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Abstract

Adding an edge to an already existing graph drawing can be done in numerous ways.
In this thesis we explore the idea of drawing the new edge using a polynomial curve.
Generalizing the k-link-path problem to curves, we want to find a curve connecting
two points, while respecting a given bounding polygon. For degree 2 curves we
present a direct algorithmic solution. For any curve of higher degree the problem is
more difficult to solve. Sampling the control points is the logical next step, but with
a naive approach one needs a large amount of sample points. For this reason we look
into the application of ε-nets, which allow us to reduce the size of the sample.

Deutsche Zusammenfassung

Eine Kante zu einer schon bestehenden Graphzeichnung hinzuzufügen kann auf viele
Arten erfolgen. Die Darstellung solch einer Kante durch eine polynomielle Kurve ist
Gegenstand dieser Arbeit. Eine andere Sichtweise ist, das Problem einen k-link Pfad
zu finden, auf Kurven zu verallgemeinern. So betrachtet kann man das Problem
auf das Finden einer Kurve, die gegebenen Start- und Endpunkt verbindet und
innerhalb eines Polygons bleibt, übertragen. Für quadratische Kurven wird eine
direkte, algorithmische Lösung angegeben. Kurven mit höherem Grad erweisen sich
in der Betrachtung als wesentlich schwieriger. Die Kontrollpunkte der Kurve zu
samplen ist eine Möglichkeit höhergradige Kurven zu handhaben. Der naive Ansatz
braucht allerdings eine zu große Samplemenge. Als letzten Schritt betrachtet man
ε-Netze, die es erlauben, die Größe der benötigen Sample einzuschränken.
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1. Introduction

Most times a drawing of a graph is seen as something static. But there are cases when we
want to add elements, extending an already existing drawing. For example, if the graph
represents a data set and this set changes at some point, but only a smaller portion of the
graph is affected. It then seems natural to conserve the untouched part, because it makes
it easier for a viewer to track changes, then just delete the changed parts and finally insert
the newly needed nodes and edges. Another case might be when a graph drawing is not
satisfactory if drawn using a specific algorithm, but if we decompose it into several parts
we can draw the whole graph nicely by starting with one part and then add the remaining
elements later.
Taking the last case a step further we might even want to add the later parts in a different
style. Over the years a lot of techniques to draw a graph were developed and they vary in
how edges or nodes are represented. Figure 1.1 presents just a little excerpt. Some of the
earliest ideas are force directed methods. The idea is to assign forces to the nodes and edges,
then we iterate the system until the change from one step to another is very small. Figure
1.1(a) shows a graph created by a force directed layout algorithm. Kobourov recently
presented a survey of such methods [Kob12]. Another popular method is to position the
nodes on a grid and draw the edges with polylines, which are allowed to have bends of
some predefined degrees. In Figure 1.1(b) we use bends of 90◦. The result is a so called
orthogonal drawing. Other methods completely changes the representation of nodes and
edges. An example for this is shown in Figure 1.1(c). Each box represents a node and
two nodes are connected if the two corresponding boxes touch each other. Finally, Figure

(a) Force directed layout. (b) Orthogonal drawing. (c) Contact represanta-
tion.

(d) Draw some
edges as curves.

Figure 1.1.: A simple graph consisting of two triangles and two cycles, one of length four and
one of length five. Figure 1.1(a) and 1.1(b) are generated with yEd [yWo15].
The Figures 1.1(c) and 1.1(d) are drawn by hand.
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1. Introduction

(a) Using polyline edges. (b) Add the edge as a curve.

Figure 1.2.: Adding one edge to an existing drawing. Figure 1.2(a) shows the trade-off
between bends and crossings we have to keep in mind. The other drawing in
Figure 1.2(b) shows how a curve could be used to draw the edge.

1.1(d) displays a mix of drawing styles. While a part of the graph is drawn with straight
lines, some nodes are connected by curves. For a collection of papers and introductory
material to graph drawing have a look into the paper of Di Battista et al., who collected a
comprehensive list of papers on graph drawing [DETT94].
Deciding for a style of drawing often defines what we want to optimize, but there are
some more general criteria a lot of techniques share or aim to fulfil. The perhaps most
often tracked metric is the number of crossings between a pair of edges, though finding a
crossing-minimal drawing is shown to be NP-hard [GJ83]. Another metric we often try
to maximize is the angular resolution between two edges at a node. If the angle between
two edges is too small it is very hard to distinguish them as they enter the node. If we
draw the edges as polylines like in Figure 1.1(b) the number of bends is interesting to us.
Drawing an edge with a high number of bends suggest it is routed overly complex and it
makes it hard for the user to follow it from one node to another.
Often we need to make a trade-off between different metrics. Figure 1.2 shows an example
of a graph where we add an edge to an orthogonal drawing. While the red edge introduces
a crossing, the blue one has a lot of bends. In fact Chan et al. [CFG+14] have shown that
if the graph is drawn with straight lines and extended by edges, drawn as polylines with
bends, the number of bends we need is increasing linear with the size of the already drawn
graph, if we want the drawing to be planar. In the end it is hard to say one drawing is
better than the other. However in Figure 1.2(b) shows another variant, in which we draw
the edge as a curve. Comparing the curved edge to the other two we can still talk about
crossings, but we would need some notion on curvature. Again it is a very subjective thing
to decide if a drawing is better than another, however the picture suggest the mixing of
two styles is an interesting way of drawing the graph.
Finding a curve between two nodes is the task we are looking into in this thesis. To find
just a random curve is not hard, but if we apply the above constraints again we get a
more interesting problem. Focusing on the crossing minimization we have to find a way of
restricting the curves, such that they never intersect if it is unnecessary. A possible way of
doing this, is to find boundary polygons in the drawing, containing the two nodes we want
to connect by an edge. If we do this in a way, such that the polygons do not intersect and
the curves stay inside their polygon we can guarantee that there is no crossing created by
adding new edges.
The problem we can derive from this, is to find a curve between two given points (the
nodes) in the plane and restricting it to a given boundary polygon, which contains the two
nodes connected by the edge. The type of curves we use to draw the edges are so called
polynomial curves. A polynomial curve is defined by control points and weights for each
point, making it fairly easy to handle. Further we can build a complex and smooth curve
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from curves of lower degree. This makes it possible for us to work with low degree curves
and still be able to form more complex shapes.
Looking for existing algorithms to draw a polynomial curve such that it respects a given
bounding polygon yields a few results. The approaches though rely on a previously
computed set of points or polyline and then an approximation is found, fitting the curve to
this set or line [Sch90, DGKN97]. If there is not a really good set of points or polyline we
approximate the approach runs into a dead end. Especially the case of adding multiple
edges as curves, while guaranteeing to add no unnecessary crossings is difficult to realize,
because we have no control over where the curve lies exactly and making it respect a
boundary polygon gives us overly complex curves.
To formalize further we look at an older, already well studied problem. Given two points
u,v and some obstacles in the plane, a k-link path is a polyline consisting of k segments,
such that the path connects u and v. Further we say the path is not allowed to intersect
any obstacle. The original k-link path problem was given by Toussaint and is solvable in
linear time as shown by Suri [Sur86]. A related problem definition asks for a path with
minimal euclidean length. This is a very well studied problem as well [LP84, SS86, Mit91].
Combining the two metrics was studied by Mitchell et al. [MRW92] and it yields short
paths in both senses.
We aim to generalize the definition of a minimum k-link path to incorporate curves, calling
it k-curve path.

Definition 1.1 (k-curve path). Given two points u, v ∈ R2, a set of obstacles in the R2

and an integer k ∈ N+, find a path of degree d polynomial curves C1, ..., Ck, such that C1
starts at u, Ck ends at v and no curve Ci, i = 1, ..., k intersects an obstacle.

Setting d = 1 gives the original problem of a k-link path. The above definition has no
restriction on how the single segments of the curve are connected. On the one hand this
allows us to very freely route the single curves, but on the other hand the whole curve,
consisting of C1, ..., Ck, should be smooth. To guarantee this we extend the above definition.

Definition 1.2 (k-curves smooth path). Given two points u, v ∈ R2, a set of obstacles in
the R2 and an integer k ∈ N+, find a k-curves path connecting u and v, such that the curve
consisting of Ci, Ci+1 is d− 1 times differentiable for all 1 ≤ i ≤ k.

Contribution and Outline

Solving the general k-curve path is beyond the time constraint of this thesis and we focus
on solving the problem for k = 1. Finding a solution to the general problem remains as
future work.
The thesis is structured in the following manner. In Chapter 2 we will formally introduce
polynomial curves, some other geometric terms and concepts and talk about graphs, which
we later need to demonstrate an application. The next two chapters, 3 and 4, contain the
main theoretical solution to the 1-curve path problem. First, we build an analytical solution
for the case of d = 2 by looking at all points which result in an intersection between graph
and curve. Afterwards, in Chapter 4, we consider the possibility of sampling the control
points in an intelligent way, which does not need too many sample points. After introducing
ε-nets we try to apply them to our problem, but meet some problems, when bounding the
VC-Dimension proves to be harder than initially thought. Nonetheless we can show that,
if it is possible to find the needed bounds, small samples can be guaranteed. Especially
these sample sets do not depend on the diameter of the area containing all control points
we want to avoid. In Chapter 5 we return to the starting point of the introduction. Taking
a look at a scenario, where we want to add edge as curves to an existing drawing. Finally
we finish with the conclusion and future work in Chapter 6.
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2. Preliminaries

In this section we introduce some general terms and concepts. The first part is Section
2.1, where we introduce some general graph terminology. They are mostly used in the
application chapter in the end of this thesis, but we need to begin with them, because
several notions on polygons are defined using graphs in Section 2.2. Finally we conclude
the preliminaries by introducing polynomial and, as a special case, Bézier curves in Section
2.2.2.

2.1. Graphs

A graph G is a pair of two sets. The first set we call V , the set of nodes, and the second
one E, the set of edges. While V is a set of singular elements, E is a set of pairs of nodes
from V , formally E ⊆

(V
2
)
. We write (u, v) for the edge between the nodes u ∈ V and

v ∈ V . In (u, v) we call u the start node and v the end node. A graph in which we find
multiple edges between the same nodes is a multigraph. Two edges e, f ∈ E that have the
same start and end node are called parallel. If two nodes are connected by an edge, we
say they are adjacent and with adj(u) we denote the set of nodes adjacent to u. A node v
that is adjacent to u is called a neighbour of u. If a node is either the start or end of an
edge we say the edge is incident to the node. With inc(u) we denote the set of all edges
incident to u ∈ V . Further in(u) is the set of all edges with u as end node and out(u) is
the set of all edges that have u as their start node. The degree of a node u is denoted with
deg(u) := |inc(u)|. The indegree of a node u is |in(u)| and the outdegree is |out(u)|.
The graph G is said to be undirected, if for every edge (u, v) ∈ E we find the reversed edge
(v, u) in E and directed if this is not the case. An edge is a loop, if it has the same start
and end node and a node with adj(u) = ∅ is said to be isolated.
A graph G′ = (V ′, E′) is called a subgraph of G if the two sets V ′ and E′ are subsets of V
and E respectively. The subgraph G′ is called induced, if for every two nodes u, v ∈ V ′ we
find an edge (u, v) ∈ E′ if and only if (u, v) is an edge in E.
A path is a collection of edges e0, ..., en where the end node of ei is the starting node of
ei+1 for i ∈ [0, n− 1]. The path e0, ..., en leads from the start node of e0 to the end node of
en. We forbid an edge or node to appear twice in a path. This means no two edges share
the same start and end node. If a node u is part of a path and neither start node of e0 nor
end node of en, it appears exactly once as start node of an edge ei and as end node of the
edge ei+1, with i = 1, ..., n− 1. A path is a cycle if the start node of e0 and the end node
of en are the same. Finally we say a node v ∈ V is reachable from a node u ∈ V if the two
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2. Preliminaries

nodes are connected by a path.
An undirected graph G is connected if for any pair of nodes in V we find a path between
them. A directed graph is weakly connected if adding all missing reversed edges (which
is the undirected version of the graph) results in a connected graph. We call it strongly
connected if for every pair of nodes u, v we find a path between them, without introducing
any new edges. A graph is said to be k-edgeconnected if the removal of k − 1 edges is not
enough to make it disconnected.
Throughout the thesis we need a few operations on graphs, namely deleting, inserting and
contracting. To avoid confusion, let us define them in this section. Formally, applying an
operation to a graph G results in a new graph G′ = (V ′, E′) with a changed set of nodes
and edges. We start with deleting edges or nodes. To delete a node u ∈ V means we set
V ′ := V \{u} and E′ := E\inc(u). If we delete an edge e ∈ E we set E′ := E\{e} and
leave V ′ := V . Next inserting a new node u′ into G means we set V ′ := V ∪ {u′} and leave
E′ := E. Inserting an edge between two nodes u, v ∈ V means to set E′ := E ∪ {(u, v)}
and V ′ := V . Finally contracting an edge e := (u, v) ∈ E gives V ′ := V \{v} and
E′ := E\inc(v) ∪ {(u, v′)|(v, v′) ∈ in(v)} ∪ {(v′, u)|(v′, v) ∈ out(v)}.
If not stated otherwise, all graphs we consider are simple and connected. A simple graph
is no multigraph, has no loops and is undirected.

2.1.1. Planar Graphs

This section offers a quick overview of planar graphs and introduces a few basic properties
we use in later sections. A planar graph is one that can be drawn without two edges
crossing each other.
We define a drawing of a graph, as the mapping of nodes to points in the R2 and of edges
to Jordan curves. We assume no two nodes are mapped to the same point, an edge always
starts at the coordinate of its start node and ends at its end points coordinate and no
edge includes a point already associated with a node (besides its start and end point). If
the graph is planar we can draw it without any intersections between the curves. Such a
drawing is called a planar drawing.
If we delete all edges and nodes in a planar drawing the remaining connected regions are
called faces. The boundary of a face f is the sequence of edges bounding the connected
region of f in the R2. Two faces are adjacent if they share a common edge along their
boundaries. An embedding of a planar graph are all the planar drawings preserving the
cyclic order of the boundaries around the faces. For the same graph we can get different
sets of faces if we change the embedding.
The dual graph G? = (V ?, E?) of an embedded graph is the graph with V ′ := {u|u ∈ F}
and E′ := {(u, v)|u adjacent to v}. So for every edge on a boundary we get an edge in the
dual graph and we say the edge on the boundary is crossed by the edge in the dual graph.
This definition allows for parallel edges, which means the dual graph can be, and most
likely is a multigraph. With primal graph we denote the graph G, which was used to derive
G?. The primal edge e ∈ E to a dual edge e? ∈ E? is the edge that is crossed by e? along
the boundary.
Finally we want to introduce a special variant of planar graphs, a tree. The undirected
graph G = (V,E) is an (undirected) tree if and only if it is connected and has no cycles. A
node in a tree is called leaf if it has degree one and internal node if it has degree at least
two. A directed graph is a (directed) tree, if its undirected variant is a tree and we find a
node u, such that for every other node v we find exactly one path from u to v. We call u
the root of the tree. Further if (u, v) is an edge in a directed tree we call u the parent and
v its child.
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2.2. Geometric Notions

(a) A polyine and its
vertices

(b) A polygon (c) A simple, non-
convex polygon

(d) The convex hull
of a simple polygon

(e) A triangulation
of a simple polygon

Figure 2.1.: Polygon Examples

2.2. Geometric Notions
The biggest part of this thesis focuses on finding a polynomial curve inside a polygon.
The next two sections present a short introduction to the most commonly used geometric
properties we use.

