ contains at least two vertices—namely v and w—but C 6= C ′ since C ′ contains
P [v, w], which does not belong to C. This contradicts the properties of cactus graphs, and
thus, C ∩ P must be one path.

45

5. Drawing Cactus Graphs with the Minimum Number of Bends

v1
v2

v3

v4

C1

C2

C3

C4

C5P

(a)

c2

c5

c3

v1
v2

c1

v3

v4

c4

ϕ(P)

(b)

Figure 5.4: (a) A path P in the cactus graph G. (b) Its projection ϕ(P) to the cycle tree T .
The projection does not contain c4 and c5 although P contains vertices of C4
and C5, since P ∩ C4 and P ∩ C5 are part of longer subpaths of P on C3 and
C2, respectively.

For any path P = v1 . . . vk in G with k ≥ 2 vertices we define its projection ϕ(P) to T by
replacing subpaths on one cycle of G by the corresponding cycle vertex. More precisely,
the projection is constructed as follows: For each simple cycle C ∈ C the intersection
P ∩ C is one contiguous path or empty (cf. Lemma 5.3). Consider the set of all such
non-empty paths P ∩C and let Pcycle be this set after removing all paths that are a proper
subpath of another path in this set. For instance, for the path in Figure 5.4 we have
Pcycle = {P ∩ C1, P ∩ C2, P ∩ C3}. Note that P ∩ C4 and P ∩ C5 were removed as they
are a part of P ∩ C3 and P ∩ C2, respectively. Let Pregular be the set of all vertices of P
that do not belong to any simple cycle. We interpret the elements of Pregular as paths of
length 0. In Figure 5.4 it is Pregular = {v4}.

We order the paths in P = Pcycle∪Pregular by their endpoints and get the sequence P1, . . . , P`.
Note that no two paths in P have the same endpoint as then one path would be a proper
subpath of another path and would have been removed. The projection ϕ(P) = a1 . . . a`
contains one vertex ai per element Pi ∈ P: If Pi corresponds to a cycle C, ai is the cycle
vertex for C. Otherwise, it is Pi = v and v occurs as a regular vertex in T . In this case we
set ai = v.

Lemma 5.4. The projection ϕ(P) of any path in G is a path in the cycle tree T .

Proof. Let P be a path in G and ϕ(P) = a1 . . . a` its projection to T . We first show
that two neighboring vertices in ϕ(P) are adjacent in T : Each vertex ai corresponds to a
subpath Pi of P , namely Pi = P ∩ Cj if ai = cj is the cycle vertex for a cycle Cj , or the
path consisting of the single vertex ai if ai is regular. By the definition of the projection,
the last vertex of Pi and the first vertex of Pi+1 are either adjacent or identical. In both
cases the vertices ai and ai+1 are adjacent in T .

To see that the projection uses no vertex more than once, we note that each occurrence
of a regular vertex v in ϕ(P) corresponds to an occurrence of v in P . Since P is a path,
ϕ(P) contains v exactly once. For a simple cycle C Lemma 5.3 states that the intersection
P ∩ C forms a path. Hence, ϕ(P) contains the cycle vertex for C at most once. Therefore,
ϕ(P) is a path.

In any ortho-radial drawing of G we observe that the essential cycles must lie inside each
other and their cycle vertices lie on one path in T .

46

5.2. Drawing Cycles

Lemma 5.5. Let C be the set of all simple, essential cycles in an ortho-radial drawing of
a connected cactus graph G with maximum degree 4. Then, there is a path in the cycle tree
of G containing all cycle vertices for cycles in C.

Proof. Since any two cycles in C share at most one vertex and all these cycles contain the
center in their interiors, one of the cycles lies in the interior of the other. Thus, there is
an order C1, . . . , Ck of the cycles in C such that Ci contains all cycles Cj with j ≤ i in its
interior. That is, C1 is the innermost cycle and Ck the outermost.

As G is connected, there is a path Pi from a vertex si on Ci and to a vertex ti+1 on Ci+1.
We may choose the start and end vertices such that Pi contains no other vertices from Ci
and Ci+1. We join all these paths by adding a path from ti to si on Ci for i = 2, . . . , k − 1.
We furthermore add a neighbor of s1 on C1 at the beginning and a neighbor of tk on Ck at
the end. We denote the result of the construction by P . As each path Pi lies completely in
the exterior of Ci and the interior of Ci+1, P does not contain any vertex twice and hence
is a path.

By construction the path P has length at least 2. Hence, the projection ϕ(P) is well-defined
and a path by Lemma 5.4. We furthermore claim that ϕ(P) contains all cycle vertices
for cycles in C. The path P contains at least one vertex per cycle C ∈ C. Hence, ϕ(P)
contains the cycle vertex for C unless all vertices of P ∩ C also lie on another (possibly
non-essential) cycle C ′ in G. In this case it is P ∩C = {v}, since no two cycles share more
than one vertex, and it is C 6= C1, Ck, as P contains two vertices of these cycles. But then
v would have at least 5 neighbors—two on C, two on C ′ and the neighbor of v on P that
does not lie on C ′—contradicting the maximum degree of 4. Thus, ϕ(P) contains the cycle
vertices for all vertices of C.

5.2 Drawing Cycles

One important subtask of drawing cactus graphs is to decide how the individual cycles are
drawn. In this section we present an algorithm that produces an ortho-radial drawing of a
given cycle and the edges incident to vertices of that cycle with the minimum number of
bends. More precisely, we are given a cactus graph G, a cycle C in G and two edges ein
and eout incident to C but not on C. We denote the (possibly identical) vertices on the
cycle C incident to these edges by vin and vout, respectively. In the following, we consider
ein to be directed towards vin and eout directed away from vout. Additionally, we are given
labels din, dout ∈ {H,V } or the edges ein and eout, respectively. The labels describe in
which direction the edges ein and eout must be drawn. We say an ortho-radial drawing of C
and all edges incident to a vertex in C is extensible if it satisfies the following conditions:

1. The edge ein lies in the exterior of C.

2. The edge eout lies in the interior of C if C is drawn as an essential cycle, and in its
exterior otherwise.

3. If din = H, the edge ein is drawn horizontally. Otherwise, it points downwards.

4. If dout = H, the edge eout is drawn horizontally. Otherwise, it points downwards.

5. If two edges incident to a vertex on C but not on C belong to a common simple cycle,
they are drawn on the same side of C.

These conditions ensure that it is possible to combine the drawings of cycles to obtain a
drawing of the whole graph G, i.e., to extend these drawings to a drawing of G.

47

5. Drawing Cactus Graphs with the Minimum Number of Bends

5.2.1 The Cycle Drawing Algorithm

In this section we present an algorithm that produces an extensible drawing of a simple
cycle C with the minimum number of bends. The cycle may be drawn as an essential or a
non-essential cycle depending on which produces fewer bends. In the description of the
algorithm we use the word turn to describe positions at which the boundary of C changes
its direction (e.g., from going left to going down). Turns may occur at vertices or on edges.
In the latter case we also call them bends.

We first classify the vertices of C as follows: If a vertex v belongs to two different simple
cycles (i.e., to C and another cycle), in any drawing C must have a turn at this vertex.
Hence, we say that v forces a turn. Similarly, if we have vin = vout and din 6= dout (as in
Figure 5.5(b)), there must be a turn at vin and we also say that vin forces a turn.

