
Consumption and Travel Time Profiles
in Electric Vehicle Routing

Master Thesis of

Simeon Andreev

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Moritz Baum, M.Sc.
Dipl.-Inform. Julian Dibbelt
Tobias Zündorf, M.Sc.

Time Period: 1st November 2014 – 30th April 2015

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 30th April 2015

iii

Abstract

Electric vehicles introduce new problems in vehicle route planning. Due to limited
battery capacity the fastest route from origin to destination is not always feasible.
Existing techniques compute the energy optimal route, however this route is often
too conservative in terms of travel time. Optimizing both energy consumption and
travel time may allow us to identify routes which are both fast and energy efficient.
In this thesis we examine the tradeoff between consumption and travel time in the
form of profile functions. We acknowledge the fact that an electric vehicle may be
driven slower to spare energy and so allow variable driving speeds on street segments.
In a recent publication, Baum et al. offer a Pareto optimization approach which deals
with the same problem. In our evaluation we show that the profile algorithm we
develop outperforms this recent approach.

Deutsche Zusammenfassung

Sowohl der Energieverbrauch als auch die Reisezeit sind in der Routenplanung für
Elektroautos von Bedeutung. Frühere Techniken berechnen entweder die schnellste
oder die energie-effizienteste Route, wobei erstere in der Regel zu viel Energie und
letztere zu viel Zeit kostet. Der Pareto-Ansatz von Baum et al. optimiert sowohl die
Reisezeit als auch den Verbrauch, um den Trade-off zwischen diesen zwei Kriterien zu
berechnen. Dabei werden auch variable Fahrgeschwindigkeiten auf Straßensegmenten
betrachtet: das Elektroauto darf langsamer fahren, um Energie zu sparen. In dieser
Masterarbeit entwerfen wir eine andere Modellierung für das gleiche Problem. Mit
Hilfe von Funktionen beantworten wir Profilanfragen, die sowohl schneller als auch
präziser sind im Vergleich zu dem Ansatz von Baum et al.

v

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Contribution and Outline . 3

2. Preliminaries 5
2.1. Mathematics . 5
2.2. Graph Theory . 7
2.3. Time-Dependent Routing . 9
2.4. Electric Vehicle Routing . 11
2.5. Contraction Hierarchies . 15
2.6. Time-Dependent Contraction Hierarchies 17

3. Profile Operations 19
3.1. Merge Operation . 20
3.2. Link Operation . 22

3.2.1. Convex Case . 23
3.2.2. Arbitrary Case . 26

3.3. Domination Test . 33

4. Basic Approach 35
4.1. Label Correcting . 35
4.2. Label Setting . 37

5. Advanced Techniques 43
5.1. A* Search . 43
5.2. Contraction Hierarchies . 44

5.2.1. Offline Phase . 44
5.2.2. Query . 51

6. Experimental Evaluation 57
6.1. Experiments . 57

6.1.1. Problem Instances . 57
6.1.2. Algorithms Evaluation . 58

6.2. Case Study . 66
6.3. Implementation Details . 67

7. Conclusion 71

Bibliography 73

Appendix 77
A. Appendix . 77

A.1. Numerical Issues . 77

vii

1. Introduction

The focus of standard vehicle route planing is to offer drivers the fastest route from origin
to destination. Time-dependent routing addresses the fact that fastest routes may vary
due to congestions and rush hours. In both the standard and the time-dependent scenario
street segments are traversed at top speed, where in the latter scenario top possible speeds
vary based on the day of the week and the time of the day. With the introduction of
electric vehicles, however, the notion of allowing different speeds on the same street segment
becomes important.

Driving at lower speeds in general leads to lower consumption, regardless of whether the
vehicle is electric or not. This fact is ignored in standard routing, as gas stations are readily
available and the cruising range of standard vehicles is extensive. Electric vehicles, on the
other hand, introduce the range anxiety: the cruising range is limited due to comparatively
low battery capacities and sparse charging stations. Driving at top speed may hinder even
the most energy efficient route from origin to destination, and driving at low speed is too
conservative in terms of travel time. Variable driving speeds at street segments permit a
compromise between consumption and travel time. In other words, a consumption and
travel time tradeoff exists which may be utilized in a number of ways.

Given an origin and a destination, techniques exist which compute the earliest arrival route
or the most energy efficient route which an electric vehicle can traverse. Both routes are
offered by the full consumption and travel time tradeoff, and with greater precision as
more driving speeds are taken into account. The tradeoff may also offer sweet spots, routes
which are both fast and energy efficient.

The sparsity of charging stations has led to recent techniques which explicitly integrate
charging [Sto12, Zün14]. In such approaches the driver is guided from one charging station
to the next, until the destination is reached in optimal time. As in standard routing, these
techniques assume top speed at segments. However, by driving at a lower speed the driver
may reach an otherwise unreachable charging station and continue on a fast route. As it is
presumed unreachable, such a route is discarded by the existing techniques – although it
may be the optimal route in terms of travel time.

In this thesis, we explore models and algorithms required to compute piecewise linear
functions that represent the consumption and travel time tradeoff based on variable driving
speed. Specifically, we model the street network as a weighted graph with functions as
edge costs. We then adapt algorithms and speed-up techniques from the time-dependent
route planing to compute consumption and travel time profiles.

1

1. Introduction

1.1. Related Work
Numerous works exist on topics in standard, time-dependent and electric vehicle routing.
In almost all such publications, some variant of the shortest path problem is solved with an
adaptation of Dijkstra’s algorithm [Dij59]. In a multi-criteria setting, e.g. minimizing travel
time and consumption simultaneously, Dijkstra may be combined with Pareto optimization
[CM85]. The A* search [HNR68b] is one of the earlier improvements of Dijkstra’s algorithm,
and is often applied when optimizing multiple criteria. Dijkstra’s search is guided by the A*
goal direction, in order to reduce the search space size. Another method of reducing search
spaces in a general setting is applying shortcuts, which allow Dijkstra’s algorithm to skip
multiple hops. One such method is the Contraction Hierarchies (CH) algorithm [GSSD08],
which makes use of the hierarchy found in street networks. Due to the massive speed-up of
CH over Dijkstra in standard routing, the approach is adapted in many other scenarios
[BGNS10, EFS11, DGNW13, HF14, DSW14, Zün14]. Customizable Route Planning (CRP)
[DGPW11] is another algorithm which takes advantage of shortcuts. This technique utilizes
partitioning and shortcuts to skip over whole partitions of the graph during the Dijkstra
search.

Time-Dependent Routing. Dynamic scenarios when computing shortest paths is first
considered by Orda et al. in [OR90]. Their work is applied in time-dependent routing,
where traffic jams and rush hours cause increased travel time on street segments during
specific times of the day. According to Kaufmann et al. [KS93] Dijkstra’s algorithm answers
earliest arrival queries in polynomial time, assuming the street segments of the network
satisfy a FIFO property. This property ensures that waiting to traverse a segment at
a later time is not beneficial. A time-dependent profile consists of earlier arrival times
for all possible departure times of a day. Time-dependent profiles are the basis for the
consumption and travel time profiles of this thesis.

Batz et al. adapt the CH algorithm to answer both earliest arrival queries and profile
queries in a time-dependent setting, [BGNS10]. They utilize profiles during the hierarchy
construction, due to the fact that arrival time is unknown at shortcut creation. To answer
an earliest arrival query, Batz et al. adjust the query to run an upward and a downward
phase, as opposed to the standard forward and backward search of the CH algorithm.
Furthermore, Batz et al. make use of function simplification and edge pruning to allow
profile queries running in a second on the scale of continental networks. Along with the A*
technique, the approximated time-dependent CH of Batz et al. is the speed-up technique
we choose to apply in this thesis.

Electric Vehicle Routing. Energy efficient routes become important with the in-
troduction of electric vehicles. With Johnson’s potential shifting [Joh73] and Dijkstra’s
algorithm, Eisner et al. [EFS11] are able to compute energy-optimal routes. They model
battery constraints and energy recuperation, to account for the specifics of electric vehicles.
Moreover they adapt the CH algorithm to speed up their technique, sinking query times to
the scale of milliseconds in continental sized networks.

By using the same modelling of the electric vehicles battery, but a more thorough consump-
tion model, Baum et al. also compute energy-optimal routes in [BDPW13]. To improve
the scalability of their approach they adapt CRP, offering preprocessing times in seconds
again on continental scale. This enables flexible updates of the consumption costs on street
segments.

Earliest arrival times in EV routing are first considered by Storandt in [Sto12]. Storandt
solves Constrained Shortest Path (CSP) problem, where the battery constraints restrict
available routes. An adaptation of the CH algorithm is also presented, yielding query times
in milliseconds. Furthermore, Storandt considers charging stations which are randomly

2

1.2. Contribution and Outline

distributed in the street network and vastly increase the cruising range. Throughout, only
static travel times on street segments are considered.

In a more recent work, [Zün14], Zündorf also explores the computation of earliest arrival
times with the integration of charging stations. In contrast to [Sto12], Zündorf considers the
time required by battery charging and uses actual locations of charging stations throughout
Europe. In addition, different types of charging stations are handled in [Zün14] and a
further adaptation of CH is presented. However, travel times on segments remain static.

Hartmann and Funke compute routes which are both energy efficient and fast in [HF14],
by solving CSP. They incorporate varying driving speeds on street segments to some extent
and also adapt CH. However, they do not respect battery constraints, as their approach
focuses on standard vehicles. Furthermore, they apply heuristics to achieve running times
in seconds on a Germany sized country scale.

Baum et al. [BDHS+14] examine variable speeds in EV routing, to compute tradeoffs
between travel time and energy consumption. Their approach utilizes a multi-criteria
search which considers different driving speeds on street segments and obeys battery
constraints. However, they only allow a fixed (segment specific) number of different speeds
on a segment. As in [HF14], Baum et al. also apply heuristics, however in doing so they
achieve queries on the scale of seconds for continental sized networks. They do not consider
speed-up techniques which requires preprocessing.

An approach which also computes consumption and travel time tradeoffs is introduced by
Goodrich and Pszona in [GP14]. They utilize a two-phase bicriterion search which finds
fast prefix paths and an energy efficient suffix ones, and then combines prefixes and suffixes.
Goodrich and Pszona allow three different driving speeds at each street segment. They too
incorporate randomly placed charging stations as in [Sto12], however they allow only a few
stations (1 to 15) and charging stations may only charge the battery to full. Furthermore,
the authors do not examine the application of speed-up techniques. The running times of
their heuristic approach are on the scale of seconds for a country sized street network.

1.2. Contribution and Outline
The contributions of this thesis are as follows:

• a street network model that allows the traversal of street segments with any travel
time within a segment specific interval

• a definition of a consumption and travel time tradeoff function

• an adaptation of the time-dependent linking operator for tradeoff functions and an
algorithm which (efficiently) computes the link result of two tradeoff functions

• an adaptation of the time-dependent earliest arrival profile algorithm for the compu-
tation of consumption and travel time profiles

• an adaptation of the time-dependent CH algorithm for the computation of consump-
tion and travel time profiles

• an extensive experimental evaluation of all introduced approaches

The rest of this thesis is structured as follows:

In Chapter 2 we offer a more thorough introduction into electric vehicle routing and
techniques used in route planing which are relevant for this thesis.

3

1. Introduction

In Chapter 3 we discuss the modelling of our profile functions, as well as the core function
operations we require for our algorithms. These are the link operation, the merge operation
and the domination test.

In Chapter 4 we define our basic algorithms, which compute the consumption and travel
time profiles.

In Chapter 5 we examine the application of the A* algorithm and the adaptation of the
time-dependent variant of the CH algorithm.

In Chapter 6 we conduct the experimental evaluation of our basic algorithms and the
speed-up techniques we use.

In Chapter 7 we offer a summary of this thesis as well as an outlook of possible future
work.

4

2. Preliminaries

We begin the preliminaries with fundamental mathematical constructs which we require
throughout the thesis. We then move to graph theory and shortest path algorithms.
Furthermore, we introduce basic concepts used in time-dependent routing and electric
vehicle routing. We conclude the chapter with the Contraction Hierarchies algorithm and
its time-dependent adaptation.

2.1. Mathematics

Definition 2.1. Real Function

A function f : X → Y is real, if both the domain X and the codomain Y are subsets of R.

We denote the set of real functions with F(R,R).

Definition 2.2. Convex and Concave Functions

A function f : R→ R is convex, if the following condition holds:

∀x1, x2 ∈ R, ∀α ∈ [0, 1] : f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

A function f : R→ R is concave, if −f is convex.

Connecting any two points of a convex function yields a segment that is above the function.
Figure 2.1 on the following page shows an example of both a convex and a non-convex
function.

Definition 2.3. Multiset

A multiset is a set which may contain an element multiple times.

Definition 2.4. Piecewise Linear Function

A piecewise linear function f : R → R is defined by a set of interpolation points in R2:
{(xi, yi) ∈ R2 | i ∈ 1, . . . , n}, with ∀i ≤ j : xi ≤ xj. The value of f at x ∈ R is then defined
as:

5

2. Preliminaries

1 2 3 4

1

2

3

0

f

x

(a) A convex function.

1 2 3 4

1

2

3

0

f

x

(b) A non-convex function.

Figure 2.1.: An example of a convex and a non-convex function. The grey area represents
the set of points above the respective function. Per definition, if the function
is convex, no segment connecting any two function points may lie outside the
grey area.

f(x) =

∞ x < x1,
yi + λi(x− xi) x ∈ [xi, xi+1),
yn otherwise

where i ∈ 1, . . . , n− 1 and λi = yi+1−yi
xi+1−xi .

In other words, we set f(xi) = yi and for x ∈ [xi, xi+1] we interpolate between yi and
yi+1. As f has n interpolation points, we say that the size of f is n. For an example of a
piecewise linear function, see Figure 2.2 on the next page.

We define a piecewise linear function f with interpolation points (x1, y1), . . . , (xn, yn) as
convex, if the interval [x1, xn] of f is convex. We use an analogous definition for concave
piecewise linear functions.

Let f be a piecewise linear function with interpolation points {(x1, y1), . . . , (xn, yn)}. We
define the slope of (x, y) : x ∈ [xi, xi+1), y = f(x), i ∈ 1, . . . , n− 1 as m := yi−yi+1

xy−xi+1
. For

points on f at x ≥ xn we set the slope to 0. If f is also convex and y1 ≥ yn, then
yi−1−yi
xi−1−xi ≤

yi−yi+1
xi−xi+1

, i ∈ 2, . . . , n− 1 holds. In other words, the slope of f is monotonically
increasing.

Definition 2.5. Parallelogram
A parallelogram is a quadrilateral (polygon with four points) with two pairs of parallel sides.

Definition 2.6. Dominance

A point x = (x1, . . . , xk)T ∈ Rk dominates y = (y1, . . . , yk)T ∈ Rk, or x ∝ y, iff both
∀i : xi ≤ yi and ∃i : xi < yi hold.

A real function f dominates another real function g, or f ∝ g, iff ∀x ∈ R : f(x) ≤ g(x). If
∀x ∈ R : f(x) < g(x) also holds, then f dominates g strictly.

We denote non-domination by 6∝.

Definition 2.7. Pareto Set

A set X ⊆ Y is a Pareto set, if ∀x ∈ X : {y ∈ X | y ∝ x} = ∅ holds.

A point x ∈ Y is minimal w.r.t. a Pareto set X iff x ∈ X.

In other words, no point in a Pareto set dominates another point in the set.

6

2.2. Graph Theory

1 2 3 4 5 6 7 8 9

1

2

3

0

∞

(x1, y1)

(x2, y2)
(x3, y3)

(x4, y4)

(x5, y5)

(x6, y6)

f

x

Figure 2.2.: An example of a piecewise linear function. For x < x1 the function value is set
to ∞ and for x > x6 the value is set to y6. In between the function is defined
as the linear interpolation between its interpolation points.

2.2. Graph Theory
Graph. A graph G is defined as the tuple (V,E), where V is the set of vertices and
E ⊆ V × V is the set of edges. We say that G is undirected, if (u, v) ∈ E =⇒ (v, u) ∈ E
holds. Otherwise, G is directed. A graph G′ = (V ′, E′) is a subgraph of G = (V,E) iff
V ′ ⊆ V and E′ ⊆ E.

We say that G is weighted, if the edges of G are weighted by a cost function c : E →
X. We only examine weighted graphs where the codomain of the cost function lies in
{R,R+,Rk,F(R,R)}.

The reverse graph of G is defined as Gr := (V,Er), where Er := {(v, u) | (u, v) ∈ E}. If G
is weighted by c, the cost function of Gr is defined as cr((v, u)) := c((u, v)), (v, u) ∈ Er.

We denote the number of vertices in G as n := |V |, and the number of edges in G asm := |E|.
The neighbourhood of v ∈ V is defined as N(v) := {u ∈ V | (v, u) ∈ E ∪ (u, v) ∈ E}. The
node degree of v is the cardinality of N(v), denoted by deg(v). For an edge e = (u, v) ∈ E
we say that u and v are the head resp. tail vertex of e. At the vertex u we say that e is an
outgoing edge, and at v we say that e is ingoing. And last, e is a loop if u = v.

Definition 2.8. Path

A path P in G = (V,E) is a sequence (v1, . . . , vn) of vertices in G, where (vi, vi+1) ∈ E
for i ∈ 1, . . . , n− 1. We denote P as a v1–vn path. If v1 = vn, then P is a cycle.

If G is weighted, the weight of P is the summed weight of the edges on P , denoted by
c(P) =

∑n−1
i=1 c((vi, vi+1)).

Note that in the case of c : E → F(R,R) we define the “sum” of two functions as a special
link operation, see Definition 2.16 on page 10.

Definition 2.9. DAG

A directed acyclic graph, or DAG, is a directed graph with no cycles.

Definition 2.10. Tree

A tree is a DAG where each pair of vertices is at most connected by a single path.

Definition 2.11. Spanning Tree

A spanning tree of a graph G is a subgraph of G which contains all vertices of G and is a
tree.

7

2. Preliminaries

Definition 2.12. Shortest Path Problem

Given a weighted graph G with cost function c : E → R+, a source vertex s and a target
vertex t, find the path from s to t with minimal weight.

The Shortest Path Problem can be solved in polynomial time [Dij59]. In a graph with a
real cost function, we denote the weight of a shortest s–t path by d(s, t): the shortest path
distance from s to t, or simply the distance from s to t.

Definition 2.13. Shortest Path Tree

A shortest path tree T is a spanning tree of G = (V,E) rooted at v ∈ V , such that the path
distance from v to any vertex u in T is the shortest path distance from v to u in G.

Dijkstra’s Algorithm. When finding a shortest path from s to t in a graph G with a
cost function c : E → R+, Dijkstra’s algorithm is the standard basis for most approaches.
As seen in Algorithm 2.1 on the next page, the vertices in G are visited in the order of
their distance from s. After v is extracted from the priority queue, the distance from s to
v is known.

An improvement of Dijkstra’s algorithm is using a stopping criterion. As soon as t is
extracted from the queue, the algorithm can terminate: the distance from s to t is known.
Furthermore, the algorithm is vertex setting. Each vertex is guaranteed to be extracted only
once from the queue. Given time complexities of the queue operations Tinsert, TdeleteMin and
TdecreaseKey, the running time of the algorithm is in O(n·(Tinsert+TdeleteMin)+m·TdecreaseKey).

Several additional annotations are associated with Dijkstra’s algorithm. The procedure in
lines 9 to 15 is called edge relaxation. We check whether an edge (u, v) offers a shorter
distance to v via u, and if so store the new distance at v. Whenever we relax e = (u, v)
we say that v is visited. Whenever we extract v from the priority queue, we say that v is
settled.

A bidirectional Dijkstra s–t query in G consists of a forward and a backward search, both
done by Dijkstra’s algorithm. In the forward search we simply start Dijkstra from s. The
backward search runs from t and works on the reverse graph Gr. At each vertex v we
store a forward distance d(s, v) computed by the forward search, and a backward distance
d(v, t) computed by the backward search. We then define the tentative distance to t as
minv∈V d(s, v) + d(v, t): the best known distance to t. Note that before the two searches
meet at a vertex, the tentative distance is ∞.

Path Extraction. After computing the distance from s to t with Dijkstra’s algorithm,
we may extract a shortest s–t path. An edge e = (u, v) relaxed by Dijkstra lies on a
shortest path, iff d(s, u) + c(e) = d(s, v) after the algorithm terminates. In order to reach
the target vertex, the algorithm relaxed a path of edges to t. Thus, we may start from t
and follow ingoing edges that lie on shortest paths until we reach s, in order to construct a
shortest s–t path.

Definition 2.14. Constrained Shortest Path Problem

Given a weighted graph G with edge cost function c : E → R+, a resource function
r : E → R+, a real value R ∈ R+, a source vertex s and a target vertex t, find a path P
from s to t, s.t. c(P) is minimal and

∑
e∈P

r(e) ≤ R.

The Constrained Shortest Path Problem is NP-complete [Jaf84].

8

2.3. Time-Dependent Routing

Algorithm 2.1: Dijkstra
Input: Graph G = (V,E, c), source vertex s
Data: Priority queue Q
Output: Distances d(v) for all v ∈ V , shortest-path tree of s given by pred(·)
// Initialization

1 forall v ∈ V do
2 d(v)←∞
3 pred(v)← null
4 d(s)← 0
5 Q.insert(s, d(s))
// Main loop

6 while Q is not empty do
// Extract unsettled vertex

7 u← Q.deleteMin()
// Iterate outgoing edges

8 forall (u, v) ∈ E do
9 if d(u) + c((u, v)) < d(v) then

10 d(v)← d(u) + c((u, v))
11 pred(v)← u

12 if Q.contains(v) then
13 Q.decreaseKey(v, d(v))
14 else
15 Q.insert(v, d(v))

Definition 2.15. Multi-objective Shortest Path Problem

Given a weighted graph G with cost function c : E → Rk, a source vertex s and a target
vertex t, find the set of paths P from s to t, s.t. {c(P) | P ∈ P} is a maximal Pareto set.

The Multi-objective Shortest Path Problem is NP-complete [MD79].

2.3. Time-Dependent Routing

In standard vehicle routing we wish to know the earliest arrival time from s to t in a street
network. To compute the arrival time we first model the network as a weighted directed
graph, where edges represent streets segments and vertices model intersections or street
bends. The cost function c : E → R corresponds to the travel time we require to traverse
each edge.

In time-dependent routing we also wish to compute earliest arrival times, however we take
traffic situations into account. Instead of having static edge costs, i.e. one real value per
edge, we have a cost function c : E → F(R,R). Thus, with each edge e we associate an
edge cost function c(e), which represents the travel time we require to traverse the edge at
different points in time (e.g. times of a day). Figure 2.3 on the following page shows an
example of a typical piecewise linear function used in time-dependent routing. During the
rush hours of a day the edge cost rises, and in the less populated hours it falls.

We can then use the edge functions as follows. Given a source vertex s and a starting point
in time τ , compute the earliest arrival at a target vertex t. This query can be answered by
applying Dijkstra’s algorithm, as we have the specific point in time at which we arrive at

9

2. Preliminaries

2 4 6 8 10 12 14 16 18 20 22

10

20

30

0

[m]

[h]

f

τ

Figure 2.3.: An example of an edge cost function used in time-dependent routing. Midnight
and midday hours have relatively low edge costs, whereas morning and evening
hours have an increased edge cost due to traffic congestions.

each vertex v. We can therefore evaluate the edge function of e = (v, u), which yields a
standard non-negative weight. The result of this query is a shortest s–t path w.r.t. τ .

