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Abstract
The planning of wind farms exhibits several interesting problems. One of them is the min-
imum cost cable installation in wind farms. In this master thesis we regard a subproblem
of it, namely the Substation Cable Installation Problem (SCIP). The SCIP deals with the
minimum cable installation connecting wind turbines to a substation.
It is therefore defined as follows: Given a set of coordinates for a substation and for

a set of turbines, the turbines’ rating and a set of cable types, find the cost minimal
cable installation such that all turbines are connected to the substation and the capacity
constraints imposed by the installation are met.
For this problem we identify several approaches from the literature for the SCIP as well

as for related problems. We have adapted and implemented a part of these identified ap-
proaches. The implementation contains nine algorithms and heuristics which are presented
in the main part of this thesis. Among them there is also a new integer linear program
formulation and a new heuristic. Furthermore, we evaluate and compare the implemented
algorithms and heuristics.

Zusammenfassung
Die Planung von Windparks wirft einige interessante Probleme auf. Eines davon ist die ko-
stenminimale Kabelinstallation in Windparks. In dieser Masterarbeit wird ein Teilproblem
dazu genauer betrachtet, nämlich das Substation Cable Installation Problem (SCIP). Das
SCIP sucht die kostenminimale Kabelinstallation in Windparks, bei dem Windenergiean-
lagen (WEA) an einem Umspannwerk angeschlossen werden sollen.
Es ist daher folgendermaßen definiert: Gegeben eine Menge von Koordinaten für ein

Umspannwerk und für eine Menge von Turbinen, die Leistung der Turbinen und eine Menge
von Kabeltypen, finde die kostenminimale Kabelinstallation, sodass alle Turbinen mit dem
Umspannwerk verbunden sind und die Kapazitätsbeschränkungen der Kabelinstallation
eingehalten werden.
Für dieses Problem werden in dieser Arbeit Lösungsansätze aus der Literatur zum SCIP

und zu benachbarten Problemstellungen identifiziert. Ein Teil der identifizierten Ansätze
sind im Rahmen dieser Arbeit angepasst und implementiert worden. Die Implementierung
umfasst neun Algorithmen und Heuristiken, die im Hauptteil dieser Arbeit genauer be-
schrieben werden. Darunter befinden sich auch ein neues ganzzahliges Programm und eine
neue Heuristik. Die implementierten Algorithmen und Heuristiken werden anschließend in
Experimenten evaluiert und miteinander verglichen.

II



Acknowledgment

I worked on parts of this master thesis during my stay at the National Chung Hsing
University (NCHU) and finished it back at the Karlsruhe Institute of Technology (KIT).
The possibility to research on my thesis topic at the NCHU was given to me by Prof. Dr.
Dorothea Wagner and Prof. Dr. Der-Tsai Lee. Therefore, I would like to thank Prof. Dr.
Dorothea Wagner for providing me with the opportunity to write my thesis at her chair
and to combine it with a research stay abroad. Furthermore, I would like to thank Prof.
Dr. Der-Tsai Lee for hosting me at the NCHU and for letting me work on my thesis at his
chair.
While working on this master thesis I got very good assistance from my advisors Dr.

Tamara Mchedlidze, Dr. Martin Nöllenburg (both KIT) and Dr. Hung-I Yu (NCHU). I am
thankful for the interesting topic they gave me, their helpful input and the many discussions
for the thesis. Especially, I would like to thank Dr. Hung-I Yu for the long discussion on
the integer linear program (ILP) for the Substation Cable Installation Problem (SCIP).

Karlsruhe, Christian Schmitz
in June 2014

III



Contents

1. Introduction 1

2. Basics 3
2.1. The Wind Farm Cable Installation Problem . . . . . . . . . . . . . . . . . . 3
2.2. Substation Cable Installation Problem . . . . . . . . . . . . . . . . . . . . . 4

2.2.1. Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1. Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Implementation 12
3.1. An adapted exact mixed-integer linear program . . . . . . . . . . . . . . . . 12
3.2. A new exact integer linear program formulation . . . . . . . . . . . . . . . . 16
3.3. A suboptimal integer linear program formulation . . . . . . . . . . . . . . . . 19

3.3.1. Transformation of the cable input . . . . . . . . . . . . . . . . . . . . 21
3.4. A simple minimum spanning tree heuristic . . . . . . . . . . . . . . . . . . . 23
3.5. A randomized aggregation heuristic . . . . . . . . . . . . . . . . . . . . . . 24
3.6. Three splittable upgrade heuristics . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1. UPGRADEHEURISTIC1 . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2. UPGRADEHEURISTIC2 . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6.3. UPGRADEHEURISTIC3 . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.7. An unsplittable upgrade heuristics . . . . . . . . . . . . . . . . . . . . . . . 34

4. Experiments 42
4.1. Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2. Results of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1. ILP and mixed-integer linear program (MILP) approaches . . . . . . 43
4.2.2. Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5. Conclusion 52

A. Further benchmarks of the experiments 54
A.1. ILP and MILP formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.2. Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

IV



1. Introduction

In the last years the climate change and the nuclear disaster in Fukushima have lead to
a rethinking about our energy generation. Consequently, renewable energy has gained
more and more attention. Today many countries try to shift from fossil energy sources to
renewable ones. For example the European Union aims to meet 20% of the EU’s energy
needs with renewable energy [7, p. 3].
Due to this the importance of renewable energy as a source for power generation increases.

One of the renewable energy sources which are designated to replace current energy sources
is wind energy. Germany for example aims to install additional 8 GW onshore and 10 GW
offshore wind power [3, p. 2-3].
Wind power installation is also interesting from a computer science and operations re-

search perspective because we can derive optimization problems from it which are hard
to solve and therefore, provide an application area for algorithmic solution approaches.
One of these problems for instance deals with the optimal placement of wind turbines and
has gotten increasing attention in the literature lately [34, p. 28]. However, in this thesis
we deal with another wind energy problem which optimizes the cable installation in wind
farms, namely the Wind Farm Cable Installation Problem (WFCIP). To be more specific,
we consider subproblem of the WFCIP called SCIP. Research focused on this problem
lately as well.
Before we get into detail about the main problem of this thesis let us first regard the

wind energy setting more in detail.
In order to use wind as an energy source we need wind turbines. The maximum power a

wind turbine can generate is given by its rating. Nowadays turbine ratings at 2 or 3 MW
are common. 5 MW machines have also been installed offshore already and turbines with
even larger generation capacities are under development. [24, p. 18]
Generally, wind turbines are positioned together forming wind farms, also called wind

parks [24, p. 143]. A wind farm can comprise from two to more than a hundred turbines
[24, p. 143].
In order to make use of their generated power the wind turbines need to be connected to

the power grid at some grid connection point. The grid connection point can be positioned
at different systems of the power grid, namely the transmission system, the distribution
system and feeder system [26, p. 433]. All three systems operate at a different current
level. The transmission system has a high-voltage current between 110 kV and 765 kV, the
distribution system a medium-voltage between 10 kV and 69 kV and the feeder system a
low-voltage between 230 V and 690 V [26, p. 433].
Depending on the total turbine rating the wind farm has to be connected to different

systems. The feeder system can only be used for a turbine with a rating up to 100 kW.
Wind farms with a total rating of more than 10 - 15 MW need to be connected to a high-
voltage system, i.e. the transmission system. Otherwise the turbines can be connected to
the distribution system. Hau [19, p. 742]
However, a turbine normally generates power at a 690 V [24, p. 185]. Hence, the current

of the turbines has to be transformed in order to meet the current at the grid connection
point.
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The transformation to the high-voltage level is not done at the substation directly,
though. The generated power is rather collected at substations where it is transformed
to the needed current level. From the substations the wind farm is then connected to the
next grid connection point over a high-voltage export cable. [2, p. 1-2]
Following Dutta [9] we call the system connecting the wind turbines with the substation

the collector system. The collector system operates at a medium-voltage level between 10
and 30 kV in continental Europe [4, p. 570].1 Therefore, the cables used to connect the
wind turbines to the substation are medium-voltage cables.
The transformers at a substation and the available cables put some restriction on the

connection of turbines to the substation. The turbines are connected to the substation
via feeders (or circuits). The number of wind turbines on one feeder is restricted by the
ampacity of the cables [5, p. 1]. Furthermore, the overall number of turbines which can
be connected to the substation is limited as well. The actual number depends on the
maximum power rating of the substation transformers [2, p. 3].
The objective of the WFCIP now is to optimize the cable installation of the collector

system. This means that we look for a cost minimal installation of cables connecting all
turbines to a substation such that the cable and substation constraints are met. The SCIP
is the subproblem which optimizes the cable installation for one substation.
In this thesis we will look into this problem setting and focus on the SCIP. We identify,

implement and experimentally evaluate approaches to solve this problem.
This thesis is structured as follows: In the next chapter we will define the WFCIP and the

SCIP more formally in Section 2.1 and Section 2.2. We present the results of our literature
search for solution approaches used for related problems of the SCIP in Section 2.3. In
Chapter 3 we describe the approaches we use to solve the SCIP. The performance of those
algorithms is then evaluated in Chapter 4. The thesis is summarized and concluded in
Chapter 5.

1This is still a higher voltage than at the wind turbines. The turbines, though, have transformers for
raising their current to the one of the collector system [4, p. 570].
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2. Basics

2.1. The Wind Farm Cable Installation Problem

Berzan et al. [2] are one of the first who deal with the cable network design in wind
farms from an algorithmic perspective. In their work they define the cable installation
problem formally. We will derive our definition for the Wind Farm Cable Installation
Problem (WFCIP) from their definition. Our definition, however, also includes a more
restrictive requirement on the unsplittability of flow as presented by Hertz et al. [20].
Furthermore, we follow Hertz et al. [20] in allowing the installation of several cables
between two sites and do not restrict it to one cable type only.
In the wind farm setting there are |V | sites given as points which need to be connected

using cable types given by the set K. The set of nodes consists of |T | turbines, |R|
substations and |S| intermediate points at which flow can be combined.
A turbine tν is a source with a certain weight bν which has to be sent to a substation r.

The weight of the turbine corresponds to the power produced by it, i.e. its power rating.
In the following we will assume that every turbine has the same weight. This way we can
deal with capacities and flows in terms of the number of turbines and not in amperes or
watts. We assume that the power produced at the turbines reaches the substation without
any losses.
At the substations all the generated power is collected. Each substation r has a certain

capacity of turbines µr which can be connected to it. This again relies on the rating of the
substation and hence can be expressed in number of turbines as well.
From now on we define the set of turbines as T = {t1, ..., t|T |} and the set of sinks as

R = {r1, ..., r|R|}. The definition of set of sites, i.e. set of points, then looks the following:
V = {u1, ..., u|V |} = T ∪R.
We assume that the points in V are given in the Euclidean plane and therefore, do not

regard any terrain information as Berzan et al. [2] do. Hence, the distance between two
sites uν , uι ∈ V is given by dist(uν , uι) =

√
(uν1 − uι1)2 + (uν2 − uι2)2.

Between any two sites uν and uι we can install copies of |K| cable types given by
K = {k1, ..., k|K|}. Each cable type ki ∈ K has a cost ci and a capacity µi. The installed
cables therefore restrict the maximum flow between two sites. The cost of installing a cable
type ki between sites uν and uι is then dist(uν , uι) · ci.

Power can be merged at turbines and intermediate nodes. This means that at a node
uν ∈ T ∪ S the input over different cables can be output over less cables as long as the
capacity constraints are met. This way flow from different turbines can be combined in
one cable. Furthermore, the node weight must be output at its node over one cable only
and therefore cannot be split and assigned to different output cables. Once two flows are
merged in one cable they can never be split again. We call this the unsplittable or merge-
only flow requirement. Hence, the flow from a turbine tν along a path Pν to a sink r passes
through one cable type only along any connection (uν , uι) ∈ Pν . The flow and the capacity
in this conjunction of cables along path Pν is therefore always non-decreasing.
Given these input description and installation requirements we can now define the WF-

CIP. Before we do so, however, note the following tow definitions first. Let aiν,ι be the
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integer variable indicating how many copies of cable type ki are installed between nodes
uν and uι. Furthermore, let 1A(sν) : S → {0, 1} indicate whether there is a cable entering
or leaving an intermediate node sν . The definition of the WFCIP is then given by:

Problem 1. We are given a set of cables K = {k1, ..., k|K|} including their costs c :
K → Q≥0 and capacities µ : K → N. The input furthermore contains a set of points
V = {u1, ..., u|V |} in the Euclidean plane including turbines T = {t1, ..., t|T |} and sub-
stations R = {r1, ..., r|R|}. Additionally there are turbines’ weight b : T → N and the
substations’ capacities rµ : R → N. The objective of the Wind Farm Cable Installation
Problem (WFCIP) then is to find the cable installation {aiν,ι}1≤i≤|K|,uν ,uι∈V of minimum
cost

∑
uν ,uι∈V

∑|K|
i=1 dist(u

ν , uι) · c(ki) · aie which connects every turbine with exactly one
substation over one distinct path. This cable installation thereby needs to ensure for every
turbine that the installed cables along the path Pν used by turbine tν to send its weight bν
to the substation support the corresponding flow such that the flow is not split. Further-
more, the installation must connect only that amount of turbines to a substation which is
supported by the substation’s capacity µr.

From this definition we see that the WFCIP is a multi-source multi-sink problem which
consists of a flow problem and an allocation problem. In this thesis, though, we deal with
a subproblem which neglects the allocation of turbines to substations and only regards one
substation. The problem is described in the following.

2.2. Substation Cable Installation Problem

In this thesis we deal with a subproblem of the WFCIP in which we only regard the
connection of a set of turbines T to one substation r. Accordingly, we call this subproblem
the Substation Cable Installation Problem (SCIP).
Again we are given a set of points V = {u1, ..., u|V |} in the Euclidean plane which can

be connected via a given set of cable types K = {k1, ..., k|K|}. This time, though, the set
of nodes only comprises the set of turbines T and one substation, i.e. V = T ∪ {r}.
Furthermore, we assume that the number of turbines (and therefore their total power

generation) is in compliance with the capacity restriction of the substation. Apart from
that all requirements and assumptions made for the WFCIP hold as well for the SCIP.
By regarding only one substation we transform the WFCIP into a single-sink problem.

The allocation is already fixed to this substation due to the problem input.
The aim of the SCIP is to find a cost-minimal cable installation which connects every

turbine with the sink such that all the power generated at the turbine is send to the sink
over a path with unsplittable flow.
The subproblem can then be defined as follows:

Problem 2. We are given a substation r and a set of turbines T = {t1, ..., t|T |} as input
points V . The input furthermore contains the turbine weights b : T → N and a set of
cables K = {k1, ..., k|K|} including their costs c : K → Q≥0 and capacities µ : K → N.
The objective of the Substation Cable Installation Problem (SCIP) is then to find the cable
installation {aiν,ι}1≤i≤|K|,uν ,uι∈V of minimum cost

∑
uν ,uι∈V

∑|K|
i=1 dist(u

ν , uι) · c(ki) · aie
which connects all turbines tν ∈ T with the substation r over a distinct path such that the
installed cables ensure an unsplittable flow of each turbine weight to the substation.

For the ease of notation let us define ci = c(ki), µi = µ(ki) and bν = b(uν). Further-
more, please note again that we assume that every turbine weight is the same. We call
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this property uniform turbine weight which is in contrast to the non-uniform weight with
arbitrary positive values for bν . Since the turbine weight is uniform we set bν = 1 and scale
the cable capacities accordingly if needed.

2.2.1. Previous work

In the literature we can already find some articles dealing with the cable installation in a
wind farm for one substation.

Fagerfjäll [10] for example formulates a mixed-integer linear program (MILP) for
maximising the power production as well as a MILP for minimizing the infrastructure
costs. For the latter model cost occurring by foundations of a turbine, roads, cables and
the location of the transformer station (substation) are considered [10, p. 10-13]. Cables
are along roads [10, p. 11] and therefore the cable installation depends on the cable costs
and on the road costs. The two MILPs can be combined but as Fagerfjäll [10] states
it is common to solve the optimal infrastructure problem once the location of the wind
turbines are fixed [10, p. 11].

Dutta [9] optimizes the collector system design with regard to the trenching length.
Therefore, she uses in a first algorithm a minimum spanning tree algorithm which is im-
proved in a second version by allowing Steiner points. Since in a practical setting it might
be necessary that the number of turbines is limited on a feeder, Dutta [9] uses k-means
clustering for restricting the maximum number of turbines [9, p. 86]. The MST is then
calculated for each cluster. For the resulting tree of the algorithms the cable installation
can be calculated by selecting a terminal node and choosing the best cable for transporting
the power of the terminal node along its incident edge. The terminal node and its incident
edge is then deleted from the tree and the power transported to the adjacent node is added
to this one. Thereby, power losses on the cable are considered.
Instead of optimizing the trenching length, the works of Hertz et al. [20] and Berzan

et al. [2] deal with the optimal cable installation such that the installation costs are
minimized. Thereby, Hertz et al. [20] uses a MILP formulation and cutting planes
methods to calculate the optimal design for the single sink case. The model’s input consists
of a graph G = (V,E) with E representing the set of transmission lines available for
connecting the turbines to the substation and V being a set of nodes representing the
turbines, the substation and transmission line endpoints. Their approach assumes that
two cable types are available, one for underground and one for above-ground connections
of nodes in V . At each edge a certain number of parallel cables of one type can be used.
For the cable cost they regard a cost structure in which an additional cable copy along
one edge does not cost more than the installation of the previous copy of that cable. The
costs are non-uniform and the flow is modeled as unsplittable. Hertz et al. [20] state
that their model can be modified such that multiple cables for each edge of the graph is
regarded. Though, their most efficient cutting planes assume a consecutive use of the same
type of cable which is mostly the case only in their unmodified model.

Berzan et al. [2] also define the SCIP. As for the WFCIP they do provide an algorithm
for the single-cable type version of the problem but not for the multi-cable one. For their
model they consider costs which take into account the type of cable and the terrain used
by the installation. Along an edge one cable type can be installed. Due to cable capacity
and the tree constraint for their solution the flow is unsplittable. In the single cable setting
Berzan et al. [2] solve the SCIP by applying an algorithm for the Capacitated Minimum
Spanning Tree (CMST) Problem.
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2.3. Literature review

Since the approaches to the SCIP found are only a few we have looked for related problems
to identify algorithms to apply on the SCIP as well.
A well researched related problem is the Single-Sink Buy-at-Bulk (SSBB) problem which

is the single sink variant of the Buy-at-Bulk (BB) problem. The SSBB was introduced by
Salman et al. [31] and has gotten further consideration over the following years leading
to several approximation algorithms for the BB and its variants. Following Grandoni
et al. [16, p. 190] we define the SSBB as follows:1

Problem 3. As an input for the problem we are given an undirected Graph G = (V,E),
with edge weights w : E → Q≥0, a subset of nodes T ⊂ V called sources and their integer-
valued demand b : T → N, a sink r ∈ V and a set of cables K, with capacities µ1 ≤ ... ≤ µ|K|
and costs c1 ≤ ... ≤ c|K|, where ci

µi
is decreasing in i (economies of scale). The objective of

the Single-Sink Buy-at-Bulk (SSBB) is to find a cable installation {aiν,ι}1≤i≤|K|,e={uν ,uι}∈E
of minimum cost

∑
e∈E

∑|K|
i=1w(e) · ci · aie such that from every source tν ∈ T bν units of

flow can be routed to r without surpassing the capacity installed on an edge e ∈ E.