A vertex v that is not part of two simple cycles is called free, unless it is v = vin = vout.
Drawings of C may make turns at free vertices but are not required to do so. For instance,
there are turns at some but not all free vertices in Figure 5.5. Note that if v = vin = vout
and din = dout, the vertex v neither forces a turn nor is free (cf. Figure 5.5(c)). In this case
there must not be a turn at v.

Let T ⊆ V (C) be the set of vertices forcing a turn and t = |T | its cardinality. The algorithm
works in two steps: First, we select a set T ′ with T ⊆ T ′ of turn vertices. These are the
vertices of C at which there shall be turns in the resulting drawing. In this step we may
introduce some dummy vertices as turn vertices that correspond to bends on edges of C. In
a second step we decide for each turn vertex whether there should be a left or a right turn.

If t = 0 and din = dout = V , we draw the cycle as an essential cycle without any turns by
placing all vertices of C on the same circle of the grid. In this case we set T ′ = ∅ and the
drawing of C has no bends. An example of such a drawing is shown in Figure 5.6.

In all other cases, the drawing of the cycle needs turns. If t < 4, we arbitrarily select 4− t
free vertices on C. If there are not enough free vertices on C, we create a sufficient number
of dummy vertices on any edge of C. Adding these selected vertices to T gives T ′. By
construction we have |T ′| = 4.

If t ≥ 4 and t is odd, we select one free vertex v on C and set T ′ = T ∪ {v}. If there is no
free vertex on C, we again create a dummy vertex.

V

H vout

vin

(a)

V
H

= vout
vin

(b)

V

vin
V

= vout

(c)

vertex forcing a turn free vertex no turn at vertex

Figure 5.5: Three examples of the vertex classification. All vertices that are on two simple
cycles force a turn. At free vertices there may or may not be a turn.

48

5.2. Drawing Cycles

ein
eout

(a)

ein

eout

(b)

Figure 5.6: If t = 0 and din = dout = V , the cycle is drawn as an essential cycle without
turns. (a) Drawing of the cycle on the grid. (b) A simplified representation of
the drawing, in which the cycle is cut at one edge. In (a) this cut is indicated
by a dotted red line.

ein
vin 0 0

0

0

1

1

11

(a)

ein
vin0 0

0

0

1

1

11

(b)

Figure 5.7: The shapes of the cycles in Case 1, which only differ by the position of vin. The
edge ein may also be horizontal. (a) The shape described by w1 = 00(10)k11.
(b) The shape described by w2 = 0(10)2110.

If none of the cases above applies, we set T ′ = T . By construction |T ′| is even and |T ′| ≥ 4.
In order to draw the cycle C with turns at the vertices in T ′, we distinguish between four
cases:

1. vin 6= vout and vin is a turn vertex.

2. vin 6= vout and vin is not a turn vertex, but vout is a turn vertex.

3. vin 6= vout and neither vin nor vout is a turn vertex.

4. vin = vout.

We describe the turns one encounters when walking around C in clockwise order starting
from vin with a binary string w of length |T ′|. In this representation a 0 corresponds to a
right turn and a 1 to a left turn. The direction of the turn at the i-th turn vertex after vin
is described by the i-th bit of w. If vin is a turn vertex, the first bit of w refers to the turn
at vin.

In Case 1 we describe the turns with one of the strings w1 = 00(10)k11 and w2 = 0(10)k110,
where k = (|T ′| − 4)/2. Note that these two strings only differ by a cyclic rotation and

49

5. Drawing Cactus Graphs with the Minimum Number of Bends

ein

eout

vin

vout
P

(a)

ein
vin

eout
vout

P

(b)

ein

eout

vin

vout
P

(c)

Figure 5.8: Drawings of C if the path P between vin and vout contains an odd number of
turn vertices. Here, there are three turns vertices on P . (a) The vertex vout is
a turn vertex. (b) It is dout = H. (c) It is dout = V .

eout

ein

vout

vin

(a)

eout

ein

vout

vin

(b)

Figure 5.9: The flipping of the drawing in Case 2. (a) The drawing with reversed roles of
vin and vout before the flipping. (b) The resulting drawing after the flipping.

therefore describe the same shape, which resembles a staircase (cf. Figure 5.7). The cyclic
rotation only changes which turns are mapped to which turn vertices.

Table 5.1: Selection of the binary string
describing the turns in Case 1

dout tP even tP odd

vout ∈ T ′ H,V w2 w1
vout 6∈ T ′ H w1 w2
vout 6∈ T ′ V w2 w1

We determine which string we use by con-
sidering the directed path P on C from vin
to vout with the fewest turn vertices. If
both paths have the same number of turn
vertices, we may choose one arbitrarily. We
denote the number of turn vertices on P
(including vin) by tP . Depending on dout,
the parity of tP and whether vout is a turn
vertex, we set w = w1 or w = w2 as pre-
sented in Table 5.1. While distributing the
turns we consider C to be directed such that the edges on P are directed towards vout.
Figure 5.8 shows examples of the resulting drawings for an odd number of turn vertices
on P .

In Case 2 we temporarily change the roles of ein and eout and proceed as in Case 1. The
resulting drawing Γ of C is not yet correct though, since eout lies in the exterior of C and
ein in the interior, but it should be the other way round. We correct this by flipping the
drawing horizontally as shown in Figure 5.9.

50

5.2. Drawing Cycles

ein
vin = vout

eout

(a) H, H

eout

ein vin = vout

(b) H, V

ein

eout

vin = vout

(c) V, H

ein vin = vout

eout

(d) V, V

Figure 5.10: Drawings of C in Case 4, where it is vin = vout. (a),(d) It is din = dout and
the cycle is drawn as an essential cycle. (b),(c) It is din 6= dout and the cycle
is drawn as a non-essential cycle.

Case 3 can be reduced to Case 1 by setting T ′′ = T ′ ∪ {vin, vout}. As vin and vout are
distinct and not turn vertices, we have |T ′′| = |T ′|+ 2. Thus, |T ′′| is even and |T ′′| ≥ 4.
Hence, as vin ∈ T ′′, we can proceed as in Case 1 using T ′′ as the set of turn vertices instead
of T ′.

Table 5.2: The shapes of the cycle in Case 4.
It is k = (|T ′| − 4)/2.

din dout w

H H 00(10)k11 = w1
H V 000(10)k0
V H 00(10)k00
V V 0(10)k110 = w2

Finally, in Case 4 we use the binary strings
in Table 5.2. The shapes described by these
strings are illustrated in Figure 5.10. If
din = dout, we reuse the shapes from Case 1,
which describe essential cycles. Otherwise,
the shapes describe non-essential cycles.

One can observe a useful structure for the
case in which one of the labels is H, which
helps us to handle the case if the incoming
edge ein or the outgoing edge eout is part of
a simple cycle.

Observation 5.6. If din = H and vin is part of two cycles, one of the edges on C incident
to vin is drawn below vin and the other one horizontally. Similarly, for dout = H one of the
edges is drawn above vout and the other one is drawn horizontally.

51

5. Drawing Cactus Graphs with the Minimum Number of Bends

5.2.2 Optimality of the Cycle Drawing Algorithm

We now show that the algorithm presented in the previous section produces extensible
drawings with the minimum number of bends among all extensible drawings. We first
analyze at which vertices of C there must be turns.

Observation 5.7. In any extensible ortho-radial drawing of the cycle C there is a turn at
each vertex in T .

We continue with an observation on the number of turns a cycle can have:

Observation 5.8. The number of turns on a cycle is 0 or at least 4 and even. If the
number of turns is 0, the cycle is essential.

With these observations we are now prepared to show the optimality of the drawings
produced by the Cycle Drawing Algorithm.