2.2.1. Polygons

Similar to a face in a planar graph we define polygons as a collection of points in the R2

which are connected not by Jordan curves, but lines. The points are vertices and the
connecting lines we call edges, just as in graphs. This definition makes it easy to treat a
polygon as a graph, with the vertices being the nodes and the edges of a polygon forming
the set of edges in the corresponding graph. It allows us to use the same terminology as
defined in Section 2.1.
We assume all polygons are connected in the same sense as we assume our graphs are
connected, in Section 2.1. In Figure 2.1(b) you can see an example of a polygon. If the
polygon is not closed we call it a polyline (Figure 2.1(a)). In the example the lines cross
each other. It is hard to work with such polygons and we assume that any polygon we
encounter is also a planar drawing of a graph. Such a polygon is called simple.
We call the collection of edges between vertices the boundary and whatever is in between
the edges is the interior of the polygon. If a part in the interior is surrounded by edge of
the polygon we call it a hole. A convex polygon is a polygon, in which for any two points
x and y in the interior we find exactly two crossings of the line going through x and y and
the boundary of the polygon. Given a simple polygon we can find the convex hull of the
vertices, which is the smallest collection of edges, such that the vertices lie on the boundary
of a convex polygon or lie in the interior. For an example look at Figure 2.1(d).
Finally we need the notion of a triangulation. Given a simple polygon we can triangulate
it by interpreting it as a graph and add edges between the nodes until every face of the
graph is a triangle (see Figure 2.1(e)).

2.2.2. Polynomial Curves

In this section of the preliminaries we introduce polynomial curves and, as a special case,
Bézier curves. We closely follow the introduction to polynomial and Bézier curves presented
by Beatty et. al. [BB87, Chapter-2,10]. The for us interesting curves all lie in the R2,
we only talk about two-dimensional polynomial curves. Usually they are represented by
parametric equations:

Q(t) = (x(t), y(t)),

where t ∈ [a, b], with a ≤ b, is the parameter of Q and the two functions x : R → R and
y : R→ R represent the x- and y-coordinate of a point on the curve. For example if we
look at a simple unit circle it can be represented as x2 + y2 ≤ 1, which is the so called
implicit form, or in its parametric form as Q(t) := (cos t, sin t) with t ∈ [0, 2π].
This small example already raises the question of how we find the functions x(t) and y(t).
If there is an implicit version given we can perhaps transform it, but if we have to come up
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2. Preliminaries

with the function from scratch and if the curve gets more complex, it is not really practical
to construct the whole curve at once. The solution is, to break it up into so called segments
and join them back together.
To break up the curve we have to take a look at the parameter t. Suppose we want to split
the curve at a point tk ∈ [a, b]. A split point is also called a knot. Now x and y can be
written as piecewise functions, where we start at u, go through the knot tk and end at v.
At the joints we need to make sure the curve is still smooth and not forming any jumps or
sharp corners. The usual way to do this, is to require Q(t) to be Cd−1 continuous.

Bézier Curves

The polynomial curves we are interested in are so called Bézier curves. They were developed
by designers at Renault and Citroën and are widely used in all areas of design. Bézier
curves use the Bernstein polynomials bi,n(t) as Basis, with

bi,d(t) :=
(
d

i

)
ti(1− t)d−i.

A Bézier curve of degree d is then defined as:

Bd(t) :=
d∑
i=0

bi,d(t)pi

with the pi being the control points of the Bézier curve. We call Bd(0) = p0 = ps the start
point and Bd(1) = pd = pe the end point of the curve. The other control points pi are
called inner control points. It is important to note a Bézier curve does not pass through
the inner control points, but just comes close to them.

Joining Bézier Curves

As already stated above we often want to join two curves together. Here we demonstrate how
to do this with Bézier curves. Suppose our first curve is defined by the points {p0, ..., pd}
and the second one is using {q0, ..., qd}, with pd = q0. The resulting curve is C0 continuous.
Figure 2.2(a) shows why this is not enough. At the joint the curve can move arbitrarily
and it does not look smooth at all. To guarantee Cd−1 continuity we have to look at the
derivatives of the curve. <In general we get that the first derivative of a Bézier curve as:

d

dt
Bd(t) =

d−1∑
i=0

Bd−1,i(t) ∗ d(pi+1 − pi)

We can see the derivative is again a Bézier curve with a lower degree and different
control points. To write the higher order derivative we define the following notation. Let
i ∈ {0, ..., d} and n ∈ {0, ..., d− 1}, then

D1
i = pi

Dn
i = Dn−1

i+1 −D
n−1
i .

In general we can now write the n-th derivative of a Bézier curve as

dn

dtn
Bd(t) =

n∏
j=0

(n− j)
d−n∑
i=0

Bd−n,i(t) ∗Dn
i .

8



2.2. Geometric Notions

p0

p2 p3 = q0

q1

q2

q3

p1

(a) Joining the two curves without any constraints
beside p0 = q0.

p0

p2 p3 = q0
q1 = 3 ∗ (p3 − p2)

q2 = p1 + 4(p3 − p2)

q3

p1

(b) Joining the two curves with constraints for C2

continuity.

Figure 2.2.: Joining two cubic Bézier curves defined by the control point sets {p0, ..., pd}
and {q0, ..., qd} together.

Evaluating the derivatives for t = 0 and t = 1 we get the constraints we have to keep
satisfied at the knots. First the ones for C1 continuity:

d

dt
Bi,d(0) = d(p1 − p0)

d

dt
Bi,d(1) = d(pd − pd−1).

Geometrically these constraints tell us we have to assure the second to last control point of
the first curve, namely p2, and the first control point of the second curve, namely q1, lie on
a straight line and the knot pe = qs is exactly at the midpoint of the segment between p2
and q1. Figure 2.2(b) shows an example of this method. If we move the knot, C1 continuity
can be preserved by moving p2 and q1 accordingly. This means the curve only changes
locally, especially no other segments than the two that are adjacent to the knot have to be
modified.
If the curve has to be n = d − 1 times continuous at the joints we have to apply the
following constraints:

dn

dtn
Bd(0) =

 n∏
j=0

(n− j)

Dn
0

dn

dtn
Bd(1) =

 n∏
j=0

(n− j)

Dn
1 .

These constraints fix us nearly all control points of the curve. In fact it leaves only the
start point ps and the end point qe free. This means we can not easily move the knot,
because the control points of more than the adjacent segments would have to be modified.
Since most applications don’t require curves with a degree higher than three we only have
to guarantee C2 continuity at the joints. Again look at Figure 2.2(b) for an example. If we
want to move a control point after the initial Bézier curve was constructed maintaining
Cd−1 continuity is nearly impossible, since we run into the problem of changing all control
points. In practical cases with degree 3 curves it is often enough to preserve C1 continuity.

Subdividing Bézier Curves

Given a Bézier curve Bd(t) we might be interested in subdividing the curve into two
segments. Both segments should have the same degree as the original curve and the joint
segments should form the same shaped curve. Let p0, ..., pd be the control points of our
curve. First we need the following identity:

Bd(t) = (1− t)Bl
d−1(t) + tBr

d−1(t), (2.1)

9



2. Preliminaries

p0

p1

p2

p3

p
(1)
0

p
(1)
1

p
(1)
2

p
(2)
0

p
(2)
1p

(3)
0

Figure 2.3.: Finding the point Bn(t) with t = 0.6.

where Bl is defined on the control points p0, ..., pd−1 and Br on p1, ..., pd. Basically the
above equation states that the initial Bézier curve is formed as the convex combination of
two curves with degree d− 1. A proof of this identity can be found in [BB87].
To compute new control points we need to rewrite Equation 2.1 as

Bd(t) =
d−1∑
i=0

bi,d(t)((1− t) ∗ pi + t ∗ pi+1). (2.2)

Next we define:

p
(r)
i (t) := (1− t)p(r−1)

i + tp
(r−1)
i+1 (2.3)

p
(0)
i := pi.

We use Equation 2.2 with the just defined recursive Formula 2.3 to subdivide the control
points r times:

Bd(t) =
d−r∑
i=0

bi,d(t)p
(r)
i (t).

What we basically do is to interpolate linearly between every two control points, in the
next step between those newly found points and so on. Now set r = d and we end up with:

Bd(t) = p
(d)
0 (t).

This means we can find a point on the initial Bézier curve by evaluating Equation 2.3 for
r = d. An example of this process is shown in Figure 2.3. To come back to our original
task, which was to subdivide the curve, we start by noticing that the original start and
end point remains the same and the point where we want to subdivide is just p(d)

0 . This
point then is used as end point for the left and as starting point for the right part of the
curve. As control points we choose always the last and first point of an iteration step. In
the case of a cubic curve this would result in the left curve being formed by the control
points p(0)

0 , p
(1)
0 , p

(2)
0 , p

(3)
0 and the right curve is defined by p(3)

0 , p
(2)
1 , p

(1)
2 , p

(0)
3 .

Drawing Bézier Curves

So far we looked at the definition of a Bézier curve and if we wanted to draw one, the
straightforward way would be to just evaluate the polynomials. Since this method is not

10



2.2. Geometric Notions

numerically stable, we want to find a more stable approach. The de Casteljau algorithm
offers a solution. It is easy to implement, runs in O

(
n2) and is numerically stable. Algorithm

2.1 shows the pseudocode of an inplace variant. A call to deCasteljau returns, for a given
parameter t0, the point Bn(t0). We then can draw the Bézier curve in a loop, where we go
from t0 = 0 to t0 = 1 in sufficiently small steps. Lets look at Algorithm 2.1 and find out
how it works.
Besides t0 it takes another parameter l ∈ N and a set of points in the R2. We assume the
first and the last point in the set lie on Bn(t). The idea is to subdivide the curve with
Equation 2.3, until we reduced the set of points to one point. If there is only one point left
we return it (see Line 3). Else we process the points, reducing the size of our point set by
one. Instead of allocating new space we just store the current size in l. Finally we recurs
in Line 8.

Algorithm 2.1: The deCasteljau algorithm to find a point on a Bézier curve.
input: Set of points in R2, Parameter l := |points|,Parameter t0 ∈ [0, 1]

1 Function deCasteljau(t0, l, points)
2 if |points| = 1 then
3 return points[0]
4 else
5 −− l
6 for k ← 0 to l do
7 points[k]← (1− t0) ∗ points[k] + t0 ∗ points[k + 1]
8 return deCasteljau(t0, l, points)

11





3. Fitting Bézier Curves into Simple
Polygons

As said in the introduction we can not solve the k-curves path problem right away. Instead
we start by solving it for k = 1. This means we want to find a Bézier curve Bd(t) with
a possibly low degree connecting two points in a polygon. In the following chapter we
assume, we are not only given the start and end point, but also d− 2 inner control points
of a degree d Bézier curve. The task then is to find the last control point, such that the
curve does not intersect the polygon. For most of the calculations in this chapter we used
Mathematica by Wolfram Research [Wol14].
We formally describe the configuration of our system in Section 3.1. The next part, Section
3.2, is about finding bad control points for one line segment and a Bézier curve. As a
running example we will use quadratic Bézier curves. Afterwards we put the polygon back
together (Section 3.3). The methods developed in Section 3.2 are finally applied to curves
with degree 3 in Section 3.4.

3.1. Configuration
Let P be a simple polygon with vertices v0, ..., vm ∈ R2. The assumption of it being simple
is necessary, because it guarantees us a boundary exists and allows us to talk about inside
and outside of P. Secondly we have all, but the i-th inner, control points of a degree
d ∈ N+ Bézier curve Bd(t). They are collected in the set Pi, where i indicates the missing
control point. The two points ps = p0 ∈ R2 and pe = pd ∈ R2 serve as the start and end
points of the Bézier curve.
We often need to talk about x- and y-coordinate of a point or the x- and y-component
of a parametric function with values in the R2. Let g : [0, 1] → R2 be a function. With
(g(t))x we denote its x- and with (g(t))y its y-component for parameter t ∈ [0, 1]. For a
point pi ∈ R2 with subscript i, we write xi for its x-coordinate and yi for its y-coordinate.
If p has no subscript we write xp and yp.
If a curve intersects a polygon, it has to intersect at least one segment. This observation
allows us to reduce the system we have to consider to a line segment and one Bézier curve.
Let b and e be two consecutive vertices of P. The segment can be expressed with the
parametric equation Lb,e(s) := b + s(e − b) = b + sc, s ∈ [0, 1]. Further the system of a
segment and control points is rotated and translated, such that the segment lies on the
x-axis. Then the formulas get easier, because yb = ye = yc = 0. To avoid unnecessary
negative signs we say xc > 0 at all times. This is no restriction, because we can rotate the
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3. Fitting Bézier Curves into Simple Polygons

system by 180 degree to swap the roles of b and e. Further we assume that neither the
start nor the end point of the Bézier curve lie on the segment.

3.2. Forbidden control points
The core of this section is to find all forbidden coordinates. That is any coordinate which
leads to an intersection between Bd(t) and Lb,e(s). Curve and segment intersecting means
we find a pair of parameters (s, t) such that Bd(t) = Lb,e(s). Since ps and pe never lie on
the segment we can exclude t = 0 and t = 1, which gets rid of some special cases where we
would have to divide by zero later on. Now a point p ∈ R2 is called forbidden if and only if
using it as the i-th control point of a Bézier curve Bd(t) leads to an intersection between
Bd(t) and Lb,e(s). Finding these points allows us to compute a curve not intersecting with
at least this segment of P.

Theorem 3.1. Given a Bézier curve with control points P = {p0, ..., pd} and a line segment
Lb,e(s). All forbidden points for the i-th control point are given by the following function:

fi(s, t, Pi, L) = −
∑d
j=0,j 6=i bj,d(t)pj − (b+ sc)(d

i

)
ti(1− t)d−i

Proof. In order to find all control points that give us a crossing between Bd(t) and Lb,e(s),
we need to identify for which pi’s the equality Lb,e(s) = Bd(t) holds:

Lb,e(s) = Bd(t)

b+ sc =
d∑
j=0

bj,d(t)pj .