From this definition we see that the SSBB is quite similar to the SCIP. The only dif-
ferences are that the SSBB demands economy of scale for the cable type input and the
problem also allows Steiner points which we rule out in our definition of the SCIP by setting
V = T ∪ {r}. Furthermore, the SSBB is defined on general graphs and not only on points
in the Euclidean plane. This special case is dealt with in the BB literature nevertheless by
Salman et al. [31] and Czumaj et al. [8].
In addition, the SSBB has been regarded in different variations. Apart from the multi-

sink setting, the literature also deals with the cases where the cable costs are uniform or
non-uniform, i.e. where the costs along an edge are the same for every edge or can be
different. A further distinction on the problem is whether it takes into account splittable
or unsplittable flow. In the context of BB the definition of unsplittability differs from ours,
though. Here the solution is not split if it is a tree. Hence, a splitting along cables is not
ruled out.
However, one can easily see that for every problem instance of the SCIP there is at least

one optimal solution which is also a tree solution. This is due to the Euclidean plane
setting. If two outgoing paths from a node uν to the sink exist in a feasible solution of the
SCIP then the weight of uν can only flow to the sink over one of these paths due to the
unsplittability constraint. The other path, however, must have a predecessor node uι of uν

which we can directly connect to the successor uω of uν such that the costs for this path
are at least the same due to the triangle inequality in the Euclidean plane.2

The SSBB has been also studied under the Single-Sink Network Loading Problem (SSNLP)
[23, p. 91]. The Network Loading Problem (NLP) itself was first termed by Magnanti
et al. [25]. In this problem a capacitated network is modeled for which no variable flow
cost exist and the capacity for carrying the flow is determined by the amount of cables
installed [25, p. 143]. As in the BB problems the aim is to minimize the overall cable costs
such that the source-sink demands are met [25, p. 143].3 As for BB, several variants exist

1Grandoni et al. [16] use this definition for what they call the Cable Single-Sink Buy-at-Bulk (CAB-
SSBB) problem. The CABSSBB, however, is equivalent to the original definition of Salman et al. [31]
for the SSBB.

2In fact the costs are always reduced as long as all three nodes uι, uν and uω are not on one line.
3Please note that we adapted the terminology used in the NLP literature to the one in the BB context. In
the NLP literature facilities are installed along edges instead of cables. If the flow splits it is bifurcated.
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in the literature for the NLP differing in the handling of splittability, number of sinks and
number of cables . However, we will focus on approaches for solving the single-sink variant
with multiple cables. The single-sink variant of the NLP whose node set contains only
sources and one sink is also referred to as Local Access Network Design Problem (LANDP)
[23, p. 89].
For the single cable variant of the SCIP Berzan et al. [2] use a CMST approach

to solve it. Gamvros et al. [11] [12] introduced the Multi-level Capacitated Minimum
Spanning Tree (MLCMST). In contrast to the CMST in which we have only one facility
with a fixed capacity the CMST has a set of facilities to choose of for finding the minimum
cost tree to transport the traffic from the sources to a sink [11, p. 100]. In accordance to
Gamvros et al. [12, p. 348], we define the MLCMST as follows:

Problem 4. We are given a graph G = (V,A) with a set of nodes V = {u1, ..., u|V |} and
a set of edges E. One node r ∈ V is defined as the sink and the others as source nodes
T = {t1, ..., t|T |}. Let bν : E → N be the node weight of tν which has to be transported
to the sink. In addition, we are given a set of cables K = {k1, ..., k|K|}, with capacities
µ1 < ... < µ|K| and costs ci,νι for every edge edge (uν , uι) ∈ E and cable type ki, which
can be installed between uν and uι. The objective of the Multi-level Capacitated Minimum
Spanning Tree (MLCMST) is then to find the cost minimal tree on G which supports the
traffic from the sources to sink.

Gamvros et al. [12, p. 349] restrict the number of cables which can be installed along
one edge to 1. However, using dynamic programming we can calculate a mapping which
assigns the cost minimal cable type combination to capacity values. This mapping, hence,
allows the installation of multiple cables and cable types by only specifying the capacity
to be installed. Furthermore, they assume that the cost function obeys economies of scale
as well. According to Gamvros et al. [12, p. 349], the MLCMST is the version of the
LANDP in which the solution is restricted to be a tree.
Among the literature for the problems SSBB, SSNLP and MLCMST we have searched

for further approaches which can be applied to the SCIP. In the following we present the
found literature and state our choice of algorithms for the later implementation at the end
of this chapter.

2.3.1. Findings

Buy-at-Bulk literature

For solving the SSBB Problem several approximation algorithms have been presented in
the computer science literature. Salman et al. [31] [32] introduce this problem and also
present an O(min{log B

µ1
, log lmax

lmin
}) approximation algorithm for the SSBB with points in

the Euclidean plane, where B is the total demand, µ1 the minimum capacity of all cables,
lmax the biggest and lmin the shortest distance between two points. For their algorithm
they use a uniform cost function. Their algorithm first divides the plane successively into
squares. The topmost square is centered at the sink covering all other nodes. Each square
is split into 4 subsquares again leading to a center in the middle of the square where all
subsquares intersect. This is done recursively until either the lowest level has side length
of at most lmax

(D/µ1) units or each square contains one source node at most. In the next phase
of the algorithm the flow is routed from the sources through the centers to the sink and
the cables installed accordingly. However, if a square containing a source has the sink at
one of his corners the source is not connected to next level’s center but to the sink directly.
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Meyerson et al. [28] present a randomized approach which approximates the SSBB
problem within an expected factor of O(log |T |) on a general graph. They consider non-
uniform cost. The flow is modeled indivisible leading to a tree solution. They solve the
SSBB by transforming the problem into one of the Cost-Distance Problem and running
their algorithm for this problem. Thereby, they replace every edge e by |K| parallel edges
ei and assign each of these parallel edges with fixed cost we ·ci and incremental costs we · ciµi .
Their Cost-Distance algorithm iteratively finds a matching on a subset of nodes Vi. This
subset is reduced in every iteration since the matched nodes are randomly aggregated such
that both are represented by only one. The edges being part of a matching during the
execution of the algorithm form the later edges of the output connected graph minimizing
the cost. This algorithm is derandomized by Chekuri et al. [6].
In their work Garg et al. [13] provide an approximation of the SSBB with a ratio of

O(|K|). For their approach they take an undirected graph as input. The flow is unsplit-
table. The cable cost are uniform. For solving the SSBB Garg et al. [13] transform
the problem instance into one of a related problem, namely the Deep-Discount problem.
The Deep-Discount Problem approximates the SSBB by a factor of 2 [13, p. 173]. In order
to solve it they first prune the set of available cables. Then they solve a relaxation of an
integer linear program (ILP) formulation of the Deep-Discount Problem optimally. Using
this solution they use a rounding algorithm to get an integral solution. This algorithm in-
crementally builds a tree on a subset of nodes by using Steiner tree and Light Approximate
Shortest-Path Tree4 algorithms installing lower capacities each round.

Talwar [35] present a modified version of the work of Garg et al. [13] and prove a
constant integrality gap O(1) = 216 for their own version. Their modifications contain
a different cable pruning. Furthermore, Talwar [35] leave out one constraint of the ILP
used by Garg et al. [13]. In the rounding algorithm they change the subset selection for
the tree building at each step.
The first constant approximation algorithm for the SSBB has been provided by Guha

et al. [17] with a ratio of O(1) = 292. Their algorithm is randomized coping with the
case of a uniform, cable cost function and splittable flow. It works on a pruned cable set
K ′ and iteratively installs cable types ki ∈ K ′. Let Vi be the set of nodes with positive
demand. In each iteration cable type ki is installed. The corresponding cable installation
is determined by calculating a Steiner forest on Vi and routing the flow to one random
node in each tree. On the node set V several shortest path trees are calculated and rooted
at a subset of V . The aggregated flows at the Steiner Forest nodes are then sent to the
root of their shortest path tree and then rerouted to another randomly chosen node in this
tree. In each iteration cable type i supports the flow shifts. The set Vi decreases with every
iteration and the flow is sent to the root in the end.

Gupta et al. [18] present an algorithm which is based on the one of Guha et al. [17]
but with better approximation ratio, namely O(1) = 72.8. Their approach keeps the idea
of iteratively installing cable types with higher capacity and aggregating flow at a subset
of nodes in each iteration using Steiner tree and shortest path techniques. However, their
algorithm always makes sure that at the beginning of each iteration the aggregated flow
at a node is 0 or µi and in each iteration cable type ki and ki+1 is installed. Furthermore
they assume that the cables’ capacities µi and costs ci as well as the total source weight B
are to a power of 2. The core of their approach is an aggregation algorithm which allows
the shift of flows along a tree such that each node’s aggregated weight is either 0 or a given
value U and the capacity to support the shift does not succeed U . The main idea is then to

4A Light Approximate Shortest-Path tree ensures that the total tree length and the length from any node
to the sink are within given constants (see definition in[13, p. 179]).
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randomly select a subset of the nodes with positive demand µi in each iteration and collect
the demand from the nodes which are not part of this subset at the nodes of the subset.
Building a Steiner tree on the subset, using the aggregation algorithm and a subsequent
random redistribution the flow is aggregated at B

µi+1
nodes such that the new node weight

is µi+1 and the cables installed for this aggregation are of type ki+1. The number of nodes
in the selected subset decreases with each iteration and in the end all node weight is sent
to the sink.
In subsequent work Jothi and Raghavachari [21], Grandoni and Italiano [15]

and Grandoni et al. [16] improved the ratios to O(1) = 65.49, O(1) = 24.29 and
O(1) = 20.41 by slight changes to the assumptions on the cables and total demand as well
as to the random selections during the algorithms.
The algorithm by Gupta et al. [18] and its improvements are designed for the splittable

flow setting. Jothi and Raghavachari [21] provide a version for the work of Gupta
et al. [18] which transfers the algorithm to the unsplittable flow setting with approxi-
mation ratio O(1) = 145.6 while Grandoni et al. [16] point out a more general result
which allows the transformation of a splittable solution to an unsplittable one worsening
the ratio by a factor of 2.
Furthermore, Zuylen [38] present the derandomized versions of the works of Gupta

et al. [18] and Grandoni and Italiano [15]. The ratios are a little bit worse, namely
O(1) = 80 and O(1) = 27.72.

Czumaj et al. [8] deal with the SSBB in the Euclidean plane setting. They consider
the flow as splittable and deal with uniform cable costs. The algorithm first reduces the
problem instance. Therefore, it connects all source with higher weight than the maximum
cable capacity µ|K| directly to the sink over b bν

µ|K|
c copies of cable type k|K| using the

shortest path. Furthermore, a grid over the plane is created and for every square containing
nodes with a total amount of at least µ|K| a Steiner tree is generated which is also directly
connected to the sink. Hence, after this reduction every node and every square has a weight
less than µ|K| left. On this reduced instance a quadtree is calculated which contains one
node in each leaf forming a division of the plane into squares. This allows a bottom-up
dynamic programming procedure solving the problem of finding a multigraph connecting
all sources in a square optimally along defined portals at the squares’ borders.

Single-Sink Network Loading Problem

Berger et al. [1] present a tabu search approach for the single-sink multiple-cable un-
splittable NLP. In their tabu search they use a long term adaptive memory approach for
finding a start point after the restart of the search and the k-shortest path algorithm for
creating the neighbourhood structure. They tested their algorithm on some randomly gen-
erated graphs with 50, 100 and 200 vertices (50% of them being demand vertices) and
9 cable types. In experiments they compared their approach with the results of a 1-opt
and 2-opt neighbourhood search heuristic and showed that they improve those heuristics’
results on average by a small percentage.

Gendron et al. [14] improve the work of Berger et al. [1] by providing three
other diversification strategies for the determination of the start point. In experiments
they show that two of the three diversification strategies perform better than the one in
Berger et al. [1].

Salman et al. [33] solve the LANDP exactly. They consider three MILP formulations
and a branch-and-bound algorithm. The basic idea of that branch-and-bound algorithm
is to utilize the lower envelope of the cost function, which is derived from the cables, to
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calculate the bounds at a branch-and-bound tree node.
Ljubić et al. [23] present a branch-and-cut algorithm with Bender cuts for the LANDP

and compare them with three MILP formulations. For the Bender cuts they introduce
several separation approaches. In experiments they showed that their approaches mostly
outperform the approach of Salman et al. [33].

Multi-level Capacitated Minimum Spanning Tree

Gamvros et al. [11] introduce the MLCMST problem and present a genetic algorithm
and a MILP formulation against which they compare the experimental results of their
genetic algorithm. In a consecutive work Gamvros et al. [12] revise their genetic algo-
rithm and introduce a savings based heuristic, two local search heuristics and three MILP.
Starting from a star solution the savings based heuristic iteratively searches for cable up-
grades which lead to a cost reduction after rerouting additional flows over the potentially
new cable. The two local search heuristics use the savings based heuristic in their initial
start point and their evaluation of the improvement. The genetic algorithm makes use
of the previous heuristic types as well. They are used in the initialization, selection and
mutation step. In their experiments they compare the relaxation of the MILP formulations
with each other on small instances. The heuristics are tested on small (up to 30 source
nodes) and bigger instances (up to 150 source nodes). Their results are compared to the
solutions resp. lower bounds found by one of MILP and its relaxation. The experiments
showed that the genetic algorithm produces the best approximations to the benchmark
instances but also need the most amount of time. The quality of the savings heuristic is
the worst but therefore the computation time is significantly lower than any other of the
tested approaches.

Martins et al. [27] present an ILP formulation for the MLCMST which they use for
their main contribution, a GRASP approach. This "multi-start meta heuristic" [27, p. 138]
creates subsets of V \{r} and solves the MLCMST exactly on the subset including the sink
with the ILP. In a next step the feasible solution found is improved in a local search phase
which also includes the usage of the ILP on smaller MLCMST instances. In experiments
they test their approach with the instances given by Gamvros et al. [12] and compare
the found upper bounds. Most of the time the GRASP approach by Martins et al. [27]
finds better upper bounds than the approaches by Gamvros et al. [12].

Uchoa et al. [37] add cutting planes to the ILP formulation which Martins et al. [27]
use. They replace the ILP solving steps with the corresponding Branch-and-Cut algorithm
in the according parts of the GRASP approach of Martins et al. [27]. Furthermore,
they extend the local search phase with a routine which prevents the call of the Branch-
and-Cut algorithm on already regarded subproblems. In experiments on the same problem
instances they can further improve the upper bounds especially for the hardest instances.
The algorithms of Gamvros et al. [12] assume unit demand, i.e. a node weight of

one. Pappas et al. [29] extend the savings heuristic of Gamvros et al. [12] to non-
unit demand and derive two more heuristics from it which regard more possibilities of
node upgrades. In experiments they also included the heuristics in a Branch-and-Cut algo-
rithm. The new heuristic generally perform better than the adapted one from Gamvros
et al. [12] regarding the solution value but worsen the computation time. The inclusion
in the Branch-and-Cut algorithm further improves the solution values.
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2.3.2. Results

In the found literature there are different ways to tackle the SCIP and related problems.
For our experimental study we have chosen five different approaches which we adapt and
implement for the SCIP.
For the calculation of an exact solution we use the MILP presented by Hertz et al. [20].

Since their formulation is designed for the two cable case we have to transfer it to the multi-
cable case. As Hertz et al. [20, p. 96] state themselves, the MILP can be easily adapted
to the later case.
The formulation of Hertz et al. [20] is quite complex, though. Hence, we also have a

closer look at the ILP formulation used in Martins et al. [27] and Uchoa et al. [37].
In addition, we also want to regard some heuristics for the SCIP. Thereby, we have

decided to neglect meta-heuristics. Therefore, our choice restricts to approaches from the
SCIP, SSBB and the MLCMST literature since in the SSNLP we have found only meta-
heuristic and exact approaches.
From the SCIP literature we apply the idea to use a Minimum Spanning Tree (MST)

approach to solve the SCIP as is also done by Dutta [9].
Since, Grandoni et al. [16] provides the best approximation ratio and the algorithmic

idea has been regarded by several authors in the SSBB literature we have decided on the
implementation of this algorithmic approach. Hence, we do not implement an approach
of the SSBB literature which is already set in the Euclidean plane. One of the reasons for
this is that it is essential for these approaches to install Steiner points. Therefore, they
cannot be used for the SCIP. For Grandoni et al. [16], however, it is easy to abolish
the Steiner point creation.
Among the heuristics for the MLCMST we have decided to implement all heuristics

presented by Pappas et al. [29].
The algorithms and their adaption are discussed in the following chapter.
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3. Implementation

As discussed in Subsection 2.3.2 we identified five approaches which we adapt to the SCIP
and implement. In addition, we also present one new ILP formulation and one heuristic
which is inspired by the ones of Pappas et al. [29].
In the following we present the adaption of the MILP formulation of Hertz et al. [20]

in Section 3.1. In Section 3.2 our ILP formulation of the SCIP is explained. The ILP
formulation used by Uchoa et al. [37] is described in Section 3.3. The heuristics are
illustrated in the following. We show the MST approach in Section 3.4, the approximation
algorithm of Grandoni et al. [16] in Section 3.5 and the heuristics of Pappas et al. [29]
in Section 3.6. Finally, we introduce our heuristic in Section 3.7.

3.1. An adapted exact mixed-integer linear program

In their work Hertz et al. [20] deal with a SCIP version which is restricted to two cable
types and a uniform turbine weight of 1. They approach the problem by modeling a MILP
for finding the optimal solution. From this MILP we derive a MILP formulation which
is also applicable for more than two cable types. For a better differentiation we call the
adapted MILP the Two-Path MILP throughout the rest of this thesis.
The MILP models the problem as a flow problem from one source 0 to a sink r. Given

an input graph G = (V,A) we therefore have to include the fictitious source 0. This node is
then connected to all turbines tν ∈ T , i.e. to the original sources. Following these changes
we define V ′ = V ∪{0}, A′ = A∪{(0, tν)|∀tν ∈ T} and G′ = (V ′, A′). Furthermore, Hertz
et al. [20] distinguish two subsets of A′. The set A′1 contains all arcs (uν , uι) in A′ for
which there are no opposite arcs (uι, uν) in A′. All arcs which have an opposite arc in A′

are included in E as edges {uν , uι}. In addition, let P2 be the set of node combinations
(uν , uι, uω) which define a path of length 2 in G′.
In our setting graph G contains all points in V and the arc set A consists of all possible

connections between two points and the connection of every turbine to the sink. Conse-
quently, A′1 contains arcs (0, tν) and (tν , r) only.

Along every arc all cable types ki can be installed. Though, the number of copies for
each cable type is restricted by |Li|. We set this limit to |Li| = d Bµi e. This way we can
support the highest possible flow in the graph with every cable type.