Theorem 5.9. Given a cactus graph G with maximum degree 4, a cycle C in G and two
edges ein and eout with labels din, dout ∈ {H,V }, the Cycle Drawing Algorithm creates an
extensible drawing Γ of C with the minimum number of bends.

Proof. By the choice of T ′ all vertices that belong to two simple cycles are placed at a
turn. Moreover, one can verify that in all cases the directions edges ein and eout obey
their labels din and dout, respectively. Hence, the drawings produced by the Cycle Drawing
Algorithms are extensible.

In order to show the minimality of the number of bends, we consider any extensible
ortho-radial drawing Γ̃ of C. Let b and b̃ be the number of bends in the drawings Γ and Γ̃.
We want to show b ≤ b̃. This is clearly the case if b = 0, that is, Γ does not contain any
bends. Therefore, we may assume b > 0 in the following. In particular, there are vertices
forcing turns, i.e., T 6= ∅.

Let t̃ be the number of turns in Γ̃. Each turn either occurs at a vertex in T , at a free vertex
or is a bend. Moreover, there is a turn at each vertex in T by Observation 5.7. Denoting
the number of turns at free vertices in Γ̃ by f̃ , we therefore obtain

t̃ = |T |+ f̃ + b̃. (5.1)

For the drawing Γ, we similarly get

|T ′| = |T |+ f + b. (5.2)

Here, f denotes the number of free vertices that have turns. Note that by construction
the number of turns is equal to the number of turn vertices |T ′|. The algorithm only uses
dummy vertices as turn vertices (and thus creates bends) if there are not enough free
vertices and 0 < |T | < 4 or |T | is odd. In the other cases (i.e., |T | = 0 or |T | ≥ 4 and |T |
is even) the drawing produced by the Cycle Drawing Algorithm would not contain any
bends, but we assumed b > 0.

If 0 < |T | < 4, the algorithm adds 4 − |T | vertices to T such that |T ′| = 4. Since we
assumed b > 0, at least one of these vertices is a dummy vertex. However, a dummy vertex
is only created if there are not enough free vertices. Thus, f is maximal, and hence it
is f ≥ f̃ . By Observation 5.8 we know that t̃ ≥ 4 = |T ′|. Combining these results with
Equations 5.1 and 5.2, we get

b = |T ′| − |T | − f ≤ t̃− |T | − f̃ = b̃. (5.3)

52

5.2. Drawing Cycles

If |T | ≥ 4 and |T | is odd, exactly one vertex is added to T . By the assumption b > 0 this
must be a dummy vertex and it is b = 1. As the algorithm prefers to select free vertices,
this implies that there are no free vertices, and thus it is f = f̃ = 0. Hence, Equations 5.1
and 5.2 can be simplified:

t̃ = |T |+ b̃ (5.4)
|T ′| = |T |+ b (5.5)

As t̃ is even (by Observation 5.8) and |T | is odd, it holds that

|T ′| = |T |+ 1 ≤ t̃. (5.6)

Combining the Equations 5.4–5.6, we obtain

b = 1 = |T ′| − |T | ≤ t̃− |T | = b̃. (5.7)

We have shown b ≤ b̃ for all possible cases. Thus, the Cycle Drawing Algorithm produces
drawings of C with the minimum number of bends.

Not fixing the directions of ein and eout only changes anything if vin = vout, since in this
case the directions of ein and eout determine whether there is a turn at this vertex or not.
If it is vin 6= vout, there must be turns at the vertices in T in any drawing of C. Combining
this observation with the restrictions on the number of turns of cycles (cf. Observations 5.7
and 5.8), we obtain the following result:

Corollary 5.10. If it is vin 6= vout, the drawing of C produced by the Cycle Drawing
Algorithm for any choice of directions of ein and eout has the minimum number of bends
among all drawings of C in which edges incident to C that belong to the same simple cycle
lie on the same side of C.

Moreover, the decision whether we need bends or not in the algorithm does not directly
depend on the actual edges chosen as ein and eout.

Observation 5.11. The minimum number of bends on an extensible drawing of C depends
only on

• the labels din and dout, and

• whether vin = vout or vin 6= vout.

In other words, if we change ein and eout but keep the properties mentioned above, the
required number of bends does not change. The drawing itself however does change.

5.2.3 Variants of the Cycle Drawing Algorithm
The Cycle Drawing Algorithm can easily be extended to the case in which the direction din
of only one edge incident to a vertex vin of C is given: Calling this edge ein, we first select
an arbitrary vertex vout ∈ V (C) \ {vin} and then apply the Cycle Drawing Algorithm. Note
that although there are two possible choices for dout, they both result in the same number
of bends, since it is vin 6= vout (cf. Corollary 5.10).

A second variant deals with drawing bend-minimal non-essential cycles. In this case the
exact directions of the edges do not matter. We only have to ensure that in the drawing of
a cycle C all edges that belong to another simple cycle C ′ are placed on the same side of C.
Otherwise, C and C ′ would have to cross. We proceed as in the regular Cycle Drawing
Algorithm except that we need to have at least 4 turn vertices, even if there are no vertices
that force turns. Moreover, all cycles have the shape that is described by 00(10)k00, which
we already used in the case that vin = vout and din 6= dout (cf. Figure 5.10(c)).

53

5. Drawing Cactus Graphs with the Minimum Number of Bends

c2

c5

c3

v1
v2

c1

v3

v4

c4
T

(a)

v1
v2

v3

v4

v5

HP (v3)

HP (c1)

C1

C2

C5

C3

C4

HP (c2)

HP (c3)

HP (c4)
G

(b)

Figure 5.11: (a) A path P in the cycle tree T . The edges of P are indicated by dashed blue
lines. (b) The subgraphs of the cactus graph that correspond to the vertices
on P .

5.3 P -Drawings and Spines
In an ortho-radial drawing of the whole cactus graph G cycles may be drawn either as
essential or as non-essential cycles. In order to produce a bend-minimal drawing of a
4-planar cactus graph G, we need to decide which cycles are essential. But the choices for
the cycles are not independent, as all essential cycles must lie on one path in the cycle
tree T by Lemma 5.5.
For a directed path P in T we say an ortho-radial drawing of G is a P -drawing if all
cycle vertices of essential cycles lie on P . Note that by Lemma 5.5 any drawing of G is a
P -drawing for a suitable path P . Recall that each directed edge e of P corresponds to a
directed edge of G (or a vertex if e is virtual). We call these edges the spine edges of P .
We furthermore associate the direction of each spine edge with the corresponding edge
of P . We then say a P -drawing is downward if no segment of a spine edge points upwards,
i.e., all segments point either left, right or downwards.
Our goal is to give an algorithm that produces bend-minimal P -drawings for a given
path P as input. To this end, we first prove in the following section that there always is a
bend-minimal P -drawing that is downward and that has no bends on spine edges. The
algorithm that computes the bend-minimal P -drawings is then described in Section 5.3.2.

5.3.1 Properties of P -Drawings
Removing all edges of P from T decomposes T into several connected components, each
of which contains exactly one vertex of P as shown in Figure 5.11. Such a component
corresponds to a subgraph of G, which we denote by HP (a), where a ∈ V (P) is the vertex
of P lying in the component. Note that HP (a) and HP (b) are disjoint unless ab ∈ E(P)
and ab is virtual. In this case HP (a) and HP (b) have a common vertex, namely the
vertex corresponding to ab, but still no common edge. For instance, in Figure 5.11 the
subgraphs HP (c3) and HP (c4) share v5.
Lemma 5.12. Let P be a path in T . There exists a downward P -drawing of G with the
minimum number of bends among all P -drawings.