Reduce the equation to the i-th control point and bernstein polynomial of the Bézier curve:

bi,d(t)pi = −
d∑

j=0,j 6=i
bj,d(t)pj − (b+ sc)

pi = −
∑d
j=0,j 6=i bj,d(t)pj − (b+ sc)

bi,d(t)
.

As claimed we find all the forbidden points as values of fi(s, t, Pi, L).

Throughout this section Pi and L are considered fixed and we use the shorter fi(s, t) for
fi(s, t, Pi, L). To get an idea what the values of fi(s, t) look like and how we might be
able to work with them we use curves with d = 2 as an example. With quadratic Bézier
curves there is only one control point pc beside ps and pe. Figure 3.1 shows two example
plots. The light grey area contains all the forbidden control points. The two thicker lines
correspond to f1(t, 0) and f1(t, 1). Keep in mind, all plots shown in this chapter are really
cuts through a higher dimensional body. For example the set of all forbidden control points
in the case of d = 2 is a 6-dimensional body if we leave start and end point free. If they are
treated as fixed points we reduce the number of dimensions to two. In the case of degree 3
the dimension would again increase by two, because we get another inner control point,
and if start and end point of the curve are fixed the forbidden values for pi still lie inside a
four dimensional body.
Getting back to the case of all control points being fixed and only one left variable we can
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3.2. Forbidden control points

fi(0, t)

fi(1, t)

b e

ps

pepc

(a) The case when start and end point of the
Bézier curve are on either side of the line.

pc
eb

pe

ps

(b) Second case, start and end point are on the
same side of the x-axis.

Figure 3.1.: Intersecting a Bézier curve with a segment. Green is the Bézier curve, red the
segment and in blue/grey the area of all the f(t, s).

define the area Fi(Pi, L) of all forbidden control points. We call it the forbidden area and
it contains all values of fi(s, t):

Fi(Pi, L) := {p ∈ R2|∃(t, s) ∈ (0, 1)× [0, 1] : fi(s, t) = p}.

We are able to create a crossing between a given Bézier curve and a line Lb,e(s) by placing
the i-th control point at pi = fi(s, t) for some s ∈ [0, 1] and t ∈ (0, 1), but one might want
to know where the crossing between Bd(t) and Lb,e(s) occurs. Suppose we have chosen
pi = fi(t0, s0) with some s0 ∈ [0, 1] and t0 ∈ (0, 1). Using pi as the i-th control point in the
Bézier curve Bd(t) we get:

Bd(t) =
d∑

j=0,j 6=i
bj,d(t)pj + bi,d(t)pi

=
d∑

j=0,j 6=i
bj,d(t)pj + bi,d(t)

(
−
∑d
j=0,j 6=i bj,d(t0)pj − (b+ s0c)

bi,d(t0)

)

Some point on the curve corresponds to t = t0 and the equation reduces to:

Bd(t0) = b+ s0c = Lb,e(s0)

As one would expect from Theorem 3.1 we find the crossing at Bd(t0) and Lb,e(s0). So
far we only looked at one crossing, but there might be multiple crossings between Bd(t)
and Lb,e(s). To be exact there can be a maximum of d crossings between curve and
segment. Suppose placing the i-th control point somewhere in the forbidden area results
in d crossings, then intuitively we have to find d different pairs of (s, t) with equal values
when used in fi(s, t). Otherwise we had found two sets of coordinates for the same control
point. The following lemma shows the intuition is correct.

Lemma 3.2. Given a Bézier curve Bd(t), a line segment Lb,e(s) and pairs (t0, s0), ..., (tj , sj)
with tk 6= tl, l 6= k, such that Lb,e(sk) = Bd(tk) for all k = 0, ..., j, then fi(tk, sk) = fi(tl, sl).

Proof. Theorem 3.1 tells us for any crossing at Lb,e(sk) = Bd(tk) we find a control point
pi at fi(tk, sk) for every k = 0, ..., j. Suppose k 6= l and fi(tk, sk) 6= fi(tl, sl), then there
would be two different control points pi 6= pj , but then the degree d Bézier curve would
have more than d+ 1 control points.
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3. Fitting Bézier Curves into Simple Polygons

ps
pe

pc

1 1

2

b e

(a) Degree two Bézier with two intersections
and Γ.

p2

p1

pe

ps

b
e

1

2
3

2

1

(b) Degree three Bézier with three intersections
and Γ.

Figure 3.2.: Displaying Γ for degree 2 and 3 Bézier curves. Whenever the control point pc
is placed in a region with Γ(p) = c the curve intersects the line c times.

With Lemma 3.2 we can differentiate between cases. Suppose we have no possibility of
placing the i-th control point, such that there is more than one crossing between Bd(t) and
Lb,e(s). Then by Lemma 3.2 there are no two different pairs (s, t) resulting in a crossing
between two fi(s, t). From this we can conclude there need to be two fi(s, t) which have all
the forbidden control points between them. Figure 3.1(a) illustrates this. Placing start and
end point above and below the x-axis, connecting them with a quadratic curve, allows for
only one crossing. As mentioned the thicker lines represent f1(t, 0) and f1(t, 1) and they
seem to bound the region of all forbidden control points. This holds for higher dimensions
of Bézier curves as well. Whenever there is a maximum of one crossing between curve and
segment the boundary of the forbidden area is consisting of f1(t, 0) and f1(t, 1), but the
added flexibility makes the case differentiation a lot harder, as we see with cubic Bézier
curves in Section 3.4.
Now suppose we allow more than one crossings between Bd(t) and Lb,e(s). Figure 3.1(b)
gives an example for d = 2. Placing start and end point on the same side allows two
intersections between curve and segment. The previously used functions f1(t, 0) and f1(t, 1)
are no longer single handily bounding the forbidden area. We find an area seemingly
"below" the crossing px that lies between f1(t, 0) and f1(t, 1) and it appears to be bounded
by a straight line at the bottom.
Lets think about what happens. We follow f1(t, 0) from left to right. It is the boundary
up to a certain point, after this point the curve goes upwards to the crossing at px. All the
time the Bézier curve has to maintain an intersection with b of Lb,e(s). Placing the control
point at px leaves us with the curve intersecting both start and end point of the segment,
but as we progressed along f1(t, 0) we had to intersect every other point on Lb,e(s). This
means f1(t, 0) had to intersect every other f1(t, s) for s ∈ (0, 1). The same observation can
be made for f1(t, 1). From this we can see f1(t, 0) and f1(t, 1) are still bounding some area,
not the whole forbidden one but they seem to separate the region where pc leads to one
and where pc leads to two crossings. The remaining question is if we are able to find the
segment bounding the area where we get two crossings.
Placing the control point in the area below the crossing of fi(t, 0) and fi(t, 1). We still get
two intersections between Bd(t) and Lb,e(s), but when we move the control point down,
towards the x-axis, the intersections are pushed closer together as well. This continuous
until we reach the end of the region and it seems like the last crossing is on the segment of
the area, exactly when Lb,e(s) is a tangential to B2(t).
Formalizing the above observation is the subject of the next paragraphs. First we define
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3.2. Forbidden control points

the crossing number Γ(fi(s, t)) of a point p ∈ R2 as:

Γ(p) := |{(tc, sc) ∈ (0, 1)× [0, 1] : |fi(t, s) = fi(tc, sc)}|.

The crossing number gives us a natural subdivision of the forbidden area, where every
subregion is made up of all fi(s, t) with equal Γ(fi(s, t)). Lets define a crossing region as:

C(c) := {p ∈ R2|Γ(p) = c} ,with c ∈ N0

Figure 3.2 shows two examples of such regions. These regions might not be connected, as
you can see in Figure 3.2(b) where two not connected regions with crossing number two
exist. We define a connected crossing region as a subregion of some C(c), where for every
point in the connected crossing region an ε-region with ε > 0 is inside the region as well or
the point lies on the boundary. We denote a connected crossing region with C(c, p) where
p is a point inside the region.
The forbidden area is the union over all the connected crossing regions and if we find their
boundaries, we can compute a boundary for the whole forbidden area. Before we can
present the theorem we look at an observation, regarding Bézier curves and its roots on the
x-axis. With root [Bd(t)] we denote the number of roots a Bézier curve has with the x-axis.
Let δ, ν ∈ R2, with [δ, ν] we denote all points in the R2, laying on a straight line between δ
and ν. Next let Bd(t) be a Bézier curve, we define Bδ

d(t) as the same Bézier curve, but
with the i-th control point translated by δ. The equation of this new curve can be written
in terms of the old curve:

Bδ
d(t) =

d∑
j=0,j 6=i

bd,j(t)pj + bd,i(t)(pi + δ) = Bd(t) + bd,i(t)δ.

Figure 3.3 shows what happens if we translate parallel to the x-axis (Figure 3.3(a)) or
parallel to the y-axis (Figure 3.3(b)). The figures motivate the following two observations:

(i) If δ =
(xδ

0
)
with xδ 6= 0, then Bδ

d(t) has the same number of roots and they are
translated by xδ.

(ii) A quadratic Bézier curve can have exactly a maximum of two roots. Let Bd(2) be a
quadratic Bézier curve with root [Bd(2)] = 2 and δ ∈ R2 with root

[
Bδ

2(t)
]

= 0, then

there exists a δ′ ∈ [0, δ] with root
[
Bδ′

2 (t)
]

= 1.

Observation (i) says that the number of roots can not change if yδ = 0, consequently the
number of roots of a Bézier curve can only be changed by a translation with yδ 6= 0.
et δ be a vector with yδ 6= 0 and we assume the number of roots decreased, root [Bd(t)] >
root

[
Bδ
d(t)

]
. There has to be a ν ∈ [0, δ], such that

∀ν ′ ∈ [0, ν] : root [Bd(t)] = root
[
Bν′
d (t)

]
∧ root [Bd(t)] > Bν

d (t).

For every two roots at parameters t0 and t1 with t0 < t1 we know there exists a parameter
t′ ∈ [t0, t1] such that (

d

dt
Bd(t′)

)
y

= 0.

At ν the number of roots changes for the first time by at least one. With Observation (ii)
and because there had to be an extreme value between two roots we know there is at least
one root where the x-axis is tangential to Bν

d (t).
Another component we are going to need are the roots of the first derivative of fi(s, t). We
define the function ti : R2d → (0, 1)d−1, with L constant, as:

ti(Pi) = root
[
d

dt
(fi(0, t, Pi, L))y

]
.
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3. Fitting Bézier Curves into Simple Polygons

ps

pe

pc + δ
pc

(a) Translation with δ = (xδ, 0).

ps

pe

pc

pc + δ

(b) Translation with δ = (0, yδ).

Figure 3.3.: Translating the control point by a vector δ. In Figure 3.3(a) the control point is
translated parallel to the x-axis and in Figure 3.3(b) the translation is parallel
to the y-axis.

The next theorem proves the intuitive argument given above to be correct. No arbitrary
fi(t, s) can be on the boundary, but only the ones with s = 0, 1 or t leading to Lb,e(s) being
tangential to Bd(t).

Theorem 3.3. Consider a Bézier curve Bd(t) and a line segment Lb,e(s). The connected
crossing regions C(c, p) with p ∈ R2 being a forbidden point and c ∈ N0, have a boundary
consisting of the curves fi(t, 0), fi(t, 1), fi(ti(P ), s).

Proof. Let Lb,e(s) be a line segment from b to e, δ ∈ R2 and pi ∈ R2 be the i-th control
point of a degree d Bézier curve Bd(t) with crossing number c = Γ(pi) > 0. The connected
crossing region pi lies in is C(c, pi). Further let Bδ

d(t) be the Bézier curve which we
got by using pi + δ as the i-th control point in Bd(t). We assume c 6= Γ(pi + δ) = cδ,
consequently C(cδ, pi + δ) 6= C(c, pi). Finally we say there is no ν ∈ [0, δ) such that
C(c, pi) 6= C(Γ(pi + ν), pi + ν)
We consider two cases:

1. (yδ = 0) In this case the Bézier curve is only translated in the x-direction. From
above we know the number of roots stays the same. or the number of intersection
however this has not to be true, because we can translate a root such that it lies
not on the curve or just do the opposite. Let us assume we reduced the number of
crossings. Then there is a parameter t′ ∈ (0, 1), such that Bd(t′) is an intersection,
but Bδ

d(t′) is none. We know after translating the curve Bδ
d(t′) is still a root and

because the translation is a continuous operation on the curve, this means there has
to be a ν ∈ [0, δ], such that Bν

d (t′) = Lb,e(0) or Bν
d (t′) = Lb,e(1). Analogously if the

number of intersections increased.

2. (yδ 6= 0) If a translation in y-direction is allowed and δ is the only vector in [0, δ]
changing Γ(pi + ν), ν ∈ [0, δ] and for no ν ∈ [0, δ] Bν

d (t′) = Lb,e(0) or Bν
d (t′) = Lb,e(1)

we find the number of roots had to change. But then we know from above that at
δ we find at least one intersection between Bδ

d(t) and Lb,e(s), such that Lb,e(s) is
tangential to Bδ

d(t).

We now know the crossing number can only change when there is a point Bδ
d(t) = Lb,e(0),

Bδ
d(t) = Lb,e(1) or we changed the numbers of the roots the Bézier curve has with the

x-axis. Because we set the segment Lb,e(s) to be horizontal, the last step towards proving
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3.2. Forbidden control points

the theorem is showing that the roots of d
dt (Bd(t))y are equivalent to the roots of d

dtfi(s, t).
Let t0 ∈ (0, 1) be a root of d

dt (Bd(t))y, then we get

d

dt
(Bd(t0))y =

d∑
j=0

d

dt
bd,j(t0)yj = 0

−
d∑

j=0,j 6=i

d

dt
bd,j(t0)yj = d

dt
bd,iyi.

Replace the sums in d
dtfi(s, t) with the just calculated identity and we find that the extreme

values of a Bézier curve and the corresponding Fi(Pi, L) are at the same parameters:

d

dt
fi(t0, s) =

(−
∑d
j=0,j 6=i

d
dtbd,j(t0)yj)bd,i(t0)− (−

∑d
j=0,j 6=i bd,j(t0)yj) ddtbd,i(t0)

bd,i(t0)2

=
d
dtbd,i(t0)yibd,i(t0)− bd,i(t0)yi ddtbd,i(t0)

bd,i(t0)2

= 0.