A more interesting query is the profile search. Given a source vertex s, compute the arrival
times at a target vertex t, dependent on a parameter τ . Obviously, the result is a function
which depends on the edge cost functions. To answer a profile search, we first observe two
major differences between standard routing and time-dependent routing.

First, in the standard scenario traversing consecutive edges e1 = (u, v) and e2 = (v, w)
results in the summed travel times c(e1) + c(e2). In the time-dependent case, we arrive at
u with a certain travel time τ . Traversing e1 requires c(e1)(τ) travel time, and so we arrive
at v at τ + c(e1)(τ). Thus, we require c(e2)(τ + c(e1)(τ)) travel time to traverse e1 and e2.
We define this composition as the time-dependent link operation.

Definition 2.16. Link (time-dependent)

Given edge cost functions f and g, the link result in the time-dependent case is defined as

(f ◦ g)(τ) := g(τ + f(τ))

In the case of piecewise linear functions, the link operation complexity lies in O(n+m),
where n and m are the number of interpolation points of f resp. g [DW09]. Note that
after defining the link operation we may now compute the path cost function c(P) of
a path P . That is, c(P) := c(e1) ◦ c(e2) ◦ . . . ◦ c(en), where P = {v1, . . . , vn+1} and
ei = (vi, vi+1), i ∈ 1, . . . , n.

And second, when arriving at a vertex v in the standard case, via different paths P1 and
P2, we are only interested in the minimum travel time to v. We can therefore discard the
path with greater travel time as it is dominated. In the time-dependent scenario we may
have c(P1) 6∝ c(P2), as seen on Figure 2.4 on the next page. Thus, to achieve minimal
travel time, we use the minimum of c(P1) and c(P2). This defines the merge operation,
which allows us to choose the best path to v for a given τ .

Definition 2.17. Merge (time-dependent)

Given edge cost functions f and g, the merge result in the time-dependent case is defined as

(f ∪ g)(τ) := min(f(τ), g(τ))

10

2.4. Electric Vehicle Routing

P1

P2

c(P1)

c(P2)

c(P1) ∪ c(P2)

τ

τ

τs v

Figure 2.4.: Paths P1 and P2 from s to t, with c(P1) 6∝ c(P2). Departing at point in time τ ,
to arrive at v with minimal travel time we use the minimum of c(P1)(τ) and
c(P2)(τ). The resulting function at v is then c(P1) ∪ c(P2).

Merging two piecewise linear functions f and g has a linear complexity in the size of f ∪ g
[DW09]. Having defined the link and merge operations in the time-dependent case, we
examine Dijkstra’s variant used to compute profiles.

Profile Dijkstra. In the case of a cost function c : E → F(R,R), we can alter Dijkstra’s
algorithm to answer profile queries. Instead of propagating distances as in the original
algorithm, we propagate piecewise linear functions. See Algorithm 2.2 on the following
page. We refer to the resulting function at t (after an s–t query) as the s–t profile.

The starting function at s is set to an initial value, for instance 0 ∈ F(R,R). We then use
the link operation whenever we traverse an edge e = (u, v). That is, we take the current
function at u, f(u), and compute f(u) ◦ c(e). We then check whether a merge of f(v) with
f(u) ◦ c(e) is required. If so, we store the merge result f(v) ∪ (f(u) ◦ c(e)) at v.

The above operation replaces Dijkstra’s edge relaxation. However, if f(u) ◦ c(e) is merged
with f(v) we must propagate the improved portion of the result. Thus, we must insert v in
the priority queue, even if we already extracted v previously. Thus, we no longer settle
each vertex once, as in Dijkstra’s algorithm: the function at each vertex may be corrected
multiple times. The altered algorithm is label correcting.

For the queue order we may use any type of ordering imposed on real functions, e.g.
f(v)key := minx∈R f(v)(x). Here f(v)(x) is the current function stored at v, evaluated at x.

Due to the merge operation, the functions we propagate become increasingly complex and
so require an increasing number of interpolation points. In large graphs profile searches are
prohibitive, as the link and merge operations become costly with the progression of the
search [DW09].

2.4. Electric Vehicle Routing
Electric vehicle routing (or simply EV routing) is distinguished from standard routing due
to the vehicles’ different power supply. Compared to standard vehicles, the cruising range
of electric vehicles is much more limited and recharging stations are not as widely spread
as gas stations. Furthermore, unlike traditional vehicles, electric vehicles may recuperate
energy when braking or traveling downhill. To better integrate the battery constraints into
a routing algorithm, several important notions were introduced by Eisner et al. [EFS11]
and Baum et al. [BDPW13]:

11

2. Preliminaries

Algorithm 2.2: Profile Dijkstra
Input: Graph G = (V,E, c), source vertex s, target vertex t
Data: Priority queue Q
Output: Optimal function f(t) to t w.r.t. c.
// Initialization

1 forall v ∈ V do
2 f(v)←∞
3 f(s) ← 0 : R→ 0
4 Q.insert(s, f(s).key())
// Main loop

5 while Q is not empty do
// Extract unsettled vertex

6 u← Q.deleteMin()
// Iterate outgoing edges

7 forall (u, v) ∈ E do
8 f ′ ← f(u).link(c((u, v)))
9 if f(v) 6∝ f ′ then

10 f(v).merge(f ′)
11 if Q.contains(v) then
12 Q.decreaseKey(v, f(v).key())
13 else
14 Q.insert(v, f(v).key())

• Battery Capacity. The electric vehicle battery’s capacity is denoted by M, typically
in [mWh].

• SoC. Denotes the current energy state of the battery, i.e. the state of charge. The
value range of SoC lies within [0,M].

• Consumption. Defined as C = M− SoC, consumption yields the difference between
the energy of a fully charged battery and the current charge of the battery. Due to
SoC ∈ [0,M], C may not drop below 0 or exceed M.

• Undercharging. If the current SoC drops below 0 undercharging occurs. The electric
vehicle’s battery has no energy left and so the vehicle cannot be driven further.

• Overcharging. Whenever the electric vehicle brakes or is driven downhill, it is possible
that the recuperated energy, added to the current SoC, exceeds the battery capacity M.
As the battery cannot be charged higher than its capacity, the recuperated amount
is cut at M− SoC.

To handle undercharging and overcharging, Eisner et al. further define the energy consump-
tion function b : E → F(R,R). Given an edge e with energy cost c(e), b yields a function
which maps input SoC to consumption cost required to traverse e:

b(e)(SoC) =

∞ SoC− c(e) < 0,
SoC−M SoC− c(e) > M,
c(e) otherwise

In the case of undercharging, the energy cost of the function is set to infinity, as the electric
vehicle cannot traverse the edge. If overcharging occurs, b ensures that applying b(e) to

12

2.4. Electric Vehicle Routing

M

-M

M
∞

c(e)

SoC

b

(a) An edge with a positive cost.

M

-M

M
∞

c(e)

SoC

b

(b) A downhill edge with a negative cost.

Figure 2.5.: An example of the function b. The grey area illustrates the allowed consumption
costs, depending on the current SoC. States of charge that are too low are
mapped to ∞, as undercharging occurs. Negative energy cost that is too low,
causing overcharging, is clipped to the grey area so that SoC− b(e)(SoC) does
not exceed M.

the current SoC obeys the battery capacity. Figure 2.5 shows an example of b at both an
edge with a positive cost and a downhill edge with a negative cost.

As in time-dependent routing, we may use b as a cost function to compute a shortest path
from s to t. However, as the cost function yields energy cost, we compute the most energy
efficient path from s to t. If we want to compute a shortest path in terms of travel time,
we need to solve the multi-objective or constrained shortest path problem.

Either approach is hindered by a further problem. As seen in Figure 2.5b, energy re-
cuperation results in negative consumption. Dijkstra’s algorithm, however, only allows
non-negative edge weights. As negative cycles are physically impossible, we may use the
Bellman-Ford algorithm [Bel56] which runs in O(n ·m). To avoid the asymptotically worse
running time, however, we can apply vertex potential shifting and still use Dijkstra’s
algorithm.

Potential Shifting (Johnson’s Algorithm). Let G be a weighted graph with an edge
cost function c : E → R+, where some edges have negative weights but no negative cycles
exist. Johnson’s algorithm [Joh73] introduces vertex potentials defined by the function
π : V → R. The distance d(s, v) is then redefined as d(s, v) + π(v), effectively changing the
order in which vertices are visited by Dijkstra. As Dijkstra’s algorithm uses edge weights,
and not vertex weights, the reduced edge costs are defined. The reduced cost of e = (u, v)
is set to c(e)′ = π(v) + c(e)− π(u). The reduced cost of a path P = (v1, . . . , vn) is then
c(P)′ = π(vn) + c(P)− π(v1).

A vertex potential is feasible, iff for all e ∈ E the reduced edge cost c(e)′ is non-negative
[Joh73]. For this reason, a feasible vertex potential is of particular interest in EV routing.
With the help of the potential, there are no negative reduced edge costs and so we may
run Dijkstra to compute the most energy efficient s–t path. To compute the shortest travel
time path, we may now use the multi-criteria variant of Dijkstra [Sto12].

Height-induced Potentials. A height-based method of computing feasible vertex
potentials is offered by Baum et al., [BDPW13]. The potential of a vertex v ∈ V is defined as

13

2. Preliminaries

s t

(a) Dijkstra’s algorithm.

s t

(b) The A* algorithm.

Figure 2.6.: Search space shapes of Dijkstra’s and the A* algorithms. Dijkstra’s search
space is a graph theoretical circle with radius d(s, t). The search space of A*,
when applying a meaningful potential π, is an ellipse growing in the direction
of t. The goal direction results in fewer settled vertices before extracting t
from the priority queue.

π(v) := γ·h(v), where h(v) is the altitude of the vertex. The edges in E are split in downward
and upward edges, E↓ := {(u, v) ∈ E | h(u) > h(v)} resp. E↑ := {(u, v) ∈ E | h(u) ≤ h(v)}.
Then they define γ and γ as:

γ = max
(u,v)∈E↓

c((u, v))
h(v)− h(u) , γ = min

(u,v)∈E↑
c((u, v))

h(v)− h(u)

In case that γ ≤ γ, setting γ := γ yields a feasible potential. Furthermore, a single linear
sweep over all edges yields potentials usable in any query.

A* Search. The A* approach is a goal directed speed-up technique for Dijkstra’s
algorithm [HNR68a]. Starting from the source node s ∈ G, the search space of Dijkstra’s
algorithm is an expanding (graph-theoretic) circle with radius equal to the current minimum
key in the priority queue. The stopping criterion suggested earlier ensures that we stop
expanding this circle as soon as it meets the target vertex t, as seen in Figure 2.6a. The
search is not goal directed, as it expands in all directions with equal pace. The “area” of
the search space can be reduced by changing the search space’s shape to an ellipse growing
towards t, see Figure 2.6b. To achieve this different shape, vertex potentials are used as in
Johnson’s algorithm.

To direct the search space towards the target vertex t, the cost of edges leading to t is
lowered. Setting π(u) = d(u, t) results in c(e)′ = d(v, t) + c(e)− d(u, t) for e = (u, v) ∈ E.
If e lies on a shortest path to t, then the equality d(u, t) = c(e) + d(v, t) yields reduced
edge cost c(e)′ = 0. As Dijkstra’s algorithm requires non-negative edge costs, this is the
optimal vertex potential: the search will first visit edges on shortest paths to t. Of course,
d(u, t) is not known for u ∈ V and so has to be approximated. Here only lower bounds
on d(u, t) may be used: otherwise the vertex potential is no longer feasible [GH05]. The
smaller the difference between lower bounds and actual distances to t is, the better the
search is guided to t.

Multi-criteria Dijkstra. To solve the multi-criteria shortest path problem, again with
non-negative edge weights, we can alter Dijkstra’s algorithm. The outline of the algorithm
can be seen in Algorithm 2.3 on the next page. Instead of storing a single distance value at
each vertex v, we store a (tentative) Pareto set B(v). The Pareto set B(v) represents the
distance from s to v. We say that the elements of B(v) are the labels at v.

14

2.5. Contraction Hierarchies

Algorithm 2.3: MLC Dijkstra
Input: Graph G = (V,E, c), source vertex s, target vertex t
Data: Priority queue Q
Output: Pareto-set B(t) w.r.t. c.
// Initialization

1 forall v ∈ V do
2 B(v)← ∅
3 B(s)← 0 ∈ Rk
4 Q.insert(s,B(s).key())
// Main loop

5 while Q is not empty do
// Extract unsettled element in bag

6 u← Q.peekMin()
7 e← B(u).nextUnsettled()
8 if ¬B(u).hasUnsettled() then
9 Q.deleteMin ()

// Iterate outgoing edges
10 forall (u, v) ∈ E do
11 e′ ← e+ c((u, v))
12 if B(v) 6∝ e′ then
13 B(v)← { p ∈ B(v) | e′ 6∝ p } ∪ {e′}
14 if Q.contains(v) then
15 Q.decreaseKey(v,B(v).key())
16 else
17 Q.insert(v,B(v).key())

Similar to the profile variant of Dijkstra, the multi-criteria algorithm may visit the same
node multiple times. However, each label ` ∈ B(v) is propagated only once by the algorithm.
The algorithm is label setting.

Due to the loss of the vertex setting property, t can be extracted multiple times from the
queue and the stopping criterion cannot be used. We may, however, use target pruning.
Whenever a vertex v is extracted from the queue and the next unsettled label ` ∈ B(v) is
chosen, we check whether B(t) ∝ `. If so, we continue with the next minimal element in
the queue.

And last, we require keys for the priority queue. For this, we set the key of ` ∈ B(v) as a
linear combination of `’s components: `key := α · `,

∑
αi = 1.

2.5. Contraction Hierarchies
Contraction Hierarchies (CH) [GSSD08] are an adaptation of Dijkstra’s algorithm to street
networks. As already seen, Dijkstra’s algorithm settles vertices based only on graph
structure and edge weight information. The CH algorithm, on the other hand, utilizes the
hierarchical structure of street networks. Traveling between two cities provides an example
of this structure. Intuitively, local city streets are only of importance until we reach a
highway connecting the two cities, or after we leave the highway in the destination city.
Even more, we are not interested in local streets of other cities. Contraction Hierarchies
apply this observation to skip over large (unimportant) portions of the street network
graph during the shortest path search.

15

2. Preliminaries

To achieve this, CH separates the shortest path query in two stages. The first stage is
an offline preprocessing step, which is done once and is computation heavy. During this
preprocessing parts of the graph are contracted and replaced by shortcuts, retaining shortest
path information.

The second stage is where the actual query takes place. Dijkstra’s algorithm is run on the
contracted graph, using shortcuts in place of regular edges. In this manner the unimportant
(for the query) parts of the graphs are skipped by the algorithm, and the search space is
reduced.

The standard CH algorithm computes shortest paths in a graph G with positive real
weights.

Preprocessing. The offline part of CH has two components. First, the vertex contraction
procedure. When contracting a vertex v ∈ G, v is “removed” from G. To preserve the
shortest path informations in G, each pair (u,w) of v’s neighbors is examined. If v lies
on the only shortest u–w path, then a shortcut from u to w with weight d(u,w) is added,
and v is removed from G. Determining whether v lies on the only shortest u–w path is
commonly named a witness search. The witness search is usually done in a limited search
space, and failing to find a shortest u–w path (which does not pass through v) results into
a u–w shortcut. This conservative approach retains the correctness of the algorithm: the
witness search was stopped before knowing whether the only shortest u–w path contains v.

As a shortest path query with s = v is possible, v is not actually removed from G upon
contraction. Instead, v is “pushed down” by setting v’s level to be one less than the level of
v’s neighbours during the contraction. Further, when contracting v any already contracted
neighbour is ignored. This results in a layered graph based on the vertex levels, where the
vertices in higher layers (levels) are considered to be more important then vertices in lower
layers.

The second component of the preprocessing is the vertex ordering, which corresponds to
the vertex importance in the street network. Starting from the least important vertex
according to the ordering, vertices are contracted one by one. This is done until all vertices
are contracted.

The quality of the so created contraction hierarchy depends mainly on the vertex ordering.
Thus, multiple publications exist on the topic of a qualitative vertex order: [Gei08, Mil12,
DSW14].

Query. The s–t CH query consists of a bidirectional Dijkstra s–t query on the contracted
graph. Both searches treat shortcuts as regular edges, and may use only edges (and
shortcuts) leading to vertices in higher levels. As in the bidirectional variant of Dijkstra’s
algorithm, both a forward and a backward distance to each vertex is stored.

As soon as both searches terminate, the shortest path from s to t is found. It is composed
of two shortest paths: from s to v and from v to t. Here, v is the vertex with least summed
forward and backward distances. The proof of correctness of this approach is found
in [GSSD08]. Due to properties of the contraction operation and the order of contractions,
CH ensures that the search spaces of the two directions have a common vertex which lies
on a shortest s–t path.

The standard stopping criterion used in the bidirectional Dijkstra algorithm is to terminate
both searches, when the sum of the priority queues’ minimum keys exceeds the tentative
distance. During the CH query, this criterion is no longer correct [Gei08], as both searches
are prohibited from relaxing edges leading to vertices in lower levels. A more conservative
stopping criterion, which ensures correctness [Gei08], functions as follows. A search direction

16

2.6. Time-Dependent Contraction Hierarchies

terminates as soon as its queue minimum key exceeds the tentative distance to any vertex
common for both directions.

Partial Contraction Hierarchies. Some techniques, such as CALT [BDS+08], only
partially contract the input graph leaving a small percentage of vertices (0% to 1%) at the
top of the hierarchy. The set of uncontracted vertices is referred to as the core of the CH.

2.6. Time-Dependent Contraction Hierarchies
In time-dependent routing the standard CH algorithm is not applicable, as the edge costs
are functions. More specifically, during the standard time-dependent s–t query the arrival
time at a settled vertex is known. It is therefore possible to evaluate the function at each
edge e during the relaxation of e. Computing the earliest arrival at t is thus possible with
Dijkstra’s algorithm. During the CH preprocessing, however, the arrival time at vertices is
not known. The preprocessing must ensure that the CH query is correct for each source
and target vertices, at any starting point of time τ [BGNS10].

The natural approach to solve this problem is to utilize the profile search. As a single
weight on each shortcut no longer suffices, functions computed by the profile variant of
Dijkstra are stored. A shortcut (u,w) between the neighbours u and w of v is not required,
if removing v from G does not change the u–w profile [BGNS10]. In other words, for
all starting points of time τ there exists a shortest path from u to w that does not pass
through v.

The query step of CH also requires adaptation if profiles are stored at the shortcuts. No
change is required in the forward search, as the arrival time is known at the visited vertices
and so each edge cost function can be evaluated. The backward search, on the other hand,
has no information on the arrival time. Thus, a backward search is ran which computes a
lower and an upper bound, instead of whole profiles. The forward search then continues
into the backward search space. For this second phase of the forward search, only edges
which lead to lower levels are used. The s–t distance is known as soon as t is extracted
from the priority queue of the forward search.

To answer a profile query, a corridor search is used [BGNS10]. In this approach each
shortcut stores a lower and an upper bound of the actual profile which the shortcut normally
represents. The bounds have a limited number of interpolation points, reducing the cost of
the merge and link operations. The actual CH query first computes a corridor of edges in
which the solution profile lies, and then proceeds to compute the exact profile only in this
corridor.

Function Simplification. In [BGNS10] Batz et al. apply the Imai-Iri piecewise linear
function simplification, [II87]. This algorithm supports only continuous functions, which in
the time-dependent setting is not an issue. However, the profile functions we introduce in
Chapter 3 allow discontinuities. We may thus not apply the same function simplification
without limiting the algorithm to continuous portions of the functions. The effectiveness of
the Imai-Iri algorithm is thus hindered by the number of discontinuous points of a function.

Instead, we resort to the greedy function simplification of Visvalingam and Whyatt [VW93].
Let f be a piecewise linear function with interpolation points {p1, . . . , pn}. In the following
we say that f has a convex / concave bend at three consecutive points {pi−1, pi, pi+1}, iff
the slope of pi−1pi is less / greater than that of pipi+1. Similarly, f has a convex / concave
turn at four consecutive points {pj−1, pj , pj+1, pj+2}, iff the slopes of pj−1pj , pjpj+1 and
pj+1pj+2 are monotonically increasing / decreasing.

Suppose we wish to simplify f by obtaining a function f where f ∝ f . The simplification
routine examines all convex bends and all concave turns of f . The middle point pi of

17

2. Preliminaries

a convex bend {pi−1, pi, pi+1} may be removed from f , resulting in a function which is
dominated by f . Here, the introduced maximum error is equal to the distance from pi
to the segment pi−1pi+1. In the case of a concave turn {pj−1, pj , pj+1, pj+2}, the middle
points pj and pj+1 may be replaced by the intersection p′ of the lines through pj−1pj and
pj+1pj+2. Again, the result is a function dominated by f . The maximum error is then the
distance from p′ to pjpj+1.

The simplification routine repeatedly removes or replaces interpolation points from f , each
time choosing the convex bend or concave turn where the maximum introduced error is
minimized. Note that after each such removal or a replace, new bends or turns may result.
In addition, to avoid quadratic complexity a priority queue is used to determine the bend
or turn with smallest error.

The same approach may be applied to obtain a simplified lower bound of f . To do so, the
routine consecutively reduces the concave bends and the convex turns of f .

18

3. Profile Operations

In electric vehicle routing traveling at different speeds has an impact on energy consumption
and thus on the cruising range. We are therefore interested in a mapping from travel time
to consumption, given a source vertex s and a target vertex t in the street network graph.
The mapping should indicate the minimal energy consumption C, if we choose to invest
travel time τ in a path from s to t.

To approximate such a mapping, Baum et al. [BDHS+14] model the street network as a
multigraph G = (V,E). A multigraph allows multiple (u, v) edges, where u, v ∈ V . Between
two adjacent vertices u and v multiple edges exist, representing the variable traveling
speed on the street segment from u to v. The weight of each edge e = (u, v) ∈ E is a
travel time and energy consumption tradeoff point (τ,C) ∈ R2. Baum et al. then run a
multi-criteria s–t Dijkstra query. The resulting Pareto set at t is the approximation of the
desired mapping.

Using this approach we are only allowed to traverse a street segment with a fixed number of
travel times. In reality, we may also traverse the segment with any of the in-between travel
times. We achieve this by interpreting the tradeoff points between the adjacent vertices
u and v as the interpolation points of a piecewise linear function. Between two tradeoff
points p1 and p2 the linear interpolation λ · p1 + (1−λ) · p2, λ ∈ [0, 1], results from traveling
at the speed of p1 for the first λ-portion of the segment, and the rest of the segment at the
speed of p2. We may then use a profile search (as in time-dependent routing) to compute
the desired mapping from travel time to energy consumption.

As the parallel edges with different costs are now represented by a single edge with a cost
function, we no longer require a multigraph. Thus, we use a weighted graph G with a cost
tradeoff function c : E → F(R,R). We denote the edge cost function c(e) for e ∈ E as a
tradeoff function. The process of generating the tradeoff points of edges we adopt directly
from Baum et al.

Tradeoff Functions. The faster an electric vehicle travels, the higher the energy
consumption is. The interpolation points of a tradeoff function therefore have monotonically
increasing travel time values, and monotonically decreasing energy consumption values. In
short, our tradeoff functions are monotonic. Owing to aerodynamic drag [LL04], the force
required to propel an electric vehicle is quadratic in the driving speed. Thus, on a street
segment, the function which maps travel time to consumption is a convex curve: higher
speeds reduce travel time and increase (quadratically) consumption. For this reason the
tradeoff edge cost functions are also convex.