Proof. Let Γ be a P -drawing of G with the minimum number of bends. We assume without
loss of generality that the spine edges have no bends, which is achieved by adding dummy
vertices at bends of the spine edges.

54

5.3. P -Drawings and Spines

C1

C3

C4

v2

HP (a4)

HP (a3)

HP (a2)

HP (a1)

(a)

C3

C4

v2

C1 HP (a1)

HP (a2)

HP (a3)

HP (a4)

(b)

Figure 5.12: An example of redrawing some parts of the cactus graph to avoid spine edges
that point upwards as described in the proof of Lemma 5.12. (a) An excerpt
of the cactus graph, in which the spine edges (drawn as blue arrows) point
upwards. (b) Another drawing, in which no spine edge points upwards.

If Γ does not contain any spine edges that point upwards, Γ has the desired form. Otherwise,
we find a maximal subpath Q = a1 . . . ak of P which is completely directed upwards (k ≥ 2).
That is, all edges of G corresponding to the edges of Q point upwards in Γ. For instance,
in Figure 5.12(a) the spine edges between C1, v2, C3 and C4 point upwards. We show in
the following how to draw the part of G corresponding to Q such that the spine edges in
this part are drawn downwards instead: For i = 2, . . . , k − 1 we flip HP (ai) horizontally.
Thus, the spine edges between these subgraphs must point downwards. For instance, in
Figure 5.12 this the subgraphs HP (a2) and HP (a3) are flipped.

For the first part HP (a1) we distinguish between two cases: the incoming spine edge ein
(i.e., the one not on Q) points left or right, or it points downwards. In the first case we
flip HP (a1) horizontally (as shown in Figure 5.12). Flipping horizontally does not change
the direction of edges pointing left or right. Hence, ein can still be connected to HP (a1) as
before.

If ein points downwards, we denote the endpoint of ein on HP (a1) by vin and the starting
point of the following spine edge eout on HP (a1) by vout. We have vin 6= vout, since the
two spine edges ein and eout both are incident to the top of vin and vout, respectively. In
particular, a1 is not regular but a cycle vertex for a cycle C. The Cycle Drawing Algorithm
from Section 5.2 produces a bend-minimal drawing of C such that both ein and eout point
downwards (cf. Corollary 5.10). We then replace the drawing of C in Γ with this drawing
and rearrange the remaining parts of HP (a1) accordingly.

The last part HP (ak) is handled similarly: If the outgoing spine edge points left or right,
the part is flipped horizontally; otherwise, it is replaced by a drawing by the Cycle Drawing
Algorithm. In the graph of Figure 5.12 the cycle C4 was redrawn by the Cycle Algorithm.
Applying this procedure to all subpaths of P that point upwards yields a drawing of G, in
which no spine edge points downwards.

55

5. Drawing Cactus Graphs with the Minimum Number of Bends

H

v s1

s2

e

(a)

H
v

e

(b)

Figure 5.13: Removal of an edge bend in the case that v does not lie on a cycle. (a) The
original drawing with a bend on e. (b) The drawing without a bend, which is
obtained by exchanging the positions of e and H at v.

Furthermore, we do not need bends on the spine edges:

Lemma 5.13. For any path P in T there is a downward P -drawing of G with the minimum
number of bends such that no spine edge has a bend.

Proof. Let Γ be a downward P -drawing of G with the minimum number of bends. Such a
drawing exists by Lemma 5.12. If no spine edge of Γ has a bend, Γ is the desired P -drawing.
Otherwise, let e be a spine edge with a bend. Without loss of generality we may assume
that e has exactly one bend by temporarily replacing all but one bend with a dummy
vertex. The bend then divides e into two segments. Exactly one of these segments points
down and the other is horizontal. Let v be the endpoint of the horizontal segment. Then,
v lies either on exactly one simple cycle or no simple cycle at all. Note that it is impossible
that v belongs to two simple cycles as the degree of v would be at least 5.

If v does not lie on any cycle, i.e., v appears as a regular vertex in the cycle tree, we draw
e without bends pointing downwards. If e starts at v, we move the subgraph H that is
connected to the bottom of v to the old position of e as shown in Figure 5.13. Note that
the incoming spine edge of v does not belong to H, since the drawing is downward. If e
ends at v, the bend on e can be removed similarly. Hence, H does not contain any essential
cycles, and therefore, moving H to the old position of e is possible.

It remains the case that v lies on a simple cycle C. In this case we apply the Cycle Drawing
Algorithm and obtain a drawing of C, in which e points downwards and the other spine
edge e′ incident to C keeps its direction. If e′ is not incident to v, the new drawing of C
has at most as many bends as the original one by Corollary 5.10. As e can now be drawn
without bends, the total number of bends decreases by 1, which contradicts the assumption
that the original drawing of G was optimal.

Hence, both e and e′ are incident to v. Switching the direction of e from horizontal to
vertical therefore changes how C must be drawn at v (cf. Figure 5.14): If there was a
turn at v before (i.e., e′ pointed down), there cannot be a turn at v now and vice versa.
Let T be the set of vertices on C at which there are turns in the original drawing Γ. Bends
are represented by dummy vertices. Since the segment of e incident to C is horizontal, T
cannot be empty. Hence, Observation 5.8 implies that |T | is even and it is |T | ≥ 4. By
removing v from T or adding v to T (depending on whether T contains v or not) and
adding a new dummy vertex w on an arbitrary edge of C we obtain another set of vertices
T ′. We have |T ′| ≥ |T | ≥ 4 and |T ′| is even. Therefore, we can use T ′ as the set of turn
vertices in the Cycle Drawing Algorithm, which produces a drawing of C with exactly one
bend more than C has in Γ. Since e can now be drawn completely pointing downwards
without bends (i.e., one bend less than before), the new drawing of C can be combined
to give a drawing of G with the same number of bends as before, but in which the spine
edge e does not have a bend.

56

5.3. P -Drawings and Spines

e′
ve

(a) before

e′
v

e
bend

(b) after

v ee′

(c) before

e

ve′

bend

(d) after

Figure 5.14: Removal of bend on spine edge if v lies on a cycle and is incident to two spine
edges e and e′. The bend is moved to an edge of the cycle. (a)–(b) The edge e′
points downwards. (c)–(d) The edge e′ points left or right.

5.3.2 An Algorithm for Bend-Minimal Drawings with a Fixed Spine

Given a downward P -drawing of G with no bends on spine edges, we label the non-virtual
edges of P with H if the corresponding spine edge points left or right, or with V if the
corresponding edge points downwards. Furthermore, virtual edges are labeled with H.
This fits Observation 5.6, which states that if the label is H, the drawings by the Cycle
Drawing Algorithm of the two cycles whose cycle vertices are connected by the virtual
edge fit together. We call such a path P in T together with the labeling ` of its edges
the spine (P, `). In the following we describe how a bend-minimal drawing of G can be
constructed for a given spine (P, `) with P = a1 . . . ak. That is, the result must be a
P -drawing in which the directions of the spine edges adhere to the labels given by `.