Finally we have to show what happens if δ is not the first time C(c, pi) changes. Then there
exists a ν ∈ [0, δ], such that for no ν ′[0, ν) C(c, pi) 6= C(Γ(pi + ν ′), pi + ν ′). Split the interval
[0, δ] into segments [ν0, ν1], ..., [νn−1, νn], where νm is the first time C(Γ(pi + νm−1), pi +
νm−1) 6= C(Γ(pi + νm), pi + νm) with m = 1, ..., n− 1 and ν0 = 0, νn = δ.

In the case of d = 2 we are now able to compute the complete boundary of the forbidden
area. We consider only the control point of the curve, leaving the start and end point
as variables. The biggest part is already known as it consists of f1(t, 0) and f1(t, 1).
Remaining is f1(t1(P1), s). With such a small degree we can directly compute the roots of
the derivative for f1(s, t):

d

dt
(f1(t, s))y

!= 0 (3.1)

ys(1− t)2 − yet2

2(1− t)2t2
= 0

ys(1− t)2 = yet
2

The solution of Equation 3.1 gives us the concrete formula for t1(P1). Since we are handling
only a quadratic curve, there is always a maximum of one solution, which means for the
given positioning of ps and pe there exists either one fi(ti(Pi), s) or ti(Pi) has no solution.
At this point we make a case differentiation over were we find ps and pe.

Case 1: Let ps and pe be on the same side of the x-axis. We get three possibilities of how
the two points can be positioned relative to each other. With Mathematica we compute
the following solution:

t1(P1) =


1
2 , if ys = ye
ys

ys−ye +
√

ysye
(ye−ys)2 , if |ys| < |ye|

ys
ys−ye −

√
ysye

(ye−ys)2 , if |ys| > |ye|
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f1(s, t1(P1))

b e

ps
pe

pc

(a) Degree two Bézier curve with t1(Pi) plotted
in orange

p2

p1

pe

ps

b
e

f1(s, t1(P1))

(b) Degree three Bézier curve with t2(Pi) plot-
ted in orange

Figure 3.4.: Two examples for ti(P ). For degree 2 (Figure 3.4(a)) the solution is unique
and only one f1(t1(P ), s) exists. For degree 3 there are eventually multiple
solutions, see Figure 3.4(b)

Case 2: If ps and pe are on different sides of the x-axis, one has a negative and one has a
positive y-coordinate. Without loss of generality we assume ys > 0 and ye < 0. Now if we
reconsider Equation 3.1 we get:

ys(1− t)2 = yet
2

ys
ye

= t2

(1− t)2 .

In the last line the left side is definitely smaller zero, while the right side is bigger zero,
because t ∈ (0, 1). Then there exists no solution for this case.

Figure 3.4 shows a plot, with fi(ti(Pi), s) plotted in orange. In the quadratic case, shown
in Figure 3.4(a), we get a lower and an upper boundary. The lower one is coming from the
left, using f1(t, 0), at parameter t = t1(P1) it is completed by the values of f1(P1, s) and
then continues to the right with f1(t, 1). As a lookahead the Figure 3.4(b) shows the plot
for degree 3, where the solution is not unique and we get two different ti(Pi) for the same i.
Putting together the boundary can now be done by combining all the boundaries of
all C(a, p). Lets denote the set of all points on the boundary of the forbidden area by
B(Fi(Pi, L)). A point is in B(Fi(Pi, L)) if and only if it lies on the boundary of one C(a, p),
that is any ε-region around it contains a point q with Γ(q) = 0. The set of all points on the
boundary is really containing two piecewise functions, forming a kind of upper and lower
boundary. Distinguishing between them can be done by orienting the involved functions.
For the two functions f1(t, 0) and fi(t, 1) we orient from big values of t to small values for
t. The third function, fi(ti(Pi), s) is oriented from small to big values for s. Then we get
one set of points, one where the region with crossing number is to the left and one where it
is to the right.
In case when ps and pe are on different sides of the x-axis we do not need to do any of
this. As seen above in the case differentiation we do not get a solution for ti(Pi) and with
Theorem 3.3 we know the boundary consists of f1(t, 0) and f1(t, 1).
Up to this point we only looked at the y-coordinate of curve and line. But, looking at the
x-coordinate, we find one more differentiation. Figure 3.5 shows two plots for d = 2. First
Figure 3.5(a) shows the case we already saw beforehand. In Figure 3.5(b) though start and
end point moved such that they lie not left and right of b and e, but in between them. The
crossing between f1(t, 0) and f1(t, 1) disappeared, which is expected, since there can not

20



3.2. Forbidden control points

b e

pc

pe

ps

(a) pe is right of the orange line. Functions
f1(t, 0) and f1(t, 1) cross.

ps

pe

b e
pc

(b) pe is left of the orange line. Functions f1(t, 0)
and f1(t, 1) do not cross.

Figure 3.5.: The orange line depicts the boundary of two cases. If the end point pe is right
of the orange line we get a crossing between f1(t, 0) and f1(t, 1), if it is left of
the line there is none.

be any control point pc with two crossings between Bézier curve and segment at b and e.
Such a point would mean the Bézier curve has to bend outwards in both directions and
then come back together, something impossible for a quadratic curve, because the first
derivative of the y-component would have three roots. The last differentiation we have to
make is distinguishing cases. In case one two boundaries exist, while in case two only one
of the boundaries is existing. Using Mathematica we can compute for which values the
equation

f1(t, 0) = f1(t, 1)

has a solution and for which it does not. If there is no solution one side of the forbidden
region has no boundary, because if ps and pe are on one side there is a non empty crossing
region C(2, p) for some control point p ∈ R2 and by Theorem 3.3 this regions boundary
is consisting of f1(t, 0), f1(t, 1) and f1(t1(P1), s). There can be at most one intersection
between each combination of these three curves, because we are using a quadratic Bézier
curve. Now if there is no crossing between f1(t, 0) and f1(t, 1), the connected crossing
region C(2, p) stretches indefinitely far into one direction, while being bounded on the other.
Since we are looking at a quadratic curve there is at most one connected crossing region
with crossing number two. Solving for xe we get:

xe >
xe(xs − xb)

ys
+ xb + xc. (3.2)

If Equation 3.2 is satisfied, there exists a value t0 for f1(t, 0). Using the same case
differentiation over the y-coordinates of ps and pe. Assuming ps and pe are on the same
side of the x-axis we compute the three cases with Mathematica:

ys = ye

t0 := ye(xs − xb) + ys(−xe + xb + xc)
2(ye(xs − xb − xc) + ys(−xe + xb + xc)

|ys| < |ye|

t0 :=
√

yeys(ye(xs − xb) + ys(−xe + xb))
(ye − ys)2(ye(xs − xb − xc) + ys(−xe + xb + xc))

− ys
ye − ys
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3. Fitting Bézier Curves into Simple Polygons

ps

pc

pe

F(Pi)

PBd(t)

Figure 3.6.: Plot of the forbidden areas of a polygon. For each segment there is an orange
area and we are allowed to place the control point anywhere in the white area.
Placing it above or below the orange regions would result in no crossing, but
the curve would lie completely outside the polygon.

|ys| > |ye|

t0 := −
√

yeys(ye(xs − xb) + ys(−xe + xb))
(ye − ys)2(ye(xs − xb − xc) + ys(−xe + xb + xc))

− ys
ye − ys

.

The parameter t1 for f1(t, 1) is depending on t0 and with that a solution only exists if the
condition for finding a t0 are met. If t0 in fact exists we can compute t1 as:

t1 := ys − yet0
ys + yet0 − yst0

.

Looking back at Figure 3.5 we now know there is no solution for t0 and t1 if and only if xe
is left or on the orange line. This last bit concludes the d = 2 variant. To sum this section
up we saw a general method to find the i-th control point if all but the i-th are given.
We now have the whole boundary for d = 2. With Theorem 3.3 we can find the boundary
of the forbidden area for a general degree, but its complexity increases with the degree of
the curve. For the quadratic it should be possible to implement an algorithm that finds pc,
by approximating the boundary of the forbidden area, compute the arrangement and then
find the face where the non-forbidden control points lie.

3.3. From Lines to Polygons
After discussing intersections between a single segment and a single Bézier curve we turn
back to polygons. Given a start and an end point on the boundary of a simple polygon, find
a Bézier curve connecting them, with as few control points as possible such that the curve
never intersects with a segment of the polygon. After Section 3.2 the general approach is
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3.4. Degree Three Bézier Curves

to split the polygon into its segments, compute the forbidden regions for each segment and
the i-th control point and then intersect them with each other. If there is some point left
in the intersection choose it as the i-th control point and return the curve.
Figure 3.6 gives an example for a simple polygon and a quadratic Bézier curve. We can see
how the fi(s, t) intersect and form an area of forbidden points. Still one small problem
remains. Above and below the intersection region there are areas where we can place a
control point without the Bézier curve crossing any segment of the polygon, but with the
curve lying completely outside the polygon.
Formally the area of all forbidden points is the union of the areas Fi(Pi, L) for each segment:

Fi(Pi) :=
⋃

∀s∈seg(P)
Fi(P, s).

Computing the whole area is not very practical. What we really want to do is using the
boundaries of all the Fi(Pi, L), intersect them and get the complete boundary of Fi(Pi).
This can be done just as above. Compute the boundaries, extract all points p with some
point q inside an ε-region around p such that Γ(q) = 0 for any Fi(Pi, L). While this is a
very general description it is surely possible to distinguish the two boundaries in the case
of quadratic Bézier curves.

3.4. Degree Three Bézier Curves
The last section in this chapter deals with the case of Bézier curves with degree 3. The
main problem we discuss here is finding the roots of the derivative. Curves of higher degree
are most likely not solvable, but luckily cubic curves are enough for most applications.
We focus on finding the forbidden second control point, which means we consider p1 as
given and p2 as the point we want to find. Keep in mind, any plot shown here is again
a slice of a body in higher dimensions. With Theorem 3.1 we get the formula for f2(s, t)
with d = 3:

f2(s, t) = −
∑3
j=0,j 6=2 bj,3(t)pj − (b+ sc)(3

2
)
t2(1− t)3−2

= −(1− t)3ps + 3(1− t)2tp1 + t3pe − (b+ se)
3(1− t)t2

By Theorem 3.3 the boundary of Fi(Pi, L) consist of some segments of f2(t, 0), f2(t, 1) and
f2(t2(P ), s). The main difference between degree 2 and 3 is the possibility of self intersecting
Bézier curves, like the one in Figure 3.7, which especially allow the forbidden area to have
one hole. For the general description this makes no difference, but the implementation gets
a little more tricky.
The main thing we concern ourself with is t2(P ). To compute it we need the roots of the
first derivative of (f2(s, t))y:

d

dt
(f2(s, t))y

!= 0

2(1− t)3ys + 3(1− t)2ty1 − t3ye
3(1− t)2t3

= 0

2(1− t)3ys + 3(1− t)2ty1 = t3ye

Again we use Mathematica to solve this Equation. The solution is more complex than in
case of d = 2. The case differentiation gets bigger. Here we split it up into several decision
trees. First we have to differentiate between the relative positions of ps and pe:
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p1

p2

ps

peb
e

Figure 3.7.: Example of a self-intersecting degree 3 Bézier curve.

ys

ys > ye T−

ys < ye T+

ys = ye T=

The T ’s are again trees. The smallest is T=. In it we differentiate the side where start and
end point are and the position of the p1 relative to ps = pe:

ys = ye

ys

ye
> 0

y1 < ys r1(x)

y1 > ys r2(x)

ys

ye
< 0

y1 < ys r2(x)

y1 > ys r1(x)

y1 = ys
2ys

3(2ys−y1)

The first leaf of this tree is clear, but the others need some explanation. Instead of a
closed formula we denote with ri(x) the i-th solution for x ∈ R of:

ri(x) := 2ps(−1 + x)3 + x(−3p1(−1 + x)2 + pex
2) != 0

While the first solution is real, the second and third might be complex. So far it was not
possible to calculate for which x ∈ R this is the case. Finally the two trees T+ and T−
have the same structure, but in T− all the comparison operators have to be flipped. The
differentiation is quite big and uses not really intuitive bounds. Especially noteworthy is
the possibility of multiple solutions, which we already saw in Figure 3.4(b). Here we show
only T+. Computing the full formulas can be done using the Mathematica code provided
in the appendix.
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3.4. Degree Three Bézier Curves

ys < ye

ys < 0
ye > 0

y1 < ys ∅

ys < y1 < ye

y1 > −2ys

3y1 = ye + 2ys r2(x)

3y1 < ye + 2ys r2(x) ∨ r3(x)

3y1 ≥ ye + 2ys r1(x) ∨ r2(x)

−ys < y1 ≤ −2ys

y3
1 < yey

2
s ∅

y3
1 > yey

2
s r1(x) ∨ r2(x)

y3
1 = yey

2
s r1(x)

y1 > ye

y1 < −ys

y3
1 < yey

2
s ∅

y3
1 > yey

2
s r1(x) ∨ r2(x)

y3
1 = yey

2
s r1(x)

y1 ≥ −ys r1(x) ∨ r2(x)

ys

ye
> 0

ys < y1 < ye

3y1 < ye + 2ys r3(x)

3y1 ≥ ye + 2ys r2(x)

y3
1 < yey

2
s r1(x)

y1 ≤ ys r1(x)

y1 ≥ ye r2(x)

ys

ye
< 0

ys < y1 < ye

3y1 < 2ys
3y1 < ye + 2ys r2(x)

3y1 ≥ ye + 2ys r1(x)

3y1 ≥ 2ys r1(x)

y1 ≤ ys r2(x)

y1 ≥ ye r1(x)

If we know where all the loops are on the boundary curves we can exclude those parts, by
jumping over them. Finding the whole boundary can now be done just as above. Look
at f2(t, 0), f2(t, 1) and f2(t2(P ), s) and pick any point which has a point with crossing
number zero in any ε-region around it.
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4. Sampling with ε-Nets

In the previous chapter we saw how one can choose a control point for a Bézier curve, such
that the curve does not intersect a given polygon. But so far we have to choose the other
d− 1 control points randomly. This does not seem to be of much practical use, because
choosing good control points for the whole polygon by chance seems very unlikely. This
chapter investigates the idea of sampling all control points at once using ε-nets and their
relation to VC-Dimension.
Exploring a more complex sampling method is necessary, because a naive grid based
approach proves to be impractical. Suppose we had a bounding box around the allowed
area, then sampling a grid of points, with granularity ε ∈ [0, 1] depends on the diameter
of said bounding box. A set of points sampled this way contains O

(
(∆/ε)2d−2

)
sample

points. If ε-nets are applicable we do not longer depend on the size of the used bounding
polygon. To understand how ε-nets work in general we look at an example, exploiting the
concept of VC-Dimension and its relation to sampling, before getting back to our original
problem.
Assume we want to solve the following problem. Given a disk C with area one, find a
sample of points inside C such that if we consider another disk C ′, which intersects C and
the area of the intersection is big enough, we find a point in the sample set lying in C and
C ′. The two main gaps we need to fill are what big enough intersection means and by what
criteria we choose the sample. Both questions can be answered with the ε-net theorem,
which we will introduce in Section 4.1.
An ε-net is a set N of points, chosen from a so called ground set X. In the above case C
is the set we want to choose from. Restricting ourselves to C is done using a probability
measure µ. Let X be the R2, then the probability measure is zero for any set outside the
disk C and one for the whole disk C. The disks we intersect with C are collected in a set T ,
that is T is a family of sets where every element of T is a set containing the points of one
disk C ′. Now N is an ε-net if and only if for every C ′, with µ(C ′) > ε and ε ∈ [0, 1], we
get a non empty intersection between C ′ and N . In other words for every C ′ intersecting
C and the area of the intersection being big enough if measured by µ, we find a p ∈ N
such that p ∈ C ′ and p ∈ C.
Finding such a net seems not an easy task. Surprisingly the ε-net theorem guarantees the
existence of an ε-net for a lot of different sets. The main ingredient needed to prove the
theorem is the notion of bounded VC-Dimension. We introduce the concept in the following
section. Afterwards, in Section 4.2, we note two lemmas giving us the ability to bound the
VC-Dimension for a broad set of geometric shapes and the last part, Section 4.3, draws a
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4. Sampling with ε-Nets

(a) Convex position. (b) Non-Convex posi-
tion.