Hertz et al. [20] assume that the cost of a link installation decreases with every
additional link installed. We drop this assumption and use the same cost for every copy of
a cable type.
For their model Hertz et al. [20] define four types of variables. Variable xli,νι is a

binary decision variable which is 1 if along arc (uν , uι) cable type ki is installed on link l.
The flow along arc (uν , uι) using link l of cable type ki is represented by xli,νι ≥ 0. The
other two variables are defined for all node combinations in P2 and are utilized later on to
assure unsplitability. Like xli,νι variable y

ll′
ij,νιω is a binary variable. It indicates whether

the flow over (uν , uι) using link l of cable type ki leaves uι to uω over l′ of cable type kj .
Analogously, zll′ij,νιω ≥ 0 defines the flow entering uι from uν over link l of cable type ki

and then leaving over arc (uι, uω) over link l′ of cable type kj .
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In the following we will discuss the MILP in more detail.
Total cost minimization The aim of the MILP is to minimize the total cost. Therefore,

we regard every cost which might occur in the graph. Costs dist(uν , uι) · ci occur if we
install a cable type ki on a link l along an arc ν, ι, i.e. if tli,νι = 1. Hence, our minimization
objective is defined as follows:

min
∑

(uν ,uι)∈A′

|K|∑
i=1

|Li|∑
l=1

dist(uν , uι) · ci · tli,νι

Flow conservation constraint Since we want to send all flow from the source 0 to the
sink r we have to make sure that every node in between outputs all its incoming flow. In
set P (uν) we store all incoming and in set S(uν) all outgoing arcs. In order to calculate
a node’s input flow we have to sum over xli,ιν for all incoming edges (uι, uν) and all their
individual links l ∈ Li ∀ki ∈ K. Similarly, the outgoing flow is computed over xli,νι for all
outgoing arcs and their links. The difference of the incoming flow to the outgoing flow must
be 0 for all nodes except 0 and r. For the source 0 the difference must equal −B since all
energy from the turbines must be output. Accordingly, the difference should be B for the
sink because all the energy is collected there. Putting these thoughts into a mathematical
formulation we get the following constraints:

∑
(uι,uν)∈P (uν)

|K|∑
i=1

|Li|∑
l=1

xli,ιν −
∑

(uν ,uι)∈S(uν)

|K|∑
i=1

|Li|∑
l=1

xli,νι =


|T | uν = r

−|T | uν = 0

0 otherwise
∀uν ∈ V ′

Power output constraint Since all flow origins at 0 every turbine has to receive its
rating as an input flow. Therefore, the following constraint sums up all flow over an arc
(0, tν) and restricts this sum to be one, i.e. the assumed power rating of a turbine.

|K|∑
i=1

|Li|∑
l=1

xli,0ν = 1 ∀tν ∈ T

Link capacity constraint With the link capacity constraints as formulated as below
we achieve two things: First, we restrict each flow along one link l to the capacity µki of
the corresponding cable type ki. Second, we do not allow any flow over the link if the link
is not installed, i.e. if tli,νι = 0.

xli,νι ≤ µi · tli,νι ∀(uν , uι) ∈ A′,∀l ∈ Li,∀ki ∈ K

Proper usage of variables tli,νι As we know from the definition of E there are arcs
in G′ which have an opposite arc. Since the limitation of links holds for both directions
we need to make sure that link l is installed and therefore used in only one direction. The
following constraints therefore force tli,νι and t

l
i,ιν to be 0 if the other one is 1 for all {uν , uι}.

tli,νι + tli,ιν ≤ 1 ∀{uν , uι} ∈ E,∀l ∈ Li,∀ki ∈ K

Furthermore, we require that a link l+ 1 can only be utilized if l of the same cable type ki

is installed already. For this we distinguish two cases. The first one regards arcs ν, ι ∈ A′1.
Since we know that there are no opposite arcs in A′1 variable tl+1

i,ιν can only be one if tli,νι is
one as well. This is formulated in the following constraints:

tl+1
i,νι ≤ t

l
i,νι ∀(uν , uι) ∈ A′1, ∀l ∈ Li, l < |Li|, ∀ki ∈ K
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The second case deals with edges {uν , uι} ∈ E. Since a link can be used in both directions
we now have to check whether tli,νι or t

l
i,ιν equal 1. Due to the first constraint in this group

only one of these variables can be 1 at a time. If one of the variables either tl+1
i,ιν or tl+1

i,ιν

can be one as well. This leads to the following formulation:

tl+1
i,νι + tl+1

i,ιν ≤ t
l
i,νι + tli,ιν ∀{uν , uι} ∈ E,∀l ∈ Li, l < |Li|, ∀ki ∈ K

Unsplittable flow With the following constraints we model the unsplittable flow prop-
erty of the SCIP. For this purpose we use the path variables yll′ij,νιω and zll′ij,νιω. Since z

ll′
ij,νιω

represents the flow going over link l of cable type ki on arc (uν , uι) and then over l′ of kj

on (uι, uω) this flow must equal the flow represented by xli,νι and x
l′
j,ιω. The following two

constraints relate the two variable types accordingly.

∑
(uν ,uι)∈P (uι)

|K|∑
i=1

|Li|∑
l=1

zll
′

ij,νιω = xl
′
j,ιω ∀(uι, uω) ∈ A′, uι 6= 0, ∀l′ ∈ Ll′ , ∀kj ∈ K

∑
(uι,uω)∈S(uι)

|K|∑
j=1

|L
kj
|∑

l=1

zll
′

ij,νιω = xli,νι ∀(uν , uι) ∈ A′, uι 6= r, ∀l ∈ Li, ∀ki ∈ K

Remark that the first constraints are not applied to uι = 0 because there is no arc from
any node to 0 and hence, P (0) = ∅. Analogously, the second constraints only hold for
nodes uι 6= r.
The flow along a path P2 is obligated to meet the capacity constraints as well. For

now the introduced capacity constraints only ensure that each flow on one link meets the
corresponding cable’s capacity. For zll′ij,νιω we have to make sure that the flow does not
exceed the capacity µki of cable type ki nor µkj of cable type kj . Hence, we restrict the
flow zll

′
ij,νιω to the minimum of µki and µkj if yll

′
ij,νιω = 1. If the flow from uν to uι over l of

cable type ki is not output at uν to uω over l′ of kj , i.e. yll′ij,νιω = 0, the flow must equal 0
as well. The path capacity constraint is then given by

zll
′

ij,νιω ≤ min(cki , ckj ) · yll
′

ij,νιω ∀(uν , uι, uω) ∈ P2, ∀l,∈ Li, ∀l′ ∈ Lkj , ∀ki, kj ∈ K.

With the flow conservation constraint we already model the fact that all input flow must
be output for every node except the sink.1 Consequently, tli,νι = 1 implies that there must
be a yll′ij,νιω = 1 in order to allow an output of the corresponding flow from uν to uι over link
l of cable type ki. Otherwise, if tli,νι = 0 there cannot be any flow over the corresponding
link and consequently over any path including this link. Hence, the following constraint
ensures that exactly one yll′ij,νιω equals 1 if tli,νι equals 1 and every yll′ij,νιω is 0 if tli,νι is 0.

∑
(uι,uω)∈S(uι))

|K|∑
j=1

|L
kj
|∑

l′=1

yll
′

ij,νιω = tli,νι ∀(uν , uι) ∈ A′, uι 6= r, ∀l ∈ Li, ∀ki ∈ K

The full MILP is presented below.

1In case of the ficticous source the total turbine weight must be output.
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min
∑

(uν ,uι)∈A′

|K|∑
i=1

|Li|∑
l=1

dist(uν , uι) · ci · tli,νι [3.1]

s.t.
∑

(uι,uν)∈P (uν)

|K|∑
i=1

|Li|∑
l=1

xli,ιν −
∑

(uν ,uι)∈S(uν)

|K|∑
i=1

|Li|∑
l=1

xli,νι =


|T | uν = r

−|T | uν = 0

0 otherwise
∀uν ∈ V ′

[3.2]
|K|∑
i=1

|Li|∑
l=1

xli,0ν = 1 ∀tν ∈ T

[3.3]

xli,νι ≤ µi · tli,νι ∀(uν , uι) ∈ A′,∀l ∈ Li, ∀ki ∈ K
[3.4]

tli,νι + tli,ιν ≤ 1 ∀{uν , uι} ∈ E,∀l ∈ Li, ∀ki ∈ K
[3.5]

tl+1
i,νι ≤ t

l
i,νι ∀(uν , uι) ∈ A′1,∀l ∈ Li, l < |Li|, ∀ki ∈ K

[3.6]

tl+1
i,νι + tl+1

i,ιν ≤ t
l
i,νι + tli,ιν ∀{uν , uι} ∈ E,∀l ∈ Li, l < |Li|, ∀ki ∈ K

[3.7]

∑
(uι,uω)∈S(uι)

|K|∑
j=1

|L
kj
|∑

l=1

zll
′

ij,νιω = xli,νι ∀(uν , uι) ∈ A′, uι 6= r, ∀l ∈ Li, ∀ki ∈ K

[3.8]∑
(uν ,uι)∈P (uι)

|K|∑
i=1

|Li|∑
l=1

zll
′

ij,νιω = xl
′
j,ιω ∀(uι, uω) ∈ A′, uι 6= 0, ∀l′ ∈ Ll′ , ∀kj ∈ K

[3.9]

zll
′

ij,νιω ≤ min(cki , ckj ) · yll
′

ij,νιω ∀(uν , uι, uω) ∈ P2, ∀l,∈ Li,∀l′ ∈ Lkj ,∀ki, kj ∈ K
[3.10]

∑
(uι,uω)∈S(uι))

|K|∑
j=1

|L
kj
|∑

l′=1

yll
′

ij,νιω = tli,νι ∀(uν , uι) ∈ A′, uι 6= r, ∀l ∈ Li, ∀ki ∈ K

[3.11]

tli,νι ∈ {0, 1} ∀(uν , uι) ∈ A′,∀l ∈ Li, ∀ki ∈ K
[3.12]

xli,νι ≥ 0 ∀(uν , uι) ∈ A′,∀l ∈ Li, ∀ki ∈ K
[3.13]

yll
′

ij,νιω ∈ {0, 1} ∀(uν , uι, uω) ∈ P2, ∀l,∈ Li,∀l′ ∈ Lkj ,∀ki, kj ∈ K
[3.14]

zll
′

ij,νιω ≥ 0 ∀(uν , uι, uω) ∈ P2, ∀l,∈ Li,∀l′ ∈ Lkj ,∀ki, kj ∈ K
[3.15]
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3.2. A new exact integer linear program formulation

Apart from the adaption of the MILP of Hertz et al. [20] we have also formulated a
new ILP to which we refer as the Path ILP in the remainder of the thesis. The basic idea
is to regard the turbine-sink cable path for every turbine. For each path we ensure that
the flow output at the turbine reaches the sink and that paths once combined in a cable
are not split anymore.
The Path ILP is designed for working directly with the input described in Section 2.1

and Section 2.2. For the further description let E be the set of edges for all possible
connections between two distinct nodes uν , i.e. E = {(uν , uι)|uν ∈ V, uι ∈ V \ {uν}}.
For the formulation of the ILP let xν,ιωi,l be the binary variable which indicates if the power

produced at turbine tν is sent along edge (uι, uω) over copy l of cable type ki. Furthermore,
let aιωi,l represent the decision whether a cable copy l of cable type ki is installed along edge
(uι, uω). Finally, the binary variables yt

ν ,tι
γ and zt

ν ,tι
γ model the state whether there are

two flows from tν and tι entering resp. leaving uγ via different cable copies.
In addition, we define the function f(uω, ki, l) as

f(uω, ki, l) = i · |V |2 + l · |V |+ ω

and the constant ε as

ε =
1

(|K|+ 2) · |V |2
.

The value of function f(uω, ki, l) is unique for every uω ∈ V, ki ∈ K, l ∈ Li and multiplied
by ε the value is always less than 1.
In order to model the unsplitability constraint we introduce two macros IN tν ,tι

γ and
OUT t

ν ,tι
γ which we define as

IN tν ,tι

γ = ε ·
∑

uω∈V \{uι}

|K|∑
i=1

∑
l∈Li

f(uω, ki, l) · (xν,ωγi,l − x
ι,ωγ
i,l )

and

OUT t
ν ,tι

γ =


ε ·

∑
uω∈V \{uι}

∑|K|
i=1

∑
l∈Li f(uω, ki, l) · (−xι,γωi,l ) uι = tν

ε ·
∑

uω∈V \{uι}
∑|K|

i=1

∑
l∈Li f(uω, ki, l) · (xν,γωi,l ) uι = tι

ε ·
∑

uω∈V \{uι}
∑|K|

i=1

∑
l∈Li f(uω, ki, l) · (xν,γωi,l − x

ι,γω
i,l ) otherwise

These macros are 0 only if no flow from turbine tν and tι enters resp. leaves node uγ

(xν,ωγi,l = xι,ωγi,l = 0) or both flows share the same cable copy (xν,ωγi,l −x
ι,ωγ
i,l = 0). Otherwise,

if only flow from one turbine or flow from both turbines enters resp. leaves over two separate
cables the macros differ from 0. To explain this more in detail let’s assume that xν,ωγi,l and
xι,ωγi,l can be 1 only for one distinct combination of (uι, ki, l) at a node uγ .2 Recall that
function f(uω, ki, l) creates a unique value for each combination (uι, ki, l). Hence, if only
flow from one turbine enters there is exactly one xt,ωγi,l = 1 which is multiplied by the value
of f(uω, ki, l) leading to IN tν ,tι

γ 6= 0. Analogously, this holds for leaving flow and OUT t
ν ,tι
γ

as well. If both turbines send flow over uγ but that flow enters or leaves using a different
2We ensure this assumptions by the combination of turbine output constraints and the flow conservation
constraints.
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link, cable and/or origin resp. destination we get a value ε · (f(uω, ki, l)− f(uω, kj , l′)) 6= 0
due to the uniqueness of f(uω, ki, l). The constant ε then ensures that |IN tν ,tι

γ | < 1 and
|OUT t

ν ,tι
γ | < 1.

Total costs minimization Again the objective of the ILP is to minimize the total cable
installation costs. Hence, we sum over the cable costs for arc (uι, uω) multiplied with the
installation decision variable aιωi,l for all arc, cable and link combinations.

min
∑

(uι,uω)∈E

|K|∑
i=1

|Li|∑
l=1

dist(uι, uω) · ci · aιωi,l

Turbine output constraint Every turbine should output its generated power. Hence,
we force this for every turbine by summing over xν,νωi,l for every node uω ∈ V \{tν} and all
link and cable combinations and requiring this sum to be 1. This ensures that flow from
tν to some node uω exists. The full formulation therefore looks the following:

∑
uω∈V \{tν}

|K|∑
i=1

|Li|∑
l=1

xν,νωi,l = 1 ∀tν ∈ T

Sink input constraint All the output of the turbines should reach the sink r. The
following constraint guarantees this by forcing the input minus the output at the sink to
be as big as the total generated power B.

∑
tν∈T

∑
uω∈V

|K|∑
i=1

|Li|∑
l=1

xν,ωri,l −B =
∑
tν∈T

∑
uω∈V

|K|∑
i=1

|Li|∑
l=1

xν,rωi,l

Flow conservation constraint For every turbine tν there should be a consecutive path
from tν to the sink. Therefore, each node uι ∈ V \{tν , r} which has an input from tν must
have an output for tν as well. By the following constraint, which sums all incoming links
from tν at uι on the left and all outgoing links on the right side of the equation mark, we
enforce that the number of input and output links from one turbine tν is the same.

∑
uω∈V \{uι}

|K|∑
i=1

|Li|∑
l=1

xν,ωιi,l =
∑

uω∈V \{uι}

|K|∑
i=1

|Li|∑
l=1

xν,ιωi,l ∀tν ∈ T, uι ∈ V \ {tν , r}

In combination with the turbine output and the sink input constraint we make sure that
only one link is used as an input and output for each turbine.
Unsplittability constraints In the following we describe the constraints which ensure

the unsplittable flow throughout the network. Here we make use of the macros IN tν ,tι
γ and

OUT t
ν ,tι
γ defined above and relate the variables yt

ν ,tι
γ and zt

ν ,tι
γ to them. Therefore, we

also introduce the binary variables αt
ν ,tι
γ and βt

ν ,tι
γ which we need to model the relation

correctly.
The macros IN tν ,tι

γ and OUT t
ν ,tι
γ differ from 0 if the incoming resp. outgoing flow from

turbines tν and tι use different links. Hence, yt
ν ,tι
γ and zt

ν ,tι
γ need to be 1 in that case. We

ensure this by the following four constraints.

yt
ν ,tι

γ ≥ IN tν ,tι

γ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}

yt
ν ,tι

γ ≥ −IN tν ,tι

γ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}
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zt
ν ,tι

γ ≥ OUT tν ,tιγ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}

zt
ν ,tι

γ ≥ −OUT tν ,tιγ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}

These constraints do not suffice yet to ensure that yt
ν ,tι
γ and zt

ν ,tι
γ are 1 only if two

different links are used. In order to deal with the case that IN tν ,tι
γ = 0 resp. OUT t

ν ,tι
γ = 0

we introduce the following group of constraints. For the further explanation let’s regard
the incoming case and conesequently yt

ν ,tι
γ . The argumentation holds for zt

ν ,tι
γ as well.

In order to guarantee that yt
ν ,tι
γ is 0 if IN tν ,tι

γ = 0 let’s regard the two terms 1+IN tν ,tι
γ −

ε
2 +(1−αt

ν ,tι
γ ) and 1−IN tν ,tι

γ − ε
2 +αt

ν ,tι
γ . One of both terms is smaller than 1 for IN tν ,tι

γ = 0

and for any assignment of αt
ν ,tι
γ . Hence, setting yt

ν ,tι
γ ≤ 1 + IN tν ,tι

γ − ε
2 + (1− αt

ν ,tι
γ ) and

yt
ν ,tι
γ ≤ 1− IN tν ,tι

γ − ε
2 + αt

ν ,tι
γ ensures yt

ν ,tι
γ = 0 for IN tν ,tι

γ = 0.
For the case IN tν ,tι

γ 6= 0 remark that ε
2 < |IN

tν ,tι
γ |.3 Depending on whether IN tν ,tι

γ < 0

or IN tν ,tι
γ > 0 either 1 + IN tν ,tι

γ − ε
2 + (1−αt

ν ,tι
γ ) or 1− IN tν ,tι

γ − ε
2 +αt

ν ,tι
γ becomes smaller

than 1 if αt
ν ,tι
γ = 1 resp. αt

ν ,tι
γ = 0. However, this contradicts with the first constraints for

yt
ν ,tι
γ defined above. So the ILP solver can only find a feasible solution if it adapts αt

ν ,tι
γ

correctly. Hence, by introducing the following four constraints we make sure that yt
ν ,tι
γ

and zt
ν ,tι
γ equal 0 if IN tν ,tι

γ = 0 resp. OUT t
ν ,tι
γ = 0 but in combination with the above

constraints we also force them to be 1 in case IN tν ,tι
γ = 1 resp. OUT t

ν ,tι
γ = 1.

yt
ν ,tι

γ ≤ 1 + IN tν ,tι

γ − ε

2
+ (1− αtν ,tιγ ) ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}

yt
ν ,tι

γ ≤ 1− IN tν ,tι

γ − ε

2
+ αt

ν ,tι

γ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}

zt
ν ,tι

γ ≤ 1 +OUT t
ν ,tι

γ − ε

2
+ (1− βtν ,tιγ ) ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}

zt
ν ,tι

γ ≤ 1−OUT tν ,tιγ − ε

2
+ βt

ν ,tι

γ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}

Finally, we relate yt
ν ,tι
γ with zt

ν ,tι
γ by the following constraints.

yt
ν ,tι

γ ≥ ztν ,tιγ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r}

This way the path of two turbines can only leave a node uγ over two different links if it
already entered uγ over two different ones.
Capacity constraints Each edge has a capacity depending on the cables installed on

it. The flow over this edge must meet these capacity limitations. Therefore, we check for
every edge and the link combinations whether the installed capacity µi · aιωi,l supports the
accumulated flow of all turbine-sink-paths using this edge. The amount of flow thereby
equals the turbine’s weight bν .∑
tν∈T

bν · xν,ιωi,l ≤ µ
i
k · aιωi,l ∀(uι, uω) ∈ E, ki ∈ K, l ∈ Li

As a consequence of this formulation we also enforce xν,ιωi,l to be 0 if aιωi,l = 0.