We first draw all parts HP (ai) individually: If ai is a regular vertex, it is simply drawn
as one point. Otherwise, ai is the cycle vertex of a simple cycle C and we use the Cycle
Drawing Algorithm. For now, we assume that i 6∈ {1, k}, i.e., ai has two incident edges on P .
If ai−1ai is non-virtual, we set ein to the edge corresponding to ai−1ai and din = `(ai−1ai).
Otherwise, let v ∈ V (G) be the vertex corresponding to ai−1ai and we pick any edge
incident to v that does not lie on C as ein. In this case we set din = H. Similarly, we define
eout and dout by considering aiai+1. Applying the Cycle Drawing Algorithm to C, ein, eout,
din and dout then gives an extensible drawing of C. If ai is the first or the last vertex of P ,
we use the variant of the Cycle Drawing Algorithm in which the direction of only one edge
incident to the cycle is fixed.

In the parts of the HP (ai) that do not correspond to ai we draw all cycles with the variant
of the Cycle Drawing Algorithm that produces only non-essential cycles. Vertices that do
not belong to a simple cycle are drawn as points. Finally, we compose all parts of HP (ai)
by adding the remaining edges and possibly rotating some of the parts (but not the one
represented by ai).

Having drawn the subgraphs HP (ai) for all ai ∈ V (P), we combine them iteratively: The
graph HP (a1) is drawn as is. If HP (a1) to HP (ai) have already been combined to a

57

5. Drawing Cactus Graphs with the Minimum Number of Bends

e

(a) Γi

e

(b) HP (ai+1)

e

(c) Γi+1

Figure 5.15: An example how the drawings of Γi and HP (ai+1) are combined. Only the
cycles corresponding to ai and ai+1 are shown and the remainder of Γi and
HP (ai+1) is omitted. In the combined drawing Γi+1, the subgraph HP (ai+1)
is flipped.

drawing Γi, we add HP (ai+1) as follows: If aiai+1 is non-virtual, we add the edge e ∈ E(G)
corresponding to aiai+1 to Γ′. We direct it according to the label `(aiai+1). That is, if
`(aiai+1) = V , the edge e points downwards, and if `(aiai+1) = H, it points left or right.
In the latter case we choose that direction of left and right such that e lies inside the
central face of Γi as shown, for example, in Figure 5.15(a). We then add the drawing of
HP (ai+1) to the end of e. Note that we might need to flip HP (ai+1) vertically (exchanging
left and right), since e may point right but HP (ai+1) expects e to point left or vice versa.
For instance, for the drawings in Figure 5.15 it is necessary to flip the drawing of HP (ai+1)
as e points left in Γi but right in HP (ai+1).

If aiai+1 is virtual, it corresponds to a vertex v that is drawn at a turn in both Γi and the
drawing of HP (ai). Therefore, we can combine these drawings (possibly flipping HP (ai+1)
vertically) such that v is drawn at the same position and no edges of Γi and HP (ai+1)
overlap.

Lemma 5.14. Given the spine (P, `) of a cactus graph G with maximum degree 4, the
algorithm described above draws G respecting the spine such that the drawing has the
minimum number of bends among all drawings of G with that spine.

Proof. Let Γ be the drawing of G produced by the algorithm. By construction, Γ is
a P -drawing and all spine edges are directed according to `. Since the Cycle Drawing
Algorithm and its variants produce optimal drawings of the cycles (cf. Theorem 5.9) and
the edges to combine these drawing have no bends, the resulting drawing Γ also has the
minimum number of bends.

5.4 Finding an Optimal Spine
We have seen how to create drawings with the minimum number of bends for a given spine
in the previous section and Lemma 5.13 states that there is a spine for the drawing with
the minimum number of bends among all drawings. Hence, it remains to actually find an
optimal spine.

5.4.1 Properties of Spines
Studying the properties of spines helps us to develop an efficient algorithm for computing
an optimal spine. We denote the subgraph of G that corresponds to a vertex a ∈ V (G)

58

5.4. Finding an Optimal Spine

by Ha, i.e., if a is a cycle vertex for a cycle C, then it is Ha = C, and if a is regular, it is
Ha = a. First, we recall that the number of bends needed by Ha only depends on whether it
may be drawn as an essential cycle and—if this is the case—the labels of the incident edges
on the spine and whether these edges are incident to the same vertex (cf. Observation 5.11).
In particular, the number of bends is independent of the actual spine edges. Therefore, we
can regard the number of bends that Ha needs as a function

b : V (T)× {H,V }2 × {0, 1} → N0,

(a, din, dout, δ) 7→ b(a, din, dout, δ),

where the δ = 1 if and only if the spine edges are incident to the same vertex of Ha. Note
that if a is a regular vertex, Ha consists of one vertex and therefore it is b(a, ·, ·, ·) = 0.

If Ha may only be drawn as a non-essential cycle, the number of bends b′(a) only depends
on a and is described by the function

b′ : V (T)→ N0,

a 7→ b′(a).

Furthermore, we define the weight of the vertex as

w(a, din, dout, δ) = b′(a)− b(a, din, dout, δ).

Intuitively, the weight of a vertex a describes by how much the number of bends required
by Ha can be reduced if a lies on the spine and the two incident spine edges are labeled
with din and dout, respectively. Hence, we want the sum of the weights of the vertices on
the spine to be as large as possible.

Consider any edge e between two subgraphs Ha and Ha′ . As G is a cactus graph, e is a
bridge, i.e., the removal of e decomposes G in two components. Hence, e does not have
bends in a bend-minimal orthogonal drawing. Since orthogonal drawings are equivalent to
ortho-radial drawings without essential cycles, we make the following observation:

Observation 5.15. The number of bends required to draw G without essential cycles is

B′ =
∑

a∈V (T)
b′(a).

To calculate the number of bends required by drawings with a given spine, it suffices to
know B′ and the weight function w only for vertices on the spine:

Lemma 5.16. Let (P, `) be a spine with P = a1 . . . ak. For i = 1, . . . , k − 1 define
`i = `(aiai+1) and pick `0, `k ∈ {H,V } arbitrarily. Then, the number of bends required by
the spine is

B(P, `) = B′ −
k∑
i=1

w(ai, `i−1, `i, δi),

where δi indicates whether ai−1ai and aiai+1 are non-virtual and their corresponding edges
in G are incident to the same vertex (δi = 1) or not (δi = 0), and where δ0 = δk = 0.

Proof. The number of bends needed by the subgraph of G corresponding to ai is given by
b(ai, `i−1, `i, δi). Note that as a1 and ak have only one incident edge on P , the number of
bends required to draw their corresponding subgraphs is independent of `0 and `k. By
the definition of spines all bends are on edges that are part of simple cycles. Hence, the
total number of bends B(P, `) is the sum of the number of bends of all subgraphs Ha

59

5. Drawing Cactus Graphs with the Minimum Number of Bends

corresponding to vertices a ∈ V (T). We can furthermore distinguish between vertices on P
and those not on P .

B(P, `) =
k∑
i=1

b (ai, `i−1, `i, δi) +
∑

a∈V (T)\V (P)
b′(a)

=
k∑
i=1

(
b(ai, `i−1, `i, δi)− b′(ai)

)
+

k∑
i=1

b′(ai) +
∑

a∈V (T)\V (P)
b′(a)

= −
k∑
i=1

w(ai, `i−1, `i, δi) +
∑

a∈V (T)
b′(a) (5.8)

By Observation 5.15 it is
∑
a∈V (T) b

′(a) = B′ and therefore we obtain

B(P, `) = B′ −
k∑
i=1

w(ai, `i−1, `i, δi). (5.9)

Hence, finding the spine that requires the fewest bends is equivalent to finding a spine with
the largest weight. In our algorithm to compute this spine we build spines by combining
two partial spines, which have already been constructed. Formally, a partial spine is a
pair (P, `) where P = c1 . . . ck with k ≥ 2 and a labeling ` of the edges of P . The difference
to ordinary spines is that the first vertex c1 is not considered to belong to the partial spine,
but at the actual end c2 the labels of two incident edges are fixed. We call the edge c1c2
the connector of the partial spine. The weight of a partial spine is given by the sum of
the weights of its vertices except c1, i.e., the weights of c2, . . . , ck. The subgraphs of G
corresponding to the connector c1c2 and the vertex c1 intersect at exactly one vertex, which
we call the port of the partial spine. Partial spines with the same port are called partners.