Figure 4.1.: The two different possibilities to place four points in the plane.

connection between ε-nets and our basic problem of finding the control points to a degree
d Bézier curve.

4.1. VC-Dimension
To define the VC-Dimension, let A ⊆ X = R2 be a set of points in general position in the
plane. Further let A = A1 ∪· A2 be a partition of A. We say a half plane H supports this
partition, if A1 ⊆ H and A2 ∩H = ∅. Choosing T as the family of sets where every set is a
half plane, we say T shatters A if and only if every subset A′ ⊆ A is supported by a H ∈ T .
The VC-Dimension of a family of sets T is defined as the biggest A still shattered by T .
If T contains all half planes in the R2 we can find the VC-Dimension by looking at a set of
four points. Figure 4.1 shows the possible positions of four points in the plane. In both
cases we can not separate the white disks from the black ones with a half plane. Looking
at three points in general position, we can always shatter any subset of those three points
with a half plane. This tells us the VC-Dimension of T is three and we write dim(T ) = 3.
In general we say the VC-Dimension dim(T ) is bounded if and only if there is a v ∈ N+,
such that dim(T ) ≤ v. Otherwise we say the VC-Dimension is unbounded.
The above notion of half planes can be generalized to degree d. Radon’s theorem says, any
set A of d+ 2 points in Rd can be partitioned into two disjoint sets A1 and A2, such that
the intersection of their convex hulls is non-empty. Applying this to the system of points
and half planes no set of size d+ 2 or bigger can be shattered. Else there would be a half
plane H ∈ T , such that for any partition A = A1 ∪· A2, with A1 ⊆ H and A2 ∩H = ∅, the
convex hulls of A1 and A2 do not intersect, a contradiction to Radon’s theorem. Contrary
a set of d+ 1 points in general position can be shattered. This gives us a bound for the
VC-Dimension of the set T of all half planes in Rd with dim(T ) = d+ 1.
The VC-Dimension of more complex objects than half-planes is often hard to bound if
done by foot. In Section 4.2 we present two lemmas that give us great tools to bound the
VC-Dimension of sets described by one polynomial inequality or are composed of sets with
bounded VC-Dimension.

4.2. ε-Nets and bounded VC-Dimension
The connection between VC-Dimension and ε-nets is expressed in the so called ε-net
theorem. The idea is that we can guarantee the existence of an ε-net of small size, for any
set with bounded VC-Dimension.

Theorem 4.1. Let X be a set with probability measure µ and T a family of µ-measurable
subsets of X with bounded VC-Dimension dim(T ) ≤ v. Then there exists an ε = 1

r -net with
r ≥ 2 and size at most O (vr ln r).
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X = R2

µ(C) = 1

T = {p ∈ R2|p ∈ C ∩ C ′}

Figure 4.2.: System of intersecting circles. The dark blue areas are the ones we want to hit
with points in the ε-net. The light blue area is the ground set.

A proof of Theorem 4.1 can be found in the book "Lectures on Discrete Geometry" by Jiří
Matoušek, see [Mat02, Chapter-10]. From the proof a basic method to find an ε-net with
high probability can be derived. Let s = O (vr ln r), we make s independent draws from
X, picking each element of X according to µ. A sample N that we drew in this manner, is
an ε-net with probability greater 1/2.
Coming back to the example of intersecting disks. Recall that C is a disk in the plane
intersected by other disks C ′. We choose X as the plane and set µ(C) = 1. The elements
of T represent the other disks C ′. Figure 4.2 shows what an instance of this problem might
look like. Now we want to find an ε-net N , that is a set of points where we find for every
disk C ′ with µ(C ′) > ε a point inside N . Theorem 4.1 gives us exactly such a sample, if
we are able to bound the VC-Dimension of disks. This can be accomplished using the
following lemma.

Lemma 4.2. Let R[x1, x2, ..., xd] be the set of all real polynomials in d ∈ N+ variables
with maximum degree D ∈ N+, then a sets of the form

Pd,D := {{x ∈ Rd : p(x) ≥ 0} : p ∈ R[x1, x2, ..., xd]}

has bounded VC-Dimension of dim(Pd,D) ≤
(d+D

d

)
.

This lemma can be proven very elegantly, using a mapping to the monomials, which reduces
the case of general polynomials to half-planes, again see the proof can be found in the book
of Matoušek [Mat02, Chapter-10]. Lemma 4.2 gives us a bound for the VC-Dimension of
disks. We can describe the unit disk in the plane with:

x2 + y2 − z ≤ 0.
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This is a polynomial inequality in three variables with a maximum degree of two. Applying
the formula from Lemma 4.2 we get an upper bound for the VC-Dimension of the set T
containing all disks in the R2:

dim(T ) ≤
(

3 + 2
3

)
= 10.

This bound is not tight and can be lowered significantly. A more careful analysis yields
a VC-Dimension of five, by using a better mapping and not map to all combinations
of monomials. The other lemma, which will be interesting for us later on, bounds the
VC-Dimension of a set composed of sets with bounded VC-Dimension.

Lemma 4.3. Let S be a set system with VC-Dimension dim(S) = d <∞ on a ground set
X and with G(S1, S2, ..., Sk) we denote a set-theoretic expression using union, intersection
and difference. Then the set

T := {G(S1, S2, ..., Sk) : S1, ..., Sk ∈ S}

has bounded VC-Dimension of dim(T ) = O (kd log k).

Using Lemma 4.2 and 4.3 we can bound the VC-Dimension for any geometric shape
describable by finite number of polynomial equations.

4.3. Using ε-Nets to Find Control Points
The ε-net theorem offers us a way to prove that small samples are enough to find all the
control points of a Bézier curve. First we think about what the sets (X,T ) are going to
be. With X we identify the R2d−2. When we pick a point in 2d− 2 dimensions, we can
interpret it as a vector, containing all d− 1 inner control points. The set T contains all
allowed points, that are all control points not leading to an intersection between the Bézier
curve and the polygon. Since we are working in 2d− 2 dimensions every point we pick can
be seen as a vector, encoding the d− 1 inner control points of our curve and consequently
we can interpret X as the set of all curves connecting a fixed start and end point.
Finally the probability measure has to be restricted to a certain region. This can be done by
asking ourselves what the minimum distance is, a control point has to be pulled outwards,
such that curve and bounding box have to intersect. We then choose a box in the R2d−2

containing the allowed area and the polygon and set the probability measure µ to 1 on this
bounding box.
To illustrate the above have a look at Figure 4.3. For a quadratic curve the space we work
with is the R2, because we only can pick one control point. All allowed control points
lie in the white area, finding a diameter a we can restrict the probability measure to a
rectangle around the allowed area and polygon containing ps and pe. If we are dealing
with curves of degree d this figure shows only a slice through the space, where we fixed all
but one control points. The following theorem connects the 1-curve path problem with
ε-nets. Unfortunately we did not manage to prove the full theorem in the scope of this thesis.

Theorem 4.4. Let X be the R2d−2, T be the family of all sets of allowed points with
dim(T ) ≤ v, v ∈ N+ and µ is a probability measure on X. Then there exists an ε-net of
size O (v cot r log r) with ε = 1

r and r ≥ 2.

Remaining are two tasks, first we have to find the described bounding box around the
allowed area and secondly we have to show that the VC-Dimension of the chosen T is
bounded. For us this says we have to show the allowed area has a bounded VC-Dimension.
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X = R2

T

µ = 1

Figure 4.3.: Illustration of the ground set X and set system T in our configuration. The
dashed rectangle is part of the bounding box and the white area is the one
we want to hit. With blue we denote the forbidden area, while the grey area
is not forbidden by the fi(s, t) but it is excluded, because the whole curve is
outside P it the control point is placed there.

Finding the Ground Set

Let Bd(t) be a Bézier curve with control points P := {p0, ..., pd}, we assume without loss
of generality p0 = (0, 0) and pd = (x, 0), x 6= 0. We consider the polygon P , with p0 and pd
being points inside or on the boundary of P . For any two points u, v ∈ R2 we say dist(u, v)
is the distance between them. The maximum dist(u, v) between any two points u, v ∈ P is
called ∆.
Observe that for any point p = Bd(t) the distance between p0 and p is at most ∆. In
other words any set of control points leading to dist(Bd(t), p0) > ∆ is definitely outside
the region we want to use as bounding box since it leads to a crossing. Let t′ ∈ (0, 1) be
some parameter and u′ = Bd(t′) be the corresponding point on the curve. Suppose the
curve intersects P , we want to show either dist(u′, p0) > ∆ or dist(u′, pd) > ∆, if a certain
control point is pulled out far enough.
For every point on the curve some control point pi has the biggest influence on it, which
just says that the value of the Bernstein polynomial is bigger for this control point than
for any other control point. If pi has the biggest influence this translates to

∀j∈{0,...,d}\i bd,i(t′) > bd,j(t′).

The case where we can place the control point the farthest away, is exactly occurring if pi
pulls into one direction and all other control points pull the curve exactly in the opposite
direction.
This means we are looking for a constant a ∈ R, such that a control point being pulled
out by more than a∆ forces an intersection between Bd(t) and P . If we find such an a, we
place a bounding box around the polygon with side length depending on a and ∆. This
means we only need to look at control points being pulled out along the x- or y-axis and
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can set the other coordinate to zero. Further the calculation yields the same result for
both directions and we only need to consider the case of the y-coordinate being set to zero.
Setting the i-th inner control point to (−a∆, 0) and all other inner control points to (a∆, 0)
is enough. We can use the same a for both control points, because if one is pulled out
more another part of Bd(t) will intersect the boundary. Start and end point are placed
differently. By definition ps has to lie at (0, 0) and since ∆ is the diameter of the polygon
the worst case placement of the end point would be at (∆, 0), else it surely lies outside P.

Lemma 4.5. Let P be a polygon in the R2 with diameter ∆ and Bd(t) be a Bézier curve of
degree d with start p0 and end point pd laying inside P and inner control points {p1, ..., pd−1}.
Then there exists an a ∈ R, such that Bd(t) intersects the boundary of P if a control point
pi is placed at (x, y) with |x| > |a∆| or |y| > |a∆|.

Proof. Let u′ ∈ R2 be a point on the Bézier curve. Then there exists a parameter t′ ∈ [0, 1],
such that Bd(t′) = u′. Bd(t) intersects the P if dist(p0, u

′) > ∆ or dist(p0, u
′) > ∆. We only

consider the distance between u′ and p0 the case of pd can be done analogously. Since all
the y-coordinates of the control points are zero the distance dist(u′, p0) is |

∑d
j=0 bd,j(t′)xj−

(0, 0)|. Replacing the x-coordinates with the worst case values from above we get:∣∣∣∣∣∣
d∑
j=0

bd,j(t′)xj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
 d−1∑

j=1,j 6=i
bd,j(t′)− bd,i(t′)

 a+ bd,d(t′)

∆

∣∣∣∣∣∣ .
We find ourselves in one of three cases. First if the sum and bd,i(t′) are equal, then the
equation is reduced to just bd,d(t′)∆. Seemingly we get a contradiction to our assumption
of the distance between p0 and u′ or pd and u′ being big. Luckily this case is not important,
because no control point beside the last and first play any role in it, which translates to u′
laying on a straight line between p0 and pd. Such a line is definitely in any bounding box
that surrounds the polygon.
The other two cases are either the sum is bigger as bd,i(t′) or smaller. Without loss of
generality we assume the later:∣∣∣∣∣∣

 d−1∑
j=1,j 6=i

bd,j(t′)− bd,i(t′)

 a+ bd,d(t′)

∆

∣∣∣∣∣∣
=

bd,i(t′)− d−1∑
j=1,j 6=i

bd,j(t′)

 a− bd,d(t′)
∆.

We want to show there is a value a such that the distance is bigger than ∆:bd,i(t′)− d−1∑
j=1,j 6=i

bd,j(t′)

 a− bd,d(t′)
∆ > ∆

bd,i(t′)− d−1∑
j=1,j 6=i

bd,j(t′)

 a− bd,d(t′) > 1

1 + bd,d(t′)
bd,i(t′)−

∑d−1
j=1,j 6=i bd,j(t′)

< a.

Solving this equation for a specific d yields the result.

In most cases degree Bézier curves are enough. Using the above equation we can compute
a and t′ using Mathematica as a ≈ 3.4305 for t′ ≈ 0.215. Here we used the first control
point. Using the second control point changes only t′ and we end up with a ≈ 3.4305 for
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4.3. Using ε-Nets to Find Control Points

t′ ≈ 1− 0.215. Finally we restrict the ground set to a box around the polygon with side
length (2 · 3.4305 + 1)∆ in all direction of the R4.

Bounding the VC-Dimension

The other important condition we need to verify before the ε-net theorem can be used
is that the VC-Dimension of the set system T is bounded. In our setting T contains
the allowed points. The immediate idea is to bound the VC-Dimension of the set of all
forbidden control points:

A := {p ∈ X|p 6∈ Fi(Pi)}.