3The smallest value for |IN tν ,tι

γ | equals ε · f(1, 1, 1) = ε · (|V |2 + |V |) > ε > ε
2
.
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The full ILP formulation is shown in the following:

min
∑

(uι,uω)∈E

|K|∑
i=1

|Li|∑
l=1

dist(uι, uω) · ci · aιωi,l [3.16]

s.t.
∑

uω∈V \{tν}

|K|∑
i=1

|Li|∑
l=1

xν,νωi,l = 1 ∀tν ∈ T [3.17]

∑
uω∈V \{uι}

|K|∑
i=1

|Li|∑
l=1

xν,ωιi,l =
∑

uω∈V \{uι}

|K|∑
i=1

|Li|∑
l=1

xν,ιωi,l ∀tν ∈ T, uι ∈ V \ {tν , r} [3.18]

∑
tν∈T

∑
uω∈V

|K|∑
i=1

|Li|∑
l=1

xν,ωri,l −B =
∑
tν∈T

∑
uω∈V

|K|∑
i=1

|Li|∑
l=1

xν,rωi,l [3.19]∑
tν∈T

bν · xν,ιωi,l ≤ µ
i
k · aιωi,l ∀(uι, uω) ∈ E, ki ∈ K, l ∈ Li [3.20]

yt
ν ,tι

γ ≥ IN tν ,tι

γ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.21]

yt
ν ,tι

γ ≥ −IN tν ,tι

γ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.22]

yt
ν ,tι

γ ≤ 1 + IN tν ,tι

γ − ε

2
+ (1− αtν ,tιγ ) ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.23]

yt
ν ,tι

γ ≤ 1− IN tν ,tι

γ − ε

2
+ αt

ν ,tι

γ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.24]

zt
ν ,tι

γ ≥ OUT tν ,tιγ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.25]

zt
ν ,tι

γ ≥ −OUT tν ,tιγ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.26]

zt
ν ,tι

γ ≤ 1 +OUT t
ν ,tι

γ − ε

2
+ (1− βtν ,tιγ ) ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.27]

zt
ν ,tι

γ ≤ 1−OUT tν ,tιγ − ε

2
+ βt

ν ,tι

γ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.28]

yt
ν ,tι

γ ≥ ztν ,tιγ ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.29]

aιωi,l ∈ {0, 1} ∀(uι, uω) ∈ E, ki ∈ K, l ∈ Li [3.30]

xν,ιωi,l ∈ {0, 1} ∀tν ∈ T∀(uι, uω) ∈ E, ki ∈ K, l ∈ Li [3.31]

yt
ν ,tι

γ , zt
ν ,tι

γ ∈ {0, 1} ∀tν , tι ∈ T, tν 6= tι, uι ∈ V \ {r} [3.32]

3.3. A suboptimal integer linear program formulation

Uchoa et al. [37] develop a rather compact ILP for the MLCMST with few constraints
and only one decision variable. We refer to this ILP as the Flow ILP to distinguish it from
the previous ones. The formulation works on a directed graph G = (V,A) with A having
directed arcs in both directions for every edge e = {uν , uι}, e ∈ E \ {{r, uν}}. For edges
{r, uν} only arcs in direction (r, uν) are allowed. The nodes’ weights bν are interpreted as
demands. The ILP then looks for a capacitated tree which supports the flow from r to
every turbine tν such that the demand at every turbine is met. Along one edge only one
cable can be installed. The solution provides a cable installation which enables collection
of the energy from every turbine at the sink. We only have to reverse the found flow.
The key to the compact formulation is the choice of the binary decision variable xfν,ι

and the requirement that the capacity increases from 1 to the maximum cable capacity

19



M in unitary steps, i.e. µi = i ∀i ∈ [1,M ]. Variable xfν,ι then indicates whether arc ν, ι
is present in the solution and if f amount of flow is sent along ν, ι. The amount of flow
already indicates which capacity has to be installed along which edge due to the unitary
increase requirement for the capacities.
Since Uchoa et al. [37] restrict their ILP to only allow one capacity, i.e. cable, on

one edge and require an unitary increasing capacity we have to transform our cable input.
Therefore, we calculate the optimal cable combination for every flow f ∈ [1, B] as described
in Subsection 3.3.1. By setting M = B we make sure that we can support the flow from
all turbines along one edge. After the transformation our cable set K ′ contains B cable
combinations with capacity µi = i for all i ∈ [1, B].
For the further description let cf be the cost of the cable combination for a flow of

f units, i.e. the costs of the cable combination kf ∈ K ′ with capacity µf . Due to the
transformation the solution of the ILP is not necessarily feasible anymore since the cable
combinations might lead to split flow.4

In the following we will explain the model in more detail.
Total cost minimization With the target function we minimize the total cost of a

capacity installation summing over all possible combinations of edges ν, ι ∈ A and flows
f ∈ [1, B]. The costs for one edge are composed of the distance between the two incident
nodes of the arc, uν and uι, multiplied with the costs per meter cf of the capacity needed for
flow f . If xfν,ι is 1, i.e. over ν, ι flows f amount of flow, the according costs are considered
by the target function.

min
∑
ν,ι∈A

B∑
f=1

dist(uν , uι) · cf · xfν,ι

One output constraintsWith the following constraint we want to make sure that each
node has only one incoming edge and that this edge can only be used for one specific flow
value f . In order to achieve this we sum over xfν,ι for all incoming arcs ν, ι ∈ P (uι) and all
possible capacity values f and require it to be 1 for every node uι except the sink.

∑
ν,ι∈P (uι)

B∑
f=1

xfν,ι = 1 ∀uι ∈ V \ {r}

Flow conservation constraints In order to ensure the flow conservation the incoming
flow must equal the sum of outgoing flow and demand buι for all nodes uι ∈ V \ {r}. The
incoming and outgoing flow of a node uι can be computed by summing all the flow f of
all incoming ν, ι ∈ P (uν) resp. outgoing arcs ν, ι ∈ S(uν) for which xfν,ι = 1 resp. xfι,ν = 1.
This leads to the following formulation:

∑
ν,ι∈P (uι)

B∑
f=1

f · xfν,ι = buι +
∑

(uι,uν)∈S(uι)

B∑
f=1

f · xfι,ν ∀uι ∈ V \ {r}

The full ILP model is given in the following:

4As an example think of two cable types ki and kj with (µi = 2, ci = 1) and (µj = 3, cj = 3). Assume
node uν has an input of 3 units. Then the optimal incoming cable combination is one cable of type kj .
If node uν has a weight of 1 then the output flow is 4. Since the optimal cable combination of a flow
of 4 is using cable type ki twice, the incoming flow is split when output.
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min
∑
ν,ι∈A

B∑
f=1

dist(uν , uι) · cf · xfν,ι [3.33]

s.t.
∑

ν,ι∈P (uι)

B∑
f=1

xfν,ι = 1 ∀uι ∈ V \ {r} [3.34]

∑
ν,ι∈P (uι)

B∑
f=1

f · xfν,ι = buι +
∑

(uι,uν)∈S(uι)

B∑
f=1

f · xfι,ν ∀uι ∈ V \ {r} [3.35]

xfν,ι ∈ {0, 1} ∀ν, ι ∈ E, f ∈ [1, B] [3.36]

In order to speed up the calculation Uchoa et al. [37] also introduced some cutting
planes. However, we could not achieve that speedup in some initial test but got a rather
big slow down. Therefore, we decided to exclude the cutting plane version in our experi-
ments and also omit further description here. We refer the reader to the work of Uchoa
et al. [37] for more details on the cutting planes.

3.3.1. Transformation of the cable input

Since the MLCMST, and hence the formulation of Uchoa et al. [37], only allows the
installation of one cable type along an edge, we define new cable types as combinations of
the cable types given by the input. In order to reduce the complexity we do not consider all
possible combinations but the cost minimal combination for each possible, integral amount
of flow fe along one edge e.
This local problem of finding the minimum cost cable combination which supports flow

f is equivalent to the Minimum Integer Knapsack Problem (MinIKP) (or as we call it from
here on the Minimum Unbounded Knapsack Problem (MinUKP)), as Salman et al. [33]
state.
Following Kellerer et al. [22] we define the MinUKP as follows: Given a set if item

types N = {1, ..., n}, with weight wi and cost pi and a minimum weight c find the cost
minimal combination of item types i ∈ N such that the weight of all item types is at least
as big as the minimum weight c. Thereby, an unlimited number of copies of every item
type can be used. The ILP formulation of the problem looks the following [22, p. 211],[22,
p. 218]:

min

n∑
i=1

pi · xi [3.37]

s.t.
n∑
i=1

wi · xi ≥ c [3.38]

xi ∈ N0 i = 1, ..., n [3.39]

In order to solve the MinUKP we adapt the dynamic programming approach for the
Unbounded Knapsack Problem (UKP) presented by Kellerer et al. [22, p. 220]. The
pseudo-code for our adaption is provided in Algorithm 3.3.1. The basic idea of the approach
is to loop over all input items i ≤ n and check for every possible knapsack capacity µ ≤M
whether the addition of that item leads to a less costly knapsack item set. Therefore, the
currently best cost value and the item whose addition to the knapsack item set leads to

21



Algorithm 3.3.1 Dynammic programming approach for MinUKP
1: function MinUKP(weights, costs, M)

2: value[0]← 0 . Initialization
3: item[0]← 0
4: for µ← 0 to M do . Initialize strucutres value and item with first item
5: value[µ]← d µ

weights[1]e · costs[1]

6: item[µ]← 1
7: end for

8: for ki ← 2 to |K| do . Generate optimal item per value combination
9: for µ← 1 to M do
10: if value[µ− weights[ki]] + costs[ki] < value[µ] then
11: value[µ]← value[µ− weights[ki]] + costs[ki]
12: item[µ]← ki

13: end if
14: end for
15: end for

16: K∗ ← ∅ . Calculate optimal set for capacity M
17: µ∗ ←M
18: repeat
19: ki ← items[µ∗]
20: K∗ ← K∗ ∪ {ki}
21: µ∗ ← µ∗ − values[ki]
22: until µ∗ ≤ 0

23: return K∗

24: end function

this value are stored in two containers, which are called value and item in the pseudo-code
description.
The algorithm then proceeds as follows. In an initialization phase we implement item 1 as

the currently best item for all capacities 1 ≤ µ ≤M . Looping through the rest of all items
we check for every capacity µ whether the current minimum costs value[µ] can be improved
by adding item i. This can be done by checking if value[µ−weights[i]]+costs[i] < value[µ].
This inequality is true if the current costs value[µ] for a capacity µ is greater than the cost
of item ki plus the cost for the rest capacity needed to equal to or surpass capacity µ.
If we can improve the current solution we update the corresponding values in value and
item. After we have calculated the optimal combinations per capacity, we can calculate
the optimal item set by reversely traversing the items needed to reach capacity M .
Since Algorithm 3.3.1 calculates the optimal item combination for every capacity µ ≤M ,

we can access the minimum cost item set in that range for every weight f once the containers
value and item are calculated. Thus, if we now define the items’ weights as the cable types’
capacities, the items’ costs as the cable types’ costs and the knapsack’s maximum capacity
as the total turbine weight B we can directly map which flow is supported cost minimally
by which cable combination for every possible flow in the network.
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Algorithm 3.4.1 MstHeuristic

1: function MstHeuristic(V,K)
2: P ← {−1, ∀uν ∈ V }
3: F ← {−1, ∀uν ∈ V }
4: Λ← {−1,∀uν ∈ V }
5: α←MST(V ) . Adjacency list of MST result
6: FCM ←MinUKP({µi : ki ∈ K}, {ci : ki ∈ K}, B)
7: (P, F,Λ)← CableInstallation(V, P, F,Λ, FCM,α, r,−1)
8: end function

3.4. A simple minimum spanning tree heuristic

In this section we describe a first simple heuristic we want to use to find a solution to the
SCIP. The pseudo-code of this algorithm is given in Algorithm 3.4.1.
Given an input instance with points V and cables K the heuristic first calculates an MST

on all points. In a second step it calculates the flow from each turbine to the sink induced by
the MST and then determines the cable installation along each arc using Algorithm 3.3.1.
Algorithm 3.4.1 operates on a tree all the time. Hence, we save a parent node pν , the

outgoing flow to the parent fν and the cable combination carrying this flow λν in the arrays
P , F and Λ for each node uν ∈ V . These arrays then comprise the final solution at the
end of the algorithm.
In the following we have a closer look at the progress of the algorithm. First all data

structures for storing the solution are initialized. Then we calculate the MST and store it
in an adjacency list α.
Once we have calculated the MST we need to find the flow and corresponding cable

installation on it. Therefore, we first run Algorithm 3.3.1 and save the flow to cable
combination mapping int FCM .
In a next step we use the recursive function presented in Algorithm 3.4.2 to direct edges

such that there is a path from every turbine to the sink. Each call of CableInstallation
is parametrized with the node who should be directed and its parent node. The heuristic
starts at the sink and traverses the MST tree in a depth-first manner. For the current
node under observation we calculate its outgoing flow fν by adding its children’s uplink
flow to its node weight. The children’s uplink flow is calculated in the further depth-first
traversion. Hence, we call Algorithm 3.4.2 for each child node with the current node uν

defined as the parent node during the process of calculating fν . At a leaf node the uplink
flow only consists of the node’s weight. Once the outgoing flow is calculated, the parent
node is set and the cable combination for the outgoing edge is determined with the help of
the flow-cable combination mapping. Obviously, we do not set any parent node, outgoing
flow or cable installation for the sink. The updated arrays P , F and Λ are then returned.
After the execution of Algorithm 3.4.2 Algorithm 3.4.1 terminates. The solution of this

heuristic is not necessarily feasible since the unsplittability constraint might be violated
due to working on the Algorithm 3.3.1 flow-cable combination mapping.
The idea of using the MST algorithm for approaching the cable installation in wind

farms has also been used by Dutta [9].
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Algorithm 3.4.2 Cable installation along the MST
1: function CableInstallation(V, P, F,Λ, FCM,α, uν , uι)
2: fν ← bν
3: for uω ∈ α[uν ]\{uι} do . Increase outgoing flow of uν by children’s flow
4: (P, F,Λ)← CableInstallation(V, F,Λ, FCM,α, uω, uν)
5: fν ← fν + fω . Add children’s flow
6: end for
7: if uν 6= r then
8: pν ← uι

9: λν ← FCM [fν ] . Set cable combination according to the outgoing flow
10: end if
11: return (P, F,Λ)
12: end function

3.5. A randomized aggregation heuristic

Grandoni et al. [16] present in [16] an improvement of their work in [15] which is the
best approximation algorithm for the splittable version of the SSBB. Using the fact that
the transformation of a splittable solution to an unsplittable one is only twice as bad the
optimal solution of the unsplittable optimum the algorithm has also the best approximation
ratio for the unsplittable case. Hence, we adapted the approximation algorithm to our
problem using the splittable algorithm itself and its transformation to the unsplittable
case, as outlined in a proof in [16]. Please note that the unsplittable version of the SSBB
problem does not correspond with our definition of unsplittability.
The core idea of the iterative approach by Grandoni et al. [16] is the aggregation of

flow at a randomly chosen set of points. Therefore, in each iteration a collection of flow at a
subset of points, the subsequent aggregation of flow along a Steiner tree and a randomized
redistribution of the aggregated flow is performed. For the aggregation step they use the
aggregation algorithm presented by Gupta et al. [18]. The main loop of the algorithm
runs over a subset of cable types. In each iteration the currently regarded cable and the
one with the next higher capacity is installed.
Our adaption of the algorithm follows the idea of iteratively collecting, aggregating and

redistributing the flow. Though, we will thereby abolish the limitation to only a subset
of cables and allow the installation of different cable types during the aggregation step in
each iteration. In addition, for our problem it is sufficient to calculate a MST instead of a
Steiner tree for the aggregation. Furthermore, we will transform the solution found after
the last iteration to a tree which will not contain unnecessary flows introduced during the
algorithm execution.
In the following we will go into more details about the algorithm which is also presented

in pseudo-code in Algorithm 3.5.3. As an input the set of nodes and the set of cables sorted
increasingly by capacity are given. The nodes’ weight is either 0 or 1. If not we achieve
this by duplicating the node bν times. Since we regard the SCIP we take this requirement
as granted. The algorithm then starts with initializing its data structure as can be seen in
Algorithm 3.5.2.
For the application of the aggregation algorithm of Gupta et al. [18] we have to make

sure that the total aggregated flow, i.e. the total turbine weight, is a multiple of all cable
capacities. For problem instances for which this is not automatically the case we can still
meet this requirement by adding dummy turbines at the sink. In order to identify the
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Algorithm 3.5.1 RandomizedAggregationHeuristic

1: function RandomizedAggregationHeuristic(V,K)
2: (V ′, F,Λ, D,M, S, FCM)← Initialize(V,K)

3: for i = 0...|K| do
4: (F,Λ, D,M, S)← Collection(V ′,K, i, F,Λ, D,M, S)
5: (F,Λ, D)← Aggregation(V ′,K, i, F,Λ, FCM,D)
6: (F,Λ, D)← Redistribution(V ′,K, i, F,Λ, D,M, S)
7: end for

8: (F,Λ)← TransformSolution(F,Λ, FCM)
9: end function

Algorithm 3.5.2 Initialization procedure for RandomizedAggregationHeuristic

1: function Initialize(V,K)
2: Ṽ ← CreateDummyNodes(V,K) . Create dummy nodes
3: V ′ ← V ∪ Ṽ
4: F ← {0,∀(uν , uι) ∈ V ′ × V ′} . Flow matrix
5: Λ← {∅,∀uν ∈ V ′} . Child node-incoming cable pairs
6: FCM ←MinUKP({µi : ki ∈ K}, {ci : ki ∈ K}, B)
7: D ← {bν , ∀tν ∈ T ∪ Ṽ } ∪ {0,∀uν ∈ V \ T} . Aggregated demand
8: M ← V ′ \ {r}
9: S ← ∅

10: return (V ′, F,Λ, D,M, S, FCM)
11: end function

number of dummy turbines needed we calculate the least common multiple of all cable
capacities which is greater or equal to the total turbine weight and subtract the total
turbine weight from it. Let Ṽ be the set of dummy turbines. Then the adapted set of
nodes V ′ is the union of the original set of nodes V and Ṽ .
During the algorithm we will save the flow between all nodes including the dummy ones

in an adjacency matrix F and the cable installation in Λ. Thereby, Λ stores all incoming
cables and the corresponding start node for every node uν ∈ V ′. Furthermore, D holds
the currently aggregated flow at a node. Initially, this value is set to the turbine’s weight
bν for every turbine tν ∈ T ∪ Ṽ and 0 for every other node. Throughout the algorithm we
will mark nodes at which we collect flow. The array M stores those marked nodes uν and
with the lists sν ∈ S we keep track of all nodes which send their flow to the corresponding
marked node. In the initial iteration every node except the sink is marked.
In addition, we calculate the flow-cable combination mapping for the given cables and

all possible flows with maximum flow being B at the beginning of the algorithm. Again,
we will use Algorithm 3.3.1 for this. We will use this mapping throughout the aggregation
step and the final transformation of the solution.
After these initial steps we start the main loop. In the main loop we consecutively

process the steps of collecting, aggregating and redistributing flow. In the following let
k0 = k1.

Collection In the collection step we mark a subset of nodes randomly and send all
aggregated flow from the non-marked nodes to the closest marked node. Let i be the index
of the cable ki of K we currently regard. We first reset the set of marked nodes M to
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Algorithm 3.5.3 Collection step of RandomizedAggregationHeuristic

1: function Collection(V ′,K, i, F,Λ, D,M, S )
2: if i 6= 0 then
3: M ← ∅
4: if i 6= |K| then
5: for uν ∈ V ′, dν > 0 do . Randomly mark nodes
6: if RandomNumber(0, 1) < 0.531·µi

µi+1
then

7: M ←M ∪ {uν}
8: end if
9: end for
10: end if
11: M ←M ∪ {r}
12: S ← {sj = ∅ : j = 0...|M |}
13: for uν ∈ V ′ \M,dν > 0 do . Collect flow of non-marked at marked nodes
14: uι ← arg minuω∈M{dist(uν , uω)}
15: sι ← sι ∪ {uν}
16: F [uν ][uι]← F [uν ][uι] + duν

17: Λ[uι]← Λ[uι] ∪ {(uν , {Ki})}
18: dι ← dι + dν
19: dν ← 0
20: end for
21: end if
22: return (F,Λ, D,M, S)
23: end function

an empty set. Looping through all nodes with a flow surplus we randomly mark nodes by
adding them to M . Every node gets marked with a probability of α·µi

µi+1
, where we choose

α = 0.531 in analogy to Grandoni et al. [16]. Furthermore, we add the sink r to the
set of marked nodes.
In the next step we collect the flow from the non-marked nodes. Therefore, we first

initialize the set S and initialize an empty set for every node in M . Going over all non-
marked nodes uν with positive aggregated flow we calculate the closest marked node uι.
We add uν to sι and update the flow from uν to uι by adding dν to the current flow along
that arc. Furthermore, we add a new incoming node-cable pair to λuι . The origin of the
cable is uν and the cable type is ki. Note that this cable type is sufficient since at all nodes
with dω > 0 it holds that dω = µi due to the redistribution step of the last round. At last
we adapt the aggregated flow at nodes uν and uι.