Lemma 5.17. Let a ∈ V (T) be a cycle vertex and S a partial spine with connector ab.
Let C be the set of all connectors of partners of S. Then, it is |C| ≤ 2.

Proof. Let v ∈ V (G) be the port of S. If ab is virtual, it corresponds to v. As G has a
maximum degree of 4, all edges incident to v lie on a simple cycle. Hence, none of them
corresponds to an edge of T . Moreover, only ab corresponds to v. Therefore, all partners
of S must have ab as a connector.

If ab is non-virtual, it corresponds to an edge vw ∈ E(G), where v is the port of S. There
is at most one other edge incident to v that does not belong to any simple cycle. If such
an edge exists, it corresponds to an edge ac ∈ E(T). Moreover, v only lies on one simple
cycle and therefore there is no virtual edge for v in T . Hence, any partner of S can only
have ab or ac as connector.

5.4.2 A Dynamic Program for the Heaviest Spine

The algorithm we use to find a heaviest spine in T combines a dynamic programing
approach with a post-order traversal of T . That is, all children of a vertex are handled
before the vertex itself is dealt with. We describe the algorithm and prove that it works
correctly in this section. Section 5.4.3 then provides some more implementation details,
which are necessary to achieve a linear running time of the algorithm. Figure 5.16 contains
an example of a cactus graph and its cycle tree, which we use to illustrate the algorithm.

60

5.4. Finding an Optimal Spine

T1

T2

T3

S1

S2

S3 S4
S5

S6

S7 S8

(a)

t2

t3t1

s1

s2 s3 s4

s5

s6 s7 s8

(b)

Figure 5.16: (a) An example of a cactus graph. (b) The corresponding cycle tree rooted
at t2. The dashed edges are virtual.

V : 1
H: 0

opt: 1

V : −
H: 0

opt: 0

V : 0
H: 1

opt: 1
H

V

V
H

V : −
H: −

opt: 2

H H

V : 0
H: 1

opt: 1

V

V H

H

V : −
H: 0

opt: 0

V : −
H: 0

opt: 0

V : −
H: 0

opt: 0

V : −
H: 0

opt: 0

V : 1
H: 0

opt: 1

V : −
H: 0

opt: 0

Figure 5.17: The complete result of the dynamic program for the graph in Figure 5.16(a).
Inside the vertices the weights of the (partial) spines are shown in the following
order: The weight of the partial spine whose connector is labeled with V , the
weight of the partial spine whose connector is labeled with H, and the weight
of the spine with the vertex as its highest vertex. The arrows point to the
next element of the spines. The parts that belong to the optimal spine are
shown in red.

61

5. Drawing Cactus Graphs with the Minimum Number of Bends

For each vertex a ∈ V (T) we calculate up to three (partial) spines, which we store at a:
First, the spine (Pa, `a) with a as highest vertex and maximum weight is determined, which
is the spine we are ultimately interested in. Unless a is the root, we furthermore compute
the following two partial spines, where p denotes the parent of a: The partial spine (QHa , `Ha)
is a heaviest partial spine with pa as connector and `Ha (pa) = H. Similarly, (QVa , `Va) is a
heaviest partial spine with pa as connector and `Va (pa) = V . If pa is virtual, only the first
partial spine exists since virtual edges must be labeled with H by definition. In this case
we ignore the second partial spine.

Note that in general there may be several such spines with maximum weight and we can
choose any of them. For instance, consider the left child s1 of the root in Figure 5.17. The
heaviest spine with s1 as highest vertex as indicated by the arrows contains s1 and two
children of s1: the triangle t1 and one square s2. But since s2, s3 and s4 all have the same
properties, s2 could be replaced by any of the other two vertices without changing the
weight.

We determine these three spines based on the partial spines stored at the children of a as
follows: For two partial spines (Q1, `1) and (Q2, `2) stored at any two distinct children c1
and c2 of a, we define a spine (P ′a, `′a) by P ′a = Q1 +Q2 and the edges keep their labeling as
defined by `1 and `2. That is, we simply join two partial spines together to get a spine. We
then pick one of these spines that has the maximum weight as (Pa, `a). If a has only one
child, we add a to all partial spines at children of a and choose the heaviest resulting spine
as (Pa, `a). If a is a leaf, the only possible spine contains solely the vertex a and no edges.

Similarly, each of the partial spines at a child c with connector ac can be extended to two
partial spines with pa as connector, where p is the parent of a in T : one for each possible
label H and V at pa. We choose the heaviest such partial spines as the partial spines
stored at a.

After the spines (Pa, `a) for all vertices of T have been computed, we select one of these
spines that has the maximum weight. If there are several possibilities, we may choose any.

Theorem 5.18. Any optimal drawing of the cactus graph G with the spine (P, `) computed
by the algorithm above contains the minimum number of bends among all ortho-radial
drawings of G.

Proof. Recall that spines are only defined for downward drawings of G that have no bends
on the spine. Lemma 5.13 states that there is such a drawing with the minimum number of
bends among all ortho-radial drawings of G, and hence, finding an optimal spine is sufficient
to obtain a bend-minimal drawing. Moreover, minimizing the number of bends required by
the spines is equivalent to finding a spine with the maximum weight by Lemma 5.16. Hence,
it remains to show that the spine (P, `) produced by the algorithm has the maximum
weight.

We first prove by induction on the structure of T that for each vertex a ∈ V (T) the (partial)
spines (Pa, `a), (QHa , `Ha) and (QVa , `Va) are indeed the heaviest such spines. If a is a leaf,
there is exactly one choice for each of the three spines, which therefore have the maximum
weight.

Let a ∈ V (T) be a non-leaf of T and assume as induction hypothesis that the partial
spines calculated for its children have the maximum weight. Let (P ∗a , `∗a) be a heaviest
spine with a as highest vertex and maximum length. Then, it is a ∈ P ∗a and a either lies in
the middle of P ∗a or at an end. In the former case splitting (P ∗a , `∗a) at a yields two partial
spines for two children of a. Since the partial spines computed for the children are optimal
by induction hypothesis, checking the spines formed by all pairs of partial spines finds a
spine with the maximum weight.

62

5.4. Finding an Optimal Spine

S5

S1
S6S7

S8

S2 S3

S4

T3

T1

T2

Figure 5.18: The bend-minimal drawing of the graph in Figure 5.16(a) with the spine that
was computed by the dynamic program (cf. figure 5.17). The only bend in
this drawing lies on T2.

If a lies at one end of P ∗a , a has only one child, since P ∗a is maximal. Otherwise, P ∗a could
be extended by adding another child of a. As all weights are non-negative, the weight of a
spine increases or stays the same if it is extended. Clearly, adding a to all partial spines
for the children finds an optimal spine. A similar argument shows that the partial spines
(QHa , `Ha) and (QVa , `Va) computed by the algorithm are optimal.