Unfortunately this direct approach only works if we can convert the fi(s, t) into implicit
equations. If we just continue the decomposition we see why. Using the definition of the
Fi(Pi) we get the condition for a point to be inside or outside a forbidden area. It can be
expressed as a polynomial equation. Let pi be the i-th control point:

A = {p ∈ X|∀l ∈ seg(P)∀t ∈ (0, 1)∀s ∈ [0, 1] : fi(s, t, p, l)− pi 6= 0}.

This set can be split up again if we express the 6= as the union of the set with all points
greater zero

A> := {p ∈ X|∀l ∈ seg(P)∀t ∈ (0, 1)∀s ∈ [0, 1] : fi(s, t, p, l)− pi > 0}

and smaller zero:

A< := {p ∈ X|∀l ∈ seg(P)∀t ∈ (0, 1)∀s ∈ [0, 1] : fi(s, t, p, l)− pi < 0}.

The union of these sets is again the set of all points not in a forbidden area A. Both,
A< and A>, can be split up again as the intersection of all the allowed points over the
segments:

A> =
⋂

l∈seg(P)
{p ∈ X|∀t ∈ (0, 1)∀s ∈ [0, 1] : fi(s, t, p, l)− pi > 0}

A< =
⋂

l∈seg(P)
{p ∈ X|∀t ∈ (0, 1)∀s ∈ [0, 1] : fi(s, t, p, l)− pi < 0}.

At this point we want to apply Lemma 4.2, but then we fix the parameters where the
crossing is located. This translates to the VC-Dimension of points leading to a crossing at
t = t0 and s = s0 being bounded. If we want to get back the whole set we have to quantify
over all parameters, which does not any longer fit with Lemma 4.3, because we need a
union over infinitely many sets.
To make the approach work we have to cut the number of curves we are considering. The
first step is to only look at the curves on the boundary, given from Theorem 3.3. Applying
Lemma 4.2 we can build the allowed space by set operations on the boundary curves.
Each of the curve now only depends on one parameter and unfortunately on a set of given
control points. Bringing them to the other side does not solve the problem as well, because
then we map a parameter to an implicit equation. Before we can implicitize the boundary
curves we have to parametrize the equation depending on all the control points. Converting
a rational parametric one to an implicit equation is always possible [SAG84, SG86], finding
a parametric equation though is a more difficult task.
In the case of quadratic Bézier curves we can demonstrate this approach, because we only
have one inner control point and do not have to fix any more than start and end point
of the curve. The boundary we are interested in consists of f1(s, t) for s = 0, s = 1 and
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Blue and green not possible

p0 pd

(a) No possbility to hit every set of curves.

p0 pd

(b) It is possible to hit every combination.

Figure 4.4.: For three curves it is possible to arrange them in a way, such that every
combination of them can be intersected by a segment. This is equivalent to
shattering three control points.

t = t1(P1). Solving the f1(s, t) for t and s respectively, we get implicit equations in two
variables, the coordinates of the control points, and maximal degree 2. Now we are able to
apply Lemma 4.2 and get the VC-Dimension for each of the boundary curves as

(2+2
2
)

= 6.
We know from Section 3, there can be only crossing regions with crossing number one and
two, and they can be created from the three boundary curves with union and intersection.
This allows us to apply Lemma 4.3. The biggest set equation can use all three boundary
curves, resulting in a bounded VC-Dimension of O (6 · 3 log 3) ≈ 18.

Translating the Problem to Colouring

The ideas described above seem hard to translate to a higher degree. Another view on the
problem of bounding the VC-Dimension of the allowed area is necessary. If we identify
with X all points in the R2d−2, then each point represents a curve between the fixed points
p0 and pd. The sets we put into T are the sets of forbidden points. Choosing a subset
C ⊆ X is equivalent to picking a set of curves in the plane. We shatter the set C with T if
and only if we find for every subset C ′ ⊆ C an S ∈ T such that C ′ = S ∩ C.
Interpreting this geometrically we pick a set of curves, draw them according to their

control points and then try to intersect every combination of them with a segment. A set
of control points is then shattered by T if and only if for every combination of curves we
find a segment, such that it intersects this combination. Figure 4.4 shows an example with
three curves. While it is not possible to intersect the blue and green curve in Figure 4.4(a),

p0
pd

(a) Arrangement of five curves with a pentagon. (b) Choosing every combi-
naion of three colours in the
pentagon.

Figure 4.5.: In the case of a set of five quadratic curves we can arrange them in a way, such
that a pentagon is one of the faces. Every corner has two colours, while the
other three edges of the pentagon have the other three colours.
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4.3. Using ε-Nets to Find Control Points

p0
pd

pd

Figure 4.6.: Converting the drawing of curves into a graph, where the problem of finding a
segment, such that it intersect a combination of curves is reduced to finding a
path with these colours.

we can rearrange the curves in a way allowing us to intersect every possible combination
(see Figure 4.4(b)).
Instead of bounding the allowed area we now bound the VC-Dimension of the forbidden
points. This is no problem, because Lemma 4.3 can be used to transform it back into the
allowed area. To do this we take the difference between the set of all curves or control
points and the forbidden area.
Earlier in this section we concluded an upper bound for the VC-Dimension of quadratic
curves is 18. A lower bound, that is a set we are still able to shatter, can immediately be
derived from the presented conversion. Figure 4.5 shows an arrangement of five curves,
such that we can intersect any combination of curves with a segment. This can be seen
very well if we consider the pentagon, which we form with the curves. It basically allows us
to pick every set of three colours, which is the only problematic size of curve combinations.
This means the VC-Dimension of the forbidden area is at least 6 and at most 18.
Taking the colouring approach a step further, we can interpret the intersections of curves
as nodes V and the segments between them as edges E. The resulting graph G = (V,E)
is planar and the drawing of the curves gives us an embedding. Figure 4.6 shows the
process. Every edge gets assigned a colour, depending on the colour of the curve segment
it represents. From G we then compute the dual graph G? and assign every edge in E? the
colour of its corresponding primal edge. The only problem we have in this construction is
the possibility of parallel edges. Suppose there are two parallel edges in the graph. From
the drawing of the curves we derived an embedding, which is represented by the cyclic
order of edges around the nodes. For every two parallel edges, next to each other in the
cyclic order, we introduce a node to the dual graph and connect it to the two adjacent
faces or the nodes of more parallel edges. The colours are derived from the cyclic order of
the edges around the node.
Looking at the dual graph we can rephrase the problem of intersecting all possible

combinations of curves. Given a set of colours Ω we want to find a path in G? containing
|Ω| edges and for every colour ω ∈ Ω the path contains an edge with colour ω. So far
we did not manage to find a arrangement for six curves, such that we can intersect every
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4. Sampling with ε-Nets

combination of curves and to us it seems likely that the VC-Dimension of the forbidden
area is six.
Bounding the VC-Dimension for a general degree d needs more work. Nonetheless it seems
intuitive that the VC-Dimension of the allowed area has in fact a bounded VC-Dimension
and if proven we can directly derive the existence of small ε-nets.

Conjecture 4.6. Let X be the set of all Bézier curves of degree d, defined by fixed start
point p0 and end point pd and d− 1 inner control points. Let T be the family of sets, where
every set is a set of forbidden control points. It exists a v ∈ N+, such that dim(T ) ≤ v.

Using Lemma 4.5 and Conjecture 4.6 we can prove Theorem 4.4. The resulting ε-nets then
have size O (v′ · k log k), with v′ being the VC-Dimension of an allowed area for one Bézier
curve and one segment and k being the number of segments in the polygon.
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5. A Graph Drawing Application

Look at the graph in Figure 5.1. The leftmost drawing looks pretty nice. All nodes are in
a grid and two edges are going around the graph. If we let a standard orthogonal layouter
draw the graph, we get the result in the middle. The nodes are no longer in a grid, which
leads to a less well visible structure. This observation leads to the idea we pursue in this
chapter.
Figure 5.1(c) shows the same graph again, but compared to the drawing in Figure 5.1(a)
two edges, the ones going around the graph, were deleted. The remaining part is a simple
grid and using the same orthogonal layout algorithm as in Figure 5.1(b), we get a drawing
of the remaining part showing exactly that. Finally we reinsert the edges. This produces a
drawing that shows the underlying structure of the graph better, than if we use the layout
algorithm on the whole graph in one sweep.
In Section 5.1 we discuss the question, which edges have to be removed, such that if we
draw the remaining graph the structure becomes better visible. Afterwards, in Section
5.2 we investigate how the removed edges can be inserted into the already constructed
drawing. As a running example we use the graph shown in Figure 5.2(a). This initial layout
shown was computed with yEd [yWo15] and can still be improved substantially, when we
compare it to the hand-drawn variant in Figure 5.2(b). If drawn optimally the example
graph is just a grid with a few edges going around the outer face. All the drawings of the
running example were generated by a self developed tool, using the "Open Graph Drawing
Framework" OGDF [CGJ+11] and yEd.

(a) Nice Drawing (b) Ugly Drawing (c) Delted the Outer
Edges

Figure 5.1.: Depiction of the basic idea. If drawn automatically the drawing is distorting
the grid structure. Deleting the edges and reinserting them can help.
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5. A Graph Drawing Application

(a) Orthogonal Drawing by yEd. (b) Drawing of the graph by hand in
yEd.

Figure 5.2.: The initial layout of our continuous example drawn by yEd. Figure 5.2(a)
shows a graph drawn by the orthogonal layouter of yEd. The other drawing,
Figure 5.2(b) was drawn by hand.

5.1. Deleting Edges
Given a planar, connected graph G = (V,E) we want to find edges Ed ⊆ E such that, after
we delete them, the remaining graph is nicely drawable by a given layout algorithm. We
call the graph, remaining after we delete the edges, the core graph Gc = (Vc, Ec), with
Vc := V and Ec := E\Ed.
When finding edges for Ed we have to make sure deleting it does not destroy a lot of
structure, at the same time we don’t want to choose too few edges, such that there is
nothing won and the layout still looks bad. One metric we can track and which is important
in any case is the connectivity of G. By assumption G is at least 1-edge-connected and we
want to preserve this. In case we disconnected G there would be at least two independent
components and each of them has to be drawn independently. In the end the underlying
structure is most likely lost completely. This means the minimal thing we want to guarantee,
is to keep G connected. The algorithm we present here achieves even more, by keeping the
graph 2-edge-connected, if it was at least 2-edge-connected in the beginning and otherwise
does not construct any new bridges. A bridge is an edge whose removal disconnects the
graph. So any graph with a bridge is 1-edge-connected.
A motivation to what kind of edges we want to delete can be given by looking at the

edges we just saw in the examples. In both, the small and the big, examples we found
edges which forced the drawing to bend the graph. This can be seen as a general problem.
Suppose we have a rather dense graph, but it can be drawn very regularly, an example
would be a grid with diagonals in the cells. If there are edges between nodes on the outer
face a layouter will be forced to incorporate them. For example with orthogonal layouts
we minimize the bends on the edges and if we can distribute the bends better among the
edges by bending the whole graph we do this instead of a few more bends on the edges.
Using this motivation we can look at this a little differently. If we stand in the outer face
fo of the graph and pick a primal edge e, adjacent to fo and another face fi, and delete
it, we merge fo with fi. Continuing this process we possibly get rid of the edges forcing
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Figure 5.3.: The reduced version of our continuous example. The grid structure is well
visible and the drawing is more compact.

us to bend the graph. This intuition basically asks for a tree in the dual graph and then
we delete all primal edges, corresponding to the dual edges in the tree. Still we need to
guarantee the connectivity properties from above.
To check if a graph is k-edge-connected we can use the dual graph G? of G. Let C be a set
of edges, forming a cycle in G?. Deleting all primal edges, corresponding to dual edges in
C, disconnects the graph. Hence the size of the cycle corresponds to the number of edges
we have to delete, such that G is disconnected. Let C be the shortest cycle in G?. Then G
is exactly k-edge connected with k being the length of C. Otherwise there would be a set
of fewer edges, such that deleting them disconnects G. In return we then find be a cycle in
the dual graph of this length. For k = 1, 2 this says if the graph is 1-edge-connected there
is a loop at the node representing the outer face in G? and if k = 2 we find two parallel
edges at the outer face node in the dual graph.
With the above we see, if the set Ed forms a tree in G? and the tree does not contain any
edges that are part on a cycle of length one or two we found a viable set of edges. To
make Ed somewhat big at the same time we want to maximize the size of the tree. An
already existing problem is to find a maximal induced subtree in a graph. More specific we
ask for a set of nodes V ′ ⊆ V whose induced subgraph is a tree in G and V ′ has maximal
cardinality. Unfortunately finding the optimal solution is NP-complete. A proof can be
found in the Bachelorthesis of Simon Bischof [Bis14]. Still there might be a fast and good
approximation for such trees.
After we know what we want, lets turn to the algorithms. We can use depth-first-search
(DFS) and Breath-first-serach (BFS) with the same modification. We always start the
search from the dual node corresponding to the outer face. Whenever we visit a node
u ∈ V ?, we mark all the neighbours from which we can reach an already visited node, using
a different edge, than the one between u and that neighbour. Then we pick the next node.
To decide if v ∈ V ? can be picked as next node we have to check if it was already visited
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or if it is on a cycle of length two. BFS and DFS both forbid us to choose a visited node,
else the result would not be a tree, and we add the constraint, that no marked node can be
chosen. If either is the case we choose a different node. Checking if the node was marked
is enough, because if there is a cycle of length two and we at one point pick one of the two
nodes, we mark the other one. In the end we return the set of primal edges Ed which where
crossed by dual edges in the induced subtree and delete them from G. For our ongoing
example take a look at Figure 5.3. After applying the BFS version of the reduction we find
a more grid like structure.
When we want to draw Gc, we have to keep in mind that the deleted edges in Ed have to
be reinserted later on. Preserving the embedding or at least keep the same nodes on the
outer face would be nice, since then we can draw all the edges around the graph. Otherwise
we might create unnecessary crossings. From now on we will assume that this is the case,
so for any edge in Ed we find the start and end node on the outer face of Gc. To draw the
core graph we can use any method we like. In the example pictures we used an orthogonal
layout algorithm provided by the OGDF library.