19

3. Profile Operations

10 20 30

10

20

30

0

b1

b2

a1

a2

p

(a) Inner intersection.

10 20 30

10

20

30

0

a1

a2

a3

b1

b2

b3

(b) End-point intersection.

10 20 30

10

20

30

0

f

g

(c) Multiple intersections.

Figure 3.1.: Examples of an inner intersection, an intersection at an end point and two
functions intersecting at O(n+m) points.

The leftmost interpolation point of a tradeoff function c(e) defines the minimum travel
time minτ and maximum energy consumption maxC required to traverse e. The rightmost
interpolation point likewise defines the maximum travel time maxτ and minimum energy
consumption minC. Note that for τ < minτ our definition of a piecewise linear function
sets the energy consumption to ∞. Similarly, for τ > maxτ the consumption remains
constant and equal to minC: we gain no further benefit by traveling at speeds slower than
the minimum speed set for e.

Having chosen the graph setting, we now need to define the merge and link operations for
the tradeoff functions. Furthermore, we require algorithms for the computation of linking
and merging, as well as testing whether a piecewise linear function dominates another. We
can then proceed with a standard profile search algorithm and build upon it.

3.1. Merge Operation
The definition of the merge operation in the electric vehicle routing case does not differ
from the time-dependent variant, see Definition 2.17 on page 10. To compute the merge of
two tradeoff functions f and g we use Algorithm 3.1 on the next page.

As seen in the pseudocode of the routine, we first introduce (virtual) auxiliary points to
both functions. These help representing the vertical and horizontal segments with which the
tradeoff functions begin resp. end, exposing all segments of f and g for the algorithm. We
then check whether a1 ∝ b1, i.e. f allows less minimum travel time minτ than g, or equal
minτ and less maximum energy consumption maxC. In this case f overlaps with the merge
result m := f ∪ g until the first segment intersection of f and g. Otherwise, g overlaps
with m in this manner. If no segment intersection exists, then one function dominates the
other and m overlaps entirely with the dominating function. We now examine the other
case, i.e. an intersection exists.

Let p be the first segment intersection of f and g w.r.t. the travel time axis, i.e. p is the
leftmost intersection. Let p ∈ c and p ∈ d, where c := aiai+1 resp. d := bjbj+1. Further
assume p is an inner intersection, i.e. p does not coincide with ai, ai+1, bj or bj+1. The
minimum m must therefore “switch” from one function to the other at p, as the slopes of c
and d differ in order to yield the intersection p (p is inner and first). E.g. if c offers less
energy consumption than d before p, then d must have a lesser slope than c for p to occur
and so d allows less energy consumption than c after p (see Figure 3.1a). It is therefore
enough to keep track of the current minimal function and switch to the other function at
an inner intersection.

We may apply the same observation for arbitrary intersections, however in some cases an
intersection which is not inner does not call for a switch. For instance, if p = bj+1 and c

20

3.1. Merge Operation

Algorithm 3.1: Merge
Input: Tradeoff functions f and g defined by interpolation points a1, . . . , an resp.

b1, . . . , bm
Output: Merged tradeoff function m := f ∪ g
// Explicit first and last segments of f and g

1 a0 ← (f.minτ ,∞), an+1 ← (∞, f.minC)
2 b0 ← (g.minτ ,∞), bm+1 ← (∞, g.minC)
3 la ← f.minτ < g.minτ or (f.minτ = g.minτ and f.maxC ≤ g.maxC)
4 m← ∅
5 i← 0, j ← 0
// Sweep functions

6 while i ≤ n and j ≤ m do
// Add current point of lower function to result

7 if la then m.append(ai)
8 else m.append(bj)

// Intersection test, lower function may become upper if positive
9 c← aiai+1, d← bjbj+1

10 if c intersects d then
11 p← intersection(c,d)
12 t← p.τ + ε

// Evaluate f and g at p.τ + ε, using segments on which p lies
13 if la ⇒ f(t) > g(t) and ¬la ⇒ f(t) < g(t) then
14 m.append(p)
15 la ← ¬la

// Move to next segment of f or g, whichever starts “earlier”
16 if ai+1.τ < bj+1.τ then i← i+ 1
17 else j ← j + 1

offers less energy consumption than both d and bj+1bj+2 then m continues to overlap with
f after p (Figure 3.1b). Testing whether this case occurs is simple: we compare f and g at
t := τ + ε, where τ is the travel time of p. If the current minimal function continues to
be less than the other function at t, then no switch is required. Note that during lines 10
to 15 of Algorithm 3.1, evaluating f and g at t is possible in constant time – as we are
already at the segments containing p, we must either interpolate those segments, or the
directly sequential segments of f resp. g.

Algorithm 3.1 starts with the minimal function at min {minfτ ,mingτ}, where minfτ and
mingτ are the minimum travel times of f resp. g. The algorithm then chooses the minimal
function (f or g) between consecutive intersections, lines 12 to 15. Correctness follows
from the fact that the algorithm inspects all intersections between f and g.

Lemma 3.1. Given tradeoff functions f and g with n resp. m interpolation points, f ∪ g
has O(n+m) interpolation points.

Proof. Throughout the proof we use the fact that f and g are monotonic (∗).

Let f and g be defined by interpolation points a1, . . . , an resp. b1, . . . , bm. Consider a
segment s = aiai+1 of f where ai = (τ1,C1) and ai+1 = (τ2,C2). Either g has some
interpolation points bj , . . . , bj+k with travel time in the interval I := [τ1, τ2] or none. In

21

3. Profile Operations

the latter case g may intersect s at most once due to (∗): g has at most 1 segment which
allows travel times within I. In the former case, s may intersect g at most k · 2 times in I
– a maximum of 2 intersections for each two segments adjacent to a point in bj , . . . , bj+k.
Again, we use (∗): segments of g share travel times at most at the interpolation points of
g. Also in the former case, for convenience, we say that s covers the points bj , . . . , bj+k
(w.r.t. travel time).

From (∗) also follows that any bj may be covered by at most two sequential segments of f .
Thus, there can exist at most 2 · 2 ·m+ n intersections between f and g:

The two incident segments r1 and r2 of each point bj may intersect a segment of f which
covers bj , yielding at most two intersections for bj . Furthermore r1 and r2 may intersect
other segments of f , which contain no interpolation point of g, at most once. This may
happen at most n times, again due to (∗): if r1 or r2 intersects a segment s of f , where s
contains no point of g, no other segment of g may intersect s.

It follows that the number of intersections between f and g are bounded by 4 ·m+ n and
so lie in O(n+m).

The running time complexity of Algorithm 3.1 is linear in n+m. In the worst case the
functions f and g have a number of intersections linear in n+m, e.g. one intersection for
each segment in f and g (as seen in Figure 3.1c on page 20) resulting in n+m

2 intersections.
Thus, the running time of the algorithm is optimal in the worst case.

3.2. Link Operation
In time-dependent routing the edge cost functions we use represent the dynamic traffic
situation and traversing an edge at different τ may yield different edge cost. Thus, the
actual speed at which we traverse the edge varies based on the arrival time at the edge and
the definition of the link operation is straightforward.

In the case of electric vehicle routing and tradeoff functions, on the other hand, we wish
to compute energy consumption based on travel time. When we traverse two consecutive
edges e1 and e2 with travel time τ , we may invest τ1 and τ2 in e1 resp. e2 (τ = τ1 + τ2). In
other words, we spend τ1 time on e1 and τ − τ1 on e2. Different values for τ1 yield different
energy consumptions, however we are only interested in minimal consumption. Therefore,
we wish to minimize c(e1)(τ1) + c(e2)(τ − τ1) for τ1 ∈ [0, τ]. And so we obtain the following
definition of the link operation:

Definition 3.2. Link (tradeoff)

Given tradeoff functions f and g, the link result is defined as

(f ◦ g)(τ) := min
τ1∈[0,τ]

f(τ1) + g(τ − τ1)

For convenience, we denote the linking of edges e1 and e2 by e1 ◦ e2 and the linking of an
edge e with a path P by e ◦ P .

After consecutively traversing e1 = (u, v) and e2 = (v, w) we obtain the path P := (u, v, w)
with cost function c(e1) ◦ c(e2). We link further edges to P by applying the same definition,
as c(e1) ◦ c(e2) is also a tradeoff function: c(e1) ◦ c(e2)(τ) yields the minimal energy
consumption when we invest τ in traversing P . In other words, we have the (electric
vehicle) tradeoff link equivalent to the time dependant link and may use the definition of
the operation in the same manner.

22

3.2. Link Operation

1 2 3 4 5 6

1

2

3

4

0

ai

ai+1

bj

bj+1
pf

pg

ai + bj

ai + bj+1

ai+1 + bj

ai+1 + bj+1

pf + pg

C

τ

Figure 3.2.: The parallelogram formed by all sums pa + pb, pa ∈ aiai+1 ∧ pb ∈ bjbj+1. The
polyline from ai + bj to ai+1 + bj+1 via ai+1 + bj dominates points in the
parallelogram.

Having defined linking, we now proceed with link computation in the case of tradeoff
functions. We first explore the convex sub-case, i.e. linking two convex functions. We
then use the convex linking to achieve the linking of an arbitrary function with a convex
function. And finally, we compute the link of two arbitrary functions.

3.2.1. Convex Case

As already mentioned, the tradeoff functions at edges are convex. It is therefore meaningful
to first examine the link result of two convex edge cost functions. Suppose we have travel
time and consumption point p1 = (τ1,C1) ∈ R2 for e1, resp. p2 = (τ2,C2) ∈ R2 for
e2. Furthermore, c(e1)(τ1) = C1 and c(e2)(τ2) = C2 or in other words p1, p2 lie on c(e1)
resp. c(e2). Due to the minimum operator in Definition 3.2 on the facing page, the sum
p1 + p2 of any such pair of points must be dominated, as a single point piecewise linear
function, by c(e1) ◦ c(e2).

Let f := c(e1) and g := c(e2) be defined by the interpolation points a, . . . , 1n resp.
b, . . . , 1m. Further let the minimum and maximum travel times of f and g be minfτ ,maxfτ
resp. mingτ ,maxgτ . We also set pa = p1 and pb = p2. In the case that τ1 ≥ maxfτ ∧τ2 ≥ maxgτ
the sum pa + pb lies on the horizontal line through an + bm. If we choose to traverse e1
and e2 at speeds lower then their respective minimum speeds, we do not further lower the
energy consumption. Additionally, if τ1 < minfτ ∨ τ2 < mingτ then C1 =∞∨C2 =∞ and so
C1 + C2 =∞. In other words, we do not invest enough travel time in f or g and so cannot
traverse the linked path. In conclusion, the first point at which we may traverse e1 ◦ e2 is
a1 + b1, and the point after which we no longer benefit from lower speeds is an + bm. The
linked function c(e1) ◦ c(e2) therefore has a1 + b1 as first interpolation point and an + bm
as last interpolation point.

We now need to explore the remaining case, i.e. τ1 ∈ [minfτ ,maxfτ] ∧ τ2 ∈ [mingτ ,maxgτ].
Let pa be on the segment sa := aiai+1 of f , and pb on the segment sb := bjbj+1 of g, as
seen on Figure 3.2. Any sum we may create with two points on sa resp. sb lies in the
parallelogram formed by the points aibj := ai + bj , aibj+1 := ai + bj+1, ai+1bj := ai+1 + bj
and ai+1bj+1 := ai+1 + bj+1, denoted by the grey area of Figure 3.2. That this is a
parallelogram is obvious: the segment aibjaibj+1 is parallel to the segment ai+1bjai+1bj+1
as it is the same segment translated by ai+1 − ai. The same argument holds for aibjai+1bj
parallel to aibj+1ai+1bj+1 with translation by bj+1 − bj . Note that the path formed by the
dominating segments of the parallelogram is always convex, due to the convexity of the
parallelogram.

23

3. Profile Operations

Algorithm 3.2: LinkConvex
Input: Convex tradeoff functions f and g defined by interpolation points

a1, . . . , an resp. b1, . . . , bm
Output: Linked tradeoff function ` := f ◦ g

1 `← ∅
2 i← 1, j ← 1
// Sweep functions

3 while i ≤ n and j ≤ m do
// Add current point to result

4 `.append(ai + bj)
// Pick next point based on slopes

5 if slope(ai) < slope(bj) then i← i+ 1
6 else j ← j + 1

With this in mind we consider the first point of the linked function, a1b1, and the paral-
lelogram formed by a1b1, a1b2, a2b1, a2b2. We take the first dominating segment r1 which
leads to either a2b1 or a1b2, depending on whether the slope of a1a2 is less than the slope
of b1b2. The first segment of the linking result is then r1 = a1b1aibj . We then consider aibj
in the same fashion and obtain the next segment of the result, r2. We continue this process
iteratively, until we reach the last point of the link result anbm. Algorithm 3.2 outlines the
routine and Figure 3.3 on the next page illustrates its application.

Let f and g be convex tradeoff functions, defined by the interpolation points a1, . . . , an
resp. b1, . . . , bm. Furthermore, let ` be the result of Algorithm 3.2 with input f and g. We
now show that ` is the link result f ◦ g.

Lemma 3.3. The function ` is convex.

Proof. We examine two successive iterations of Algorithm 3.2. In the iteration k we add
the point ai + bj to `. In the next iteration, k + 1, we either add ai + bj+1 or ai+1 + bj
to `. Thus the segment rk added to ` in iterations k and k + 1 either has the slope of
aibjaibj+1 or aibjai+1bj . In other words, the slope of rk equals the slope of bjbj+1 or aiai+1.
In conclusion, ` only has slopes which are also found in f and g.

The functions f and g are convex with monotonically increasing slopes. We may thus view
the interpolation points of f and g as two lists sorted in ascending order, based on segment
slopes. Algorithm 3.2 is equivalent to merging the two lists: in each iteration we “remove”
the segment of f or g with lowest slope and add a segment to ` with an equal slope. The
segments of ` are thus sorted by their slope in ascending order, i.e. the slopes of ` are
monotonically increasing and so ` is convex.

Note that, in further analogy to merging sorted lists, Algorithm 3.2 adds a segment to ` for
each slope in f and g. I.e. the algorithm does in fact terminate at anbm as stated earlier.
The interpolation points an and bm both have slope equal to 0 and so ensure the algorithm
adds all slopes present in f and g to `.

Lemma 3.4. The function f ◦ g dominates `.

Proof. As seen in Algorithm 3.2, the interpolation points of ` are of the form ck = ai + bj
for some i ∈ 1, . . . , n, j ∈ 1, . . . ,m and k ∈ 1, . . . , n+m. Thus the consumption of ` at
ck = (τk,Ck) is f(τi) + g(τk − τi) where ai = (τi,Ci). Per definition of the link operation

24

3.2. Link Operation

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

0

f

a1

a2

a3

a4

g

b1

b2

b3

b4

b5

(f ◦ g)(τ) := min
τ1∈[0,τ]

f(τ1) + g(τ − τ1)

a1b1

a1b2

a1b3

a1b4

a1b5

a2b1

a2b2

a2b3

a2b4

a2b5

a3b1

a3b2

a3b3
a3b4

a3b5

a4b1

a4b2

a4b3

a4b4

a4b5

r1

r2

r3

r4

r5

r6

r7

C

τ

Figure 3.3.: The link result a ◦ b, defined by the segments r1 to r7. The parallelograms
of each iteration are denoted by grey area. As seen, we take a segment from
the current parallelogram and continue with its other endpoint in the next
iteration.

Ck ≥ (f ◦ g)(τk) holds, as (f ◦ g)(τk) = min
τ ′∈[0,τk]

f(τ ′) + g(τk − τ ′) ≤ f(τi) + g(τk − τi), due

to τi ∈ [0, τk].

Lemma 3.5. The function ` dominates f ◦ g.

Proof. To prove that ` ∝ f ◦ g we assume that a point pa + pb lies below `, for pa ∈ aiai+1
and pb ∈ bjbj+1, and show that such a point cannot exist.

As already seen, pa+pb is dominated by a polyline P of two segments from aibj to ai+1bj+1,
which passes through either aibj+1 or ai+1bj . As pa + pb = (τ ′,C′) is not dominated by `
the point on P with travel time τ ′ is not dominated by `. As ` is convex and does not
dominate P , at least one point on P is not contained in ` – otherwise ` must pass through
P . We choose one such point akbl ∈ P .

We may therefore follow a path P ′ from akbl, which is not dominated by `, by decrementing
either k or l in each step, until we reach a point ai′bj′ contained in `, e.g. a1b1. The
first segment s of P ′ is then either ai′bj′ai′+1bj′ or ai′bj′ai′bj′+1. The segment s = p1p2
(p1 = ai′bj′) has slope lesser than the slope of ` at ai′bj′ , as s is not dominated by `. Due
to s being a viable option for the algorithm (at the iteration after adding p1 to `) the
algorithm must pick p2 owing to the lesser slope of s. Thus the existence of pa + pb leads
to a contradiction.

Note that due to the construction of P ′, each point on P ′ is a sum of a point on f and a
point on g.

Theorem 3.6. The function ` is equal to f ◦ g.

Proof. As seen in Lemma 3.4 and Lemma 3.5 ` ∝ (f ◦ g) and (f ◦ g) ∝ `. This may only
be the case if ` ≡ f ◦ g.

The conclusion we draw from Lemma 3.3 and Theorem 3.6 is that f ◦ g is convex. Thus,
we may link f ◦ g with the edge cost function of a further edge, say h = c(e3). The result

25

3. Profile Operations

(f ◦ g) ◦ h will then also be convex, and so on. Furthermore, we know that we can link two
convex tradeoff functions in linear time. Algorithm 3.2 computes f ◦ g and obviously runs
in linear time in the input size. The time complexity is also optimal, as the number of
interpolation points of f ◦ g is linear in the size of f and g (e.g. Figure 3.3 on the preceding
page).

3.2.2. Arbitrary Case

The arbitrary case of linking tradeoff functions is far less elegant then the convex case. We
require the linking of a non-convex function with a convex one due to the merge operation.
The merge result of two convex functions is not necessarily convex, e.g. Figure 3.1c on
page 20. As we use Algorithm 2.2 on page 12 to compute profiles, our tradeoff functions
will always be linked with convex edge cost tradeoff functions. Thus we first explore the
case where one function is convex, and the other is not.

Half-convex Linking. As usual, let f and g be tradeoff functions with interpolation
points a1, . . . , an resp. b1, . . . , bm. Furthermore let f be convex. While g is not necessarily
convex, it is composed of convex sub-functions g1, . . . , gk. In the most extreme case, g is
concave and so is composed of m− 1 sub-functions, namely the segments of g (i.e. bjbj+1).
Thus we first identify g1, . . . , gk by sweeping b1, . . . , bm. Whenever the slope of bj is greater
than the slope of bj+1 the current convex sub-function ends, and the next one begins. Note
that we examine the convex sub-functions gj as “standalone” piecewise linear functions, i.e.
the last point of gj has slope equal to 0. This is despite the fact that gj+1 begins at the
same point, with a non zero-slope.

We may then use Algorithm 3.2 on page 24 to compute f ◦ g1, . . . , f ◦ gk. For each τ we
take min

i∈j,...,k
(f ◦ gj)(τ) for the value of `(τ), resulting in ` ≡ f ◦ g.

Figure 3.4 on the facing page shows an example of the half-convex linking. To compute
the minimum function of f ◦ g1, . . . , f ◦ gk we may consecutively apply the merge operator,
which we discuss in Section 3.1 on page 20. However, we may exploit a property of the
link operation to avoid the full merging. Furthermore, we avoid some of the computations
during the linking of f with the convex sub-functions gj .

Namely, for j ∈ 1, . . . , k − 1, f ◦ gj and f ◦ gj+1 have exactly one intersection (Lemma 3.7).
We also sweep f ◦ gj and f ◦ gj+1 from minimum to maximum travel time, as in the merge
operation. Therefore, we stop the sweeping as soon as we find the sole intersection point p.
The result of the merge is then f ◦ gj until p, concatenated with f ◦ gj+1 after p. Obviously,
computing all of f ◦ gj is wasteful – we need only the segments before and directly after p.
Thus, we first compute f ◦ gk. We then link f with gk−1, but stop the linking as soon as
f ◦ gk−1 intersects f ◦ gk. We then proceed with f ◦ gk−2 and so on. See Algorithm 3.3 on
page 28 for the outline of the routine.

Although this method does not reduce the asymptotic computational complexity, we avoid
unnecessary linking and reduce the sweep steps during the merges. We now prove the sole
intersection property and then prove the correctness of the half-convex linking method.
Similar to the convex linking, let ` be the result of Algorithm 3.3 with input tradeoff
functions f and g (where f is convex).

Lemma 3.7. Let f and g be tradeoff functions, where f is convex and g is composed of
convex sub-functions g1, . . . , gk. Then f ◦ gj and f ◦ gj+1 have exactly one intersection, for
j ∈ 1, . . . , k − 1.

Proof. Let j ∈ 1, . . . , k − 1, e ≡ f ◦ gj and h ≡ f ◦ gj+1. Furthermore let the interpolation
points of f be a1, . . . , an.

26

3.2. Link Operation

2 4 6 8 10 12 14 16 18 20 22 24 26 28

2

4

6

8

10

12

14

16

0

g1

g2

g3

b1

b2
b3

b4

b5
b6

f

a1

a2
a3

a4
a5

o1

o2

o3
o4

o5
o6

q1
q2

q3

q4
q5

r1

r2

r3

r4
r5

r6

a1b1

a1b2

a1b3

a1b4

a1b5

a1b6

a2b1

a2b2
a2b3

a2b4

a2b5
a2b6

a3b1

a3b2 a3b3

a3b4

a3b5 a3b6

a4b1

a4b2 a4b3

a4b4

a4b5

a4b6

a5b1

a5b2

a5b3

a5b4

a5b5

a5b6

(f ◦ g) ≡ (f ◦ g1) ∪ (f ◦ g2) ∪ (f ◦ g3)

C

τ

Figure 3.4.: Linking f with the convex sub-functions of g, namely g1, g2 and g3. The linked
functions f ◦ g1 is composed of the segments o1, . . . , o6. Likewise, f ◦ g2 and
f ◦g3 are defined by the segments qi resp. rj . The minimum of the three linked
functions is the link result f ◦ g. We observe that f ◦ g1 and f ◦ g2 have exactly
one intersection point. Furthermore, this is also true for f ◦ g2 and f ◦ g3.

We must first prove that e and h have an intersection. As gj and gj+1 are consecutive
sub-functions of g, they share a point p on g: the last point of gj and the first of gj+1.
Thus, both e and h must dominate p+ a1 due to the link definition. As p+ a1 is the first
point of h, e must have energy consumption values below that of p+ a1. Furthermore the
minimum energy consumption of h lies below that of e and the minimum travel time of
e is less then that of h (g is monotonic). Therefore, the energy consumption of the last
point of e must lie in the energy consumption interval of h. Likewise the travel time of
the first point of h must lie in the travel time interval of e. Thus e intersects h. Note that
this intersection may lie on the horizontal line of e after its last interpolation point. This
occurs whenever the two last points of gj lie on a horizontal segment, i.e. gj ends with a
horizontal segment.

We now prove that there is at most one intersection between e and h. We take advantage of
f ’s convexity and the fact that both e and h result from linking a convex tradeoff function
with f . Consider a vertical line l at the minimum travel time minτ of h, see Figure 3.5
on page 29. Let τ be the travel time of the first intersection between e and h and let
x ∈ R : x ≥ τ . We show that the slope of e at x is greater or equal than the slope of h
again at x. If this holds, then obviously e and h have no further intersections: a second
intersection requires that e has a slope lower than that of h in some sub-interval of (τ,∞).