Aggregation For the aggregation part of an iteration we regard all nodes with ag-
gregated flow surplus. On these nodes we calculate a MST. We perform the aggregation
algorithm using this MST.
The aim of the aggregation algorithm is to push the flow along the MST such that at each

node of the MST the aggregated flow afterwards is either 0 or a multiple of the capacity
of the next higher cable type ki+1. Hence, we make a copy of the aggregated nodes for all
marked nodes, i.e. nodes uν with dν > 0, and adapt it such that each node’s aggregated
demand in this copy is dι mod µi+1. The part of the aggregated demand which we now do
not consider anymore is therefore dividable by µi+1 and can be redistributed completely
by using copies of cable type ki+1. The capacity of these cables is then fully exhausted.
Let d′ν be the remaining aggregated flow at each node of the MST. Working with d′ν the
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Algorithm 3.5.4 Aggregation step of RandomizedAggregationHeuristic

1: function Aggregation(V ′,K, i, F,Λ, FCM,D )
2: if i < |K| then
3: α←MST({uν ∈ V ′ : dν > 0})
4: D′ ← {dν mod µi+1 : dν > 0}
5: F ′ ← AggregationAlgorithm(α,D′, r, µi+1)
6: for (uν , uι) : F ′[uν ][uι] > 0 do
7: F [uν ][uι]← F [uν ][uι] + F ′[uν ][uι]
8: Λ[uι]← Λ[uι] ∪ {(uν , FCM [F ′[uν ][uι]])}
9: end for
10: end if
11: return (F,Λ, D)
12: end function

aggregation algorithm pushes the flow along the MST until each node is has an aggregated
demand of 0 or µi+1. Thereby, the algorithm processes the following way. First we calculate
a random barrier Y as a random integer between 1 and µi+1. We use Y later for choosing
the nodes at which the remaining aggregated flow is assembled. Then we traverse the MST
in a depth-first manner starting at the sink. In a counter Q we accumulate the flow we
have pushed through the tree so far. At each node uν which we have not visit so far we
add dν to Q. Let Qold be the value of the counter before this addition and Qnew after the
addition. If there is a value x for which x · µi+1 + Y ∈ (Qold, Qnew] we choose uν to be
one of the nodes at which the flow is aggregated. Otherwise, the flow at the node is sent
further along the depth-first cycle to the next chosen node. Using the set of chosen nodes
and the cycle induced by the depth-first traversing we get a flow such that at a randomly
chosen set of points the aggregated flow is µi+1 and at every other node it is 0.
However, it is possible that we use one edge of the MST in two directions for a path

because we visit every edge twice while building the depth-first cycle. Though, we can
limit the usage to one direction by identifying edges {uν , uι} with flow in both directions
and then reducing the flow on both arcs. The reduction is done such that the flow on the
arc with lower flow, let’s say arc (uν , uι), is set to 0 and the flow on arc (uι, uν) is adjusted
to the difference of the flow over (uι, uν) and the flow over (uν , uι). After this process of
flow reduction the paths only contain necessary flows.
Having calculated the flow for an aggregation of µi+1 amounts of flow at a random subset

of the marked nodes we install this flow in F for every arc with additional flow. We add
the according cable to support this new flow as well by adding the sender node and the
cable combination mapping entry for this flow in Λ.
The aggregation algorithm of course only works if the total aggregated flow in the net-

work, which is equivalent to the total turbines’ weight B, is a multiple of µi+1. This is the
reason why we create the dummy turbines in the initialization step.

Redistribution After the aggregation the set of marked nodesM contains only nodes
with aggregated demand dν equaling a multiple of µi+1 or 0. In the redistribution step we
send the aggregated flow of every currently marked node uν ∈ M to a random subset of
nodes uι ∈ sν which sent their flow to uν in the collection step. Therefore, we select dν

µi+1

nodes of sν ∪ {uν} randomly. If we regard the sink we only chose the nodes from the set
sr and do not include the sink itself. Let s′ν be the random subset. We now send µi+1

amount of flow from uν to every uι ∈ s′ν . The flow is supported by installing cable type
µi+1 along (uν , uι).
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Algorithm 3.5.5 Redistribution step of RandomizedAggregationHeuristic

1: function Redistribution(V ′,K, i, F,Λ, D,M, S)
2: if i < |K| then
3: for uν ∈M do
4: if uν 6= r then
5: s′ν ← RandomSubset(sν ∪ {uν}, duνµi+1

)
6: else
7: s′ν ← RandomSubset(sν ,

duν
µi+1

)
8: end if
9: for uι ∈ s′ν do
10: if uι 6= uν then
11: F [uν ][uι]← F [uν ][uι] + µi+1

12: Λ[uι]← Λ[uι] ∪ {(uν , ki+1)}
13: end if
14: end for
15: end for
16: end if
17: return (F,Λ, D)
18: end function

As can be seen from the pseudo-codes already, the main loop contains two special cases:
the initial round, i.e. i = 0, and the final round, i.e. i = |K|. Basically, the initial and final
phases only differ from the other rounds by excluding some parts of the iteration’s steps.
In the initial round we omit the collection step. Hence, in the aggregation step all nodes

are considered for the aggregation algorithm. After the redistribution step the aggregated
flow at all nodes is either 0 or equals the capacity of the lowest capacity in the cable set
K, namely k1.
In the final round we do not do any marking of nodes. Hence, only the sink is regarded

as a collection destination. Furthermore, we do not aggregate or redistribute flow in this
round. Therefore, we send the aggregated flow directly over the shortest path to the sink.
Solution transformation The solution we get after the main loop is not necessarily a

tree solution. Furthermore, we might install unnecessary high capacity cable types due to
the collection and redistribution step where we first send flow to a marked node and later
send flow back from it to some nodes. In addition, we also have to remove the additional
flow from the dummy turbines.
Consequently, we do a post-processing step in the algorithm in analogy to the proof of

lemma 2.1 and 2.3 in [16]. First, we direct all edges. This means that we identify all edges
on which flow in both directions exists. We then reduce this flow the same way we do in
the aggregation algorithm.
After this step we know that for each node in the network there is at least one path to

the sink. We use this to identify all nodes which have more than one of those paths. At
each node uν we depict two paths P1 and P2. We now have two possibilities: either delete
one arc in P1 or in P2. In particular, this means that we find the arc with minimum flow
of one path and reduce the path by that flow. The flow channeled out over this path from
uν then has to reach the sink over the other path. This way we remove one path from uν

to the sink . Using Algorithm 3.3.1 every flow adaption induces a cable combination which
replaces the current one. We calculate the benefit of the two deletions and implement the
one which leads to the least costs. This procedure is done for all nodes with more than two
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paths to the sink until no more of these nodes exist. As a result we obtain a tree directed
to the sink.
Using this tree we remove the dummy flow. Therefore, we traverse every path from a

dummy turbine to the source and reduce the flow along it by the turbine’s weight. We
adapt the cables as well by installing the cable combination given by the mapping from
Algorithm 3.3.1.
After this transformation the data structures for the flow, i.e. F , and for the cables, i.e.

Λ, contain a tree solution to the input problem instance which has no dummy flow and
unnecessary capacity surplus anymore.

3.6. Three splittable upgrade heuristics

In a next step we have implemented the three heuristics presented by Pappas et al. [29]
for the MLCMST. The heuristics retain a tree directed from the turbines to the sink
throughout their execution and iteratively improve the current solution. Therefore, they
replace a node’s outgoing cable by one with an equal or greater capacity and use the
additional capacity for linking new children to the node. This step is called node upgrade
by the authors. In each iteration the heuristics implement the node upgrade with the
highest benefit and hence operate in a greedy manner.
The heuristics only allow the installation of one cable type along an edge. Therefore,

we transform the input the same way we do in Subsection 3.3.1. Hence, a combination of
cables supporting each possible amount of flow exists. The adapted set of cable types K ′

therefore contains B cable combinations with capacity µi = i again.
Since the heuristics operate on a tree we know that every node has exactly one outgoing

edge to one parent node. We store this relation for every node. Therefore, we save the
parent of node uν in pν , its outgoing flow in fν and the cable combination supporting this
flow in λν . For the further explanation let Pν be the path from uν to the sink r defined as

Pν =

{
{uν} pν = r

{uν} ∪ Ppν otherwise

Additionally, let Vν be the nodes in the subtree of uν , i.e. Vν = {uι ∈ V : uν ∈ Pι}.
For every node uν there are costs when upgrading the uplink cable λν to another cable ki,

namely Ciν = (cλν − ci) · dist(uν , pν). Though, every upgrade might also yield some profit.
For every node uι we can calculate the benefit of relinking it to a node uν , i.e. replacing
its parent pι by uν , by dνι = cλι · (dist(uι, pι)− dist(uι, uν)). Let H be the set of all nodes
reconnected to uν . Then the total profit of a node upgrade at uν is Di

νH =
∑

uι∈H dνι−Ciν .
During a node upgrade set H can only contain nodes which do not increase the uplink flow
fν of uν higher than the least free capacity of the uplink cables along path Pν .
In order to find the feasible upgrade set which maximizes the total profit we store for

each node uν a list qν decreasingly sorted according to the value dνι
fι
. The list only contains

profit-flow ratios which are positive, i.e. only combinations with nodes whose reconnection
to uν is profitable. Working with this list we add the nodes which are most profitable per
flow to H first when looking for an optimal set of nodes to connect to uν .
The heuristics start from a star topology connecting all nodes directly to the sink. So

initially pν is set to r, fν to bν and λν to the cable with the minimum cost providing
enough capacity for transporting fν flow. Iteratively, the most profitable upgrade with
profit Di

νH and its corresponding set H, its cable type ki and its node uν is determined
and implemented if the profit is greater than 0. Thereby, not all nodes are considered for
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Algorithm 3.6.1 Initialization function for UpgradeHeuristic1, UpgradeHeuris-
tic2 and UpgradeHeuristic3
1: function Initialize(V , K)
2: FCM ←MinUKP({µi : ki ∈ K}, {ci : ki ∈ K}, B) . Transformed cable input
3: for uν ∈ V \{r} do . Initial star solution
4: pν ← r
5: fν ← bν
6: λν ← FCM [fν ]
7: end for

8: for uν ∈ V \{r} do . Initial profit lists
9: for uι ∈ V \{r, uν} do
10: if dνι > 0 then
11: qν .insert(dνιfι , u

ι) . Insert uι in sorted list according to dνι
fι

12: end if
13: end for
14: end for

15: return ({p1...p|V |}, {f1...f|V |}, {λ1...λ|V |}, {q1...q|V |}, FCM)
16: end function

node upgrades but a subset which we call the candidate set S. We explain the details for
this algorithm in the following sections for every heuristic.

3.6.1. UpgradeHeuristic1

UpgradeHeuristic1 is a non-unit demand version of the heuristic presented by Gamvros
et al. [12]. The application to the non-unit demand is done by working on sorted lists
with regard to the value dνι

fι
instead of only dνι. A further adaption is that the sorted

profits are calculated at the beginning of the algorithm and adapted after each iteration
when necessary instead of generating that sorting during the computation of Di

νH .
The heuristic starts by calling Algorithm 3.6.1. In this initialization function we create

the initial star solution and calculate all sorted lists qν for all nodes uν . Additionally, we
create a candidate set S which is filled with all turbines tν .
Starting with the highest capacity, i.e. i = B, we compute in each iteration the most

profitable upgrade set H for every node uν ∈ {uι ∈ S : µλι ≤ µi}. In order to do so,
we check for every node uι ∈ qν whether its reconnection to uν would meet all capacity
constraints along Pν after replacing the uplink cable λν by ki. If so, uι is added to H. Since
qν is sorted such that the node uι with the highest profit dνι is added first the computation
of H increases the total profit Di

νH greedily but not necessarily optimally. The procedure
of finding the most profitable set is also illustrated in pseudo-code in Algorithm 3.6.2.
Let uν̄ and H̄ be the node and upgrade set which yield the largest total profit Di

ν̄H̄
. If

Di
ν̄H̄

> 0 the node upgrade improves the current solution. Hence, we reconnect all nodes
uι ∈ H̄ to uν̄ by firstly decreasing the uplink flow along Ppι by fι to take into account that
less flow leaves the current parent of uι after the upgrade. Then we set the new parent of
uι to pι = uν̄ . Furthermore, we increase the uplink flow fuν̄ by

∑
uι∈H̄ fι and set the new

uplink cable of uν̄ to λuν̄ = ki. Finally, we update the values of all nodes uι ∈ H̄ in the
sorted lists quω for all uω ∈ S and remove uν̄ from the candidate set S. This procedure is
also shown in Algorithm 3.6.3. If on the other hand Di

ν̄H̄
≤ 0 no positive total profit for
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Algorithm 3.6.2 Greedy heuristic for finding the most profitable H for a given node uν

and a cable ki

1: function CalculateMaximumProfit(uν , i)
2: H ← ∅
3: Di

uνH ← −Ciν
4: f ′ν ← fν . Temporary variable for saving the new uplink flow
5: for uι ∈ qν ∩ S do . Determine most profitable (uν , H)
6: if min{minuω∈Pν{µλω − fω}+ fν , i} − f ′ν ≥ fι then . Capacity constraint
7: H ← H ∪ {uι}
8: Di

νH ← Di
νH + dνι

9: end if
10: end for
11: return (H,Di

νH)
12: end function

Algorithm 3.6.3 Function implementing a node upgrade

1: function ImplementUpgrade(uν , H, ki, {p1...p|V |}, {f1...f|V |}, {λ1...λ|V |})
2: f ′ν ← fν
3: for uι ∈ H do . Reconnection of child nodes
4: DecreaseUplinkFlow(uι) . Decrease flow along Ppι
5: pι ← uν

6: f ′ν ← f ′ν + fι
7: end for
8: λν ← ki . Install cable and additional flow uplink of uν

9: fν ← f ′ν
10: return ({p1...p|V |}, {f1...f|V |}, {λ1...λ|V |}, {q1...q|V |})
11: end function

the currently regarded capacity exists so we reduce the capacity by 1.
The iteration stops when the capacity i is set to 0. The pseudo-code for Upgrade-

Heuristic1 is presented in Algorithm 3.6.4.
Note that UpgradeHeuristic1 only considers leaf nodes of the current solutions for

node upgrades since an upgraded node is removed from the candidate set. Additionally,
the computation of the most profitable upgrade set H and node uν is fixed to the capacity,
i.e. its cable combination, of the main loop. UpgradeHeuristic2 loosens this fixation
on the cable combination in one iteration as we describe in the following section.

3.6.2. UpgradeHeuristic2

UpgradeHeuristic1 and UpgradeHeuristic2 only differ in one idea: in Upgrade-
Heuristic2 the fixation to one cable combination in one iteration is abolished. Hence,
we no longer fix one cable type in the main loop but compute the largest profit in one
iteration for every candidate node and for every cable combination whose capacity is equal
or higher than the currently installed uplink capacity µλν of the node. Consequently, we do
not process Algorithm 3.6.2 only once for each node. We rather execute it for each relevant
cable combination. This opens further opportunities to gain a more profitable combination
of an upgrade set H, a node uν and a cable combination i.
Since the cable combinations are not fixed for each loop we do not increment one iteration

variable anymore. As a consequence, we need another stop criteria: Now the main loop
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Algorithm 3.6.4 UpgradeHeuristic1

1: function UpgradeHeuristic1(V , K)
2: (P, F,Λ, Q, FCM)← Initialize(V,K)
3: S ← V \{r}
4: i← B
5: repeat
6: H̄ ← ∅
7: uν̄ ← −1
8: Di

ν̄H̄
← 0

9: for uν ∈ S do . Determine most profitable (uν , H)
10: if i ≥ µλν then
11: (H,Di

νH)← CalculateMaximumProfit(uν , i)
12: if Di

νH > Di
ν̄H̄

then
13: H̄ ← H
14: uν̄ ← uν

15: Di
ν̄H̄
← Di

νH

16: end if
17: end if
18: end for

19: if Di
ν̄H̄

> 0 then
20: (P, F,Λ)← ImplementUpgrade(uν̄ , H̄, i, P, F,Λ)
21: S ← S\{uν̄}
22: for uι ∈ H,uω ∈ S do . Update the value of uι in qω
23: qω.update(uι, dωιfι )
24: end for
25: else
26: i← i− 1
27: end if
28: until l = 0
29: end function

stops as soon as no positive Di
uνH can be found.

The initialization and general process in each iteration stays therefore the same. Under
all candidate nodes the largest total profit and the corresponding upgrade set H, node uν

and cable combination i is determined. Since we regard several cable combinations in each
iteration this computation regards more combinations than in UpgradeHeuristic1. The
second step, i.e. the implementation of the node upgrade, stays the same as well.
Hence, the pseudo-code presented in Algorithm 3.6.5 displays mostly similarities with

the one of UpgradeHeuristic1.

3.6.3. UpgradeHeuristic3

Taking a further step for more variability, UpgradeHeuristic3 allows the upgrade of
previously upgraded nodes, i.e. of non-leaf nodes. This means that we no longer restrict
node upgrades to nodes in a candidate set which only holds leaf nodes. In fact, we compute
the total profit Di

νH for every node uν ∈ V \{r}.
However, this change has a deeper impact on the general heuristic than the one by
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Algorithm 3.6.5 UpgradeHeuristic2

1: function UpgradeHeuristic2(V , K)
2: (P, F,Λ, Q, FCM)← Initialize(V,K)
3: S ← V \{r}
4: repeat
5: H̄ ← ∅
6: uν̄ ← −1
7: i∗ ← −1
8: Di

ν̄H̄
← 0

9: for uν ∈ S do . Determine most profitable (uν , H)
10: for i = µλν to B do
11: (H,Di

νH)← CalculateMaximumProfit(uν , i)
12: if Di

νH > Di
ν̄H̄

then
13: H̄ ← H
14: uν̄ ← uν

15: i∗ ← i
16: Di

ν̄H̄
← Di

uνH

17: end if
18: end for
19: end for

20: if Di
ν̄H̄

> 0 then
21: (P, F,Λ)← ImplementUpgrade(uν̄ , H̄, i∗, P, F,Λ)
22: S ← S\{uν̄}
23: for uι ∈ H,uω ∈ S do . Update the value of uι in qω
24: qω.update(uι, dωιfι )
25: end for
26: end if
27: until Di

ν̄H̄
≤ 0

28: end function

UpgradeHeuristic2. Since the previous variants only upgrade leaf nodes they do not
introduce any cycles to the current solution. With the upgrade of non-leaf nodes this is
now possible. Therefore, the computation of the largest profit Di

νH and the corresponding
upgrade set H for a node uν and a cable combination ki has to make sure no cycles are
added. In addition, in UpgradeHeuristic1 and UpgradeHeuristic2 we can neglect
the update of the profit-flow ratio values of nodes uι ∈ Pν̄ ∪ {Ppω : uω ∈ H̄} since they
cannot be linked to any node anymore because they are all non-leaf nodes. In Upgrade-
Heuristic3 these nodes have to be updated for every sorted list qν as well.
The updated version of the largest profit computation is presented in Algorithm 3.6.6.