5.2. Reinserting Edges
After generating the drawing for Gc we have to reinsert the edges from Ed. As said above,
for every edge e ∈ Ed we assume the start and end node are on the outer face and we only
consider paths for the edges lying completely in the outer face. For us the most important
property of the final drawing is to not introduce any unnecessary crossings, which are
only introduced because we drew an edge from Ed in a certain way. At this point we
finally see the application of the previously discussed Bézier curve properties. When we
can come up with some bounding polygons, such that two polygons never intersect, unless
it is completely necessary, we can draw the edges in any way we like, keep them inside the
boxes and guarantee no new crossings are introduced.
Chapter 3 and 4 talked about how we are able to find a curve inside a polygon. This reduces
the remaining task in this section, to coming up with a construction of said bounding boxes.
The basic idea we suggest here is based on two observations. If the outer face is a convex
polygon, we can duplicate the shape and then route all edges in the space between the two
boundaries. Assume all the faces we are interested in are triangulated, then a reinsertion
path between two nodes can be found as the shortest path in the dual graph. With shortest
we mean the number of nodes is minimal. Such a path is not necessarily the shortest path
by euclidean length of the edge in the drawing, but it should be somewhat close to it, if
the faces we create between the two copies of the outer face are somewhat equally sized.
The necessary steps we need to fill in are how do we find the convex hull (Section 5.2.1)
of the outer face, triangulate all the newly created faces (Section 5.2.2), find the shortest
paths in the dual graph and finally specify the bounding box for each edge (Section 5.2.3).

5.2.1. Finding the Convex Hull

To calculate the convex hull we use an algorithm by Melkman [Mel87], which runs in O (n).
The only drawback is that the polygon needs to be simple. In our case we can assume the
outer face of Gc to be such a polygon, because G is planar. Here we discuss the algorithm
very quickly, for a formal description and correctness proof look into [Mel87]. In general
the algorithm works with a simple polyline P := {p0, p1, ..., pn} ∈ R2 and a double ended
queue Q := {qbot, ..., qtop}. As suggested by the name, Q has a front and a back and we
can insert/delete an element in O (1) on both sides.
Starting with p0 we process the points in order of their index and at all times we find in
Qk the convex hull after processing k points. Consequently qbot = qtop at all times, because
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(a) The outer face is now convex.
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(b) Triangulating the new faces.

Figure 5.4.: Finding the convex hull and triangulate the new faces.

pbot+1

p

ptop−1

pbot = ptop

pk

(a) pk lies inside.

pbot+1

p

ptop−1

pbot = ptop

pk

(b) pk lies outside.

Figure 5.5.: Calculating the convex hull of a simple polygon. pk is the next point we
consider.

the convex hull is a closed polygon. Suppose we have looked at k − 1 points and are now
processing pk. Either we find pk to lie inside the current hull Qk−1 and we don’t need to
do anything or it lies outside. In the latter case we have to remove the points which are
inside the polygon if pk is added and add pk to both ends of Q in the end.
To test if a point pk is inside the current convex hull we check if it is to the right of both
the line going through qbot and qbot+1 and the line going through qtop−1 and qtop; see Figure
5.5. In the case of both being true the point lies between the two lines and hence, because
P is simple, it can not lie outside of the already computed convex hull. If pk lies to the left
of either line we have to add it to the convex hull. When we insert pk there can be points
in Qk−1 and therefore on the convex hull, which after pk was inserted, lie inside the hull.
For the top half of Q this can be solved by popping points as long as we find that pk is to
the left of the line through qtop−1 and qtop. Analogous for the bottom half, but we have to
check if pk is to the left of the line through qbot and qbot+1. Finally we insert pk as the bot
and top point of Q putting it on the convex hull, satisfying qbot = qtop
Applying this algorithm to the polygon of the outer face, gives us the segments we have to
add between nodes on the outer face. We think of them as edges, so we can insert them in
our graph. They are marked as helper edges. In Figure 5.4(a) you can see the example
graph with its convex hull. The edges we had to insert are marked red. From now on the
outer faces polygon of Gc is regarded as convex. In the process three new faces where
created. The next step now is to triangulate them. In the example there is only one face
we have to triangulate.
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5.2.2. Triangulating the new Faces

For every face in Gc, which we just added by computing the convex hull, we have to find a
triangulation. This is necessary for the techniques used in section 5.2.3. Let f be a face
with a helper edge on its boundary. Then we need to check if it is a triangle and if not
triangulate it.
The method we implemented is using ear clipping. An ear is a set of three vertices in a
polygon v0, v1 and v2 such that there is no other vertex on the segment between v0 and v1
and the segment between v0 and v2. If we introduce the segment between v1 and v2 we
separated the polygon into two. One of them is a triangle, hence we cut off or sliced off an
ear.
It is possible to prove the existence of an ear in any simple polygon [EET93] and if an ear
is cut off the remaining polygon is still simple. Continuing this process we find in every
step an ear and cut it off until there are only triangles left. A careful implementation with
a greedy approach yields a running time of O

(
n2), where n is the number of vertices in

the polygon. We only implemented a naive version running in O
(
n3), which is enough to

demonstrate the application.

5.2.3. Routing the edges

As said above we need to find an area, where we can root the edges. We create it by
duplicating the outer face, which by now is a convex polygon. For each edge e ∈ Ec which
is adjacent to the outer face of Gc we introduce a new node v, place it on the midway point
of e and move it away from the core graph. The distance between the node and the outer
face is chosen constant for all nodes. Two in this way inserted nodes are connected if and
only if the two edges they represent had a node in common.
We end up with a convex polygon or in graph terms cycle Pc surrounding the core graph.
What’s left to do is the triangulation of the area between the outer face of Gc and Pc. This
is done by looking for every node in Pc at the edge it represents and connect it to both the
start and the end node. Figure 5.6 gives an example of what this looks like. We call this
expanded graph Ge and the set of all faces we created, which are the ones with a helper
edge on their boundary minus the outer face of Ge, is called H. Further we collect all edges
introduced by the convex hull, triangulation and the copying of the outer face in EH .
Next we have to find for every edge e ∈ Ed the path it takes from its start node to its
end node. Switching to the dual graph allows us to find a path between the faces in H.
To prevent any edge from going right through the core graph we forbid any dual edge
corresponding to a primal edge that is an original graph edge. Additionally we forbid to
cross any edge connected to the node representing the outer face of Ge. In the end we can
only route through dual nodes and edges corresponding to the faces in H and primal edges
on their boundary.
Finding the shortest path between the start and end node for every edge e ∈ Ed makes it
necessary that we we add the start and end node of e to G?e. We call these two new nodes
s and t. Then we connect s to all the dual nodes, which represent faces on whose boundary
we find s. The end node t is connected to G?e in the same way. A BFS search is then used
to find the path between s and t. Such a path gives us a set of dual edges. Taking the
corresponding primal edges we found all edges e has to cross. All these edges lie on the
boundary of some face in H. Doing this for all edges we get for every primal edge f ∈ Ee
the number of edges from Ed we route over this edge.
Before we can compute the bounding boxes for each edge we have to find an order of the
edges in Ed, such that we get no crossings or as few as possible. We assume all edges to
have their start and end node on the outer face it is enough to just look at the intervals of
nodes between start and end node. For an edge e ∈ Ed there can are two intervals around
the outer face. We name them re and le. The first, re, contains all nodes if we go around
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Figure 5.6.: The graph Ge after we introduced the copied outer face Pc and triangulated
the area between Pc and the outer face of Gc.
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Figure 5.7.: The graph Ge after we inserted the deleted edges as polylines.
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Figure 5.8.: The example graph drawn with edges as curves. This would be the goal of the
method, outlined in this chapter.

the outer face clockwise and le contains all the nodes if we go around it counterclockwise
Without loss of generality we consider only the clockwise interval. For two edges e 6= f ∈ Ed
we say their intervals overlap if we find a set of nodes containing the start node of e and
the end node of f or the other way around, such that this set is a real subset of re and
rf . We say an interval re contains another interval rf if rf ⊆ re. Now for any two edges
they can only cross if their intervals re and rf or le and lf overlap. Finding an order of
the edges, such that as few as possible edges cross can then be done by computing which
edges interval contains which and use this information to distribute the edges on the helper
edges, which are crossed.
For every edge in EH we know how many edges cross it and in which order they appear.
This allows us to compute the bounding boxes. The easiest way is to simply take the
distance between the start and end node of an edge in EH , compute the distance between
them and then give every edge the same space. Using this method we get the bounding
boxes, which you can see in light grey in Figure 5.7. This method can of course be changed.
An idea would be to give the node on the outer face of the original graph G an attracting
force and the node on the outer face of Ge a repulsing one. The effect would be, that the
bounding boxes would be closer to the original graph and hence the resulting edges would
be closer to the graph as well. Here lies definitely some potential future work.
In the end we can route the edges freely in the computed bounding boxes. Figure 5.7 shows
them in purple. Here we use simple polylines, but if one could implement the method
discussed in 4, this would be a perfect application. The resulting drawing then might look
like the one in Figure 5.8.
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6. Conclusion

In this thesis we introduced the k-curve path problem, a generalization of the k-link path
problem to polynomial curves. For the case of k = 1 we investigated two methods of
computing the control points of a Bézier curve. A direct approach to compute them only
works in the case of a quadratic curve, where we are able to describe an area containing
all allowed control points. Curves of higher degree proved to be more difficult. The idea
we followed is to sample the control points. Sampling in a naive way needs a big set of
samples. Using ε-nets we can guarantee that small sets of sample points are enough, if the
allowed area has a bounded VC-Dimension.
Finally, we presented an application. Adding edges to a graph as curves can be described
as routing the edges through polygons. Given a set of disjoint polygons we can guarantee
no two edges intersect if no, curve used to draw an edge, intersects the boundary of its
bounding polygon.

Future Work

The next step to extend the presented results is to prove Conjecture 4.6. The conversion
between bounding the VC-Dimension of the allowed area and a colouring problem seems
promising. If the VC-Dimension of the allowed area proves to be bounded, one can develop
a sampling algorithm by following the constructive proof of the ε-net theorem.
An advantage when using ε-nets is the ability to add more restrictions to the set of forbidden
points, as long as we can describe them as sets of bounded VC-Dimension. For example if
we utilize the sampling, we might be interested in excluding all curves containing a loop.
Describing the control points leading to a loop as a set with bounded VC-Dimension, we
can use Lemma 4.3 to get a bound on the VC-Dimension of the union between the old
set and the restriction we are adding. Afterwards one can again use ε-nets to guarantee a
small sample.
Solving the general k-curve path problem for k > 1 posts new problems. On the one hand
we get restrictions at the control points, because we want the complete curve to be smooth.
But on the other hand start and end point are no longer fixed for every curve segment.
Restricting the possible end points of one segment by a linear equation might be a good start.
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Appendix

A. Mathematica Code
This section shows some of the used Mathematica code. Besides the code to generate an
interactive demo of the forbidden area for the degree 2 and the degree 3 case, we show the
code for the figures generated in Mathematica. The code was written and tested with the
Mathematica 10.0.1.0 Linux 64-bit version.
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A. Mathematica Code

Quadratic Bézier Curve

(*Define standard 2d curve , line segment and genral points*)

B[t_, ps_List, pc_List, pe_List] := (1 - t)^2*ps + 2*(1 - t)*t*pc + t^2*pe

L[s_, b_List, e_List] := b + s*e

b := {bx, by}

e := {ex, ey}

ps := {psx, psy}

pc := {pcx, pcy}

pe := {pex, pey}

(*Calculate all forbidden points*)

forbiddenResult := Simplify[Solve[
B[t, ps, pc, pe] == L[s, b, e]
&& 0 <= s <= 1
&& 0 <= t <= 1, pc, Reals]]

forbiddenPoints := Simplify[{
pcx /. Extract[Normal[forbiddenResult], {1}],
pcy /. Extract[Normal[forbiddenResult], {1}]

}]

f[t_, s_, ps_List, pe_List, b_List, e_List] :=
-(((1 - t)^2*ps + t^2*pe - b - s*(e - b))/(2*(1 - t)*t))

(*Get derivative of forbidden points second component and set it to zero*)

DF := Simplify[D[f[t, s, ps, pe, b, e], t]][[2]]

Simplify[Reduce[DF == 0
&& 0 < t < 1
&& s == 0
&& by == 0
&& ey == 0, t, Reals]]

(*Define ti(P)*)

t[psy_, pey_] := Which[
pey == psy, 1/2,
Abs[psy] < Abs[pey],

-(psy/(pey - psy)) + Sqrt[(pey*psy)/(pey - psy)^2],
Abs[psy] > Abs[pey],

-(psy/(pey - psy)) - Sqrt[(pey*psy)/(pey - psy)^2]]

(*Formulas for case differentiation over x-coordinate*)

Simplify[Reduce[
f[t0, 0, ps, pe, {bx, 0}, {ex, 0}] == f[t1, 1, ps, pe, {bx, 0}, {ex, 0}]
&& 0 < t0 < t1 < 1
&& ((pey > 0 && psy > 0) || (pey < 0 && psy < 0))
&& ex > bx > 0, t0, Reals]]

(*Interactive demo*)

Printed  by  Wolfram  Mathematica  Student  Edition
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A. Mathematica Code

With[
{b={-3,0},
e={3,0}},Manipulate[Show[

ParametricPlot[f[t, s, ps, pe, b, e],
{t, 0.01, 0.99}, {s, 0, 1}, PlotStyle -> LightGray],

ParametricPlot[f[t[ps[[2]], pe[[2]]], s, ps, pe, b, e],
{s, 0, 1}, PlotStyle -> Orange],

ParametricPlot[f[t, 0, ps, pe, b, e],
{t, 0.01, 0.99}, PlotStyle -> {Dashing[0], Blue}],

ParametricPlot[f[t, 1, ps, pe, b, e],
{t, 0.01, 0.99}, PlotStyle -> Blue],

ParametricPlot[L[s, b, e - b], {s, 0., 1.}, PlotStyle -> Red],
ParametricPlot[B[t, ps, pc, pe], {t, 0, 1}, PlotStyle -> Green],
Graphics[{Gray, PointSize[0.02], Point[ps], Point[pc],

Point[pe], Point[b], Point[e]}],
PlotRange -> {{-10,10}, {-10, 10}}, AxesStyle -> Gray, Frame -> False,
Ticks -> None, Method -> {"AxesInfront" -> False}, ImageSize -> Large],

{{ps,{-3,1.65}},Locator},
{{pc,{-1,-3.8}},Locator},
{{pe,{3,-1.25}},Locator}

]]

(*Figures*)

With[{
ps = {2, -1},
pc = {4.5, 0.75},
pe = {7, -2},
b = {3, 0},
e = {6, 0}},

Show[
ParametricPlot[f[t, s, ps, pe, b, e],

{t, 0.01, 0.99}, {s, 0, 1}, PlotStyle -> LightGray],
ParametricPlot[f[t[ps[[2]], pe[[2]]], s, ps, pe, b, e],

{s, 0, 1}, PlotStyle -> Orange],
ParametricPlot[f[t, 0, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> {Dashing[0], Blue}],
ParametricPlot[f[t, 1, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> Blue],
ParametricPlot[L[s, b, e - b], {s, 0., 1.}, PlotStyle -> Red],
ParametricPlot[B[t, ps, pc, pe], {t, 0, 1}, PlotStyle -> Green],
Graphics[{Gray, PointSize[0.02], Point[ps], Point[pc],