Consider pa ∈ e and pb ∈ h both with travel time τ . At pb we have at most used a portion
of f with travel time x, whereas at pa we have used atleast a x travel time portion of f .
The reason for the latter statement is simple: the travel time interval between the first
points of e and h is equal to exactly the travel time interval of gj . The function f ◦ gj
begins with a1 plus the first point of gj , and f ◦ gj+1 begins with a1 plus the last point
of gj .

27

3. Profile Operations

Algorithm 3.3: LinkHalfConvex
Input: Tradeoff functions f and g defined by interpolation points a1, . . . , an resp.

b1, . . . , bm, with f convex and g composed of convex sub-functions
g1, . . . , gk

Output: Linked tradeoff function ` := f ◦ g
1 `← ∅
2 forall j ∈ 1, . . . , k do

// Compute hj := f ◦ gj until first intersection with `

3 sj , ej ← indices of first resp. last point of gj in g, hj ← ∅
// Link sweep, each iteration followed by partial sweep of `

4 i′ ← 1, j′ ← sj
5 while i′ ≤ n and j′ ≤ ej do
6 p← ai′ + bj′

7 hj .append(p)
8 if slope(ai′) < slope(bj′) then i′ ← i′ + 1
9 else j′ ← j′ + 1

// Cut ` until summed travel time τ of p

10 while `.maxτ ≤ p.τ do
// Intersection test with segment of hj ending at p and

first remaining segment of `

11 c← last segment of hj , d← first segment of `
12 `.remove first()
13 if c intersects d then
14 hj .remove last()
15 hj .append(intersection(c,d))

// Link sweep done after first found intersection
16 go to 18

// No inner intersection ⇒ horizontal line of hj intersects `

17 `.cut(≥ hj .minC)
// Insert hj at the front of `

18 `.prepend(hj)

Due to our observations in Lemma 3.3, we can draw the following conclusion. The slope at
pa is at most m and the slope pb is atleast m, where m is the slope of f at travel time x.
As this holds for any x greater than τ , the slope of e is greater or equal than the slope of h
in [τ,∞). Therefore, f ◦ gj and f ◦ gj+1 may not intersect in (τ,∞) and so have only one
intersection at τ .

Theorem 3.8. Let f and g be tradeoff functions, where f is convex and g is composed of
convex sub-functions g1, . . . , gk. Then the function ` equals f ◦ g.

Proof. First note that due to the link definition, the functions h1 := f ◦ g1, . . . , hk := f ◦ gk
dominate all points pa + pb where pa ∈ f and pb ∈ g. It is therefore enough to show that `
dominates h1, . . . , hk. We know that (f ◦ g) ∝ ` due to the definition of the link operation
and Lemma 3.4.

We start with the link hk, which obviously dominates hk. The next step of Algorithm 3.3
merges hk−1 with hk (Lemma 3.7) and the result so far dominates both functions. In the

28

3.2. Link Operation

8 10 12 14 16 18 20 22 24 26 28

q1
q2

q3

q4
q5

r1

r2

r3

r4
r5

r6

a1b3

a1b4

a2b3

a2b4

a2b5

a3b3

a3b4

a3b5

a4b4

a4b5

a4b6

a5b4

a5b6l
x

(f ◦ g2) ∪ (f ◦ g3)

τ

Figure 3.5.: Each pair hj := f ◦ gj and hj+1 := f ◦ gj+1 (for j ∈ 1, . . . , k − 1) intersect
exactly once. To prove this, we show that the slope of hj is equal or greater
than that of hj+1 in the interval [minhj+1

τ ,∞).

next iteration the algorithm merges the “surviving” portion of hk−2 with hk−1. Again due
to Lemma 3.7 an intersection is ensured. The portion of hk−2 with travel time greater than
the one of this intersection is, of course, dominated by hk−1. It is therefore also dominated
by hk−1 ∪ hk which was computed in the previous iteration. We may further apply the
same observation, until we reach h1.

The time complexity of the half-convex link operation is in O(
∑
j(n+mj)) = O(n · k +m),

where mj is the number of interpolation points of gj (j ∈ 1, . . . , k). In the worst case, g is
concave and so k = m− 1 and mj = 1. The worst case complexity thus lies in O(n ·m),
which is significantly worse than the linear time required in convex linking. We now prove
that the worst case running time is also in Ω(n ·m) and therefore in Θ(n ·m). To show
this, we first construct a case where the linked function has a number of points in O(n ·m).
By extension, any algorithm which computes this link must invest Ω(n ·m) operations.

Theorem 3.9. Let f and g be tradeoff functions with n resp. m interpolation points, where
f is convex and g is composed of convex sub-functions g1, . . . , gk. Then the worst case of
computing f ◦ g lies in Ω(n ·m).

Proof. We first construct g as a staircase function and f as an approximation of a curve,
both monotonic. We start and end g with a horizontal resp. vertical segment. In-between,
every two points we add to g result into a new convex sub-function and so 2 · k = m− 1.
See Figure 3.6a for an example of f , g and the linked functions f ◦ g1, . . . , f ◦ gk.

While g may be any staircase tradeoff function, the travel time and consumption intervals
of f must be at most as wide as those of gj , j ∈ 2, . . . , k − 1. In this manner a linear
portion of each link f ◦ gj is contained in the result f ◦ g.

On Figure 3.6b we see that we may obviously extend g with further “steps” and always
produce further points in the result. In addition, we may also increase the number of
interpolation points in f and still obtain a result with O(n ·m) points. We only refine the
curve approximation represented by f , without increasing the span of f .

29

3. Profile Operations

10

20

30

40

50

10 20 30 40 500

b1 b2

b3 b4

b5 b6

b7 b8

b9

a1
a2
a3
a4
a5

g2

g3

g4

f

h2

h3

h4

C

τ

(a)

10

20

30

40

50

10 20 30 40 500

b1 b2

b3 b4

b5 b6

b7 b8

b9
b10

b11

a1
a25
a50
a75
a100

g2

g3

g4

g5
f

h2

h3

h4

h5

C

τ

(b)

Figure 3.6.: A constructed case where each f ◦ gj introduces O(n) points to the link result,
for j ∈ 1, . . . , k, k ∈ O(m). Here n and m are the sizes of f resp. g. The
number of convex sub-functions of g is k. As seen on the right, the staircase
function g may be extended by additional steps and f by additional points.
The resulting size complexity of the link function thus lies in O(n ·m).

As 2 ·k = m−1, k is in O(m). The resulting function f ◦g has O(n · k) points and therefore
also O(n ·m) points. Thus, any algorithm which computes f ◦ g must run in Ω(n ·m) in
the worst case.

Non-convex Linking. While Algorithm 3.3 on page 28 is sufficient for the standard
profile algorithm, we also require linking two arbitrary tradeoff functions. Though edge
cost functions are convex, the profile from s to t is generally not convex due to the merge
operation. If we wish to apply the CH algorithm (or any other shortcut based algorithm),
the cost functions of the shortcuts are exactly such profiles. We must therefore link a profile
at some vertex u with a shortcut from u. Thus, we now explore the arbitrary linking case.

We may split the cost functions f and g into convex sub-functions f1, . . . , fl resp. g1, . . . , gk,
in the same way we split g before applying Algorithm 3.3. To dominate each pa + pb, with
pa and pb on f resp. g, it is enough to compute all pairs fi ◦ gj and merge the resulting
functions. As we take the overall minimum of all link operations, the resulting function is
ensured to dominate f ◦ g and so must be equal to f ◦ g. See Figure 3.7a on the next page
for an example.

A less sophisticated routine computes f1 ◦ g, . . . , fk ◦ g and merges the resulting functions,
see Figure 3.7b. As it is enough to merge the pairs fi ◦ g and fi+1 ◦ g, we do not require a
complicated merging procedure such as a sweep-line [SH76] based algorithm. Furthermore
we may spare some of the linking, due to our observations in the half-convex linking case:
computing fi ◦ g will stop linking fi ◦ gj as soon as an intersection with fi ◦ gj+1 is found.

Algorithm 3.4 on page 32 outlines the arbitrary linking algorithm. Let hi := fi◦g, i ∈ 1, . . . , l.
Similar to the half-convex linking, we compute the functions hi in reverse order, starting

30

3.2. Link Operation

5 10 15

5

10

15

20

25

0

(a)

f1

f2

f3

a1

a2
a3

a4

a5

a6

g1

g2

g3

b1
b2

b3

b4

b5

f1 ◦ g1

f1 ◦ g2

f1 ◦ g3

f2 ◦ g1
f2 ◦ g2

f2 ◦ g3

f3 ◦ g1

f3 ◦ g2

f3 ◦ g3

C

τ
5 10 15

5

10

15

20

25

0

(b)

f1

f2

f3

a1

a2
a3

a4

a5

a6

g1

g2

g3

b1
b2

b3

b4

b5

f1 ◦ g

f2 ◦ g

f3 ◦ g

C

τ

Figure 3.7.: Two alternatives of computing f ◦ g for arbitrary tradeoff functions f and g.
First, we may link all pairs fi ◦ gj and merge the result, as seen on the left. Or
second, we may use the half-convex linking to compute fi ◦ g and then merge
fi ◦ g with the already linked fi+1 ◦ g.

with hl. In the iteration i in which we compute hi we have already computed the minimum
h′i of hi+1, . . . , hl, i.e. h′l = ∅ and h′o = ho ∪ h′o+1 for o ∈ 1, . . . , l − 1. As seen in Figure
3.7b, consecutive hi and hi+1 may have multiple intersections (f2 ◦ g and f3 ◦ g). Thus, we
must compute all of hi before merging with h′i, unlike the half-convex linking approach.

We now consider an individual merge hi ∪ h′i, i 6= l (line 4). As minfiC < minfi+1
C , the

minimum energy consumption of hi is strictly less than that of hi+1. Therefore the portion
of h′i below minhi+1

C will not be affected by the merge and may be ignored. Thus, we stop
the merge algorithm as soon as the current point of h′i requires strictly less consumption
than the last point of hi. We may test this condition between lines 6 and 7 of Algorithm 3.1
on page 21.

Note that as in the half-convex case, the last intersection may lie on the horizontal line
of hi. Similarly, even if the current point of h′i requires strictly more travel time than the
last point of hi we can not stop the merging routine.

Theorem 3.10. Given arbitrary tradeoff functions f and g, the function ` computed by
Algorithm 3.4 equals f ◦ g.

Proof. The link f ◦ g dominates ` per definition, as all points on ` result from the linking of
some fi ◦ gj . Furthermore, the minimum of all fi ◦ gj dominates f ◦ g due to Theorem 3.6.

For a specific i, each separate link fi ◦ g in ` dominates fi ◦ gj , j ∈ 1, . . . , k as proven in
Theorem 3.8. Thus ` dominates all fi ◦ gj and therefore f ◦ g.

We are also interested in the running time of Algorithm 3.4. Due to our observations
in the half-convex case, the running time of each link hi lies in O(ni ·m). Here each ni
is the number of interpolation points of fi. The total cost for all links therefore lies in
O(

∑
i ni ·m) = O(n ·m) (as

∑
i ni = n). I.e. the linking cost is not asymptotically worse

31

3. Profile Operations

Algorithm 3.4: LinkArbitrary
Input: Tradeoff functions f and g, f composed of convex sub-functions fl, . . . , fl
Output: Linked tradeoff function ` := f ◦ g

1 `← ∅
2 forall i ∈ 1, . . . , l do

// Compute hi := fi ◦ g
3 hi ← LinkHalfConvex(fi, g)

// Compute h′i−1 := hi ∪ ` until minhiC
4 h′i−1 ←Merge∗(hi, `)
5 `.cut(≥ h′i−1.minC)
6 `.prepend(h′i−1)

than in the half-convex case. However, we must also take the merging at each iteration
into account.

Each hi has O(ni +m) interpolation points due to Lemma 3.1. Furthermore hi ∪ h′i has
O(

∑l
o=i(ni +m)) points. Thus, if we merge hi◦h′i wholly, the total running time complexity

lies in O(
∑l
i=1

∑l
o=i(ni +m)) = O(

∑l
i=1 i · (ni +m)). In the worst case f is concave, so

l = n− 1 and ni ∈ O(1). The running time then lies in O(m ·
∑n
i=1 ni) = O(m · n2), which

is obviously not feasible – a sweep-line based routine would be asymptotically superior.
It is therefore important to show that the running time of Algorithm 3.4 is at most in
O(logm · n ·m), and not in O(m · n2).

Proving that the costs of each merge lie in O(ni + ni+1 +m), i.e. linear in the number of
interpolation points of hi and hi+1, is sufficient. The linking cost will then “cover” the
merge cost. Here two observations are important. First, the merge in iteration i stops as
soon as the last point p of hi is reached. In other words, in order to exceed O(ni +m) in
iteration i a non-constant number of points in h′i must have greater energy consumption
than p. And second, whenever we merge hi ∪ h′i only the dominating portions remain.
For the total merge complexity to exceed O(n ·m), the dominated portion r of hi must
be replaced by a super-linear (in the size of r) number of points in hi′. Furthermore, the
replacing points must not be “paid for” by portions of previous hj , j ≥ i. I.e. for o ∈ O(l)
an xi number of points of each hi, i ∈ o, . . . , l must satisfy the following conditions for each
j ∈ o, . . . , l:

• are not dominated by hj

• have energy consumption greater than minhjC

• no mutual constant bounds xj

Using the above information plus a slope argument (as in Lemma 3.7) should suffice to
prove that the running time of Algorithm 3.4 is in O(n ·m). However, we were unable to
produce a formal proof. We were also unable to construct a case where the complexity
exceeded O(n ·m) and so believe that such a proof does exist.

It follows from Theorem 3.9 that the worst case of the arbitrary linking operation is also in
Ω(n ·m). Here, we use the fact that any algorithm which links two non-convex functions
may be used to link a convex and a non-convex function. Thus, if the running time of
Algorithm 3.4 is indeed in O(n ·m), then the algorithm is optimal in the worst case.

32

3.3. Domination Test

Algorithm 3.5: Dominates
Input: Tradeoff functions f and g defined by interpolation points a1, . . . , an resp.

b1, . . . , bm
Output: true iff f ∝ g

1 if f.minτ > g.minτ or f.minC > g.minC then
2 return false
3 an+1 ← (∞, f.minC), bm+1 ← (∞, g.minC)
4 i← 1, j ← 1
5 while i ≤ n and j ≤ m do

// Interpolate aiai+1, test if bj above
6 if bj .τ ∈ [ai.τ, ai+1.τ] and bj below aiai+1 then
7 return false

// Interpolate bjbj+1, test if ai below
8 if ai.τ ∈ [bj .τ, bj+1.τ] and ai above bjbj+1 then
9 return false

10 if ai+1.τ < bj+1.τ then i← i+ 1
11 else j ← j + 1

12 return true

3.3. Domination Test
Finally, we require a procedure to test whether a tradeoff function f dominates another, g.
As usual, let f and g be defined by interpolation points a1, . . . , an resp. b1, . . . , bm.

We test if f ∝ g with Algorithm 3.5. We first check whether g allows less travel time or
energy consumption than f and if so return f 6∝ g. We then sweep the interpolation points
of f and the segments of g, testing if ai lies below bjbj+1 if the travel time of ai lies in the
travel time interval of bjbj+1. Here, ai = (τ,C) is below / above r := bjbj+1 if C is less /
greater than or equal to r interpolated at τ . We do the same for the interpolation points
of g, however we test whether each bj lies above the respective segments of f . We return
f 6∝ g on the first failed test, otherwise f ∝ g holds.

Theorem 3.11. Given tradeoff functions f and g, Algorithm 3.5 returns true iff f ∝ g.

Proof. If Algorithm 3.5 returned false, then either g allows less travel time or energy
consumption than f , there is an ai above g or a bj below f . This implies f 6∝ g.

For the other direction of the equivalence, assume all ai lie below g, all bj above f ,
minfτ ≤ mingτ and minfC ≤ mingC. We now show that no intersection between f and g exists
in (minfτ ,∞). As the interpolation points of g lie above those of f and f dominates g in
the travel time interval (−∞,minτ], f ∝ g follows.

Assume an intersection p between f and g exists, where the travel time of p lies in
(minfτ ,∞). Thus p must lie on segments c := aiai+1 and d := bjbj+1 with i ∈ 1, . . . , n− 1
and j ∈ 1, . . . ,m− 1, as an and bm have horizontal slopes: f and g can be at most
overlapping from an resp. bm on. If bj+1 lies in the travel time interval of c, then bj+1 must
lie below c due to g being monotonic. Thus bj+1 must have travel time greater than that
of ai+1.

However, this would mean that ai+1 lies above r := pbj+1 as the travel time of ai+1 lies in
the travel time interval of r. The segment r is a sub-segment of d and so ai+1 lies above d.
This contradicts our assumption that no point of f lies above g.

33

3. Profile Operations

The running time complexity of Algorithm 3.5 is linear in n+m. This is also optimal in
the worst case, as we may push a random point of g below f (or a point of f above g)
before running any deterministic online algorithm. The algorithm is therefore obliged to
check all of ai and bj .

34

4. Basic Approach

In Chapter 3 we devised routines for merging, linking and domination tests. We may now
proceed with profile algorithms. Throughout this chapter, let G = (V,E) be a directed
weighted graph where the edge weights are convex trade-off functions. Furthermore, we
assume the travel time cost of edges is positive and that G has no loops.

First, we directly apply the profile operations as seen in Algorithm 2.2 on page 12, which
computes time-dependent profiles. In this manner we obtain a label correcting algorithm,
where our only degree of freedom is the choice of priority queue keys.

We then alter this algorithm to gain the label setting property. We achieve this by combining
the standard time-dependent profile search and multi-criteria Dijkstra. Furthermore we
offer path extraction and speed directions for the altered algorithm.

4.1. Label Correcting
As mentioned, we adopt the profile search used in time-dependent routing. The label c(v)
at each vertex v ∈ V is a trade-off function , which is empty at the start of the algorithm.
The source vertex s is initialized with a single-point function, say 0 travel time and energy
consumption, and is added to the priority queue. Relaxing an edge e = (u, v) amounts
to half-convex linking (Algorithm 3.3 on page 28), as the tradeoff function at e is convex
and the function at u is arbitrary. The resulting function he := fu ◦ c(e) and fv are then
tested for dominance with Algorithm 3.5 on page 33. If one dominates the other, fv is set
to the dominating function. Otherwise, he is merged into fv by applying Algorithm 3.1
on page 21. In either case, if fv is changed, v is added to the priority queue or if already
present its key is updated. In each iteration we pull the vertex with minimal key from the
queue and relax its outgoing edges. The algorithm terminates when the priority queue is
empty, i.e. when the functions fv, v ∈ V represent optimal tradeoff functions.

As in time-dependent routing, multiple paths to a single vertex v may yield non-dominating
functions. Each such function is propagated at different times and so v is visited multiple
times, i.e. the algorithm is label correcting. Each time the tradeoff function at v is
“corrected”, the improvement must be propagated. The main drawback of the algorithm is
that the propagation is done with the whole function. Relatively small (say single point)
improvements therefore have the same impact on the running time as whole-scale ones.

The impact of this drawback on the running time is significant (Chapter 6). While the
label setting approach amends this shortcoming, the standard profile algorithm remains

35

4. Basic Approach

viable. This is the case as we may set arbitrary keys for the priority queue – an option
which is no longer available in the label setting algorithm. Combined with target pruning,
which we explain in the next paragraph, choice keys lead to better (compared to label
setting) running times (Chapter 6).

Note that we only consider the profile algorithm with target pruning, as we are interested
in s–t queries. Without target pruning we compute the profile tradeoff function at each
vertex of G, which is unnecessary in our scenario. As explained in the following paragraph,
target pruning requires the non-negative reduced edge costs offered by A*. We explain the
application of A* in Chapter 5, for now only the gained non-negative reduced costs are
important. Note that we do not change edge cost functions with the application of A*: we
only shift the priority queue keys.

Standard Enhancements. Target pruning is a standard technique used in s–t shortest
path queries, e.g. the multi-criteria Dijkstra algorithm. Whenever we pull a vertex v from
the priority queue, we may prune v if ft ∝ fv holds. Here, pruning means we ignore v and
do not relax its outgoing edges. The reasoning behind target pruning is simple: as long as
the edge costs of G are non-negative and ft ∝ fv, reaching the target vertex t via v will
result into a function that is also dominated by ft.

By using target pruning we may avoid visiting the whole graph G during the search,
similar to the stopping criterion of Dijkstra’s algorithm. However, the technique requires
non-negative edge costs. While the travel time costs of the tradeoff functions are always
positive, recuperation results in some edges with negative energy consumption. It is
therefore possible, that by not pruning v we may reach t with lower consumptions than
the ones in fv. In other words, fv may be dominated by ft, but the path to t via v may
still be viable due to downhill edges on the path. So in order to use target pruning, we
also require the non-negative reduced edge costs offered by the A* algorithm.

A further common improvement is time-stamping. When running multiple queries, Al-
gorithm 2.2 will initialize each fv anew before the main loop. Thus, even if the search
does not visit all vertices of G due to target pruning, we still have linear costs in the
number of vertices. This is remedied by maintaining timestamps. Whenever an edge to v
is relaxed and v has an outdated stamp, fv is initialized and the stamp at v is updated.
The initialization phase of Algorithm 2.2 may then be skipped.

Priority Queue Keys. The label correcting property of the algorithm enables the use
of any priority queue key for a function fv, as long as we apply A*. Even if we use target
pruning, we do not require monotonically increasing keys (w.r.t. algorithm iterations). The
reason for this is simple: the algorithm may only terminate if there are no improvements to
propagate, or such improvements are dominated by ft. Furthermore, due to A* the reduced
edge costs are non-negative i.e. the improvements can only degrade during the propagation.
Thus the order in which we process the vertices is irrelevant for the correctness of the
algorithm, and this order is determined by the priority queue keys.

The order of processing, however, may greatly reduce (or increase) the running time of
the algorithm (Chapter 6). Due to target pruning combined with A* vertex potentials
(Chapter 5), the sooner we obtain a “good” function at t the more vertices we might be
able to prune. This in turn reduces the number of queue pulls performed by Algorithm 2.2.

According to Baum et al. [BDHS+14], computing the Pareto set of tradeoff points performs
best when using the point p of B(v) with maximum travel time maxτ and minimum energy
consumption minC as the key for v. As p is two dimensional, a linear combination of maxτ
and minC is used. We may therefore use the last point of the tradeoff function fv in a
similar fashion.

36

4.2. Label Setting

When computing lower bound functions in a related context, Zündorf [Zün14], observes
that such keys may not reflect changes during a merge. Take the relaxation of e = (u, v) as
an example. If he dominates fv in the interval [minhτ ,maxfvτ) but not at maxfvτ , then the
priority queue key of v will not change even though the function at v did. Instead, they use
the first point where fv is changed during the merge. Further, after relaxing the outgoing
edges of u, they set the priority queue of u to ∞ – any change due to fu will be propagated
by the neighbours of u and so u is no longer important (until a new change in fu occurs).

We adopt the approach of Zündorf [Zün14], however we use the last point where fv changed
and not the first. This adaptation is, of course, based on the findings of Baum et al.

Overcharging and Undercharging. Whenever we relax an edge e = (u, v) and
compute he undercharging or overcharging may occur. As the resulting fv is a tradeoff
function, it maps travel time to energy consumption. We define energy consumption
(Chapter 2) as M− SoC, i.e. the amount required to charge the battery from the current
state of charge SoC to the maximum capacity M.