The first change we can see here is in Line 2 where we create a temporary copy of the sorted
profit-flow ratio list qν and remove every node uι ∈ Ppν which is uplink of uν . The reason
for this is twofold: On the one hand, we need a copy of qν since the addition of a node uι

to H reduces the uplink flow fω of nodes uω ∈ Ppι . Hence, their value dνω
fω

in qν needs to
be changed temporarily for the calculation of H and Di

νH . On the other hand, we exclude
nodes uι ∈ Ppν from q′ν in order to prevent the introduction of cycles to the solution by
adding such a node uι as a child of uν in the further process. Going on, we loop over all
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Algorithm 3.6.6 Greedy heuristic for finding the most profitable H for a given node uν

and a cable ki

1: function CalculateMaximumProfit(uν , i)
2: q′ν ← qν\Ppν . Temporary copy of qν excluding nodes in Ppν
3: H ← ∅
4: Di

νH ← −Ciν
5: f ′ν ← fν . Temporary variable for saving the new uplink flow
6: while q′ν not empty do . Determine most profitable (uν , H)
7: uι ← q′ν .pop()
8: if min{i,minuω∈Pν{µλω − fω}+ fν} − f ′ν ≥ fι then . Capacity constraint
9: H ← H ∪ {uι}
10: Di

νH ← Di
νH + dνι

11: for uω ∈ Pι\{uι} ∩ q′ν do . Update the profit flow ratios in q′ν
12: q′ν .update(uω, dνω

fω−fι )
13: end for
14: for uω ∈ Vι\{uι} ∩ q′ν do . Add nodes of Vι with positive dνω directly
15: H ← H ∪ {uω}
16: q′ν .remove(uω)
17: end for
18: end if
19: end while
20: return (H,Di

νH)
21: end function

nodes uι ∈ q′ν , pop the currently first one, i.e. the one with the highest profit-flow ratio,
and check whether its addition to H meets the capacity constraints. If the constraints are
met we update H and Di

νH as before. Additionally, we update the entries in q′ν of nodes
uω ∈ Pι since they have less uplink flow now. Moreover, we can add all nodes uω ∈ Vι\{uι}
which are also in qν to H because their addition does not increase the flow from uι to uν

but increases the total profit. In order to not regard them again we remove nodes uω from
q′ν after their addition.
As mentioned above already, UpgradeHeuristic3 has to update the profit-flow ratio

of every node whose uplink flow changes due to the new node upgrade. Therefore, we
update the ratio of all nodes in U = Pν̄ ∪ {Ppω : uω ∈ H̄} in each list qι. This way we
take into account all nodes whose uplink flow increase by the new uplink flow of uν̄ , i.e.
uω ∈ Pν̄ , and the ones whose uplink flow decreases since they have less input, i.e. nodes
uω ∈ {Ppω : uω ∈ H̄}.

3.7. An unsplittable upgrade heuristics

From UpgradeHeuristic3 we derive our own heuristic which works on the original cable
set and makes sure that with each improvement the unsplittability constraint is met as
well. We call this heuristic UnsplittableUpgradeHeuristic.
Working with the original cable set leads to several changes to the heuristics by Pappas

et al. [29]. First of all we cannot store one uplink capacity for each node in λν but
need to provide a list of cable types for each node. Furthermore, we have to store the
parent cable ψiν as well as the free capacity δiν for each uplink cable type ki. These data
structures document how the unsplittable flow is conserved during the heuristic’s progress.
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Algorithm 3.6.7 UpgradeHeuristic3

1: function UpgradeHeuristic3(V , K)
2: (P, F,Λ, Q, FCM)← Initialize(V,K)
3: repeat
4: H̄ ← ∅
5: uν̄ ← −1
6: i∗ ← −1
7: Di

ν̄H̄
← 0

8: for uν ∈ V \{r} do . Determine most profitable (uν , H)
9: for i = µλν to B do
10: (H,Di

νH)← CalculateMaximumProfit(uν , i)
11: if Di

νH > Di
ν̄H̄

then
12: H̄ ← H
13: uν̄ ← uν

14: i∗ ← i
15: Di

ν̄H̄
← Di

νH

16: end if
17: end for
18: end for

19: if Di
ν̄H̄

> 0 then
20: U ← H̄ ∪ Pν̄ ∪ {Ppω : uω ∈ H̄} . Nodes uι whose dωι

fι
changes

21: (P, F,Λ)← ImplementUpgrade(uν̄ , H̄, i∗, P, F,Λ)
22: for uι ∈ U, uω ∈ V \{r} do . Update the value of uι in qω
23: qω.update(uι, dωιfι )
24: end for
25: end if
26: until Di

ν̄H̄
≤ 0

27: end function

Analogously to the path to the sink Pν from a node uν , let Pν,i be the path from node uν

over the ith outgoing cable to the sink. Therefore we define Pν,i as

Pν,i =

{
{(uν , i)} pν = r

{(uν , i)} ∪ Ppν ,ψiν otherwise

Additionally, we now have two options on how to increase a capacity. On the one hand,
we can replace a currently installed cable by one with an equal or greater capacity. On the
other hand, there is the opportunity add a cable to the currently installed ones. This also
impacts the cost calculation of the total profit Di

νH . For a cable replacement of cable type
ki by kj at node uν the costs are the same as for an upgrade in the heuristics of Pappas
et al. [29], namely Ci,jν = (cj − ci) · dist(uν , pν). The costs for an additional cable kj at
node uν , however, are the full cost of the cable type for the distance from uν to its parent
pν , i.e. C

j
ν = cj · dist(uν , pν).

Moreover, we have to define now how we select the parent cable type for each uplink
cable type of a potential child node during a node upgrade. Since we always improve an
already found feasible, i.e. unsplittable, solution we know that for each cable kj of a child
node uι the unsplittability constraint is met in its subtree for all cables. The same holds
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Algorithm 3.7.1 Initialization function UnsplittableUpgradeHeuristic

1: function Initialize(V , K)
2: for uν ∈ V \{r} do . Initial star solution
3: pν ← r
4: fν ← bν
5: λν ← {arg minki∈K{ci : µi ≥ fν}}
6: δν ← {µarg minki∈K{ci:µi≥fν} − fν}
7: ψν ← {−1}
8: end for

9: for uν ∈ V \{r} do . Initial profit lists
10: for uι ∈ V \{r, uν} do
11: if dνι > 0 then
12: qν .insert(dνιfι , u

ι) . Insert uι in sorted list according to dνι
fι

13: end if
14: end for
15: end for

16: return ({p1 . . . p|V |}, {f1 . . . f|V |}, {λ1 . . . λ|V |}, {q1 . . . q|V |}, {ψ1 . . . ψ|V |}, {δ1 . . . δ|V |})
17: end function

for all outgoing cables and their connection to the sink over Pν,i. Connecting uι to node uν

we therefore have to find for each kj uplink of uι a cable ki at uν for which the minimal free
capacity δκω for all cables kκ along Pν,i is at least as high as the uplink flow over cable kj .
Thereby, we use a first fit approach choosing always the first cable meeting this constraint.
The flow of a cable which is replaced is channeled through the new cable as well such that
only new children’s flow has to be distributed.
Having presented the general idea and changes we now look into the algorithm in more

detail. The pseudo-code of UnsplittableUpgradeHeuristic can be found in Algo-
rithm 3.7.8.
In an initialization step we create an initial star solution again. Since Unsplittable-

UpgradeHeuristic uses a different data structure Algorithm 3.7.1 differs from Algo-
rithm 3.6.1. In a first step we set the parent of every node uν again to pν = r and the
uplink flow fν to the node’s weight bν . What changes is that we now save a list of uplink
cables in λν . This list initially contains only the cheapest cable ki which has a capacity
able to carry fν . For this cable we store the free capacity in δν and set the parent cable in
ψν to −1 since the sink does not have any outgoing cables. In a next step we calculate the
sorted profit-flow ratio lists. The calculation is the same as in the heuristics of Pappas
et al. [29] (see Subsection 3.6.1).
After the initialization we start the main loop which we know from UpgradeHeuris-

tic2 and UpgradeHeuristic3. This means we only stop when no further improvement
can be found. In each loop the most profitable upgrade set H̄, node uν̄ , cable kī, total profit
Dī
ν̄H are set to initial values. Furthermore, a boolean called replacement is initialized to

indicate whether a node upgrade is done by a node replacement or a node addition.
The computation of the largest total profit now contains two similar steps for each node

uν and cable ki. First, the largest profit for an addition is computed and then the one for
an replacement. If the newly found profit is greater than the currently best one then its
parameters and its upgrade method are saved. Note that for the replacement policy we do

36



Algorithm 3.7.2 Greedy heuristic for finding the most profitable H for a given node uν

and a cable ki

1: function CalculateMaximumProfitAddition(uν , ki)
2: λ′ν ← λν ∪ {ki}
3: δ′ν ← {min(uι,κ)∈Pν,j{δκι },∀j ∈ [1...|λν |]}

. Temporary list of free capacity along Pν for all kj ∈ λν
4: δ′ν ← δ′ν ∪ {min{µi,max(uι,κ)∈Pν,j{δκι ,∀j ∈ [1...|λpν |]}}

5: return CalculateMaximumProfit(uν ,ki,λ′ν ,δ′ν , Ck
i

ν )
6: end function

Algorithm 3.7.3 Greedy heuristic for finding the most profitable H for a given node uν

and a cable ki

1: function CalculateMaximumProfitReplacement(uν , ki, j)
2: λ′ν ← λν
3: λ′ν .Replace(j, ki) . Replace cable at position j with cable type ki

4: δ′ν ← {min(uι,τ)∈Pν,κ{δτι },∀κ ∈ [1...|λν |]}
. Temporary list of free capacity along Pν for all kj ∈ λν and additional cable ki

5: δ′ν .Replace(j,min{µki − fν,j ,min(uι,j)∈Ppν,j{δ
j
ι }) . Replace entry at j with least

free capacity
6: return CalculateMaximumProfit(uν ,ki,λ′ν ,δ′ν , C

ki,λjν
ν )

7: end function

not only loop over all nodes and all cable types available for a replacement but also over
all entries of the uplink cables λν of uν to consider one cable for a replacement at a time.
In Algorithm 3.7.2 and Algorithm 3.7.3 the calculation of the largest profit for both

methods is explained in more detail. Both methods create a temporary copy of the uplink
cables λν and of the available capacity along Pν,j from node uν to the sink r for each cable
entry λjν . The temporary copies in Algorithm 3.7.2 and Algorithm 3.7.3 differ in respect
to their upgrading method.
In Algorithm 3.7.2 cable ki is appended to the temporary cable list λ′ν . Its corresponding

entry in the available capacity list δ′ν is set to the minimum between the cable’s capacity
µi and the highest uplink capacity available at the parent node pν . This way we account
for the actual available uplink capacity for node uν .
The replacement idea in Algorithm 3.7.3 leads to a temporary uplink cable list λ′ν in

which entry j is replaced by cable type ki. The available capacity in δ′ν has to be adapted
accordingly. Hence, we check whether the additionally implemented capacity µi − fν,j
or the available uplink capacity at ψν,j , namely min(uι,j)∈Puν,j{δ

j
uι}, is the bottleneck for

additional flow and set the smaller value of both as available capacity for λjuν .
The temporary copies are used by Algorithm 3.7.4 to check the unsplittability constraint.

Both functions Algorithm 3.7.2 and Algorithm 3.7.3 call Algorithm 3.7.4 to calculate the
largest profit with their settings.
Algorithm 3.7.4 then works similar to Algorithm 3.6.6. First of all, a temporary copy

of the profit-flow ratio list is created to be able to account for flow changes during the
addition of nodes to H. In addition, H is initialized by an empty set, the total profit Di

νH

is set by the addition resp. replacement costs given by parameter C and a temporary copy
of the uplink flow is created.
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Algorithm 3.7.4 Greedy heuristic for finding the most profitable H for a given node uν

and a cable ki

1: function CalculateMaximumProfit(uν , ki, λ′ν , δ′ν , C)
2: q′ν ← qν\Ppν . Temporary copy of qν
3: H ← ∅
4: Di

νH ← −C
5: f ′ν ← fν . Temporary variable for saving the new uplink flow
6: while q′ν not empty do . Determine most profitable (uν , H)
7: uι ← q′ν .pop()
8: if min{µki ,minuω∈Pν{µλω − fω}+ fν} − f ′ν ≥ fι then . Capacity constraint
9: if UnsplitabilityConstraintMet(λ′ν , δ

′
ν , fι) then

10: H ← H ∪ {uι}
11: Di

νH ← Di
νH + dνι

12: for uω ∈ Pι\{uι} ∩ q′ν do . Update the profit flow ratios in q′ν
13: q′ν .update(uω, dνω

fω−fι )
14: end for
15: for uω ∈ Vι\{uι} ∩ q′ν do . Add nodes of Vι with positive dνω directly
16: H ← H ∪ {ω}
17: q′ν .remove(uω)
18: end for
19: for j ∈ [1...|λι|] do
20: κ← FirstFitCable(δ′ν , fι,j) . First i ∈ [1...|λ′ν |] with µλ′κν ≥ fι,j
21: δ′κν ← δ′κν − fι,j
22: end for
23: end if
24: end if
25: end while
26: return (H,Di

νH)
27: end function

After this initialization step the main loop of Algorithm 3.7.4 is processed. The loop
only differs from the one in Algorithm 3.6.6 in the check for unsplittability in Line 9 and
the update of δ′ν in Line 19. In the unsplittability constraint we check for all uplink cables
λκι if there exists a cable λ′jν with free capacity for the uplink flow fι,κ and the uplink
flow of potentially added uplink flow fι,τ for τ < κ. Thereby, we take into account that
our strategy to chose a parent cable is first fit. We note that this causes the check of
unsplittability of a node to be false even if it would not cause a violation if another parent
choice procedure was applied. If the unsplittability constraint is met we can add node
uν to the upgrade set H and adapt the temporary list of available capacities as shown in
Line 19. This means that we select the first entry κ in δ′ν which can support the uplink
flow fι,j and reduce the available capacity for entry κ by fι,j . As before we return the
upgrade set H and the corresponding largest profit Di

νH at the end. Note that the direct
addition of nodes in the subtree Vι of uι is still valid. The capacity at node uν occupied
for each subtree node which was accounted for by the check of unsplittability can directly
be used for the direct addition.
The next step in the algorithm is the implementation of the largest found profit. As

in Algorithm 3.6.7 we update all entries in Q of nodes uι whose parent or uplink flow
changed. The new part can be found in Algorithm 3.7.5 and Algorithm 3.7.6 in which the
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Algorithm 3.7.5 Function implementing a node upgrade

1: function ImplementReplacement(uν , H, ki, j, P, F,Λ,Ψ,∆)
2: δjν ← δjν + µi − µλjν
3: λjν ← ki

4: return ImplementUpgrade(uν , H, ki, P, F,Λ,Ψ,∆)
5: end function

Algorithm 3.7.6 Function implementing a node upgrade

1: function ImplementAddition(uν , H, ki, P, F,Λ,Ψ,∆)
2: λν ← λν ∪ {ki}
3: ψν ← ψν ∪ {FirstFitCable(min{µi,max(uι,κ)∈Ppν,j{δ

κ
ι ,∀j ∈ [1, |λpν |]})}

4: δν ← δν ∪ {µi}
5: return ImplementUpgrade(uν , H, ki, P, F,Λ,Ψ,∆)
6: end function

implementation of the replacement resp. addition is done. Depending on which upgrade
method was used for achieving the largest profit the corresponding function is called.
Again these two functions only differ slightly and the main computation is done by the

same function, namely Algorithm 3.7.7. For a replacement Algorithm 3.7.5 adapts the λjuν
at position j and replaces the current cable with new cable ki. The free capacity entry
δjuν is adapted accordingly by adding the gained capacity surplus. If a cable ki is added
Algorithm 3.7.6 appends ki to λν and creates the corresponding entries in δν and ψν . The
parent cable is the outgoing cable at the parent node found first which covers the new
capacity or which has the most free capacity.
After these adjustments to the data structure the rest of the implementation is done

by Algorithm 3.7.7. First we make a copy of the current uplink flow of uν . This copy is
increased by the flow from every uι ∈ H and later on set as the new uplink flow. For every
node uι ∈ H we first decrease the flow uplink its current parent. We do this for the total
flow fι as well as for every cable uplink flow which means that we increase the free capacity
δν of all (uω, j) ∈ Ppι,κ for all κ ∈ λpι .
Furthermore, we connect uι to uν by setting puι = uν for every node in H. The parent

cable λτν of each cable ki ∈ λι is determined via first fit. The free capacity uplink of that
parent cable is decreased by the uplink flow from uι on cable λτuι . At last we increase the
additional overall flow.
After these adaptions have been done for all nodes uι ∈ H we update the uplink flow

with the additional flow from nodes uι and return the updated data structures.
The main loop stops when no improvement can be achieved. The cable installation can

then be derived from P and Λ again.
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Algorithm 3.7.7 Function implementing a node upgrade

1: function ImplementUpgrade(uν , H, ki, P, F,Λ,Ψ,∆)
2: f ′ν ← fν
3: for uι ∈ H do . Reconnection of child nodes
4: DecreaseUplinkFlow(uι)
5: pι ← uν

6: for j ∈ [1...|λι|] do
7: τ ← FirstFitCable(fι,j)

8: ψjι ← τ
9: DecreaseFreeUplinkCapacity(uν ,τ , fι,j)
10: end for
11: f ′ν ← f ′ν + fι
12: end for
13: fν ← f ′ν
14: return ({p1...p|V |}, {f1...f|V |}, {λ1...λ|V |}, {q1...q|V |}, FCM)
15: end function
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Algorithm 3.7.8 UnsplittableUpgradeHeuristic

1: function UnsplittableUpgradeHeuristic(V , K)
2: (P, F,Λ, Q,Ψ,∆)← Initialize(V,K)
3: repeat
4: H̄ ← ∅
5: uν̄ ← −1
6: kī ← −1
7: Dī

ν̄H̄
← 0

8: replacement← FALSE

9: for uν ∈ V \{r} do . Determine most profitable (uν , H)
10: for ki ∈ K do
11: (H,Di

νH)← CalculateMaximumProfitAddition(uν , ki)

12: if Di
νH > Dī

ν̄H̄
then

13: H̄ ← H
14: uν̄ ← uν

15: kī ← ki

16: Dī
ν̄H̄
← Di

νH

17: replacement← FALSE
18: end if
19: for j ∈ [1...|λν |], µλjν ≤ µki do
20: (H,Di

νH)← CalculateMaximumProfitReplacement(uν , ki, j)

21: if Di
νH > Dī

ν̄H̄
then

22: H̄ ← H
23: uν̄ ← uν

24: kī ← ki

25: j∗ ← j
26: Dī

ν̄H̄
← Di

νH

27: replacement← TRUE
28: end if
29: end for
30: end for
31: end for

32: if Dī
ν̄H̄

> 0 then
33: U ← H̄ ∪ Pν̄ ∪ {Ppω : uω ∈ H̄} . Nodes uι whose dωι

fι
changes

34: if replacement then
35: (P, F,Λ,Ψ,∆)← ImplementReplacement(uν̄ , H̄, kī, j∗, P, F,Λ,Ψ,∆)
36: else
37: (P, F,Λ,Ψ,∆)← ImplementAddition(uν̄ , H̄, kī, P, F,Λ,Ψ,∆)
38: end if
39: for uι ∈ U, uω ∈ V \{r} do . Update the value of uι in qω
40: qω.update(uι, dωιfι )
41: end for
42: end if
43: until Dī

ν̄H̄
≤ 0

44: end function
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4. Experiments

In the following we will discuss the experiments done for the approaches from Chapter 3.
We first describe the problem instances for the experiments. Afterward, we present the
results of the experiments separately for the MILP resp. ILP formulations and the heuris-
tics.