Point[pe], Point[b], Point[e]}],
PlotRange -> {{0, 9}, {-2, 5}}, AxesStyle -> Gray, Frame -> False,
Ticks -> None, Method -> {"AxesInfront" -> False}, ImageSize -> Large

]

]

Printed  by  Wolfram  Mathematica  Student  Edition
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A. Mathematica Code

With[{
ps = {3.5, -0.5},
pc = {4.5, 0.75},
pe = {6, -2},
b = {3, 0},
e = {6, 0}},

Show[
ParametricPlot[f[t, s, ps, pe, b, e],

{t, 0.01, 0.99}, {s, 0, 1}, PlotStyle -> LightGray],
ParametricPlot[f[t, 0, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> {Dashing[0], Blue}],
ParametricPlot[f[t, 1, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> Blue],
ParametricPlot[L[s, b, e - b], {s, 0., 1.}, PlotStyle -> Red],
ParametricPlot[B[t, ps, pc, pe], {t, 0, 1}, PlotStyle -> Green],
Graphics[{Gray, PointSize[0.02], Point[ps], Point[pc],

Point[pe], Point[b], Point[e]}],
ParametricPlot[

{{(pe[[2]]*(ps[[1]] - b[[1]]))/ps[[2]] + b[[1]] + (e[[1]] - b[[1]]), t}},
{t, -10, 10}, PlotStyle -> {{Dashed, Orange}, {Dashed, Orange}}

],
PlotRange -> {{0, 9}, {-2, 5}}, AxesStyle -> Gray, Frame -> False,
Ticks -> None, Method -> {"AxesInfront" -> False}, ImageSize -> Large

]

]

With[{
ps = {2, -1},
pc = {4.5, 0.75},
pe = {7, -2},
b = {3, 0},
e = {6, 0}},

Show[
ParametricPlot[f[t, s, ps, pe, b, e],

{t, 0.01, 0.99}, {s, 0, 1}, PlotStyle -> LightGray],
ParametricPlot[f[t, 0, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> {Dashing[0], Blue}],
ParametricPlot[f[t, 1, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> Blue],
ParametricPlot[L[s, b, e - b], {s, 0., 1.}, PlotStyle -> Red],
ParametricPlot[B[t, ps, pc, pe], {t, 0, 1}, PlotStyle -> Green],
Graphics[{Gray, PointSize[0.02], Point[ps], Point[pc],

Point[pe], Point[b], Point[e]}],
PlotRange -> {{0, 9}, {-2, 5}}, AxesStyle -> Gray, Frame -> False,
Ticks -> None, Method -> {"AxesInfront" -> False}, ImageSize -> Large

]

]

Printed  by  Wolfram  Mathematica  Student  Edition
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A. Mathematica Code

With[{
ps = {2, -1.5},
pc = {2.2, 1.8},
pe = {7, 2},
b = {3, 0},
e = {6, 0}},

Show[
ParametricPlot[f[t, s, ps, pe, b, e],

{t, 0.01, 0.99}, {s, 0, 1}, PlotStyle -> LightGray],
ParametricPlot[f[t, 0, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> {Dashing[0], Blue}],
ParametricPlot[f[t, 1, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> Blue],
ParametricPlot[L[s, b, e - b], {s, 0., 1.}, PlotStyle -> Red],
ParametricPlot[B[t, ps, pc, pe], {t, 0, 1}, PlotStyle -> Green],
Graphics[{Gray, PointSize[0.02], Point[ps], Point[pc],

Point[pe], Point[b], Point[e]}],
PlotRange -> {{0, 9}, {-2, 5}}, AxesStyle -> Gray, Frame -> False,
Ticks -> None, Method -> {"AxesInfront" -> False}, ImageSize -> Large

]

]

With[{
ps = {2, -0.7},
pc = {4.5, 0.75},
pe = {7, -2},
b = {3, 0},
e = {6, 0}},

Show[
ParametricPlot[f[t, s, ps, pe, b, e],

{t, 0.01, 0.99}, {s, 0, 1}, PlotStyle -> LightGray],
ParametricPlot[f[t, 0, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> {Dashing[0], Blue}],
ParametricPlot[f[t, 1, ps, pe, b, e],

{t, 0.01, 0.99}, PlotStyle -> Blue],
ParametricPlot[L[s, b, e - b], {s, 0., 1.}, PlotStyle -> Red],
ParametricPlot[B[t, ps, pc, pe], {t, 0, 1}, PlotStyle -> Green],
Graphics[{Gray, PointSize[0.02], Point[ps], Point[pc],

Point[pe], Point[b], Point[e]}],
ParametricPlot[

{{(pe[[2]]*(ps[[1]] - b[[1]]))/ps[[2]] + b[[1]] + (e[[1]] - b[[1]]), t}},
{t, -10, 10}, PlotStyle -> {{Dashed, Orange}, {Dashed, Orange}}

],
PlotRange -> {{0, 9}, {-2, 5}}, AxesStyle -> Gray, Frame -> False,
Ticks -> None, Method -> {"AxesInfront" -> False}, ImageSize -> Large

]

]

Printed  by  Wolfram  Mathematica  Student  Edition

53



A. Mathematica Code

Cubic Bézier Curve

(*Define standard 3d curve , line segment and genral points*)

B[t_, ps_List, pc1_List, pc2_List, pe_List] :=
(1 - t)^3 ps + 3 (1 - t)^2 t pc1 + 3 (1 - t) t^2 pc2 + t^3 pe

L[s_, b_List, e_List] := b + s * e

b := {bx, by}

e := {ex, ey}

ps := {psx, psy}

pc1 := {pc1x, pc1y}

pc2 := {pc2x, pc2y}

pe := {pex, pey}

(*Calculate all forbidden points*)

forbiddenResult := Simplify[Solve[B[t, ps, pc1, pc2, pe] == L[s, b, e]
&& 0 <= s <= 1
&& 0 <= t <= 1, pc2, Reals]]

forbiddenPoints := Simplify[{
pcx /. Extract[Normal[forbiddenResult], {1}],
pcy /. Extract[Normal[forbiddenResult], {1}]

}]

F2[t_, s_, ps_, pe_, pc_, u_, v_] :=
-(((1 - t)^3 ps + t^3 pe + 3 (1 - t)^2 t * pc - u - s * (v - u)) / (3 (1 - t) t^2))

(*Get derivative of forbidden points second component and set it to zero*)

DF := Simplify[D[F2[t, s, ps, pc1, pe, b, e], t]][[2]]

Simplify[Reduce[DF == 0
&& 0 < t < 1
&& s == 0 && by == 0
&& ey == 0, t, Reals]]

(*Define ti(P)*)

t0[psy_, pc1y_, pey_] := Which

psy ⩵ pey, Which[
psy < 0, Which[
pc1y > psy, {troot[psy, pc1y, pey, 1]},
pc1y < psy, {troot[psy, pc1y, pey, 2]},
pc1y ⩵ psy, 2 psy / (-3 pc1y + 6 psy)],

psy > 0, Which[
pc1y > psy, {troot[psy, pc1y, pey, 2]},
pc1y < psy, {troot[psy, pc1y, pey, 1]},
pc1y ⩵ psy, 2 psy / (-3 pc1y + 6 psy)]

],

psy < pey, Which

Printed  by  Wolfram  Mathematica  Student  Edition
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A. Mathematica Code

pey < 0, Which[
pc1y ≥ pey, troot[psy, pc1y, pey, 1],
pc1y ≤ psy, troot[psy, pc1y, pey, 2],
psy < pc1y < pey, Which[
2 / 3 psy ≤ pc1y, troot[psy, pc1y, pey, 1],
2 / 3 psy > pc1y, Which[
pc1y ≥ (pey + 2 psy) / 3, {troot[psy, pc1y, pey, 1]},
pc1y < (pey + 2 psy) / 3, {troot[psy, pc1y, pey, 2]}]]],

psy > 0, Which[
pc1y ≥ pey, {troot[psy, pc1y, pey, 2]},
pc1y ≤ psy, {troot[psy, pc1y, pey, 1]},
psy < pc1y < pey, Which[
pc1y^3 < pey * psy^2, {troot[psy, pc1y, pey, 1]},
3 pc1y < pey + 2 psy && pc1y^3 ≥ pey * psy^2, {troot[psy, pc1y, pey, 3]},
3 pc1y ≥ pey + 2 psy, {troot[psy, pc1y, pey, 2]}]],

psy < 0 && pey > 0, Which

pc1y > pey > 0, Which

pc1y ≥ -psy, {troot[psy, pc1y, pey, 1], troot[psy, pc1y, pey, 2]},

pc1y < -psy, Which

pc1y3 ⩵ pey psy2, {troot[psy, pc1y, pey, 1]},

pc1y3 > pey psy2, {troot[psy, pc1y, pey, 1], troot[psy, pc1y, pey, 2]},

True, {},

True, {},

psy < pc1y < pey, Which

-psy < pc1y ≤ -2 psy, Which

pc1y3 ⩵ pey psy2, {troot[psy, pc1y, pey, 1]},
psy^2 * pey < pc1y^3, {troot[psy, pc1y, pey, 1], troot[psy, pc1y, pey, 2]},

True, {},

pc1y > -2 psy, Which

3 pc1y ≥ pey + 2 psy,
{troot[psy, pc1y, pey, 1], troot[psy, pc1y, pey, 2]},

3 pc1y < pey + 2 psy && pey * psy^2 < pc1y^3,
{troot[psy, pc1y, pey, 2], troot[psy, pc1y, pey, 3]},

pc1y3 ⩵ pey psy2, {troot[psy, pc1y, pey, 2]},

True, {},

True, {},

True, {}

,

psy > pey, Which

psy < 0, Which[
pc1y ≥ psy, {troot[psy, pc1y, pey, 2]},
pc1y ≤ pey, {troot[psy, pc1y, pey, 1]},
psy > pc1y > pey, Which[
pc1y^3 > pey * psy^2, {troot[psy, pc1y, pey, 1]},
3 pc1y > pey + 2 psy && pc1y^3 ≤ pey * psy^2, {troot[psy, pc1y, pey, 3]},
3 pc1y ≤ pey + 2 psy, {troot[psy, pc1y, pey, 2]}]],
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pey > 0, Which[
pc1y ≥ psy, troot[psy, pc1y, pey, 1],
pc1y ≤ pey, troot[psy, pc1y, pey, 2],
psy > pc1y > pey, Which[
2 / 3 psy ≥ pc1y, troot[psy, pc1y, pey, 1],
2 / 3 psy < pc1y, Which[
pc1y ≤ (pey + 2 psy) / 3, {troot[psy, pc1y, pey, 1]},
pc1y > (pey + 2 psy) / 3, {troot[psy, pc1y, pey, 2]}]]],

psy > 0 && pey < 0, Which

pc1y < pey < 0, Which

pc1y ≤ -psy, {troot[psy, pc1y, pey, 1], troot[psy, pc1y, pey, 2]},

pc1y > -psy, Which

pc1y3 ⩵ pey psy2, {troot[psy, pc1y, pey, 1]},

pc1y3 < pey psy2, {troot[psy, pc1y, pey, 1], troot[psy, pc1y, pey, 2]},

True, {},

True, {},

psy > pc1y > pey, Which

-2 psy ≤ pc1y < -psy, Which

pc1y3 ⩵ pey psy2,
{troot[psy, pc1y, pey, 1]},

psy^2 * pey > pc1y^3,
{troot[psy, pc1y, pey, 1], troot[psy, pc1y, pey, 2]},

True, {},

pc1y < -2 psy, Which

3 pc1y ≤ pey + 2 psy,
{troot[psy, pc1y, pey, 1], troot[psy, pc1y, pey, 2]},

3 pc1y > pey + 2 psy && pey * psy^2 > pc1y^3,
{troot[psy, pc1y, pey, 2], troot[psy, pc1y, pey, 3]},

pc1y3 ⩵ pey psy2, {troot[psy, pc1y, pey, 2]},

True, {},

True, {},

True, {}



(*Interactive demo*)

Printed  by  Wolfram  Mathematica  Student  Edition
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A. Mathematica Code

With[
{b = {-3, 0},
e = {3, 0}}, Manipulate[Show[
ParametricPlot[F2[t, s, ps, pe, pc1, b, e],
{t, 0.01, 0.99}, {s, 0, 1}, PlotStyle → Red],

With[{tt = t0[ps[[2]], pc1[[2]], pe[[2]]]},
Table[ParametricPlot[F2[t, s, ps, pe, pc1, b, e], {s, 0, 1}], {t, tt}]],

ParametricPlot[B[t, ps, pc1, pc2, pe], {t, 0.01, 0.99}],
ParametricPlot[L[s, b, (e - b)], {s, 0, 1}, PlotStyle → Green],
Graphics[{Gray, PointSize[0.02], Point[b], Point[e]}],
PlotRange → {{-10, 10}, {-10, 10}}],

{{ps, {-3, 1.65}}, Locator},
{{pc1, {-3.37, -3.8}}, Locator},
{{pc2, {6.5, 4.2}}, Locator},
{{pe, {3, -1.25}}, Locator}

]]

(*Figures*)

With[{ps = {2.7, 1.65},
pc1 = {3.37, -3.8},
pc2 = {7.5, 4.2},
pe = {9, -1.25},
b = {3, 0},
e = {9, 0}

}, Show[ParametricPlot[F2[t, s, ps, pe, pc1, b, e],
{t, 0.01, 0.99}, {s, 0, 1}, PlotStyle → LightGray],

With[{tt = t0[ps[[2]], pc1[[2]], pe[[2]]]},
Table[ParametricPlot[

F2[t0, s, ps, pe, pc1, b, e], {s, 0, 1}, PlotStyle → Orange], {t0, tt}]],
ParametricPlot[F2[t, 0, ps, pe, pc1, b, e], {t, 0.01, 0.99}, PlotStyle → Blue],
ParametricPlot[F2[t, 1, ps, pe, pc1, b, e], {t, 0.01, 0.99}, PlotStyle → Blue],
ParametricPlot[L[s, b, e - b], {s, 0.00, 1.00}, PlotStyle → Red],
ParametricPlot[B[t, ps, pc1, pc2, pe], {t, 0, 1}, PlotStyle → Green],
Graphics[{Gray, PointSize[0.02], Point[ps], Point[pc1], Point[pc2],

Point[pe], Point[b], Point[e]}],
PlotRange → {{-2, 18}, {-6.5, 10}}, AxesStyle → Gray, Frame → False,

Ticks → None, Method → {"AxesInFront" → False}, ImageSize → Medium]]
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