Overcharging therefore occurs when the consumption drops below 0 as we may not charge
the battery higher than M. Similarly, undercharging occurs if the consumption is higher
then M: SoC is non-negative at all times.

To handle the two events we must thus cut any values of he that lie (strictly) below 0
or above M. As the initial battery capacity is known at the algorithm start, ensuring no
tradeoff function values lie outside [0,M] after each link is sufficient to handle overcharging
and undercharging.

4.2. Label Setting
We now wish to introduce the label setting property to the profile algorithm. Although
our label setting approach does not yield lower query times, it may still be used in other
contexts. For instance, it may be combined with the hyperbolic functions in [Zün14]. To
obtain the label setting property, we must ensure that portions of fv at v are processed
only once. We must therefore split fv in some way and process the split portions one at a
time. Then we ensure that these portions are not processed multiple times.

Instead of maintaining a single function fv at v, we maintain a bag of functions B(v). The
whole B(v) then represents fv, and we may process the elements B(v) one at a time. We
choose convex sub-functions as a splitting criterion, as we then may link ` in linear time
with c(e) for any edge e ∈ E.

For the outline of the approach we adapt the multi-criteria Dijkstra, see Algorithm 2.3 on
page 15. As the multi-criteria algorithm uses k-dimensional points and not functions, we
must replace some of its operations. Given a label ` ∈ B(v) and an edge e = (v, w), we
first substitute the vector sum (line 11) with the convex linking operation (Algorithm 3.2
on page 24) which computes ` ◦ c(e). For the domination test and the merge operation
we adjust Algorithm 3.5 resp. Algorithm 3.1. In other words, we use the appropriate
operations from Chapter 3.

An s–t query therefore functions as follows. We set B(s) = {`0}, where `0 is a single-point
zero tradeoff function (i.e. (0, 0)) and insert s in the priority queue with key 0. In each
iteration we pull an unprocessed label ` from B(u), where u is the vertex at the head of
the priority queue. We mark ` as processed, and if B(u) contains only processed labels,
then we remove u from the queue. If B(u) does contain unprocessed labels, we update the
priority queue key of B(u). For each edge e = (u, v) we then compute h`e := ` ◦ c(e) and
test whether B(v) ∝ h`e. If not, we merge h`e into B(v) and update the priority queue w.r.t.

37

4. Basic Approach

v. After the merge the segments B(v) dominated by h`e are replaced with the dominating
segments of the latter. Furthermore, B(v) is again cut into convex sub-functions, each
represented by a label. And last, the algorithm terminates as soon as the queue is empty.

We now proceed with the adjustments required to gain the label setting property. Our goal
is to ensure that whenever we mark a label ` ∈ B(v) as processed, all labels in B(v) with
less minimum travel time than min`τ are already processed (in previous iterations).

Bag Order and Priority Queue Keys. We first impose an ordering on each B(v), v ∈ V
based on the minimum travel time of the labels. In other words, if B(v) = {`1, . . . , `n}
then min`iτ < min`i+1

τ ∧ max`iτ ≤ min`i+1
τ , i ∈ 1, . . . , n− 1 must hold at all times. Once

again, the labels of B(v) are the convex sub-functions of the function f represented by B(v).
Here, we use the fact that the interpolation points of f have monotonically increasing resp.
decreasing travel time and energy consumption values (Chapter 3).

We set the key of a vertex in the priority queue as min`iτ , where `i is the first unprocessed
label (i.e. i is minimal) in B(v). The bag B(v) must contain at least one unprocessed label,
as only vertices with unprocessed labels are kept in the queue. Due to the positive travel
time costs in G, the priority queue keys are now monotonically increasing.

Note that in each iteration, we process a label from B(v) where v is at the head of the
queue. If B(v) has more unprocessed labels, the key of v changes and we must update the
position of v in the queue.

Merge Operation and Domination Test. Consider a bag B(u) = {`u1 , . . . , `un} where
` := `uo is the first unprocessed label. When we link ` with an edge e = (u, v), the operation
is obviously limited to `. However, when we merge h`e into B(v) := {`vm, . . . , `vm}, it is
possible that multiple labels in B(v) are affected. Namely, the labels L ⊆ B(v) with a travel
time interval which intersects [min`τ ,max`τ] (the travel time interval of `). To determine the
contents of L we have two options. We choose to do a linear scan of B(v). As the labels of
B(v) are sorted by minimum travel time, an alternative is doing a binary search. Here, we
choose the first option.

Let L = {`vi , . . . , `vj}, 1 ≤ i ≤ j ≤ m. To merge h`e into L with Algorithm 3.1, we
assemble the function f represented by L by “gluing” the labels in L: between two
labels `vk and `vk+1 we insert an interpolation point (min`

v
k

C ,min
`vk+1
τ). We then apply the

merge algorithm, computing `i ∪ f . A linear sweep splits `i ∪ f into convex sub-functions
L′ := {(h`e ∪ f)1, . . . , (h`e ∪ f)k} and we replace L with L′ in B(v). Last, we set the first
unprocessed index to the minimum of the previous index and the first label changed by
the merge. Note that the merge operation retains the ordering in B(v) and so no sorting is
required at any point of the algorithm: the ordering is held as an invariant.

An alternative merge procedure splits h`e into portions which match the travel time intervals
of the labels in L. As h`e is convex, so are the portions which result from this split. We
may therefore sweep L, merging each of its labels with the respective portion of h`e. This
ensures that we merge only convex sub-functions. If the merging of convex functions has
advantages over the arbitrary merging, we may exploit these here. However, we are unaware
of such advantages and our merging routine does not benefit from convex merging. We
therefore do not pursue this alternative.

The approach also ensures incident labels `j , `j+1 ∈ B(v) have a common point, namely
p := (min`j+1

τ ,min`jC). While p is also present in fv of the profile algorithm, B(v) obviously
contains p twice. Further, p is only necessary if `j and `j+1 intersect within an explicit
segment of either label (Figure 4.1 on the next page). If the intersection is outside the
travel time intervals of both labels, then we do not need to store p. We only need to insert
p between `j and `j+1 during the assembly of f , as well as remove p after the merge if still

38

4.2. Label Setting

10 20

10

20

0

`1

`2

p

10 20

10

20

0

`1

`2

p

Figure 4.1.: An intersection between labels `1 and `2 inside one of their travel time intervals
(left) resp. outside both intervals (right). In the latter case, the point p is
implicitly given by the last point of `1 and the first point of `2.

present. In this manner we reduce some of the redundancy introduced by the label setting
algorithm.

Due to the bag order and our choice in priority queue keys, we may not need to consider
all of B(v) when we determine L. Let `′ := `vo be the first unprocessed label of B(v) before
we merge h`e into B(v). In the current iteration of the algorithm we poll ` from B(u).
Therefore, either o = 1, or the minimum travel time of `vo−1 is strictly less than that of `: if
`′ is not the first label in B(v), then the previous label in B(v) was processed in a previous
iteration. Therefore, in the ordering of B(v), we know that ` may lie at most between
labels o and o− 1. Linking with e will increase the minimum travel time of `, and so h`e
also lies strictly after (w.r.t. τ axis) the first point of `o−1. Our linear scan or binary search
may thus start from o− 1. Figure 4.2 on the following page illustrates this observation.

The domination test functions in the same way. We first determine L, as during the merge.
Then we test whether the function represented by L dominates ` with Algorithm 3.5. As
the domination tests does not change B(v), the routine requires no further work.

Target Pruning and Timestamps. As in the label correcting algorithm, we apply
target pruning. In each iteration we test whether the target bag B(t) dominates the current
label ` ∈ B(v). For this too, we use the adjusted domination routine. If B(t) ∝ ` holds, we
can prune `.

The time-stamping technique sets an empty bag B(v) = ∅ instead of an empty function,
whenever an edge (u, v) to a vertex v with an outdated stamp is relaxed.

Correctness. The pseudocode of the label setting approach can be seen in Algorithm 4.1
on page 41. We now show that the algorithm is label setting. We then prove the algorithms
correctness, i.e. the approach computes the same function as the standard profile algorithm.
Let s and t be the source resp. target vertices of a profile query. Further let ft be the
profile computed by the profile search purposed in Section 4.1.

Theorem 4.1. Algorithm 4.1 is label setting.

Proof. The label setting property is satisfied by the algorithm iff each label is processed at
most once. In order to process a label more than once, a merge operation needs introduce
an improvement in the labels tradeoff function. Furthermore any change in the unprocessed
labels of a bag, during a merge, is of no importance: these labels are not yet propagated
by the algorithm.

Consider a bag B(v) = {`1, . . . , `n} with last processed label `i. A merge h ∪ B(v) may at
most change `i due to our earlier observations. More specifically, the change may not occur

39

4. Basic Approach

50 70 90 110 130 150 170 190 210 230 250

`o−3

`o−2

`o−1

`o

`o+1

Figure 4.2.: A section of B(v) which contains the first unprocessed label at the vertex v.
The previous label `o−1 is therefore already processed and so the priority queue
minimum key must be greater than the minimum travel time of `o−1. No
unprocessed label at any vertex u may therefore start in the grey area. As a
result, only labels with indices higher or equal than o− 1 are important for
the merge operation and the domination test.

in the interval [−∞,min`iτ]. Merging `i with h will at most cut `i at minhτ , introduce new
labels with indices greater than i to B(v) and shift the labels in B(v) with indices greater
than i to the right. The processed labels of B(v) will therefore not be propagated a second
time.

Theorem 4.2. Upon termination of Algorithm 4.1, the function of B(t) equals ft.

Proof. As seen in the previous proof, the algorithm propagates any change due to a merge
while maintaining the label setting property. Furthermore, the algorithm may terminate
only if there are no more labels left to propagate, i.e. all improvements are propagated.

Similar to the standard profile algorithm, as long as the edge weights are positive (both
consumption and travel time) target pruning does not hinder the correctness of the
approach.

Path extraction. In order to extract actual paths, we keep an additional parent field `p
in each label ` ∈ B(v). Given sensible parent information, we may restore the path from
which a given label is constructed by retracing the parents of the label.

During a link operation ` ◦ c(e), e = (u, v), we set the parent of the resulting label `′ ∈ B(v)
to `′p := u. A merge operation, on the other hand, does not change the parent of a label:
at most we cut dominated intervals from the function stored in the label.

We then reconstruct the path of a label ` ∈ B(t) as follows. We find the “parent label” of `,
by linking each label `′ ∈ B(v), v = `p with c(e), e = (v, t) ∈ E. The parent label of ` is
then the resulting `′ ◦ c(e) which dominates `. This we repeat until we reach the source
vertex s, resulting in the desired path.

The intuition behind determining each parent label is simple. At a vertex v we may have
multiple labels `′ ∈ B(v). Each such label results from two operations. First a link with an
edge (u, v), and then merging the result of this link operation with the labels already in
B(v). Thus, linking the parent label of `′ results in a label that is either equal to `′, or
spans a wider travel time interval which is then cut by other labels in B(v).

40

4.2. Label Setting

Algorithm 4.1: MLCProfile
Input: Graph G = (V,E, c), source vertex s, target vertex t
Data: Priority queue Q
Output: Convex sub-function set B(t) representing profile function at t w.r.t. c.

1 B(s)← {(0, 0)}
2 Q.update(s, 0)
3 while Q is not empty do
4 u← Q.peekMin()

// “Pop” first unprocessed
5 `← B(u).firstUnsettled()
6 if ¬B(u).hasUnsettled() then
7 Q.deleteMin ()
8 else
9 Q.update(u,B(u).key())

// Target pruning, sweep unprocessed portion of B(t)
10 if B(t).dominates(`) then
11 continue
12 forall (u, v) ∈ E do

// Convex labels allow convex linking
13 h`e ← LinkConvex(`, c(e))

// Sweep unprocessed portion of B(v), determine L
14 if ¬B(v).dominates(h`e) then

// Merge h`e with L, update first unprocessed
15 B(v).merge(h`e)
16 Q.update(v,B(v).key())

Speed directions. Having extracted the path P of a label ` ∈ B(t), we now pick a point
p on the convex sub-function `. We wish to know the travel time spent on each edge along
the path, from which p originates. By using this information we can derive driving speed
directions, which allow reaching t with the consumption value of p.

Consider the last edge e = (v, t) on P and let `′ ∈ B(v) be the parent label of `. Therefore,
the point p lies on the link `′ ◦ c(e) and so p originates from the sum of a point pa on `′
and a point pb on c(e). I.e. p = pa + pb, and computing pb yields the desired travel time
spent on e.

We compute the point pb as follows. On `, p lies on a particular segment s. According to
our observations in the convex linking case (Section 3.2), s is either of the form aibjai+1bj ,
or aibjaibj+1. In the first case any point on s is the sum of bj and the segment aiai+1 on
`′, i.e. pb = bj . In the second case, p results from the sum of ai and a point on bjbj+1, i.e.
pb = p− ai.

Once we know the travel time spent on e, we can continue with the second to last edge e′
on P , the label `′ and the parent label of `′. We compute the travel time spent on e′ in the
same manner, then continue with the edge on P that is previous to e′. By the time we
reach the edge on P that is incident to the source vertex s, the travel time on each edge on
P is known.

41

5. Advanced Techniques

Having designed the basic algorithms which compute travel time and consumption profiles,
we now explore speed-up techniques common in route planning. More specifically, we
examine the application of the A* search and the adaptation of the CH algorithm. Similar
to the previous chapter, G = (E, V) is a weighted directed graph, the edge costs are tradeoff
functions and the travel times of all interpolation points are positive.

5.1. A* Search
We eliminate the negative consumption costs on edges by applying the A* algorithm in the
same way as Baum et al. in [BDHS+14]. To gain non-negative reduced edge costs during
an s–t query we require lower bounds on d(v, t), v ∈ V (Section 2.4). Furthermore, we
may improve the running times of both algorithms introduced in Chapter 4 with the goal
direction of A*. In our case we operate with the travel time and the energy consumption
distances, and so we may use lower bounds on both to better guide the search.

To obtain the travel time potentials πτ (v), v ∈ V , we run a backward Dijkstra using minimal
travel time as a single metric, i.e. minτ of c(e), e ∈ E. We do not apply a stopping criterion.
The edge costs are positive and so the algorithm is vertex setting. As we use minτ at all
edges, the resulting distances are lower bounds for any travel time we may compute during
the profile algorithms.

We compute the consumption potentials πC(v), v ∈ V in the same manner, respectively
we use the minimum consumption minC of c(e), e ∈ E as a single metric. We ignore
battery constraints and so the edge costs are no longer positive and the algorithm is not
vertex setting. In other words, computing the consumption vertex potentials involves more
computation than the travel time counterpart. Despite this, the time we need to compute
the consumption potentials is dominated by the running times of the profile algorithms
(Chapter 6). Once again, note that negative consumption cycles are physically impossible,
i.e. Dijkstra’s algorithm terminates and computes the correct distances w.r.t. minC.

Note that we ignore the overcharging constraint in both searches, as we wish to compute
lower bounds. We may however apply the undercharging constraint to limit the searches
according to M, i.e. whenever the lower bound on consumption exceeds M we prune.

Having computed the vertex potentials, we may now use A* goal direction. Instead of
actually shifting the function fv at a vertex v by the potential π(v) = (τ,C), we only

43

5. Advanced Techniques

transpose the priority queue key of fv. We do not shift functions, as we require the
unchanged consumptions in order to apply battery constraints. Changing the order in
which we process vertices (labels in the case of Algorithm 4.1) is enough to gain the speed-up
of A*. The changed processing order also ensures the correctness of target pruning, as we
implicitly operate on non-negative reduced edge costs [BDHS+14].

Interval Pruning. Having computed the fastest path Pτ to obtain the travel time
potential, we may use the consumption C of Pτ as an upper bound on energy consumption.
Any s–t path with travel time τ ′ greater than that of Pτ and optimal consumption (w.r.t.
τ ′) will require at most C consumption. Thus, any function fv with minfvC > C is infeasible
and may be safely pruned. Moreover, we prune if πC(v) + minfvC > C as fv will be shifted
at least by π(v) before reaching t.

We may use an upper bound maxτ on travel time in the same manner, however obtaining
the bound requires more work. We now run a forward search from s, which obeys the
battery constraints and uses minc(e)C , e ∈ E. I.e. we compute the consumption optimal path
PC. We set maxτ to the travel time of PC: any less energy efficient path will require less
travel time to traverse.

Note that in the case of the label setting algorithm we prune the current label of the
iteration, i.e. the first unprocessed convex sub-function of fv and not the whole function fv.

Improved Target Pruning. Using the vertex potentials we may also improve the target
pruning of the two algorithms introduced in Chapter 4. Namely, we may prune fv as soon
as fv transposed by π(v) (denoted by fv + π(v)) is dominated by ft. Here we use the fact
that any v–t path must cost at least π(v), as the vertex potentials offer lower bounds on
travel time and consumption. The minimum profile of reaching t by using fv is therefore
fv + π(v).

5.2. Contraction Hierarchies
To speed-up the profile queries further we adapt the time-dependent variant of the Contrac-
tion Hierarchies algorithm (TDCH, [BGNS10]). There are two obstacles which hinder the
direct application of TDCH in our context. First, in electric vehicle routing we must obey
battery constraints which are not present in the time-dependent scenario. And second, the
properties of our profile functions differ from the ones used by Batz et al. We deal with
the first problem during the offline phase of CH, by utilizing upper and lower bounds. We
then use the approximated TDCH search of Batz et al. (ATCH) during the query phase.
Due to the second issue we must also adapt the interval search phase of the ATCH.

We now explain the offline preprocessing phase of our adaptation in detail, that is the
contraction of the graph G. We then proceed with the changes required in the query phase,
which uses the contracted graph to speed up profile queries. To avoid redundancy we
assume the reader to be familiar with the concepts of TDCH, [BGNS10].

5.2.1. Offline Phase

As outlined in the preliminaries section, during the preprocessing phase of CH we contract
the vertices of G and add shortcuts to G as needed. Let R = (V,ER) denote the overlay
graph which results from vertex contractions (see [BGNS10]). Similar to Batz et al. we
compute the contraction order online with the help of simulated contractions. For each
v ∈ V we compute the impact on R, if v is contracted. The vertex contraction cost used
by Batz et al. is as follows:

cost v := 2 · edges v + unpacked v + depth v + 2 · complexity v

44

5.2. Contraction Hierarchies

For the definitions of edges, unpacked, depth and complexity see [BGNS10]. We separate
each portion of the cost into removed and inserted cost, e.g.:

edges v := # inserted shortcuts
max(1,# removed shortcuts or edges from R)

In the addend edges v of the cost we choose to always count a shortcut s = (u,w) in the
inserted shortcuts count. If e = (u,w) ∈ R then we increase the removed portion of the
edges v cost. Furthermore, if the shortcut s will replace the edge e we count the cost of e
as removed cost and the cost of s as inserted cost. For instance if the s shortcut function
is merged into the function of e, the inserted complexity v cost caused by (u,w) equals the
complexity of the shortcut function. The removed portion of the complexity v cost, in turn,
is increased by the complexity of e.

At the beginning of the preprocessing we simulate the contraction of each vertex, which we
refer to as the initial simulated contractions. We then contract the vertices of G according
to their contraction cost in ascending order. When we contract v ∈ R, the cost of all
the neighbours of v in R changes. Each neighbour loses an edge (or a shortcut) to v
and possibly gains new neighbours. We must therefore simulate the contraction of the
neighbours of v anew, updating their cost.

To ensure shortest path preservation in the time-dependent scenario, we examine all pairs
of neighbours (u,w) of v with e1 = (u, v), e2 = (v, w) ∈ ER. We then test whether the
linked cost h := c(e1) ◦ c(e2) of the path u → v → w is dominated by the u–w profile in
R \ {v}. If so, a witness is found and we do not require a shortcut from u to w in R: v
does not lie on any shortest u–w path. Otherwise, we add the shortcut (u,w) to R with
cost h. If e = (u,w) ∈ ER we must merge h into c(e).

Due to battery constraints, we cannot use this approach to compute our contraction
hierarchy. As explained in Chapter 4, the profile algorithms handle battery constraints by
cutting profiles below 0 and above M after each link operation. This requires knowledge of
the current battery capacity, which we lack during the CH preprocessing: a shortcut must
be usable for all SoC values. Thus, a witness must be found for every battery capacity in
order to avoid a shortcut. Furthermore a shortcut (u,w) represents multiple paths, some of
which may not be feasible for a specific SoC. A possible way of encoding this information
is to include the state of charge as a parameter to the cost functions. However, we wish to
avoid three dimensional functions and so use bounds instead.

Shortcut Bounds. Consider the link ` := f ◦ g, with e1 = (u, v), e2 = (v, w) ∈ E and
f = c(e1), g = c(e2). If we do not cut consumption values of ` outside [0,M] then ` is a
lower bound for the profile h on u→ v → w. As we allow the full recuperation on e1 and
e2, for any given SoC the consumption of h will be at least that of h for all τ .

We may also forbid recuperation on u→ v → w by cutting both f and g at 0, resulting in
f and g. Computing the linked function ` := f ◦ g yields an upper bound for h. The less
recuperation on u→ v → w is possible (due to overcharging), the higher the consumption
of h is. As we allow no recuperation at all when we compute `, no consumption of h may
lie above `.

Before the initial simulated contractions we set a lower bound e and an upper bound e for
each edge e ∈ E. Namely, e = c(e) and e = c(e)≥0. As we just observed, linking the lower
resp. upper bounds of the two edges e1 = (u, v) and e2 = (v, w) results in valid lower and
upper bounds for the profile h. If an edge e′ = (u,w) exists, we may merge e1 ◦ e2 into e′
and e1 ◦ e2 into e′ thus bounding both h and c(e′). Observe that whether e1, e2 and e′ are
edges or shortcuts is not relevant. As long as we link and merge the respective bounds, the
resulting new lower and upper bounds remain correct.

45

5. Advanced Techniques

Having defined the shortcut bounds, we now have all ingredients we require to compute
our contraction hierarchy. Whenever we contract a vertex v ∈ R we examine all neighbour
pairs of v in R. For each such pair (u,w) with e1 = (u, v), e2 = (v, w) ∈ E we compute
h := e1 ◦ e2 and h := e1 ◦ e2. We then compute the u–w upper bound profile g in R \ {v}
by using solely upper bounds of edges and shortcuts in R. If g dominates h, then any u–w
profile through v is dominated by u–w paths that do not pass through v. In such case
we do not require a shortcut, we remove v from R and proceed with the next contraction.
Otherwise we must add a shortcut (u,w) to R prior to removing v, as a path might pass
through v which is important for the u–w profile at some SoC.

Whenever we add a (u,w) shortcut, we first check whether an edge or a shortcut from
u to w exists in R. If not, we add (u,w) to the set of edges of R, with bounds h and h.
Furthermore, we initialize the edge set of (u,w) to S := {(u, v), (v, w)}. This set contains
the subgraph represented by the shortcut and is empty for all original edges of G. As
before, let h and h be the bounds of (u,w). If e = (u,w) ∈ E we check whether h ∝ e. In
such case we know that all paths in the original edge or shortcut from u to w are dominated
by the paths of the new (u,w) shortcut. We therefore set the bounds of e to h and h, and
the edge set to S. If h 6∝ e, then we merge h into e and h into e, and add S to the edge set
of e.