4.1. Benchmark instances

For our experiments we created several types of problem instances to test the algorithms
on different settings. The parameters which differ are the number of turbines, the turbine
distribution, the sink distribution, the number of cable types and the characteristic of the
cable types.
We created sets with 25, 50 and 100 turbines. Thereby, we used two different types of

distribution. The first one was a uniform random placement of points in a defined area in
the Euclidean plane. The second one was oriented at the actual positioning of turbines. To
distinguish the two distributions better in the following we call them random distribution
and array distribution, respectively.
The geometry of a wind farm depends mostly on the optimal wind capture aiming at the

reduction of energy capture losses [26, p. 423]. One key aspect of this is the downwind and
crosswind spacing between turbines. Hau [19, p. 733] state that in downwind direction a
distance of eight to ten times the rotor diameter and in crosswind three to five times the
rotor diameter is reasonable. Apart from that the topography and the land boundary of
the area for the wind farm are factors affecting the position of the wind turbines in a wind
farm [19, p. 732]. From an expert’s input and the data provided in [30] we derive that we
can approximate the array of turbines by groups of parallel lines along which the turbines
are distributed.
Hence, we simulated the turbine positions for the array distribution as follows: We

created a random number of groups of turbines. For each group a random number of
parallel lines was created along which the points were distributed. The number of turbines
for each parallel line was chosen at random as well. The distance between two lines depends
on the rotor diameter. We regarded three length of rotor diameter, namely 80, 82 and 90
m. The distribution along a line took into account the rotor diameter as well. Furthermore,
the coordinates of each point induced by its assigned line was slightly randomized again as
well.
We applied two different distribution strategies to locate the substation. In the first

one the substation can be randomly positioned. In the second one it can only be placed
somewhere at the border.
For each number of turbines we created 10 instances for the random distribution and

the three array distributions, leading to 120 different turbine settings. Combined with five
sinks positioned at random and five placed near the border we got a total of 1200 different
wind farm points instances.
Furthermore, we created two sets of cable types, namely one which follows economies

of scales as defined for SSBB problems and one which does not. The used cable types
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were based on realistic examples provided by a cable supplier. From their specifications
we derived their capacity in terms of number of turbines. In order to obtain cable sets
following economies of scale we had to adapt the prices accordingly. In the end, we created
cable type sets of size three and five for each cable type property.

4.2. Results of experiments

We implemented the algorithms with C++. Thereby, we made use of parts of the boost
libraries1 in version 1.55.0. For the implementation of the MILP and ILP formulations we
used the Gurobi Optimizer2 and its C++ interface in version 5.6.2. The implementation
was compiled with gcc in version 4.7.1.
The experiments were run on a computer with 4 12-Core AMD Opteron(tm) Processor

6172, 2.1 GHz with 256 GB RAM with openSUSE 12.2 (Mantis) (x86_64) as the operating
system. We restricted each experiment to one core and one thread. By using the openSUSE
command ulimit we restricted the virtual memory for each experiment to 16 GB. For the
parallel execution of the experiments on the different cores we used the program GNU
Parallel of Tange [36].
We describe the results of the experiments in the following. We analyze them regarding

their quality and running time.
We measure the quality in terms of the amount of feasible solutions found, the amount of

lower bounds provided and the gap of the solution to the best found lower bound. Thereby,
the best found lower bound is the optimal solution calculated by the Two-Path MILP
or the Path ILP if an optimal solution was found. If they could not provide any then
the better lower bound of these formulations is taken. If the exact solutions did not find
any lower bound or optimal solution the smallest feasible solution value of all approaches
is taken as the reference value for the gap calculation. The gap is expressed in percent
and calculated by ( SOLOPT − 1) ∗ 100 with SOL being the value of the found solution and
OPT the lower bound. Since not every solution approach regarded necessarily provides a
feasible solution we only consider feasible solutions when calculating benchmarks based on
the gap.
Furthermore, we consider the running time of every algorithm. Here, we do not restrict

ourselves to runs which produced a feasible solution. We measure the running time in CPU
seconds. For the ILP and MILP solutions we additionally check whether the algorithms
found an optimal solution within the set time limit of 30 minutes and within the set memory
restrictions.
In Subsection 4.2.1 we present the results for the ILP and MILP approaches and in

Subsection 4.2.2 the performance of the heuristics is discussed.

4.2.1. ILP and MILP approaches

We ran the MILP adapted from Hertz et al. [20], our ILP and the ILP formulation of
Uchoa et al. [37] on the random problem instances with 25 turbines and the sets with
three and five cable types. The results on the three cable types instances are summarized
in Table 4.1 and Table 4.2.

1http://www.boost.org/
2http://www.gurobi.com/
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Array distribution

Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

Two-Path MILP 150 0.00 0.00 1300.00 150 150 3.45 0.00 1300.00 150

Path ILP 150 675.56 297.08 1119.60 0 150 703.26 328.12 1090.87 0

Flow ILP 140 0.00 0.00 76.61 89 140 2.62 0.00 61.62 63

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

Two-Path MILP 150 0.00 0.00 1300.00 150 150 2.38 0.00 1300.00 150

Path ILP 150 610.80 279.66 1166.97 0 150 640.70 301.17 1086.33 0

Flow ILP 141 0.00 0.00 89.84 98 142 2.48 0.00 87.95 63

Random distribution

Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

Two-Path MILP 50 0.00 0.00 1300.00 50 50 3.28 0.00 1300.00 50

Path ILP 50 379.33 322.65 1112.54 0 50 418.19 336.76 1089.00 0

Flow ILP 50 0.00 0.00 158.89 27 50 3.28 0.00 165.37 20

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

Two-Path MILP 50 0.00 0.00 1300.00 50 50 0.00 0.00 1300.00 50

Path ILP 50 343.87 233.54 1119.40 0 50 364.82 246.72 1086.19 0

Flow ILP 50 0.00 0.00 168.68 29 50 0.00 0.00 146.91 28

Table 4.1.: Quality benchmarks for the ILP and MILP formulations on scenarios with 25 turbines and the three cable types
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Array distribution

Algorithms
Sink at border

Economies of scale No economies of scale

Median Minimum Maximum Finished Time exceeded Median Minimum Maximum Finished Time exceeded

Two-Path MILP 1429.05 480.83 1853.85 90 60 1810.72 562.61 1904.92 63 87

Path ILP 1829.31 1826.45 1880.25 0 150 1834.26 1826.10 1880.77 0 150

Flow ILP 145.20 1.79 1687.16 150 0 229.51 5.72 1767.45 150 0

Algorithms
Sink uniform

Economies of scale No economies of scale

Median Minimum Maximum Finished Time exceeded Median Minimum Maximum Finished Time exceeded

Two-Path MILP 1374.71 517.43 1950.29 100 50 1810.47 480.99 1869.38 69 81

Path ILP 1828.59 1826.59 1881.46 0 150 1828.06 1826.51 1880.62 0 150

Flow ILP 95.70 2.20 1793.28 149 1 137.22 2.06 1793.85 145 5

Random distribution

Algorithms
Sink at border

Economies of scale No economies of scale

Median Minimum Maximum Finished Time exceeded Median Minimum Maximum Finished Time exceeded

Two-Path MILP 1685.97 824.58 1840.82 28 22 1810.80 831.40 1928.39 20 30

Path ILP 1831.35 1826.71 1879.06 0 50 1832.18 1826.70 1879.69 0 50

Flow ILP 119.30 26.28 674.70 50 0 137.50 23.32 711.51 50 0

Algorithms
Sink uniform

Economies of scale No economies of scale

Median Minimum Maximum Finished Time exceeded Median Minimum Maximum Finished Time exceeded

Two-Path MILP 1712.84 900.11 1848.18 29 21 1659.29 703.94 1844.11 28 22

Path ILP 1828.82 1826.75 1879.86 0 50 1829.25 1826.42 1879.76 0 50

Flow ILP 127.67 30.51 638.87 50 0 108.94 12.99 935.94 50 0

Table 4.2.: Running time benchmarks for the ILP and MILP formulations on scenarios with 25 turbines and the three cable
types
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In Table 4.1 we subsume the number of feasible solutions, the median gap, the minimum
gap, the maximum gap and the number of instances for which the found solution is equal to
the cost-minimal solution or best lower bound found. The upper part shows the results on
instances with an array distribution and the second one on instances with randomly placed
turbines. The table splits the results again depending on the sink position and the cable
type properties. Table 4.2 presents the running time of the algorithms and is partitioned
in the same manner.
The benchmarks provided in these tables show the hardness of the problem of the SCIP.

None of the formulation could be solved optimally. The Path ILP formulation could never
find any optimal solution. For each problem instance setting the calculation exceeds the
time limit of 30 minutes. The adaption of the MILP of Hertz et al. [20] performs better.
Though, it cannot find the optimal solution to every problem instance within the given
time frame either. In fact, 46.6 % remain unsolved. Even the less complex formulation by
Uchoa et al. [37] cannot solve all instances. Six of the instances with a uniform turbine
and sink positioning needed a calculation time exceeding the time limit. Hence, for this
approach instances with randomly positioned points seem to be harder to solve.
Comparing the uniform and wind farm oriented turbine placement setting for the MILP

we cannot distinguish if one is harder to solve. Looking at the percentage of unsolved
instances we get the following values for the the different settings on scenarios with a array
distribution: 40%, 58%, 30% and 54%. In the uniform turbine placement the corresponding
ratios are 44%, 60%, 42% and 44%, respectively. Hence, in the wind farm and uniform
turbine placement the percentage of unsolved problem instances is quite similar for a sink
position at the border. If the sink is placed randomly in the plane the percentage of found
solutions differ more but no setting is harder to solve in both cable settings.
Apparently, cable types with no economies of scale lead to harder problem instances

since the percentage of unsolved instances is greater than their counterparts settings with
economies of scale. Positioning the sink at the border does not lead to less optimal solutions
for all settings. Hence, this does not seem to have a big impact on the hardness of the
problem.
Regarding the gap, the Flow ILP finds many and good feasible solutions on the two

given cable sets. The median gap is similar to the one of the MILP for all settings. In
addition, if the MILP finds an optimal and the ILP of Uchoa et al. [37] a feasible solution
their values are the same.
Nevertheless, we can observe that the maximum gap between a lower bound and a feasible

solution found can be huge. For the Flow ILP the maximum gap differs between 61.62 %
and 168.68 % while for the Path ILP and the Two-Path MILP the maximum gap can
be up to 1166 % and 1300 %, respectively. This is an indicator of the slow convergence of
the lower bound and feasible solution during the ILP and MILP solving.
The running time of the Flow ILP outperforms the other two formulations significantly.

The median of all running times is always a fraction of the one of the Two-Path MILP.
Even the lowest running time of the Two-Path MILP is always much higher than the
median of the Flow ILP.
Running these approaches on problem instances with five cable types let to even less

optimal solutions and lower bounds. Both the Two-Path MILP and the Path ILP
could not solve any problem instance optimally. They ran out of time on all instances.
Furthermore, the Path ILP did not find any lower bound either. The Two-Path MILP,
however, still found lower bounds for 772 instances. On these problem instances the ILP
of Uchoa et al. [37] could calculate feasible solutions for all instances. Its running times
were even better than for the sets with three cable types. However, this is still reasonable
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since the main driving factors for the complexity of the Flow ILP are the number of
turbines since they also determine the number of "cable types", i.e. capacities, which are
regarded by the model. In this case there was no increase in complexity for the Flow
ILP.
Since the number of optimally solved instances is zero the median gap and minimum

gap for Two-Path MILP increase. More interesting is the fact that the maximum gap
rises to high values.
From the results in this subsection we observe that it is hard to find an optimal solution

even on small instances with 25 turbines. For even bigger problem instances the Path ILP
and Two-Path MILP formulations are not reasonable anymore. Hence, we need other
means to calculate good solutions faster. One way are the previously described heuristics
whose performance we discuss in the next subsection.

4.2.2. Heuristics

In experiments for the heuristics we used the same instances we already regarded in the
previous subsection and also included some bigger instances. We ran each heuristic on
every instance. One special case is RandomizedAggregationHeuristic. Since it is
randomized we ran it 10 times on each instance in order to get enough data to calculate
the expected benchmarks.
As for the ILP and MILP formulations we ran the heuristics on the instances with 25

turbines and three cable types. Let us regard these results first. Table 4.3 shows the
quality benchmarks for the array distribution and Table 4.4 for the random distribution.
For the RandomizedAggregationHeuristic the number of feasible solutions and the
number of lower bounds found are always expected values. The calculation of the median,
minimum and maximum gap and running time is always done over all instances and all
runs. Apart from that the tables provide the same information and have the same structure
as in Subsection 4.2.1.
Each calculation of the heuristics take only a few milliseconds no matter which instances

setting. Since the running times are so small we leave the detailed discussion about them
for bigger instances where the running times are higher and better comparable and omit a
presentation in a table at this point.
Regarding the quality on these instances the heuristics differ more than in the running

time. The MstHeuristic finds the least number of feasible instances. However, the Ms-
tHeuristic is the only heuristic apart from the RandomizedAggregationHeuristic
which found solutions with a gap of 0%. Additionally, the feasible solutions found by the
MstHeuristic approximate the lower bound better than any other heuristic. This can be
seen by the median and maximum gap which are lower than the ones of the other heuristics
for all problem instance settings.
The heuristics of Pappas et al. [29] solve more instances than the MstHeuristic even

if they use the same cable mapping. In fact, UpgradeHeuristic1 and UpgradeHeuris-
tic2 give feasible solutions for all instances. Only UpgradeHeuristic3 does not provide
a feasible solution for each instance. However, the feasible solutions of UpgradeHeuris-
tic3 provide the better gaps regarding median, minimum and maximum gap. In fact, it
provides the second best median gaps after the MstHeuristic together with the Ran-
domizedAggregationHeuristic. UpgradeHeuristic1 on the other side performs the
worst regarding median, minimum and maximum gap in all problem settings.
The UnsplittableUpgradeHeuristic also provides only feasible solutions. Though,

ensuring the feasibility of the solution at all time during the algorithm does not result in
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better gaps. UpgradeHeuristic3, from which UnsplittableUpgradeHeuristic is
derived, produces median gaps which are nearly twice as good for the array distribution.
In the random distribution, however, the UnsplittableUpgradeHeuristic performs
better and its median gaps are closer to the one of UpgradeHeuristic3.
The RandomizedAggregationHeuristic provides the second best expected mini-

mum gaps among the heuristics. Despite its randomized algorithm which aggregates the
flow at random nodes it provides among the second best median gaps. The expected per-
centage of feasible solution is between 95.2 % and 98.2 %. The maximum gaps, however,
are big as well. Only the maximum gaps of the UpgradeHeuristic1 are bigger.
Remarkable in Table 4.3 and Table 4.4 are the high maximum gaps. Since these are

in relation to the lower bound found by the Two-Path MILP and were even big for the
approaches from Subsection 4.2.1 we provide in Table A.5 and Table A.6 gaps based on
optimal solutions found by the Two-Path MILP only. In these tables we can observe that
the maximum gap drops significantly when neglecting the lower bounds of the Two-Path
MILP.
For the instances with 25 turbines and a cable type set with 5 different types the obser-

vation made so far still apply.
For the bigger instances we have no more lower bounds from any ILP or MILP formula-

tion and therefore the minimum value of all feasible solution of any heuristic is used as the
reference value for the gap. For the instances with 50 turbines we can observe that the num-
ber of found feasible solutions decreases. The MstHeuristic does not provide any feasible
solution anymore. The three heuristics of Pappas et al. [29] also compute less feasible
solution. Especially, for UpgradeHeuristic3 only a third or even less of the calculated
solutions are feasible. However, the median gap is still better than the ones of Upgrade-
Heuristic2 and UpgradeHeuristic3. Now UnsplittableUpgradeHeuristic is the
only heuristic which sill finds a feasible solution for every instance. However, its maximum
gap and, hence, the gaps to feasible solutions found by other heuristics is still quite large.
On the bigger instances we can now also see how much time each heuristic needs to

calculate a solution. As an example the running times for instances with 100 turbines are
given in the appendix. All heuristics are fast even on instances with 100 turbines. The
MstHeuristic is fast even on instances with 100 turbines. On average it needs less than
0.01 seconds. The heuristics of Pappas et al. [29] take more time the more complex
they are. Nevertheless, within 7 seconds a solution for an instance was calculated Hence,
UpgradeHeuristic1 needs the fewest time and UpgradeHeuristic3 the most. The
UnsplittableUpgradeHeuristic is also faster than UpgradeHeuristic3 and even
UpgradeHeuristic2. The most time consuming heuristic is the RandomizedAggre-
gationHeuristic. Especially on instances with cables which do not obey economies of
scale the running time is comparably high with a median runtime between 12.27 and 13.07
seconds.
In conclusion, we observed that on our benchmark instances the heuristics solve in-

stances with up to 100 turbines within a few seconds. Thereby, only the Unsplittable-
UpgradeHeuristic provides feasible solutions reliably. However, if the MstHeuristic,
UpgradeHeuristic3 or RandomizedAggregationHeuristic find a feasible solution
its gap is mostly better. Though, especially the MstHeuristic find feasible solutions
very rarely, especially on bigger instances. Also UpgradeHeuristic2 outperforms Un-
splittableUpgradeHeuristic on some instances but is worse in others. The worst
solutions are given by UpgradeHeuristic1. Even if most of its solutions are feasible
and it is one of the fastest heuristics the application of UpgradeHeuristic1 to the SCIP
is not practical since much better solutions in not much more time can be computed by
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UnsplittableUpgradeHeuristic for example.
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Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 20 5.82 0.00 100.63 2 20 6.62 0.00 18.85 2

UpgradeHeuristic1 150 103.39 43.64 251.66 0 148 107.49 52.11 239.44 0

UpgradeHeuristic2 150 38.67 16.97 145.48 0 148 37.28 20.76 132.26 0

UpgradeHeuristic3 130 24.29 4.13 130.72 0 130 24.15 4.20 109.69 0

UnsplittableUp-
gradeHeuristic 150 41.40 15.43 139.89 0 150 41.05 17.46 132.14 0

RandomizedAggre-
gationHeuristic 145.3 30.34 3.69 184.61 0.00 147.2 26.57 1.34 186.49 0.00

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 40 5.54 0.00 65.90 2 40 7.98 0.00 120.36 2

UpgradeHeuristic1 150 105.69 43.71 396.58 0 149 120.60 51.45 313.89 0

UpgradeHeuristic2 149 36.99 15.68 184.21 0 149 37.70 17.07 156.15 0

UpgradeHeuristic3 137 23.18 1.86 135.77 0 140 25.05 2.36 152.78 0

UnsplittableUp-
gradeHeuristic 150 40.05 6.09 181.05 0 150 41.53 13.72 147.05 0

RandomizedAggre-
gationHeuristic 146.8 25.30 0.00 177.56 0.10 146.4 25.15 0.42 171.17 0.00

Table 4.3.: Quality benchmarks for the heuristics on the scenario with 25 turbines, array distribution and three cable types
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Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 7 12.19 0.00 203.56 1 7 17.95 2.25 182.20 0

UpgradeHeuristic1 50 94.75 71.75 374.50 0 50 106.46 67.22 385.18 0

UpgradeHeuristic2 50 29.28 18.01 233.76 0 50 31.43 17.38 226.62 0

UpgradeHeuristic3 42 20.12 5.45 215.21 0 41 23.76 6.40 190.95 0

UnsplittableUp-
gradeHeuristic 50 26.55 15.29 344.37 0 50 29.95 19.55 216.63 0

RandomizedAggre-
gationHeuristic 48.4 26.70 2.11 296.43 0.00 48.1 27.97 4.02 304.36 0.00

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 12 7.14 0.00 208.26 1 12 8.11 0.00 33.88 1