Let (P ∗, `∗) be a spine with maximum weight and a∗ the highest vertex of P ∗ in T . In
particular, we have w(P ∗, `∗) ≥ w(P, `), where (P, `) is the spine computed by the algorithm.
By the argument above the spine (Pa∗ , `a∗) stored at a∗ has the maximum weight of all
spines with a∗ as highest vertex. Therefore, it is

w(P, `) ≥ w(Pa∗ , `a∗) ≥ w(P ∗, `∗) ≥ w(P, `) (5.10)

and equality holds. Thus, the algorithm correctly determines a spine with the maximum
weight.

After we found an optimal spine (P, `), the whole graph can be drawn by repeated application
of the Cycle Drawing Algorithm and its variants as shown in Section 5.3. Figure 5.18
shows the resulting drawing of the graph in Figure 5.16(a) with the spine computed by the
dynamic program.

5.4.3 Implementation in Linear Time

While the algorithm in the previous section correctly produces a spine with maximum
weight, it requires some care to implement it in linear time.

Computing and storing the spines explicitly for each vertex a of T requires time and storage
linear to the height of a. As all spines are formed by one or two existing partial spines, it
suffices to store pointers to them. Hence, each vertex only needs to store four pointers:
two for the spine with a as highest vertex and one for each partial spine. Additionally, we
store the weights of the spines. In Figure 5.17 the weights are written inside the vertices:
first the weight of the partial spine whose connector is labeled with H, then the one with
a connector that is labeled with V , and finally the weight of the spine with a as highest
vertex. The pointers are represented by arrows. The label at an arrow from a vertex p to
one of its children a determines the label of pa and therefore also which partial spine at a
forms the rest of the spine.

63

5. Drawing Cactus Graphs with the Minimum Number of Bends

Moreover, checking all pairs of partial spines when computing the heaviest spine at a vertex
is both expensive and unnecessary, since it is sufficient to consider only a constant number
of pairs. To prove this, we first analyze how the number of bends b(a, din, dout, δ) required
to draw the subgraph Ha of G corresponding to a vertex a ∈ V (T) depends on the last
parameter δ, which specifies whether the two neighboring spine edges incident to the same
vertex of Ha. If this is the case, the shape of Ha is fixed at that vertex and therefore there
may only be more but not fewer bends than if the two spine edges end at two different
vertices of Ha.

Observation 5.19. For any a ∈ V (T) and din, dout ∈ {H,V } it is

b(a, din, dout, 0) ≤ b(a, din, dout, 1), and
w(a, din, dout, 0) ≥ w(a, din, dout, 1).

With this observation we are prepared to show that only six partial spines must be
considered.

Lemma 5.20. Let SH1 , . . . , SH3 be the three heaviest partial spines for children of a whose
connectors are labeled with H. Similarly, let SV1 , . . . , SV3 be the three heaviest partial spines
for children of a whose connectors are labeled with V . Then, at least one of the spines
formed by two of these partial spines has the maximum weight among all spines with a as
highest vertex.

Proof. Let SH = {SH1 , SH2 , SH3 }, SV = {SV1 , SV2 , SV3 } and S = SH ∪ SV . We furthermore
assume without loss of generality that SH1 and SV1 are the heaviest partial spines whose
connector is labeled with H and V , respectively.

If a is a regular vertex, it is w(a, ·, ·, ·) = 0 and therefore choosing the heaviest partial
spine S1 and the next heaviest partial spine S2 that is not stored at the same vertex as S1
gives the heaviest spine with a as highest vertex. Clearly, S1, S2 ∈ S and the claim holds.
Hence, we may assume in the following that a is a cycle vertex.

Consider any heaviest spine S∗ with a as the highest vertex. Splitting S∗ at a gives two
partial spines S∗1 and S∗2 , whose connectors are labeled with d1 and d2, respectively. By
Theorem 5.18 we may assume that both S∗1 and S∗2 are partial spines that are stored at
children of a. We show in the following that there are two partial spines in S such that
merging them yields a spine with the same weight as S∗, which is maximum by the choice
of S∗.

If both partial spines belong to S, the claim clearly holds. Otherwise, at least one of the
two parts of S∗, say S∗2 , does not belong to S. Let S1 = Sd1

1 be the heaviest spine of Sd1 .
Let δ be a boolean variable denoting whether S∗1 and S∗2 are partners (δ = 1) or not (δ = 0).
By definition, we have w(S1) ≥ w(S∗1). At least one of the elements of Sd2 is not a partner
of S1, since S1 has at most two partners in Sd2 by Lemma 5.17. We denote the heaviest
such spine in Sd2 by S2. As S∗2 6∈ Sd2 , we have w(S2) ≥ w(S∗2). Combining S1 and S2
yields a spine S. Together with w(a, d1, d2, 0) ≥ w(a, d1, d2, δ) from Observation 5.19 we
obtain

w(S∗) = w(S∗1) + w(a, d1, d2, δ) + w(S∗2)
≤ w(S1) + w(a, d1, d2, 0) + w(S2) = w(S). (5.11)

Hence, we found a combination S of two partial spines in S with the maximum weight w(S) =
w(S∗).

64

5.4. Finding an Optimal Spine

With these two modifications the algorithm to compute the heaviest spine from the previous
section runs in linear time.

Theorem 5.21. A spine with maximum weight can be computed in O(|G|) time and O(|T |)
space.

Proof. A vertex a ∈ V (T) that corresponds to a subgraph Ha of G can be handled in
O(deg(v) + |Ha|) time: Each value of b(a, ·, ·, ·) and b′(a) can be calculated by applying
the Cycle Drawing Algorithm to Ha once for each value. This means nine invocations of
the Cycle Drawing Algorithm, each taking O(|Ha|) time. Hence, this step needs O(|Ha|)
time in total and storing the values needs a constant amount of space.

In order to compute the spine (Pa, `a) it suffices to find the three heaviest partial spines
stored at children of a for each of the labels (cf. Lemma 5.20). These are found by checking
all partial spines stored at children of a, which needs O(deg(a)) time. After that a constant
number of combinations is tested. To find the partial spines, a is added to all partial
spines at the children. This again needs O(deg(a)) time. These three (partial) spines are
represented by four pointers using constant space.

After all vertices have been handled, the heaviest spine is determined by one traversal of
the tree in O(|T |) time. In total, running time of the algorithm is

O

|T |+ ∑
a∈V (T)

(deg(a) + |Ha|)

 = O (|T |+ |G|) = O(|G|),

where the last equality follows from |T | ∈ O(|G|). Furthermore, the algorithm needs O(1)
space per vertex of T and therefore O(|T |) space in total.

65

6. Conclusion

In this chapter we summarize our results and give an outlook over open questions related
to ortho-radial graph drawing.

6.1 Summary
We studied ortho-radial drawings of 4-planar graphs, which are an extension of orthogonal
drawings in the plane to the cylinder. As a means to describe the shape of these drawings,
we presented ortho-radial representations, which include orthogonal representations as a
special case. Furthermore, we characterized those representations of 4-planar graphs that
can actually be drawn by a set of conditions and called the representations that satisfy
them valid. One important tool for this were labelings of essential cycles. By requiring
consistent labelings for all essential cycles such that each labeling attains both positive
and negative values (or is identically 0) it is ensured that all essential cycles can be drawn
together without any conflicts.

Being able to describe the shape of ortho-radial drawings without actually fixing coordinates
or edge lengths is a crucial prerequisite for applying Tamassia’s Topology-Shape-Metrics
framework to ortho-radial graph drawing. Moreover, our characterization is constructive in
the sense that we show a way to produce drawings for valid ortho-radial representations.