In order to keep tight bounds we introduce the gap portion of the contraction cost. For
each edge or shortcut e we keep track of the maximum consumption difference between
the lower bound e and the upper bound e, which we denote by the recuperation gap (or
simply gap) between e and e. To compute the recuperation gap between an upper and a
lower bound it is enough to modify the domination test, Algorithm 3.5. We sweep both
bounds in the same manner and we maintain a maximum vertical distance. Instead of
reporting whether a point (τ,C) of one bound is above or below a segment of the other
bound, we evaluate the segment at τ and update the maximum distance if necessary. That
the result is the recuperation gap follows from similar observations to the ones in Theorem
3.11. Thus we define the gap cost of v as:

gap v :=
∑
e∈inserted shortcuts gap e

max(1,
∑
e∈removed shortcuts or edges from R gap e)

Having chosen the recuperation gap cost, we redefine the vertex contraction cost of Batz
et al. as follows:

cost v := 2 · edges v + unpacked v + depth v + 2 · complexity v + gap v

We must also adjust the complexity portion of the vertex contraction cost, as we no longer
have a single function per edge or shortcut. We sum the interpolation points of both lower
and upper bounds of an edge or shortcut, and use the resulting count in the complexity
cost formula of Batz et al.

Profile and Interval Witness Searches. As in the publication of Batz et al., we utilize
additional information in order to avoid expensive profile witness searches or to reduce
their cost. Due to the nature of our bounds, as soon as the lower bound f of a path
u→ v → w allows negative consumption we cannot find a witness: the upper bounds are
strictly positive. And, of course, as soon as a witness is found we stop the witness search.

Furthermore, we take advantage of interval searches. Again, we wish to know if a witness
exists for a path u→ v → w. Consider the lower and upper bounds of this path, ` resp.
`. Also consider the lower and upper bound profiles we may compute in R, f resp. f . As
before, let minτ ,minC,maxτ and maxC denote minimum and maximum values of travel

46

5.2. Contraction Hierarchies

2 4 6 8 10

2

4

6

8

10

12

14

0

o

`

f

C

τ

(a)

2 4 6 8 10 12 14

2

4

6

8

10

12

14

0

(minτ ,minC)

(minτ ,minC)
p

q

f

`1

`2

C

τ

(b)

Figure 5.1.: Witness information based on interval searches. We may compute the minimum
travel time and consumption of the lower bounds (left) resp. upper bounds
(right) of u–w paths in R. In the first case, if the resulting tradeoff point o
is dominated by the u → v → w link upper bound `, then no witness may
be found. And in the second case, the resulting tradeoff points p and q may
dominate the shortcut lower bound, e.g. `1 or `2. If so, then a witness exists.
The grey area in both figures represents points dominated by `, resp. p and q.

time and consumption. If the (min`τ ,min`C) point of ` is dominated by f then a witness
exists. On the other hand, if ` dominates the (minfτ ,minfC) point of f , then no witness can
be found. We therefore utilize two interval searches which use this information.

First we compute the upper bound minimum travel time and consumption u–w paths in
R, denoted by Pτ resp. PC. For this we use the standard Dijkstra algorithm with scalar
edge weights. The travel times and consumptions of Pτ and PC are tradeoff points which
we denote by p resp. q. The (maxfτ ,minfC) point of f dominates q. To clarify, we compute
PC as any energy-optimal path. The consumption of PC is therefore equal to minfC, the
travel time however may be higher than maxfτ . Similarly, the (minimum travel, time
maximum consumption) point (minfτ ,maxfC) dominates p. Thus, if either p or q dominates
o := (min`τ ,min`C) then we know that o must also be dominated by f . In other words, we
know that a witness exists. Figure 5.1b illustrates this observation. We denote this search
by the upper bound interval search.

Second we compute lower bound minimum travel time and consumption u–w paths in
R, denoted by Pτ resp. PC. Here we may also use Dijkstra with scalar edge weights.
However we require reduced edge costs when computing PC, as lower bounds allow negative
consumption. Thus we use height induced vertex potentials (Section 2.4 on page 13),
which we compute once for G before any contraction. As the contractions do not change
shortest path distances, the potentials remain correct throughout the preprocessing. The
computed minimum values minfτ and minfC form a point o := (minfτ ,minfC). We then test
if ` dominates o and if so, we know no witness can be found. See Figure 5.1a. This search
we denote by lower bound interval search.

Hop Limit. Similar to Batz et al. we use a hop limit during the interval and profile
witness searches. Whenever we look for a witness for the path u → v → w, we first run

47

5. Advanced Techniques

a breath-first search from u and mark any vertex within 16 hops. If we cannot reach w
from u within this hop limit we insert a shortcut. Otherwise, we limit allow the interval
and profile searches to visit only marked vertices. We choose to mark vertices beforehand
and not count hops during each search, in order to speed up profile searches with vertex
potentials.

Vertex Potentials. During the upper bound interval search we compute the minfτ and
minfC of f , where f is the u–w upper bound profile in R \ {v}. Moreover, we compute a
minimum travel time and consumption value from u to each vertex v within the hop limit.
Due to the triangle property of shortest paths, we may use the computed values as vertex
potentials: πτ (v) := dτ (u,w)− dτ (u, v) and πC(v) := dC(u,w)− dC(u, v).

In this manner we obtain valid lower bounds on the v–w travel time and consumption
distance, however we can do better. Namely, we may run the upper bound interval search
backwards from w to u. In this case we know the exact minimum travel time or consumption
distances from v to w. These distances offer the optimal vertex potentials we may use
during a profile search, so that the profile search remains correct.

Running a backward search from w will generally visit different nodes compared to a
forward search from u, both within the given hop limit. For this reason we choose to first
mark the vertices reachable from u and then run interval and profile searches.

Target Pruning. During the witness search we use ` for target pruning. Whenever a
vertex v is removed from the queue and if the profile at v is dominated by `, then we do
not continue the search from v. In this case the profile at v has no improvement over `
and so is unimportant. We also use the standard target pruning during a witness search,
i.e. when the profile at v is dominated by the current profile at w (the target vertex) we
prune v. Note that upper bounds in R are non-negative and so both types of pruning do
not require any vertex potentials.

We apply similar pruning in both interval searches. The standard target pruning functions
in the same manner as in the algorithm of Dijkstra, as the interval searches utilize scalar
shortest paths. Using ` to limit the interval searches, however, is less straightforward: in
both the upper and the lower bound interval searches we assume that w is reachable from
u in R \ {v} within the given hop limit. As before let f and ` denote the u–w profile in
R \ {v} resp. the u→ v → w link.

When we compute the upper bound minimum consumption in R (during an upper bound
u–w interval search) we prune vertices with consumption higher than min`C. If we do not
reach w, the minimum consumption of f is above min`C of ` and f cannot dominate `.
Similarly, during the upper bounds minimum travel time computation of the same search,
we prune vertices with travel time higher than min`τ . Again, if w is not reached, f cannot
dominate `. Figure 5.2b on the facing page illustrates the two cases where pruning hinders
reaching w.

Due to this pruning, some vertices reachable from u within the hop limit will not be visited
by the upper bound interval search. If we wish to apply the computed values as vertex
potentials during the profile witness search, it is most beneficial if all vertices are visited
and have values. To achieve this, we must disable the pruning. We thus choose a specific
percentage of contracted vertices as a threshold (Chapter 6). When R has less vertices
than this threshold, we disable the upper bound interval search pruning. The resulting
interval searches become slower to the benefit of faster profile searches.

During the lower bound u–w interval search we limit both scalar searches with the
(max`τ ,max`C) point of `. In other words, we prune vertices with higher values as we
do in the upper bound interval search. If either the minimum travel time or consumption

48

5.2. Contraction Hierarchies

2 4 6 8 10

2

4

6

8

10

12

14

0

`

(maxτ ,maxC)

o1

o2

C

τ

(a)

2 4 6 8 10 12 14

2

4

6

8

10

12

14

0

(minτ ,minC)

(minτ ,minC)

p

q

f

`1

`2

C

τ

(b)

Figure 5.2.: Target pruning based on link profile during lower bound (left) resp. upper
bound (right) interval search. In the lower bound case the consumption of
o1 and the travel time of o2 are too high, which results in unreachable target
vertex during the respective scalar search. We clip o1 to maxC and o2 to maxτ
and then test if ` dominates them. In the example to the right we do not reach
p when conducting upper bound interval search for `1, as the minimum travel
time of f is too high. A similar situation occurs with q and `2 but due to
minimum energy consumption.

search does not reach w, we set max`τ resp. max`C as sentinel values: not reaching w means
the respective value of f is higher than the limit. Thus, if ` dominates the “sentinel point”,
then ` also dominates the actual (minfτ ,minfC) point of f . See Figure 5.2a. Due to the
height-induced potentials we use during the lower bound interval search, negative edge
consumption costs are no obstacle to the pruning of either search.

Whenever we choose to use vertex potentials in the profile witness search we may also
apply the improved target pruning, used in the basic profile algorithms. We prune v if
the profile at v, transposed by the potentials at v, is dominated by either ` or the current
profile at w.

Tighter Bounds. So far, to obtain the u→ v → w bounds we link the lower resp. upper
bounds of edges or shortcuts (u, v) and (v, w) in R. This results in bounds which are
generally further apart after each link. I.e. the further we are in the contraction of G, the
wider the gap between the upper and lower bounds of an edge in R is. Of course, wider
gaps result in more paths stored in a shortcut as the profiles of more paths “fit” within the
shortcut bounds. In turn, this means our query will visit all such paths if the shortcut is
required. We therefore wish to inhibit the widening of the bound gaps as much as possible.

Consider an original edge e in G with an upper bound g and g of g := c(e). We defined
the recuperation gap as the maximum energy recuperation allowed by e. Due to our choice
in bounds, this gap equals maxτ (g(τ)− g(τ)) i.e. the maximum vertical distance between
the two bounds. The recuperation gap of a shortcut s in R is also equal to the maximum
distance between the shortcut bounds, as the upper bound allows no recuperation for a
given τ and the lower bound allows full recuperation for τ .

Furthermore, the lower bound ` of a shortcut s = (v, w) consists of paths in G, on which no
overcharging occurs. We may thus realize `, if the state of charge SoC is low enough before

49

5. Advanced Techniques

traversing s. Formally, if SoC plus the recuperation gap γ of s is not greater than M no
overcharging may occur. In this case we know that the profile of s is `. Suppose a further
shortcut h has minimum consumption minC ≥ γ. This also implies that M ≥ γ + max SoC
due to minC = M−max SoC, where max SoC is the maximum state of charge we may have
after traversing h (staring with a full battery). Thus, when linking h with s we link the
lower and upper bounds of h with `: the state of charge after traversing h is in all cases
low enough to allow traversing s with `.

Note that each pair of bounds in R has equal minimum travel time, due to our choice
of bounds in G, and so the recuperation gap is always finite. As mentioned, the initial
recuperation gap of an edge e in G is equal to the difference of minimum consumption
between the lower and upper bounds of e. Again, this is not necessarily true for edges
(shortcuts) in R due to the merging of shortcut bounds. Thus, each time we add a (u,w)
shortcut we compute the recuperation gap of (u,w) anew and store the value.

We may further utilize the idea of linking with the lower bound during interval and profile
witness searches. Specifically, we first run the lower bound interval search. This yields
minimum consumption from u to each visited vertex x, denoted by minCx. A vertex
y which was not visited due to target pruning has minCy ≥ minC, where minC is the
minimum consumption of the u→ v → w link. For such a vertex we set minCy := minC.
We then run the upper bound interval search, where we “link” edges s = (x, y) ∈ R to
functions at y ∈ V as the search runs backward. Before such a link, we check whether
minCx ≥ γs (with γs being the recuperation gap of s) or whether s allows no recuperation.
If so, we link with the lower bound ` of s. More specifically, during the upper bound travel
time interval search we link with the first point of `. During the respective consumption
search we link with the last point of `. During a profile witness search we simply link with
` if minCx ≥ γs holds during the relaxation of s.

Below a specific contraction percentage we disable the target pruning of the upper bound
interval search. We may do the same for the lower bound interval search, in order to
obtain better minimum consumption values at vertices. This in turn may allow us to link
with lower bounds more often. If we disable target pruning for both searches at a specific
percent, one search will asymptotically “cover” the costs of the other search.

Contraction Caching. To avoid redundant computations we apply contraction caching,
see [BGNS10]. During the initial contraction simulations, for each pair of neighbours u and
w of v we store whether a shortcut is needed for the path u→ v → w. When we contract
the first vertex, we know which shortcuts are needed in R due to the cached information.
After the contraction we examine the neighbours of v. We first delete cached information
which concerns v, i.e. paths v → u→ x and x→ u→ v where u is a neighbour of v in R
and x a neighbour of u. And second, for each added shortcut (u,w) we mark the paths
x→ u→ w and u→ w → y. Here x and y are neighbours of u resp. w again in R. When
we simulate the contractions of u and w later on, we look for a witness only for the marked
paths: whether we need shortcuts between other neighbour pairs or not is answered by the
cached information. Any marked path that has no witness is then added to the cache of
required shortcuts.

When using contraction caching it becomes necessary to allow only witnesses which dominate
the u→ v → w lower bound strictly. Consider a standard CH preprocessing with a single
metric and two paths u→ x→ w resp. u→ y → w with equal distance. Suppose no other
paths from u to w exist. Using standard domination, we find and cache a witness for both
paths and contract both y and x without adding an u–w shortcut. In result we lose a
shortest path from u to w. As we may construct a similar scenario in our case, we require
strictly dominating witnesses.

50

5.2. Contraction Hierarchies

To fully utilize the contraction caching we may also compute the vertex contraction cost
with deltas. As explained previously, we separate the cost of each vertex into removed and
inserted cost. The initial simulated contractions set the two costs of each vertex before
any contraction. Whenever v loses a neighbour u due to a contraction, we deduct the cost
of (u, v) from the removed cost of v. Similarly when we add a shortcut (u, v) we must
increase the removed costs of u and v by the cost of the shortcut. Furthermore, during the
simulated contraction of v we add the cost of each needed shortcut to the inserted cost of
v. If v is actually contracted later on, for each needed shortcut (u, v) or (v, u) we decrease
the inserted cost of u. And last, whenever we insert a (u,w) shortcut the inserted cost of
any vertex x which also needs a (u,w) shortcut may change. To handle such situations, it
is sufficient to look for such a vertex x in the neighbourhoods of u and w in R.

Contracting Degree 1 Vertices. Dead-end vertices in G are a special case during the
CH preprocessing. Contracting a vertex of degree 1 introduces no shortcuts and requires
no witness searches. Furthermore, dead-ends which are neither s nor t are never important
for any s–t query. However, the contraction costs of vertices do not necessarily reflect the
importance of contracting dead-ends. The impact of contracting some degree 1 vertex may
not be as “positive” as contracting some other vertex with higher degree. We thus contract
all degree 1 vertices in a step before the initial simulated contractions.

Parallelization. We may apply the parallelization used by Batz et al. without any
adaptations. As this improvement does not yield a contraction hierarchy of higher quality
and only improves the preprocessing time, we omit the parallel vertex contractions. However,
when simulating the contractions of vertices {v1, . . . , vn} we parallelize the required witness
searches. The searches are trivial to parallelize and later during the contraction become
both numerous and expensive. We therefore apply this parallelization after a specific
percentage of vertices has been contracted (see Chapter 6).

5.2.2. Query

Due to the battery constraints, we employ bounds during the CH preprocessing. To answer
exact profile queries, we apply the ATCH algorithm of Batz et al. In essence, the query
consists of three steps. In the first and second steps we utilize the CH structure and the
shortcut bounds to prune provably unimportant edges in G. In the last step we run the
standard profile algorithm, using only the remaining edges of G.

We now explain the adaptations we require for the first and second steps in detail. We
begin with the first step, an inexpensive interval search, which discards shortcuts based on
scalar information. We then proceed with the second step: a more costly bound search.
And last, we discuss the use of interval search information to speed up the bound search.

Interval Search

During the interval search phase we wish to discard shortcuts based on scalar information.
The structure of the interval search remains as found in [BGNS10], Algorithm 7. Given
an s–t query, a forward and a backward search are started from s resp. t. As during a
normal CH query, both searches relax edges only to neighbours higher in the hierarchy.
The “distance” to a vertex u is an interval I ⊆ R, consisting of the minimum and maximum
travel time required to reach u. Relaxing an edge e = (u, v) sums I with the travel time
interval of e. We are then able to check whether the upper bound of the interval at v
dominates the lower bound of the summed interval. If so, e is not important for the further
steps of the query. Furthermore, a tentative upper bound r on travel time is updated
whenever a vertex is visited from both searches. Vertices in the common search space, with
a lower bound dominated by r, are also not important for the query.

51

5. Advanced Techniques

1 2 3 4

1

2

3

4

5

0

p1

p2

f1

f1
′

f2

f2
′

C

τ

(a)

1 2 3 4 5 6 7

1

2

3

4

5

0

l

r1

rn

`1
`2

C

τ

(b)

Figure 5.3.: Using a single point for the upper bound during an interval search (left),
or using two points (right). The point p1 may result either from f1 or f1

′.
Similarly, p2 as a valid bound for both f2 and f2

′. Although p1 dominates p2,
that f1 dominates f2 is not known. On the other hand, using the extreme
points of upper bounds allow some measure of domination checking. If either
extreme point r1 or rn of one bound `1 dominates the minimum point l of
another bound `2, then `1 dominates `2.

Our search differs, since we have to propagate different types of intervals: an interval in R
is insufficient for our needs. Consider a shortcut s with bounds ` resp. `. The maximum
energy consumption of ` and ` for τ ∈ R is ∞. Therefore, unlike the travel time functions
of Batz et al., a scalar interval may only constrain ` and ` poorly. Instead we require at
least two points, which define a box B (a 2D interval) in R containing the bounds of s. By
extension, B contains any tradeoff function which results from the traversal of s with any
given SoC.

For instance, we may choose (min`τ ,min`C) of ` and (max`τ ,max`C) of ` to define our intervals.
We say that (max`τ ,max`C) is the upper part of some interval and (min`τ ,min`C) is the lower
part. Whenever we link s = (u, v) to the interval [τu, τu] × [Cu,Cu] at u we obtain the
interval [τu+min`τ , τu+max`τ]× [Cu+min`C,Cu+max`C]. We must then merge this interval
into the one present at v, resulting in

[min(τu + min`τ , τv),max(τu + max`τ , τv)]× [min(Cu + min`C,Cv),min(Cu + max`C,Cv)].

While being valid, the upper parts of such intervals introduce a problem. During the
interval search of Batz et al. the upper bound may be improved. I.e. if the upper bound rv
at v is dominated by the upper bound ru of u linked with s, denoted by r′, they set the
upper bound at v to r′. Using the maximum travel time and consumption point as an
upper bound does not allow such improvements. See Figure 5.3a for an example.

We therefore choose to propagate three points instead of two. Given a shortcut s = (u, v)
with upper and lower bounds ` resp. `, we propagate the o = (min`τ ,min`C) point of ` as
before. For the upper bound ` = {r1, . . . , rn} we propagate the two extreme points, r1 and
rn. Suppose the interval at u is Iu = {ou, pu, qu}, where ou is the minimum point of the
lower bound at u, pu is the first point of the upper bound and qu the last point. To link s
to the upper part of Iu we sum the respective points, i.e. p′ = r1 + pu and q′ = rn + qu. We
wish to merge the resulting upper part into Iv = {ov, pv, qv}, the interval at v. Let τ be the

52

5.2. Contraction Hierarchies

travel time of pv and C be the consumption of qv. If either p′ or q′ dominates (τ,C), then
the upper bound at v is dominated by that of u linked with s. See Figure 5.3b. In this
case we replace the upper bound of Iv with p′ and q′, which yield a better upper bound at
v. Otherwise, we update Iv as follows. If p′ offers less travel time than pv, then we replace
pv with p′. Similarly, if q′ offers less consumption than qv we replace qv with q′. In this
manner we ensure that the upper part of Iv also contains any function at u linked with s.

We introduce further changes to the interval search of Batz et al. Namely, we alter Stall-
on-Demand, the priority queue keys and the common search space pruning. We also apply
battery constrains. Last, we use height-induced potentials just as during the interval search
of the preprocessing phase.

Stall-on-Demand. While we apply Stall-on-Demand, we do not propagate any stalling.
To check whether a vertex u may be stalled during the forward search, we examine all
shortcuts s = (v, u) where v is at least as high in the hierarchy as u. If either r1 + pv or
rn + qv (Iv linked with s) dominates ou, then the search at u may be stalled. Stalling
during the backward search functions in the same manner, where we examine outgoing
shortcuts instead of ingoing ones. Note that in the case of a partial contraction hierarchy,
Stall-on-Demand is not applied to the CH core.

Priority Queue Keys. We also require different priority queue keys than the ones used
by Batz et al.: we no longer propagate scalar intervals and we traverse shortcuts with
possibly negative costs. To amend the latter we use height induced potentials, in the same
way we do during the preprocessing phase. As for the keys, we use a combination (Chapter
6) of the travel time and consumption of the (minτ ,minC) point of our intervals.

Common Search Space Pruning. In the interval search of Batz et al., whenever a
vertex v is visited from both searches the algorithm tests for pruning. If the linked lower
bound of v is not dominated by the tentative upper bound, pruning is not possible and the
vertex is marked for cone unpacking. This is done on the fly, during the searches. Due
to the negative consumption of lower bounds in our case, and the bicriteria nature of our
searches, we preform this test after the interval search terminates. We mark vertices visited
by both searches and postpone the pruning test until both the forward and backward
searches terminate. Furthermore, we must use strict domination. We may otherwise prune
vertices which contribute to the upper bound, and in result to the s–t profile.

Battery Constrains. We also apply battery constraints to some extent. The forward
interval search may maintain consumption values in [0,M] and the backward in [−∞,M].
Any consumption value results from linking with a shortcut is clipped to the respective value
range. Both searches may clip to M, as either a forward or a backward path which requires
more consumption is infeasible. In the case of a forward path this is self-explanatory.
If the consumption of a backward path exceeds M, it must be linked to a forward path
with negative consumption in order to be feasible. This however is not possible due to
overcharging. For the same reason the forward search may cut intervals at 0. The backward
search may not: a path in the backward search with negative consumption becomes feasible
as soon as a forward path is linked to it, so that the summed consumption is non-negative.

As for undercharging, whenever the summed (forward and backward) lower bound con-
sumption at some vertex exceeds M, we prune the vertex. In addition, we prune any vertex
in the common search space with summed minimum consumption strictly higher than M.

Bound Search

The next phase of the query is the bound search, as found in [BGNS10] Algorithm 12,
lines 18 to 31. A further forward and backward search are started from the source and
target vertices. Instead of propagating scalar intervals, the searches propagate travel time

53

5. Advanced Techniques

functions. As with the interval search, a lower and an upper bound is maintained at each
vertex u. The bounds contain the travel time function to u, and are linked to the respective
bounds of e = (u, v) whenever e is relaxed. As during the interval search, if the upper
bound present at v dominates the linked lower bound, then the examined path through u
is not important for the profile search. And in the same manner a tentative upper bound
is maintained and used to prune vertices in the common search space of both searches.

Due to the shape of our tradeoff functions, intervals become unnecessarily large to contain
them. For this reason, interval searches often are unable to prune substantial portions
of the graph (Chapter 6). It is therefore even more important (than in [BGNS10]) that
we conduct bound searches in our scenario: the bounds follow the shape of the tradeoff
functions more freely than intervals.