UpgradeHeuristic1 50 92.69 60.45 420.47 0 50 99.15 67.01 390.03 0

UpgradeHeuristic2 50 24.11 11.74 245.33 0 50 24.03 10.79 220.96 0

UpgradeHeuristic3 42 15.04 4.30 235.15 0 40 17.03 5.54 42.52 0

UnsplittableUp-
gradeHeuristic 50 24.96 11.77 224.64 0 50 25.78 13.40 214.87 0

RandomizedAggre-
gationHeuristic 49 22.76 1.11 313.26 0.00 49.4 23.78 1.47 296.93 0.00

Table 4.4.: Quality benchmarks for the heuristics on the scenario with 25 turbines, random distribution and the three cable
types
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5. Conclusion

In the context of wind energy and wind farms interesting and complex problems exists. In
this thesis we have regarded one of them, namely the SCIP, which is a subproblem of the
WFCIP. Thereby, we dealt the SCIP by identifying suitable algorithms for the problem
and evaluating them in an experimental study.
Therefore, we have identified approaches which can be adapted to the SCIP during

a literature survey. We then implemented nine different algorithms to solve the SCIP.
Thereby, we regarded two exact MILP resp. ILP formulations, one suboptimal ILP and
six heuristics.
The presented exact MILP formulation Two-Path MILP is an adaption of the work of

Hertz et al. [20] and models the unsplittability constraint of the SCIP with the help of
two-edge paths. This means that for every node all possible incoming and outgoing cable
combinations are regarded and constrained such that the flow is unsplittable.
In addition, we developed our own ILP formulation called Path ILP. Here the unsplit-

tability is modeled by restricting each output flow of a turbine ot one distinct source-sink
path which cannot be split.
The last ILP formulation is taken from Uchoa et al. [37]. In this thesis we have

called it Flow ILP. This ILP is a simple formulation for the MLCMST which works on
unitary capacities installing exactly that capacity which is needed by the flow along one
edge. Hence, the formulation only uses integer variables indicating the amount of flow on
an edge and does not need any further variables for the cable installation itself. In order
to apply the Flow ILP to the SCIP we calculated the cost-minimal cable combinations
for every possible flow in the network and hence had an unitary flow-capacity mapping.
However, the found solution by Flow ILP is not necessarily feasible since it depends on
the cable type combinations which are consecutive along a path to the sink.
In our experiments we tested these approaches on small instances with 25 turbines and

cable type sets of size 3 and 5. None of the formulations could solve all those instances
optimally in the given time limit of 30 minutes. While the Two-Path MILP still found
optimal solutions for the instances with 3 cable types Path ILP did not find any optimal
solution at all. The Flow ILP could not find its optimal solution only in a few cases.
However, some of its solutions were not feasible for the SCIP.
These results show the hardness of the SCIP and demonstrate that there is a need

for heuristics in order to calculate good results in reasonable time. Hence, we looked at
heuristic approaches as well. We implemented and evaluated the following six approaches.
The first heuristic, MstHeuristic, is a simple approach which calculates the MST on

the given input and then installs the optimal cable combination on each edge such that all
turbines’ weight can be sent to the substation.
Additionally, we adapted an approximation algorithm for the SSBB to the SCIP. This

algorithm iteratively aggregates the turbines’ weight at a random subset of nodes and
installs the necessary cables to support the aggregation and hence was called Random-
izedAggregationHeuristic.
Three further heuristics we implemented are presented by Pappas et al. [29]. They

are greedy heuristics which try to minimize the cost of current solution by iteratively
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implementing a most profitable capacity upgrade. The heuristics differ in the way they
calculate the most profitable upgrade. At each edge only one cable can be installed.
Hence, we adapted the input for these heuristics such that they work on the optimal cable
combination for all possible flow values.
From one of these heuristics we derived the UnsplittableUpgradeHeuristic. As

well as the heuristics of Pappas et al. [29], it iteratively looks for the most profitable
capacity upgrade. Though, it only allows upgrades which are in accordance with the
unsplittability restriction of the SCIP.
In our experiments these heuristics only needed some seconds to solve SCIP instances

with up to 100 turbines. Hence, they outreached the running times of the MILP and ILP
approaches by far.
It is notable that the MstHeuristic finds by far the least feasible solutions of all heuris-

tics but, therefore, the found feasible solutions have the lowest gaps to the lower bounds.
The UnsplittableUpgradeHeuristic always finds a feasible solution but the feasi-
ble solutions of UpgradeHeuristic3 or RandomizedAggregationHeuristic provide
lower gaps.
In conclusion, in this thesis we dealt with the SCIP for multiple cables. Before it has been

only regarded in the single-cable version by Berzan et al. [2] and the two-cable version by
Hertz et al. [20]. Our experiments show that exact approaches fail to provide optimal
solutions for even relatively small instances in reasonable time. Therefore, approximate
results via different ILP formulations or heuristics are necessary.
For future work it would be interesting to find out if there are any cutting planes for the

exact approaches which can speed up the calculation. Additionally, the improvement of the
heuristics is appealing. The comparison of UpgradeHeuristic3 and Unsplittable-
UpgradeHeuristic shows that the UnsplittableUpgradeHeuristic misses better
feasible solutions. Instead of the first fit procedure, other procedures for the detection of
unsplittability conformity for a node upgrade might improve the solutions.
Furthermore, finding suitable approaches for the WFCIP is still an open issue in the

multi-cable version. One way can be to first allocate the turbines to one substation and
then solve each SCIP with one of the approaches presented here.
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A. Further benchmarks of the
experiments

A.1. ILP and MILP formulations
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Array distribution

Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

Two-Path MILP 150 63.49 15.75 84340.91 143 150 46.27 3.45 92079.77 147

Path ILP 150 1084.21 494.82 1124.66 0 150 1048.11 566.10 1093.91 0

Flow ILP 140 48.53 0.00 168.48 7 127 39.40 0.00 144.68 3

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

Two-Path MILP 150 74.76 3.60 58305.14 148 150 60.16 1.59 161415.79 144

Path ILP 150 1080.20 552.05 1130.19 0 150 1042.95 494.53 1103.37 0

Flow ILP 134 61.80 0.00 182.37 2 122 51.08 0.00 157.73 4

Random distribution

Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

Two-Path MILP 50 148.68 109.66 74117.22 48 50 125.23 86.20 103314.52 48

Path ILP 50 1082.30 387.38 1120.38 0 50 1048.21 426.99 1093.79 0

Flow ILP 50 131.68 0.00 165.87 2 49 115.27 0.00 141.86 2

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

Two-Path MILP 50 179.90 119.63 145345.43 44 50 150.87 7.10 113332.83 50

Path ILP 50 1080.45 271.91 1111.63 0 50 1048.41 523.63 1084.43 0

Flow ILP 50 145.81 0.00 227.79 6 49 128.98 7.10 202.75 0

Table A.1.: Quality benchmarks for the ILP and MILP formulations on scenarios with 25 turbines and five cable types
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Array distribution

Algorithms
Sink at border

Economies of scale No economies of scale

Median Minimum Maximum Finished Time exceeded Median Minimum Maximum Finished Time exceeded

Two-Path MILP 1849.76 1845.73 1937.59 0 150 1852.95 1845.76 1932.23 0 150

Path ILP 1856.72 1852.91 1948.03 0 150 1856.43 1852.80 1949.00 0 150

Flow ILP 78.93 1.64 907.92 150 0 85.08 1.60 961.99 150 0

Algorithms
Sink uniform

Economies of scale No economies of scale

Median Minimum Maximum Finished Time exceeded Median Minimum Maximum Finished Time exceeded

Two-Path MILP 1853.08 1845.71 1930.07 0 150 1851.91 1845.41 1933.27 0 150

Path ILP 1858.61 1852.83 1950.36 0 150 1857.24 1853.06 1948.82 0 150

Flow ILP 63.31 1.43 1219.96 150 0 46.78 1.84 1471.34 150 0

Random distribution

Algorithms
Sink at border

Economies of scale No economies of scale

Median Minimum Maximum Finished Time exceeded Median Minimum Maximum Finished Time exceeded

Two-Path MILP 1855.08 1845.28 1935.05 0 50 1868.91 1846.29 1933.26 0 50

Path ILP 1868.13 1853.63 1949.59 0 50 1856.12 1853.19 1948.44 0 50

Flow ILP 77.00 16.10 434.48 50 0 103.84 18.14 537.11 50 0

Algorithms
Sink uniform

Economies of scale No economies of scale

Median Minimum Maximum Finished Time exceeded Median Minimum Maximum Finished Time exceeded

Two-Path MILP 1849.56 1845.71 1928.00 0 50 1850.39 1845.42 1921.62 0 50

Path ILP 1856.07 1853.65 1947.91 0 50 1856.07 1853.78 1939.29 0 50

Flow ILP 71.89 8.57 964.17 50 0 82.50 7.40 533.39 50 0

Table A.2.: Running time benchmarks for the ILP and MILP formulations on scenarios with 25 turbines and the five cable
types
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A.2. Heuristics

Algorithms
Sink at border

Economies of scale No economies of scale

Median Minimum Maximum Median Minimum Maximum

MstHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01

UpgradeHeuristic1 < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

UpgradeHeuristic2 0.02 < 0.01 0.03 0.02 < 0.01 0.03

UpgradeHeuristic3 0.05 0.01 0.08 0.05 0.01 0.08

UnsplittableUp-
gradeHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

RandomizedAggre-
gationHeuristic 0.02 0.01 0.06 0.02 0.01 0.07

Algorithms
Sink uniform

Economies of scale No economies of scale

Median Minimum Maximum Median Minimum Maximum

MstHeuristic < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

UpgradeHeuristic1 < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

UpgradeHeuristic2 0.02 < 0.01 0.02 0.02 < 0.01 0.02

UpgradeHeuristic3 0.04 0.01 0.07 0.04 0.01 0.07

UnsplittableUp-
gradeHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

RandomizedAggre-
gationHeuristic 0.05 0.01 0.06 0.04 0.01 0.06

Table A.3.: Running time benchmarks for the heuritics on scenarios with 25
turbines, array distribution and three cable types
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Algorithms
Sink at border

Economies of scale No economies of scale

Median Minimum Maximum Median Minimum Maximum

MstHeuristic < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

UpgradeHeuristic1 < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

UpgradeHeuristic2 0.02 < 0.01 0.02 0.02 < 0.01 0.02

UpgradeHeuristic3 0.04 0.01 0.06 0.04 0.01 0.05

UnsplittableUp-
gradeHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

RandomizedAggre-
gationHeuristic 0.03 0.01 0.06 0.02 0.01 0.06

Algorithms
Sink uniform

Economies of scale No economies of scale

Median Minimum Maximum Median Minimum Maximum

MstHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01

UpgradeHeuristic1 < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

UpgradeHeuristic2 0.01 < 0.01 0.02 0.01 < 0.01 0.02

UpgradeHeuristic3 0.03 0.01 0.05 0.03 0.01 0.05

UnsplittableUp-
gradeHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

RandomizedAggre-
gationHeuristic 0.02 0.01 0.06 0.02 0.01 0.07

Table A.4.: Running time benchmarks for the heuristics on scenarios with 25
turbines, random distribution and three cable types
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Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 16 4.72 0.00 15.45 2 13 4.57 0.00 14.20 2

UpgradeHeuristic1 90 98.66 55.99 189.49 0 63 106.85 62.16 198.12 0

UpgradeHeuristic2 90 37.12 17.90 66.17 0 63 35.72 20.76 60.40 0

UpgradeHeuristic3 81 22.22 4.13 47.23 0 59 22.88 4.20 45.87 0

UnsplittableUp-
gradeHeuristic 90 38.85 18.43 79.40 0 63 39.05 21.05 69.91 0

RandomizedAggre-
gationHeuristic 87.1 25.40 4.47 123.38 0.00 61.7 21.82 1.34 83.17 0.00

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 32 4.23 0.00 20.74 2 25 4.84 0.00 21.46 2

UpgradeHeuristic1 100 101.39 46.61 196.41 0 69 117.09 60.96 213.58 0

UpgradeHeuristic2 99 34.99 15.68 73.75 0 69 36.07 17.07 69.09 0

UpgradeHeuristic3 95 19.30 1.86 45.09 0 63 21.57 2.36 41.72 0

UnsplittableUp-
gradeHeuristic 100 37.68 6.09 88.18 0 69 39.27 13.72 86.19 0

RandomizedAggre-
gationHeuristic 98.1 22.65 0.00 83.64 0.10 67.9 19.10 0.42 90.76 0.00

Table A.5.: Quality benchmarks for the heuristics on scenarios with 25 turbines, array distribution and three cable types: In
this table we compare the results of the heuristics with only optimal solutions found by Two-Path MILP.
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Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 3 0.37 0.00 1.44 1 2 10.10 2.25 17.95 0

UpgradeHeuristic1 28 91.92 71.75 114.97 0 20 99.47 67.22 117.01 0

UpgradeHeuristic2 28 26.97 18.01 38.57 0 20 28.30 17.38 40.70 0

UpgradeHeuristic3 26 17.70 5.45 29.13 0 16 20.57 6.40 33.45 0

UnsplittableUp-
gradeHeuristic 28 25.40 15.29 52.76 0 20 26.21 21.14 53.51 0

RandomizedAggre-
gationHeuristic 27.2 24.64 2.11 59.51 0.00 19.2 23.16 4.02 61.25 0.00

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 7 3.64 0.00 7.60 1 9 6.90 0.00 9.35 1

UpgradeHeuristic1 29 81.83 60.45 103.66 0 28 90.13 75.70 113.82 0

UpgradeHeuristic2 29 20.82 11.74 42.55 0 28 21.53 10.79 43.19 0

UpgradeHeuristic3 25 12.18 4.30 39.41 0 24 15.11 5.54 40.39 0

UnsplittableUp-
gradeHeuristic 29 19.55 11.77 71.97 0 28 19.80 13.40 71.26 0

RandomizedAggre-
gationHeuristic 28.8 18.28 1.11 60.73 0.00 27.8 18.91 1.47 96.28 0.00

Table A.6.: Quality benchmarks for the heuristics on scenarios with 25 turbines, random distribution and three cable types:
In this table we compare the results of the heuristics with only optimal solutions found by the Two-Path MILP.
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Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 0 – – – 0 0 – – – 0

UpgradeHeuristic1 136 106.11 55.18 170.89 0 127 115.25 59.92 186.04 0

UpgradeHeuristic2 132 13.06 2.21 32.75 0 135 16.90 3.65 31.40 0

UpgradeHeuristic3 28 5.68 0.00 16.60 5 28 8.95 3.85 20.33 0

UnsplittableUp-
gradeHeuristic 150 6.55 0.00 63.81 26 150 19.44 0.00 80.85 1

RandomizedAggre-
gationHeuristic 94.5 7.04 0.00 37.73 11.90 112.8 6.19 0.00 63.81 14.90

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 0 – – – 0 0 – – – 0

UpgradeHeuristic1 142 123.41 70.10 203.32 0 139 131.01 75.77 189.36 0

UpgradeHeuristic2 139 12.39 0.12 28.63 0 142 16.30 0.00 33.29 1

UpgradeHeuristic3 52 3.77 0.00 16.96 14 51 8.29 0.00 21.87 4

UnsplittableUp-
gradeHeuristic 150 9.28 0.00 78.95 22 150 15.94 0.00 83.29 2

RandomizedAggre-
gationHeuristic 108.2 7.62 0.00 46.23 11.90 120 6.86 0.00 45.74 14.80

Table A.7.: Quality benchmarks for the heuristics on scenarios with 50 turbines, array distribution and five cable types
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Algorithms
Sink at border

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 0 – – – 0 0 – – – 0

UpgradeHeuristic1 50 102.04 74.32 122.60 0 49 110.21 90.32 134.62 0

UpgradeHeuristic2 46 10.79 4.05 22.37 0 49 14.06 3.35 26.10 0

UpgradeHeuristic3 12 2.23 0.00 18.16 4 7 3.08 0.00 11.41 1

UnsplittableUp-
gradeHeuristic 50 3.09 0.00 31.22 14 50 7.69 0.00 44.99 5

RandomizedAggre-
gationHeuristic 34.1 8.40 0.00 35.03 3.20 38 6.00 0.00 34.08 4.40

Algorithms
Sink uniform

Economies of scale No economies of scale

Feasible Median Minimum Maximum LB Feasible Median Minimum Maximum LB

MstHeuristic 0 – – – 0 0 – – – 0

UpgradeHeuristic1 50 109.12 80.84 128.58 0 50 117.16 94.26 142.42 0

UpgradeHeuristic2 48 8.48 1.18 14.57 0 46 10.76 3.74 22.95 0

UpgradeHeuristic3 21 1.40 0.00 6.90 8 20 4.14 0.00 17.16 5

UnsplittableUp-
gradeHeuristic 50 2.36 0.00 16.39 14 50 5.83 0.00 16.13 4

RandomizedAggre-
gationHeuristic 39.9 7.37 0.00 37.55 2.80 39.5 7.12 0.00 32.04 4.60

Table A.8.: Quality benchmarks for the heuristics on scenarios with 50 turbines, random distribution and five cable types
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Algorithms
Sink at border

Economies of scale No economies of scale

Median Minimum Maximum Median Minimum Maximum

MstHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

UpgradeHeuristic1 0.05 0.03 0.06 0.05 0.03 0.07

UpgradeHeuristic2 0.61 0.52 0.76 0.62 0.52 0.73

UpgradeHeuristic3 2.08 1.45 2.76 2.09 1.42 2.96

UnsplittableUp-
gradeHeuristic 0.22 0.07 0.30 0.22 0.08 0.31

RandomizedAggre-
gationHeuristic 3.00 2.76 7.53 12.20 11.17 28.26

Algorithms
Sink uniform

Economies of scale No economies of scale

Median Minimum Maximum Median Minimum Maximum

MstHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

UpgradeHeuristic1 0.04 0.03 0.06 0.05 0.03 0.13

UpgradeHeuristic2 0.55 0.45 0.76 0.57 0.47 1.73

UpgradeHeuristic3 1.73 1.35 2.75 1.79 1.32 6.32

UnsplittableUp-
gradeHeuristic 0.18 0.08 0.27 0.18 0.07 0.28

RandomizedAggre-
gationHeuristic 3.01 2.74 7.41 12.19 11.23 28.01

Table A.9.: Running time benchmarks of the heuristics on scenarios with 100
turbines, array distribution and five cable types
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Algorithms
Sink at border

Economies of scale No economies of scale

Median Minimum Maximum Median Minimum Maximum

MstHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

UpgradeHeuristic1 0.05 0.04 0.13 0.05 0.04 0.14

UpgradeHeuristic2 0.56 0.51 1.63 0.57 0.51 1.59

UpgradeHeuristic3 1.83 1.50 5.26 1.90 1.58 4.79

UnsplittableUp-
gradeHeuristic 0.19 0.09 0.23 0.19 0.09 0.24

RandomizedAggre-
gationHeuristic 3.11 2.78 7.52 12.20 11.24 27.82

Algorithms
Sink uniform

Economies of scale No economies of scale

Median Minimum Maximum Median Minimum Maximum

MstHeuristic < 0.01 < 0.01 0.01 < 0.01 < 0.01 0.01

UpgradeHeuristic1 0.05 0.04 0.13 0.05 0.04 0.13

UpgradeHeuristic2 0.49 0.43 1.44 0.49 0.44 1.44

UpgradeHeuristic3 1.47 1.26 4.81 1.45 1.27 4.81

UnsplittableUp-
gradeHeuristic 0.15 0.10 0.22 0.15 0.12 0.24

RandomizedAggre-
gationHeuristic 3.07 2.75 7.62 12.23 11.21 27.35

Table A.10.: Running time benchmarks of the heuristics on scenarios with 100
turbines, random distribution and five cable types
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