We furthermore studied the bend minimization problem for ortho-radial drawings. We
proved that in general when no embedding is fixed determining whether a 4-planar graph
admits an ortho-radial drawing without bends is NP-complete. Therefore, assuming
P 6= NP , there is no polynomial time algorithm for bend minimization of general 4-planar
graphs. For the restricted class of cactus graphs however we presented a linear time
algorithm for bend minimization.

6.2 Future Work
The rectangulation algorithm presented in Section 3.5 checks for increasing or decreasing
cycles. Clearly, one can compute the labelings of all essential cycles and search for positive
and negative labels. However, there may be an exponential number of essential cycles,
which makes this approach expensive. Even if the graph initially only has few essential
cycles, we insert additional edges during the rectangulation, which may increase the number
of essential cycles. Therefore, an efficient test for increasing and decreasing cycles would
be desirable.

67

6. Conclusion

When devising such an algorithm one needs to keep in mind that the same edge can have
different labels for different cycles. Therefore, it is not simply possible to first label all
edges and then search for cycles with only non-negative or non-positive labels. Instead, one
probably needs to keep track of multiple labels per edge. Furthermore, there may be two
essential cycles that differ only at a few edges such that one of these cycles is increasing or
decreasing and the other is not. Therefore, cycles cannot be excluded easily because most
of the edges have already been part of a cycle that has been checked.

Working towards the application of the Topology-Shape-Metrics framework to ortho-radial
graph drawing, we dealt with the questions how to represent the shape and then given a
shape how to construct a drawing. But we did not work on the first part of the framework:
how to find a good embedding and how to find a shape with the minimum number of bends.
In the case of orthogonal drawings in the plane, the number of bends can be minimized by
solving a flow network [Tam87]. But in the ortho-radial case the resulting representation
must have neither in- nor decreasing cycles. This condition however requires non-local
information and therefore it seems to be hard to capture this requirement in a flow network.

Another direction of research is to try to extend the ortho-radial representation to orthogonal
drawings on a torus, where the second dimension is cyclical as well. We expect both cyclical
dimensions of the torus to behave similar to the cyclical dimension of the cylinder. Locally
the drawings on a torus and a cylinder are equal. Hence, all parts of the representation that
describe the local shape can be adopted. But there is in general no outer or central face
and the rotation of all faces is 4, unless actually an ortho-radial drawing is described. It is
however unclear how a condition similar to the last one of Definition 3.3, which requires
valid labelings of all essential cycles, can be formulated.

As there are two cyclical dimension on a torus, there are more kinds of essential cycles: We
call a cycle an (x, y)-essential cycle if it winds itself x times around the first and y times
around the second dimension. The only types of cycles that can occur are (x, 1)-essential,
(1, y)-essential and non-essential cycles. We conjecture that only (0, 1)- and (1, 0)-essential
cycles need to be considered when formulating labelings and conditions on them, as all
other types of essential cycles seem to be always drawable.

68

Bibliography

[Bar16] Lukas Barth. Drawing Metro Maps on Concentric Circles. Master’s thesis,
Fakultät für Informatik, Karlsruher Institut für Technologie (KIT), 2016.

[BBR14] Thomas Bläsius, Guido Brückner, and Ignaz Rutter. Complexity of Higher-
Degree Orthogonal Graph Embedding in the Kandinsky Model, pages 161–172.
Springer Berlin Heidelberg, 2014.

[BK98] Therese Biedl and Goos Kant. A better heuristic for orthogonal graph drawings.
Computational Geometry: Theory and Applications, 9:159–180, 1998.

[BKRW14] Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Ortho-
gonal graph drawing with flexibility constraints. Algorithmica, 68(4):859–885,
2014.

[BLR16] Thomas Bläsius, Sebastian Lehmann, and Ignaz Rutter. Orthogonal graph
drawing with inflexible edges. Computational Geometry, 55:26–40, 2016.

[CK12] Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization.
Journal of Graph Algorithms and Applications, 16(3):635–650, 2012.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[DBETT99] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
Graph Drawing - Algorithms for the Visualization of Graphs. Prentice Hall,
1999.

[dBK12] Mark de Berg and Amirali Khosravi. Optimal binary space partitions for
segments in the plane. International Journal of Computational Geometry and
Applications, 22(03):187–205, 2012.

[DBLV98] Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and
optimal orthogonal drawings. SIAM Journal on Computing, 27(6):1764–1811,
1998.

[FLW14] Martin Fink, Magnus Lechner, and Alexander Wolff. Concentric metro maps.
In Schematic Mapping Workshop 2014, 2014.

[GT95] Ashim Garg and Roberto Tamassia. On the Computational Complexity
of Upward and Rectilinear Planarity Testing. In DIAMCS International
Workshop, volume 894 of Lecture Notes in Computer Science, pages 286–297.
Springer, January 1995.

[HHM09] Mahdie Hasheminezhad, S. Mehdi Hashemi, and Brendan D. McKay. Spherical-
rectangular drawings. In International Workshop on Algorithms and Compu-
tation, pages 345–356. Springer, 2009.

69

Bibliography

[HHMT10] Mahdie Hasheminezhad, S. Mehdi Hashemi, Brendan D. McKay, and Maryam
Tahmabasi. Rectangular-radial drawings of cubic plane graphs. Computational
Geometry, 43(9):767–780, 2010.

[HHT09] Mahdie Hasheminezhad, S. Mehdi Hashemi, and Maryam Tahmabasi. Ortho-
radial drawings of graphs. Australasian Journal of Combinatorics, 44:171–182,
2009.

[RNC16] Maxwell J. Roberts, Elizabeth J. Newton, and Maria Canals. Radi (c)
al departures: Comparing conventional octolinear versus concentric circles
schematic maps for the berlin u-bahn/s-bahn networks using objective and
subjective measures of effectiveness. Information Design Journal, 2016.

[Tam87] Roberto Tamassia. On Embedding a Graph in the Grid with the Minimum
Number of Bends. SIAM Journal on Computing, 16(3):421–444, 1987.

[TT91] Roberto Tamassia and Ioannis G. Tollis. Representations of graphs on a
cylinder. SIAM Journal on Discrete Mathematics, 4(1):139–149, 1991.

70

	Contents
	1 Introduction
	1.1 Contribution and Outline
	1.2 Related Work

	2 Preliminaries
	2.1 Orthogonal and Ortho-Radial Drawings
	2.2 Rotation
	2.3 Flow Networks

	3 Ortho-Radial Representations
	3.1 Labelings of Essential Cycles
	3.2 Definition of Ortho-Radial Representations
	3.3 Properties of Labelings
	3.4 Characterization of Rectangular Graphs
	3.5 Rectangulation
	3.5.1 The Rectangulation Algorithm
	3.5.2 Preparation
	3.5.3 Correctness of the Rectangulation

	4 Complexity of Ortho-Radial Embeddability
	5 Drawing Cactus Graphs with the Minimum Number of Bends
	5.1 The Cycle Tree
	5.2 Drawing Cycles
	5.2.1 The Cycle Drawing Algorithm
	5.2.2 Optimality of the Cycle Drawing Algorithm
	5.2.3 Variants of the Cycle Drawing Algorithm

	5.3 P-Drawings and Spines
	5.3.1 Properties of P-Drawings
	5.3.2 An Algorithm for Bend-Minimal Drawings with a Fixed Spine

	5.4 Finding an Optimal Spine
	5.4.1 Properties of Spines
	5.4.2 A Dynamic Program for the Heaviest Spine
	5.4.3 Implementation in Linear Time

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	Bibliography