There are a few adaptations and improvements which we require in order to conduct
bound searches with feasible running times. Similar to Batz et al. we simplify shortcut
bounds after the CH preprocessing. We must also alter the priority queue keys and employ
vertex potentials, as shortcut lower bounds allow negative consumption. And last, we take
advantage of recuperation gaps to keep the bounds at vertices tight. In the following we
explain these adaptations at length.

Battery Constraints and Common Search Space Pruning. As during the interval
search, the forward and backward bound searches may clip profile functions to the ranges
[0,M] resp. [−∞,M]. We also check which vertices in the common search space are
important after the bound searches terminate, and not on the fly. Furthermore, the
tentative upper bound which we maintain during the bound search is a tradeoff function
and not a scalar value. As mentioned before, a scalar value reflects the shape of tradeoff
functions poorly – it would thus decrease the effectiveness of the bound search. Similar to
the interval search, we employ strict domination: we link the forward and backward lower
bound of a common vertex, then test if the tentative upper bound dominates the linked
function strictly.

Bound Simplification. Without simplifying the shortcut bounds, running a bound
search is very expensive (Chapter 6). As in [BGNS10] we first simplify bounds, before
running actual queries. Batz et al. choose the Imai-Iri algorithm [II87] to simplify their
travel time functions. However, the Imai-Iri algorithm requires continuous piecewise linear
functions. I.e. no two adjacent interpolation points may share an x-axis or y-axis value.
This is not the case for our tradeoff functions, as a merge may lead to both equal travel
times or consumptions of subsequent points. We may of course choose to simplify the
continuous sections of shortcut bounds, however the degree of simplification would depend
on the number of discontinuity points.

Instead we choose to apply greedy function simplification, Section 2.6. We lose the
approximation guarantee yielded by the Imai-Iri algorithm, however we gain control over
the number of interpolation points. During the simplification of shortcut bounds, we obtain
lower resp. upper simplified versions of the lower resp. upper original bounds. Furthermore
we apply the same function simplification during the bounds search. Whenever we update
either the tentative upper bound, or the bounds at some vertex, we check whether the two
functions exceed some chosen size. If so, we simplify them.

In this manner we obtain a more detailed “interval” search. We may choose to invest more
time in the bound search by allowing more interpolation points for the upper and lower
bounds. More detailed functions will allow us to prune more edges. Or, we may conduct
a faster search with less accurate bounds. We explore the choice of simplification size in
Chapter 6.

54

5.2. Contraction Hierarchies

Priority Queue Keys and Vertex Potentials. Batz et al. use the minimum travel
time of lower bounds as a key during the bound search phase. We also choose to use the
lower bound for the priority queue keys. More specifically, we use the same keys as the
ones we use during the standard profile algorithm (Section 4.1).

In Chapter 6 we explore query times with different core sizes. Instead of fully contracting
the input graph G, we stop the contractions when only a specific percentage of vertices
is left uncontracted. Similar to the CALT algorithm [BDS+08] we wish to use potentials
during the bounds search in the uncontracted core to speed-up the search. However, we do
not use the ALT approach [BDS+08]. Instead, we use the information from the interval
search conducted in the previous phase.

During the forward bound search, whenever a core vertex v is pulled from the queue we
check whether v was visited by the backward interval search. If so, we use the minimum
travel time minτ and consumption minC values of the interval search at v to possibly prune
v. Or, whenever linking the bounds at u to a shortcut s = (u, v), we use (minτ ,minC) as
vertex potentials when propagating the linked bounds (see Section 5.1).

We prune v if the simplified forward lower bound f at v, transposed by (minτ ,minC), is
strictly dominated by the tentative upper bound of the interval search. In this case f
may not lead to an improvement of the s–t profile. We also prune v if f + (minτ ,minC)
is dominated by the tentative upper bound of the bounds search. If so, then the current
common search space contains a provably better function and the propagation of f is not
necessary.

If v was not visited by the backward search, or is not a core vertex, we apply height-induced
potentials during the linked bounds propagation.

The same potentials and pruning are utilized during the backward search. There, we use
the information from the forward interval search.

Tighter Bounds. As during the CH preprocessing, we wish to utilize recuperation
gaps as much as possible. During any direction of either the interval or the bound search,
we link the upper bounds of the search with shortcut lower bounds as often as possible.
The forward interval and bound searches may check whether the current lower bound
minimum consumption exceeds a shortcuts recuperation gap. If so, we link only with the
shortcut lower bound as during the preprocessing. The backward interval search cannot
take advantage of recuperation gaps. During the backward bound search, whenever we
link s = (u, v) to the bounds at v we may at most use the information from the forward
interval search. I.e. if u is a core vertex and was visited by the forward interval search, we
are aware of the correct minimum consumption minC required to reach u from s. If minC
exceeds the recuperation gap of s, then we may link with the lower bound of s.

In this context, a complication arises from the bound simplification. Consider a shortcut
or an edge s = (u, v) with a lower bound s and a simplified lower bound `. Suppose we
link the upper bound f at u with ` during the relaxation of s. As ` was simplified from s,
` is not an actual profile which we may realize in G. Furthermore, the simplification ` is a
lower bound of s and so the link f ◦ ` is not a valid upper bound of f ◦ s. To deal with this
problem we store two simplifications of s: a simplified lower bound ` and simplified upper
bound `. We then link f with `, obtaining a valid upper bound of f ◦ s. In other words,
we have two simplifications per shortcut lower bound, so that we may take advantage of
recuperation gaps during the CH query.

55

6. Experimental Evaluation

In Chapters 4 and 5 we presented algorithms which compute consumption and travel time
tradeoff profiles. Throughout this chapter we examine different aspects of these algorithms,
and explain the results of our experimental evaluation. We then proceed with a case study
of the tradeoff profiles we compute. Finally, we present details of our implementation.

6.1. Experiments
In this section we evaluate the algorithms introduced in Chapter 4 as well as their im-
provements discussed in Chapter 5. We start with an overview of the instances on which
we run our measurements. We then measure the running times of the basic algorithms
and discuss the results. Further we evaluate the quality of our CH and discuss different
core sizes and simplified bound sizes. Lastly we offer comparison of the merge, link and
domination operations performed by the standard profile algorithm.

Our implementations are written in C++ and compiled with the GCC 4.8.3 compiler,
optimization flags -O3. The running times are measured on a Dual 8-core Intel Xeon
E5-2670 clocked at 2.6 GHz, with 64 GiB of DDR3-1600 RAM, 20 MiB of L3 and 256 KiB
of L2 cache.

6.1.1. Problem Instances

We run our experiments on the street networks of Luxembourg and Germany, kindly
provided to us by PTV AG1. We examine two instances of the Luxembourg network which
is represented by a small graph. In our standard Luxembourg instance, denoted by lux,
a third of the edges allow multiple tradeoffs and the rest of the edges may be traversed
with only one pair of consumption and travel time. The conservative Luxembourg instance,
which we denote by luxc, only has 6 % tradeoff edges. The Germany instance (ger) has
a more extensive graph than the Luxembourg ones, and is also conservative in terms of
tradeoff edges. An overview of the three instances can be found in Table 6.1 on the following
page. As Baum et al., we use altitude data provided by the CGIAR Consortium for Spatial
Information2.

As mentioned in Chapter 3, to generate the interpolation points of our tradeoff functions we
use the consumption tables of Baum et al., [BDHS+14]. Specifically, each table entry of an

1http://www.ptvgroup.com/
2http://srtm.csi.cgiar.org/

57

6. Experimental Evaluation

Table 6.1.: Problem instances which we use throughout our experiments. The Luxembourg
graph is small and nearly all s–t pairs result in reachable queries, given a 16
kWh battery. The Germany graph is much larger and most queries may not
reach the target vertex with a 16 kWh battery. Like the second Luxembourg
instance, luxc, the Germany instance is also conservative w.r.t. edges which
allow multiple tradeoffs.
Instance Vertices Edges Tradeoff edges Avg. complexity

lux 36 457 81 950 33% 1.95
luxc 36 457 81 950 6% 1.20
ger 4 692 091 10 805 429 5% 1.15

edge in their setting is an interpolation point of the edges cost function in our setting. The
speed-consumption tables of Baum et al. are based on PHEM [HRZL09] measurements for
the Peugeut iOn vehicle, without any auxiliary consumption (e.g. due to an air-conditioner).
The standard Luxembourg and Germany instances we obtain without changing any tables.
For the conservative Luxembourg instances we allow only a single driving speed for some
road category types, sinking the average function size near that of the Germany instance.

For the travel time scale we choose seconds and for the energy consumption scale we choose
mWh (milliwatt hours).

6.1.2. Algorithms Evaluation

We begin our evaluation by measuring the running times and results sizes of the algorithms
discussed in Chapter 4, with the A* improvement of Chapter 5. The results we compare
with those of the algorithm found in [BDHS+14]. We continue the evaluation with rank
plots of our basic algorithms, again with the A* goal direction. We then consider the
running time and quality of our CH, both during the preprocessing and query phase.

For all our experiments we apply the A* improved target pruning to the basic profile
algorithms. It is also important to note that we use the timestamps technique (Section 4.1)
only during Luxembourg queries. In the case of Germany we clear the tradeoff function at
any visited vertex after each query, which increases running time. If we do not, however,
we run out of memory during the course of the queries: “outdated” functions at vertices
consume too much memory and the machines 64 GiB become insufficient.

Random Queries. To measure running times of our basic algorithms we use a standard
16 kWh battery and run 1 000 reachable queries. The source and target (s and t) vertices
we choose uniformly at random. Both our basic algorithms detect whether t is reachable
from s during the initial potential computation of A*. In the case of an unreachable t,
no actual profile search is performed and so query times consist solely of the potential
computation. Unreachable queries are thus of little interest. For this reason we choose
random vertex pairs until 1 000 queries succeed in reaching t, and take only measurements
from these “successful” queries.

We were unable to run decisive random queries with a 60 kWh battery, which is also
available at the present time. We encountered queries with prohibitive running time on the
scale of hours. Later in this section we conduct rank queries with a fictive 1 MWh battery.

In the following the label-correcting standard profile algorithm is denoted by Profile and
the label-setting algorithm is denoted by MLProfile. Aside from these two algorithms, we
also run the multi-edge Pareto based approach of Baum et al., [BDHS+14], using their

58

6.1. Experiments

Table 6.2.: Average running times and result sizes of 1 000 random reachable queries on
the Luxembourg and Germany instances, of our basic algorithms (“Profile”,
“MLProfile”) with A* and the approach of Baum et al. (“Tradeoff”, [BDHS+14]).

Algorithm Solution size Time [s]
lux luxc ger lux luxc ger

Tradeoff 798 427 1 927 2.8 0.7 148.6

MLProfile 404 307 1 475 1.4 1.0 104.0
Profile 349 295 1 534 0.5 0.4 64.3

implementation. This algorithm we denote by Tradeoff. We run the same queries and
battery capacity in order to compare running times and result sizes.

The average running times and result sizes of each algorithm are listed in Table 6.2. As seen,
the standard profile approach produces compacter results (factor 1.3 to 2.3) in shorter times
(factor 1.8 to 5.6) then the multi-edge Pareto approach of Baum et al. In the case of the
two Luxembourg instances we also observe that the more edges with actual functions exist,
the better our basic algorithms scale in comparison to [BDHS+14]: the Pareto algorithm
takes 4 times longer in the presence of 5 times more tradeoff edges, whereas the running
times of the MLProfile and Profile algorithms increase by a factor 1.4 resp. 1.3.

Note that in an instance where no edge allows a tradeoff, the profile algorithms function
similarly to the algorithm of Baum et al. Thus the more conservative the instance is, the
less beneficial the standard profile approach becomes. We also observe the difference of
result sizes of the MLProfile and Profile algorithms, as discussed in Chapter 4.

Standard Profile Keys. As discussed in Chapter 4, the priority queue keys used during
the standard profile algorithm have an impact on query times. To illustrate this, we run a
1 000 random reachable queries on the Luxembourg instance with a 16 kWh battery and
five different keys. We measure running times, vertex and edge scans as well as the cost of
the operation discussed in Chapter 3. During a domination test we count the number of
iterations (lines 5 to 11, Algorithm 3.5 on page 33). While applying the merge operation
we count the iterations (lines 6 to 17, Algorithm 3.1 on page 21) and also the intersections
between the two functions (line 11). During a half-convex link we count iterations (lines 6
to 16, Algorithm 3.3 on page 28) and secondary iterations (lines 10 to 16). As before, we
increment the counted values by 1 due to unreachable queries or cases where an operation
was not performed. The results we compare to the label setting algorithm, MLProfile.

For the standard algorithm we apply the observations from Section 4.1, i.e. after a merge we
use the travel time of the last intersection point the key denoted by key point. Specifically,
we use lexicographical sorting where travel time takes precedence. Suppose vertices u
and v with functions fu and fv, having key points pu = (τu,Cu) resp. pv = (τv,Cv), and
reside in the priority queue. The key of u is strictly less than that of u, iff τu < τv or
τu = τv ∧ Cv < Cv.

The second key type also uses the key point of functions, however it uses a linear combination
of the travel time and consumption values: 0.5 · τ + 0.5 · C. The third and fourth type use
the last resp. first point of functions as the key point with lexicographical order. For the
last key type, we examine the minimum travel time and consumption as key, also with
lexicographical order.

In the same order of key usage, the average running times of the standard profile algorithm
can be seen in Table 6.3 on the next page. As discussed in Section 4.1, choosing an
appropriate priority queue key leads to performance better than that of the label setting

59

6. Experimental Evaluation

Table 6.3.: Comparison of the standard profile algorithm with different priority queue keys
and the label setting algorithm. The averages from 1 000 random reachable
queries on the standard Luxembourg instance with a 16 kWh battery are listed.

Key type Sorting Time Vertex Edge Merge Link Domin.
[ms] scans scans cost cost cost

MLProfile — 1 426 85 648 180 437 1.2 · 107 1.2 · 106 6.2 · 106

key point lexicogr. 532 14 998 32 489 2.8 · 106 5.6 · 106 9.1 · 106

key point lin. comb. 1 079 20 826 45 833 6.5 · 106 1.0 · 107 1.6 · 107

(maxτ ,minC) lexicogr. 891 20 371 45 553 4.1 · 106 8.8 · 106 1.4 · 107

(minτ ,maxC) lexicogr. 3 867 42 825 96 370 2.1 · 107 3.6 · 107 7.7 · 107

(minτ ,minC) lexicogr. 2 465 41 500 93 275 2.0 · 107 3.5 · 107 7.4 · 107

algorithm. Choosing the key point as basis for the keys yields the best performance for
the standard profile algorithm. On the other hand, a key which poorly reflects the change
in functions after a merge, such as the minimum point of the merge result, slows down
the algorithm. This is due to the improved target pruning with A*, Section 5.1. This we
observe in the number of vertex and edge scans: the sooner a “good” profile is propagated
to t, the more functions at vertices can be discarded with the improved target pruning.
The better we choose our priority queue keys, the earlier such a profile is present at t.

Ranks. For more detailed information on the running times of our algorithms, we run
rank queries. In the standard setting of Dijkstra’s algorithm, the vertex ranks are equal
to the vertex setting order. I.e. the first settled vertex, s, has rank 0, the second settled
vertex has rank 1 and so on. We choose the same vertex ranks with travel time as the
scalar criterion for Dijkstra. We run a 100 Dijkstra searches with a source vertex chosen
uniformly at random and travel time as criterion, until all vertices are settled. For each
run we take the vertices with rank 25, 26, 27 and so on. The 100 one-to-one profile queries
for a specific rank i then consist of the 100 random source vertices, and their respective
vertex with rank 2i as target. As with the random queries, we run the rank queries with a
16 kWh battery.

Figure 6.1 on the facing page shows the rank plots for the standard Luxembourg and
the Germany instances with a 16 kWh battery. In both plots we observe the exponential
growth of running time as the query rank increases. Until ranks 212 for Luxembourg and
215 for Germany the running time of the algorithms is dominated by the scalar searches
done by A*, which compute the vertex potentials. In the Luxembourg instance no drop
in running time can be seen, as 16 kWh are sufficient to reach nearly any vertex from a
given source s. In the Germany instance this is no longer the case and after rank 218 the
running times begin to improve. From rank 221 on the running times consist solely of the
A* scalar searches: as soon as the minimum consumption backward search from t is unable
to reach s, we know that no s–t path is traversable and the query stops.

CH Preprocessing. We continue the evaluation with the preprocessing phase of our
CH. Here we use running times on the standard Luxembourg instance and the Germany
one. In the following, the core size denotes the percentage of uncontracted vertices. During
the preprocessing phase, we choose to use potentials during our profile witness searches
(Sections 5.2.1 and 5.2.1) after the core size reaches 10 %, for both instances. We parallelize
our witness searches (Section 5.2.1) after 10 % core in the Luxembourg instance, and after
33 % in the Germany one.

Table 6.4 on page 62 shows the statistics of the preprocessing phase. At different core sizes
the table lists the averages of the following metrics. The second and third columns contain

60

6.1. Experiments

25 26 27 28 29 210 211 212 213 214 215

101

102

103

104

101

102

103

104

MLProfile Profile

Rank

R
u
n
n
in

g
T

im
e

[m
s]

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222

102

103

104

105

106

102

103

104

105

106MLProfile Profile

Rank

R
u
n
n
in

g
T

im
e

[m
s]

Figure 6.1.: Rank queries of our basic algorithms with A*, 16 kWh battery. The results for
the standard Luxembourg (lux) instance can be seen above, and those for the
Germany instance (ger) – below.

the function complexity and the maximum recuperation gap (in Wh) of core edges and
shortcuts. The fourth column lists the core degree. The sixth and seventh columns give
the number of unpacked edges and the function complexity of all edges and shortcuts in
the contracted graph G′. The eight and ninth columns represent the same values, but only
for shortcuts. The last columns do not hold average values, but contain the ratio shortcuts
(and edges) in G′ to original edges of G, and the running time of the CH preprocessing so
far.

As seen, for all core sizes the overall function complexity and number of unpacked edges is
small. The recuperation gap (Chapter 5) of the Luxembourg core is higher than that of the
Germany one, as the original edges of the Luxembourg instance allow more recuperation:
2Wh on average, compared to 0.1Wh in the case of Germany. The total number of
shortcuts and edges in the contracted graph also remains below twice the number of
original edges in G. Furthermore, all of the mentioned values so far do not increase highly
between core size milestones. This is not the case for the core function complexity, the
hierarchy depth and the core degree. In the Luxembourg instance the complexity doubles
from 2 % to 1 % and triples from 2 % to 0.5 %, however we are still able to contract the
graph fully. In the case of Germany, the complexity doubles and then increases five-fold
during the transitions from 2 % to 1 % and from 2 % to 0.5 %. Combined with the steep
increase of core degree, contracting the remaining core vertices becomes very expensive –
as indicated by the time required to contract the Germany graph from 2 % to 0.5 %. Fully
contracting the Germany instance thus becomes infeasible.

61

6. Experimental Evaluation

Table 6.4.: Measurements during the CH preprocessing phase at specific core sizes. The first
four columns offer statistics of the core graph. The fifth to tenth columns relate
to the whole contracted graph. The last column indicates the total running
time of the preprocessing. Columns 2 to 4 list averages of function complexity,
recuperation gap and degree in core. Columns 6 and 7 contain average overall
complexity and number of unpacked edges of the contracted graph. Columns 8
and 9 show the same values, but only for shortcuts. Column 10 lists the ratio
of shortcuts and edges in the contracted graph to original edges.

Core size Core Core Core CH Avg. Avg. Shct. Shct. Shct. Time
cplx. gap deg depth unpk. cplx. unpk. cplx. quot.

lu
x

2.00% 23.6 9.53 6.68 17 3.57 5.82 6.80 9.26 1.80 9 s
1.00% 42.3 9.58 9.22 23 4.73 7.12 9.13 11.85 1.84 14 s
0.50% 64.2 9.82 12.45 29 6.18 8.48 12.14 14.60 1.87 30 s
0.00% — — — 79 8.71 10.66 17.38 19.10 1.89 70 s

ge
r

2.00% 11.6 2.71 6.80 18 3.24 3.13 6.15 4.38 1.77 22m
1.00% 26.0 2.97 9.75 23 4.35 3.93 8.49 6.11 1.81 46m
0.50% 62.8 3.44 14.70 31 6.29 5.62 12.58 9.73 1.84 223m
0.33% 111.2 3.70 19.11 37 8.42 7.57 16.68 13.68 1.86 1 031m

In terms of size our CH preprocessing consumes 5 to 7 times more storage than the original
graphs, for both the standard Luxembourg and Germany instances. Here we examine
the resulting memory consumption after simplifying the bounds of edges and shortcuts
(Chapter 5). A fully contracted, simplified to size 8 Luxembourg instance requires 34.2 MiB,
up from 5.2 MiB. The Germany instance contracted to 0.5 %, again with simplification size
4, grows to 3.3 GiB from 0.6 GiB.

CH Query. We proceed with the query phase, by running the exact same rank queries
as the ones we use to plot Figure 6.1 on the preceding page. As core size we use 0 % in the
case of Luxembourg and 0.5 % for Germany. We simplify bounds so that tradeoff functions
have at most 8 and 4 interpolation points, for Luxembourg resp. Germany.

The plots seen in Figure 6.2 on the next page illustrate the speed-up yielded by our CH
adaptation (denoted by CHProfile), against the standard profile with A*. It is evident
that the CH does not offer a significant speed-up. Two oracles can be seen in the same
plot, which we use to explain the low speed-up. The one denoted by PerfectOracle is the
standard profile algorithm, running on the solution space – only the edges lying on paths
which construct the tradeoff profile at t. The A*Oracle functions in the same manner, but
uses all edges which were considered by the standard profile algorithm during the s–t query.

The A* oracle rank queries yield the running time of the standard profile, without the
potential computation. This allows us to compare speed-ups at low ranks, where the
potential computation dominates running time. The perfect oracle offers the maximum
speed-up which we may achieve with edge pruning: it only considers edges which are
contained in the result. While the CH adaptation does not speed-up the queries significantly,
this is also not achieved by the maximum speed-up algorithm. In other words, the profile
results are a bottleneck for any edge pruning algorithm – the s–t profiles contain too many
paths.

Search Spaces. To better understand the poor speed-ups via edge pruning we also plot
the search space sizes of the perfect oracle, A* oracle and the CHProfile algorithm. Here,
we divide the CHProfile into two portions: space sizes offered by the interval and bound
searches. We use the same queries as in the previous paragraph, however we do not simplify

62

6.1. Experiments

25 26 27 28 29 210 211 212 213 214 215

10-2

10-1

100

101

102

103

104

10-2

10-1

100

101

102

103

104

Profile
A*Oracle

CHProfile
PerfectOracle

Rank

R
u
n
n
in

g
T

im
e

[m
s]

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222

10-2

10-1

100

101

102

103

104

105

106

10-2

10-1

100

101

102

103

104

105

106

Profile
A*Oracle

CHProfile
PerfectOracle

Rank

R
u
n
n
in

g
T

im
e

[m
s]

Figure 6.2.: Running times of of our CH adaptation. As before the Luxembourg plot is
seen above, and the Germany one below. The CHProfile is compared to the
standard profile and two fictive algorithms. The A* oracle considers only edges
relaxed by the standard profile algorithm. The perfect oracle ignores all edges
which do not lie on paths improving the s–t profile.

bounds at any time. We do so to illustrate the quality of the contraction hierarchy. See
the following paragraph for the effect of simplified bound and core sizes on the resulting
search spaces, as well as on the CH query running times.

Note that in the case of unreachable t from s, the pruning algorithms yield empty search
spaces. As the y-axis of our plots is logarithmic, we increment all search space sizes of the
Germany queries by 1 before plotting.

Figure 6.3 on the following page shows the resulting plots. As stated in Section 5.2, due to
the shape of our tradeoff functions the interval search is not able to prune well. This is
amended by the following bound search, which uses the complete CH bounds. On average,
the bound search yields no more than two times larger search spaces than those of the
perfect oracle. We also observe that the search space of the A* technique is only an order
of magnitude larger than the optimal search space.

Core and Simplified Bounds Sizes. While the search spaces produced by a CH query
without bound simplification are small, the bound search is too costly (Table 6.5). We thus
explore different simplification sizes and also different core sizes, in order to find a sweet
spot for our CH queries.

To identify a core and simplification size sweet spot we examine 1 000 random reachable
queries on the Luxembourg instance, as there we are able to contract fully during the

63

6. Experimental Evaluation

25 26 27 28 29 210 211 212 213 214 215

100

101

102

103

104

100

101

102

103

104
A*Oracle
CHInterval

CHBound
PerfectOracle

Rank

S
ea
rc
h
S
p
a
ce

#
E
d
g
es

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222

100

101

102

103

104

105

106

100

101

102

103

104

105

106
AStarProfile
CHInterval

CHBound
MaxProfile

Rank

S
ea

rc
h

S
p
a
ce

#
E

d
g
es

+
1

Figure 6.3.: Edge search spaces of the “speed-up” algorithms compared in Figure 6.2. The
CHProfile consists of an interval search and a bound search, both of which are
included in the plot. The CHProfile search space equals that of the bound
search.

preprocessing. Here we measure the CH query time and the number of edges in the search
space yielded by the bound search. Table 6.5 on the next page shows the average values
for different combinations of core sizes and simplification sizes. As seen the CH query
benefits most from the fully contracted graph, since the running times and search space
sizes degrade with the increase of the core size. We also observe that a simplification size
of 8 is optimal in all cases but the 2 % core, where the bound search is slowed by the
larger core and function sizes. Furthermore he differences in running time and search space
size are not substantial, as long as we are applying simplification. The search spaces are
smallest when we do not simplify at all (denoted by ∞), however the query times more
than double due to the expensive bound search.

Next we run 100 random reachable queries on the Germany instance, but only with a
0.5 % core size. Instead of measuring the total CH query running times, we examine just
phases of the CH query: the interval, bound and profiles searches, as well as unpacking
the necessary shortcuts. As with the Luxembourg instance we also measure the search
spaces yielded by the bound search. Table 6.6 on page 66 contains the measured times and
sizes. Clearly, without simplification a CH query on the Germany instance is not feasible.
We also note that the optimal simplification size is 4, and not 8 as with the standard
Luxembourg instance, due to the large core. As in the case of Luxembourg the number of
unpacked edges does not differ greatly when we use simplification, however a bound search
in the core graph becomes more expensive the less we simplify.

64

6.1. Experiments

Table 6.5.: A 1 000 random reachable queries on the standard Luxembourg instance, con-
tracted to different core sizes. Each line represents a specific simplification size
during the CH bound search, where ∞ denotes no simplification. The average
CH query times and the edge search spaces yielded by the bound search are
listed for each combination of core and simplification size.

Core 0% Core 0.5% Core 1% Core 2%
Smpl. Time Search Time Search Time Search Time Search
size [ms] Space [ms] Space [ms] Space [ms] Space

4 154.8 1 742 217.9 2 220 260.5 2 639 334.7 3 462
8 149.4 1 569 214.0 2 082 260.1 2 516 336.2 3 347
16 150.3 1 548 221.3 2 077 269.8 2 515 345.9 3 341
∞ 381.5 1 311 625.8 1 580 841.6 1 746 1169.0 2 212

No Undercharging. We also run rank queries with a fictive 1 MWh (megawatt hour)
battery on the Germany instance, allowing any vertex to be reached. As with the 60
kWh battery during our random queries, we encounter running times in the scale of hours.
Whenever a query takes more than an hour, we invalidate the current rank measurements
and do not run queries for higher ranks. The running times we measure in this manner are
upper bounds, as we ignore any pruning due to undercharging. I.e. in this setting we give
the worst running times of our algorithms, for each rank where no query took longer than
an hour.

Note that running times of more than an hour may be introduced by memory swapping, as
the 64 GiB of memory may be insufficient to contain the tradeoff functions to all vertices
in the graph.

Figure 6.4a on page 67 shows the result of the queries. As seen we are only able run the
first ranks 25 to 219 with a 1 MWh battery, before a query takes more than an hour. We
also no longer observe a drop in running times after rank 218, as opposed to Figure 6.2.
The speed-ups we measure here are otherwise similar to those with a 16 kWh battery on
the Germany instance, Figure 6.2 on page 63.

Memory Consumption. As noted previously, when running queries with a 1 MWh
battery it is possible that we encounter memory swapping. I.e. during a query with the
standard profile algorithm, the available memory is insufficient to store the profile functions
at the vertices. We therefore also measure the summed sizes of these functions after a rank
query finishes.

The results are depicted in Figure 6.4b on page 67. Similar to the running time, the summed
function sizes at all vertices after a query increase exponentially with query rank. Already
at rank 219 we observe runaways where the query stores a total of over 109 interpolation
points. As the progression seen in the plot implies, at rank 220 a runaway no longer fits in
the 64 GiB memory. As swapping is initiated, we stop the experiment. Note that even
without any auxiliary data structures, storing a total of 1010 interpolation points already
requires 70 GiB of memory – if a point is represented by two integers of 4 bytes each.

Operation Costs. Before concluding our experimental evaluation, we also examine the
costs of the operations during a profile query as defined in Chapter 3. We run rank queries
(16 kWh battery) with the standard profile algorithm and count the operations performed
during linking, merging and domination tests. We count in the same manner as during our
evaluation of the different priority queue keys for the standard profile algorithm.

The resulting plots can be seen in Figure 6.5 on page 68. The number of performed
operations is asymptotically similar, where the domination routine requires the most

65

6. Experimental Evaluation

Table 6.6.: A 100 random reachable queries on the Germany instance, contracted to a 0.5 %
core. Simplifying during the bound search to smaller function sizes yields bound
searches which cost less, and do not prune significantly fewer edges.

Simplified Interval Bound Profile Unpacking Search space
size search [s] search [s] search [s] time [s] #edges

4 0.011 2.7 26.5 0.008 42 302
8 0.012 4.0 26.6 0.008 42 615
16 0.013 5.5 26.2 0.008 42 079
32 0.023 7.3 27.0 0.010 43 464
∞ 0.015 493.1 12.7 0.002 17 693

operations and the merge one – the least. For future work it would therefore be most
beneficial to improve first domination tests, then linking and finally merging, in case we
choose to invest time in optimizing routines. Furthermore, although the half-convex linking
is quadratic in the worst case, we do not observe any spike in the number of linking
operations.

No Recuperation. Finally, we measure the running times of standard CH queries. So far
we have sped our queries up by applying edge pruning, i.e. our CH query prunes provably
unimportant edges for the search. During the actual query we do not take advantage of
shortcuts, as done in a standard time-dependent CH query. And as seen, an edge pruning
approach faces a bottleneck due to the result size. We therefore wish to explore a case
where we may utilize shortcut functions.

We do so by forbidding recuperation on the input instance. In this manner our preprocessing
approach computes equal upper and lower bounds for each shortcut. In other words, the
shortcut bounds represent the actual shortcut function and we may use these to run a
standard time-dependent CH query, see [BGNS10] Algorithm 5.

The results can be found in Table 6.7 on page 69. As seen, forbidding recuperation to
allow standard CH queries also does not drastically lower running times in the case of the
Luxembourg instance. To explain this we examine the operations performed during the
queries, in the same manner as in the last paragraph. We observe that very few vertices
are scanned and few edges are relaxed. However the performed merge and link operations
are nearly as costly, and so the speed-up is not high. In the case of the German instance,
we observe no improvement in the query running times. As seen, the operation costs of the
standard CH query are higher than those of the standard profile algorithm. The reason
for this is the large core of the CH and the lack of A* goal direction. In other words, the
uncontracted core is too costly.

6.2. Case Study

We conclude the evaluation chapter with an example of the consumption and travel time
profiles. For this we choose the standard Luxembourg instance, which allows more tradeoff
edges. As during the experiments we use a standard 16 kWh battery. The profile we wish
to present may be seen in Figure 6.6 on page 69.

As usual, we have both a fastest route and an energy-optimal route. We may reach the
destination after 65 minutes by consuming 11 kWh, or we may invest 87 minutes and spend
only 7 kWh. Our options however are not limited to these two routes. We identify a second
route which is 2 minutes slower than the fastest route but requires 8.5 kWh, see Figure

66

6.3. Implementation Details

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

10-2

10-1

100

101

102

103

104

105

106

10-2

10-1

100

101

102

103

104

105

106Profile
A*Oracle

CHProfile
PerfectOracle

Rank

R
u
n
n
in

g
T

im
e

[m
s]

(a) Running time comparison of our CH query, as in Figure 6.2.

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219

100

101

102

103

104

105

106

107

108

109

100

101

102

103

104

105

106

107

108

109
Profile

Rank

In
te

rp
ol

at
io

n
P

o
in

ts
#

(b) Total interpolation points of cost functions at all vertices, after query termination.

Figure 6.4.: Two experiments with a fictive 1 MWh battery on the Germany instance.

6.6c. A further route is 11 minutes faster than the energy-optimal route and costs only 0.2
kWh more.

We also see the tradeoff profile in Figure 6.6, where the grey line indicates which tradeoff
point is achieved by traversing the respective route. The form of the profile is of particular
interest, and we distinguish between three types of forms. First, the most beneficial profile
shape is a convex curve with maximal length. In such a case we may resort to routes which
are both fast and energy efficient. Second, if the profile shape is that of a diagonal line,
no tradeoff sweet spots exist but we may still meaningfully invest travel time to lower
consumption. And third, a shape of a concave curve with maximal length would imply
that no sensible tradeoffs exist: investing more travel time would not lower consumption
significantly. The profile shapes we observed were only variations of the first two types;
none were of the last type.

6.3. Implementation Details
Next, we present our choice in interpolation point representations. Although of little conse-
quence from theoretical standpoint, this choice plays an important role when implementing
the purposed algorithms. For severe numerical issues and our solutions see the Appendix,
Section A.

Tradeoff Function Representation. We choose to represent the interpolation points
of the tradeoff functions with integer values. This decision is based on experience in time-

67

6. Experimental Evaluation

25 26 27 28 29 210 211 212 213 214 215

100

101

102

103

104

105

106

107

108

100

101

102

103

104

105

106

107

108
Merge Link Domination

Rank

#
O
p
er
a
ti
o
n
s
+
1

25 26 27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222

100
101
102
103
104
105
106
107
108
109
1010

100
101
102
103
104
105
106
107
108
109
1010Merge Link Domination

Rank

#
O
p
er
at
io
n
s
+
1

Figure 6.5.: Asymptotic costs of the operations performed by the standard profile algorithm.
For each iteration of the routines in Chapter 3 a cost of one is counted. During
the merge and non-convex linking routines, an additional cost of one is added
for each computed intersection.

dependent routing, as double precision representation involves a number of problems such
as numerical singularities. We attempt to avoid these issues with an integer representation.

The first consequence of this choice is the rounding of segment intersections. Obviously,
tradeoff functions may intersect at non-integer values. Rounding such intersections down,
so that we may represent them, would introduce values which we may not construct given
the input functions. So instead we round both travel time and energy consumption up. Of
course, we still introduce an error to the result. Within a single merge, the merged function
deviates from the actual result by at most (euclidean) distance 1. Depending on slope,
however, the actual travel time and consumption differences may be substantial. Whenever
the slope is steep the travel time difference is small and the consumption difference large.
The opposite occurs when the slope is nearly 0.

The limited error of a single merge does not imply that the result error is also limited.
Successive n merges may introduce a total distance of n to the actual result. However
the average overall error remains small, due to the vast span of the resulting functions.
Table 6.8 on page 70 shows average error distances of the standard profile and label setting
algorithms. We first use the result B(t) computed by the tradeoff algorithm of Baum et al.
as a reference. For each non-dominated (by our computed profile) tradeoff point p ∈ B(t)
we compute the euclidean distance from p to ft, which results from either the standard
profile or the label setting algorithm. We then sum the total such distance and divide it by

68

6.3. Implementation Details

Table 6.7.: Standard CH queries compared to the standard profile algorithm. During the
CH queries recuperation is forbidden, which diminishes the computed profiles.

Algorithm Core Time Vertex Edge Merge Link Domin.
size [s] scans rlxs. cost cost cost

lu
x Profile — 0.54 14 998 17 573 2.8 · 106 5.6 · 106 9.1 · 106

CH 0.5 % 0.24 275 2035 2.3 · 106 3.6 · 106 3.8 · 105

CH 0.0 % 0.16 196 1263 1.6 · 106 2.2 · 106 9.7 · 104

ge
r Profile — 64.3 50 334 579 563 5.4 · 109 7.2 · 109 1.1 · 1010

CH 0.5 % 97.8 6 792 85 423 9.9 · 109 1.8 · 1010 1.6 · 109

(a) (b) (c) (d) (e)

Figure 6.6.: A profile query on the standard Luxembourg instance with a 16 kWh battery.
All routes from the origin to destination may be seen in (a). The fastest route
(b) requires 65 minutes and 69% of the battery. A marginally slower route
(c) takes 2 more minutes but only 53% battery. An energy efficient route (d)
requires 76 minutes and 44% battery. The energy-optimal route (e) in contrast
costs 87 minutes and consumes 43% of the battery.

the number of points in B(t), obtaining the average error distance per tradeoff point. As
seen, the error introduced in the result is not large.

Second, due to our choice of function representation, we may test for domination without
precision loss. Algorithm 3.5, which checks if f ∝ g, must test whether a point (τ,C) lies
above a segment s. For this we interpolate the consumption of s at τ by using the slope
of s, and compare the interpolated value with C. As consecutive interpolation points are
represented by integer values, the slopes of tradeoff functions are rational numbers. We may
therefore transform the inequality into a division free form and work with full precision.

Third, during the CH preprocessing rounding is less of an issue as we work with bounds.
We note that we round the intersections of upper and lower bounds up resp. down. The

69

6. Experimental Evaluation

Table 6.8.: Total average error (euclidean) distance d of 100 queries with 16 kWh of the
basic profile algorithms. The first column shows the error of the basic algorithms
with the tradeoff algorithm of Baum et al. as a reference. The second and third
columns show the error when comparing the two basic algorithms with one
other.

Algorithm Tradeoff Profile MLProfile

lu
x Profile 0.007 — 0.005

MLProfile 0.010 0.006 —
ge
r Profile 0.007 — 0.004

MLProfile 0.007 0.003 —

actual profile query is run on a sub-graph of the original graph and so the only error is the
one introduced by the basic profile algorithm.

70

7. Conclusion

In this thesis we examined energy consumption and travel time profiles in electric vehicle
routing. These profiles represent the tradeoff between consumption and travel time, which
is essential when searching for fast and energy efficient routes from origin to destination.

We first devised edge cost functions which reflect the consumption and travel time tradeoff
of traversing street segments with different speeds. As a representation for these tradeoff
functions we chose piecewise linear functions. To enable profile queries with Dijkstra’s
algorithm we adopted the merge operation and the domination test found in time-dependent
routing. We then defined the link operation and devised an algorithm which computes
the link result of two tradeoff functions. Here, we distinguished three cases of increasing
computational complexity, where we take advantage of convexity in the simpler cases.

Furthermore, we adopted the time-dependent profile Dijkstra as a label-correcting approach.
We also offered a label-setting algorithm, which propagates convex sub-functions instead of
whole functions. For these basic algorithms we adapted the A* technique in order to handle
negative consumption costs, to allow target pruning and to direct the search. In addition,
we devised a method of deriving user speed directions in the case of the label-setting
algorithm.

To speed up the profile searches further we examined the time-dependent adaptation of
the CH algorithm. We refitted the preprocessing phase of this CH variant, to remedy the
problem of state-of-charge dependent shortcut profiles. Specifically, we utilized shortcut
bounds and adjusted the preprocessing to work with these. We introduced a new term
to the vertex contraction costs, which keeps the bounds tight. We also took advantage
of path prefixes, to further minimize the distance between lower and upper bounds. For
the query phase we devised a new interval search and introduced on-the-fly simplification
during the bound search.

Finally, we evaluated our algorithms experimentally. We compared our basic algorithms
with an existing approach in terms of running time and solution size. We then examined the
speed-ups of our CH adaptation and identified a bottleneck of edge pruning based speed-up
techniques in our scenario. For this we compared search space sizes of our algorithms and
an optimal oracle. Furthermore we examined the memory consumption and performed
operations of the standard profile algorithm. And last we discussed the representation we
chose for the interpolation points of our profile functions.

Overall, the profiles we discussed offer important information such as the existence or lack
of fast and energy efficient routes. Compared to previous works which consider the tradeoff

71

7. Conclusion

between energy consumption and travel time, our profile approach yields exact queries
which run faster and allow a wider range of driving speeds per street segment. And last, in
our setting we observed that the CH speed-up technique is not far superior to the A* goal
direction.

Future Work
Possible future work of this thesis branches out in several directions. First, consumption and
travel time profiles are not restricted to piecewise linear functions. In [Zün14] hyperbolas
are briefly examined for the modelling of charging functions. Zündorf observes that linking
hyperbolic functions may be done in constant time, a fact from which our label-setting
algorithm may benefit. Exploring other function representations may likely be beneficial.

Second, the speed-ups we achieve in this thesis are not sufficient. To improve query times
a technique which uses shortcut profiles to skip vertices, and not only to prune edges, is
likely required. A possible approach would be to utilize shortcut profiles where both travel
time and the state of charge are a parameter. If it is possible to avoid complex merge and
link operations which work in R2, such an approach may be feasible.

Moreover, charging stations may be integrated to allow greater cruising ranges. Naively, a
loop may be introduced with a function which allows “charging” by mapping charging time
to negative consumption. As seen in our evaluation, extensive cruising range quickly leads
to large memory consumption and very long query times. Thus if charging is introduced to
the algorithms, a suitable speed-up technique is required.

The modelling may also be refined by taking speed transition costs into account, for instance
turn costs integration. Our linear interpolation involves traversing a street segment with
two different speeds. The transition may therefore cost extra energy, or allow energy
recuperation to some extent. Taking this into account would lead to more accurate and
complete tradeoff profiles.

And last, heuristics may be explored. As observed, query times are not suitable for an
interactive application and in no way sufficiently low for a server scenario. A likely viable
heuristic is to use function simplification, in order to retain the general form of the tradeoff
but greatly reduce the number of used interpolation points. Another heuristic of interest
may compute only the fastest feasible route from origin to destination, while still taking
variable driving speed into account. E.g. the label setting approach may stop the query as
soon as the target vertex is reached. Building upon this idea may then yield feasible query
times, possibly even in the server scenario.

Acknowledgment
We would like to thank Strasser for identifying the quadratic worst case example used in
the proof of Lemma 3.9.

72

Bibliography

[BDHS+14] Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor,
and Dorothea Wagner. Speed-consumption tradeoff for electric vehicle route
planning. In Stefan Funke and Matúš Mihalák, editors, 14th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Sys-
tems, volume 42 of OpenAccess Series in Informatics (OASIcs), pages 138–151,
Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[BDPW13] Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-
optimal routes for electric vehicles. In Proceedings of the 21st ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Sys-
tems, SIGSPATIAL’13, pages 54–63, New York, NY, USA, 2013. ACM.

[BDS+08] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik
Schultes, and Dorothea Wagner. Combining hierarchical and goal-directed
speed-up techniques for dijkstra’s algorithm. In CatherineC. McGeoch, editor,
Experimental Algorithms, volume 5038 of Lecture Notes in Computer Science,
pages 303–318. Springer Berlin Heidelberg, 2008.

[Bel56] Richard Bellman. On a routing problem. Technical report, DTIC Document,
1956.

[BGNS10] Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter Sanders.
Time-dependent contraction hierarchies and approximation. In Paola Festa,
editor, Experimental Algorithms, volume 6049 of Lecture Notes in Computer
Science, pages 166–177. Springer Berlin Heidelberg, 2010.

[CM85] H.W. Corley and I.D. Moon. Shortest paths in networks with vector weights.
Journal of Optimization Theory and Applications, 46(1):79–86, 1985.

[DGNW13] Daniel Delling, Andrew V Goldberg, Andreas Nowatzyk, and Renato F Wer-
neck. Phast: Hardware-accelerated shortest path trees. Journal of Parallel
and Distributed Computing, 73(7):940–952, 2013.

[DGPW11] Daniel Delling, AndrewV. Goldberg, Thomas Pajor, and RenatoF. Werneck.
Customizable route planning. In PanosM. Pardalos and Steffen Rebennack,
editors, Experimental Algorithms, volume 6630 of Lecture Notes in Computer
Science, pages 376–387. Springer Berlin Heidelberg, 2011.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[DSW14] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction
hierarchies. In Joachim Gudmundsson and Jyrki Katajainen, editors, Experi-
mental Algorithms, volume 8504 of Lecture Notes in Computer Science, pages
271–282. Springer International Publishing, 2014.

73

Bibliography

[DW09] Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning.
In RavindraK. Ahuja, RolfH. Möhring, and ChristosD. Zaroliagis, editors,
Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes in
Computer Science, pages 207–230. Springer Berlin Heidelberg, 2009.

[EFS11] Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal route planning
for electric vehicles in large networks. In AAAI, 2011.

[Gei08] Robert Geisberger. Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. Diplomarbeit, 2008.

[GH05] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A
search meets graph theory. In Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’05, pages 156–165, Philadelphia,
PA, USA, 2005. Society for Industrial and Applied Mathematics.

[GP14] Michael T. Goodrich and Pawel Pszona. Two-phase bicriterion search for
finding fast and efficient electric vehicle routes. CoRR, abs/1409.3192, 2014.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction hierarchies: Faster and simpler hierarchical routing in road networks.
In CatherineC. McGeoch, editor, Experimental Algorithms, volume 5038 of
Lecture Notes in Computer Science, pages 319–333. Springer Berlin Heidelberg,
2008.

[HF14] Frederik Hartmann and Stefan Funke. Energy-efficient routing: Taking speed
into account. In Carsten Lutz and Michael Thielscher, editors, KI 2014:
Advances in Artificial Intelligence, volume 8736 of Lecture Notes in Computer
Science, pages 86–97. Springer International Publishing, 2014.

[HNR68a] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics, IEEE
Transactions on, 4(2):100–107, July 1968.

[HNR68b] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. Systems Science and
Cybernetics, IEEE Transactions on, 4(2):100–107, 1968.

[HRZL09] Stefan Hausberger, Martin Rexeis, Michael Zallinger, and Raphael Luz. Emis-
sion factors from the model phem for the hbefa version 3. Report Nr. I-20/2009
Haus-Em, 33(08):679, 2009.

[II87] Hiroshi Imai and Masao Iri. An optimal algorithm for approximating a
piecewise linear function. Journal of information processing, 9(3):159–162, jan
1987.

[Jaf84] Jeffrey M. Jaffe. Algorithms for finding paths with multiple constraints.
Networks, 14(1):95–116, 1984.

[Joh73] Donald B. Johnson. A note on dijkstra’s shortest path algorithm. J. ACM,
20(3):385–388, July 1973.

[KS93] David E. Kaufman and Robert L. Smith. Fastest paths in time-dependent
networks for intelligent vehicle-highway systems application. I V H S Journal,
1(1):1–11, 1993.

[LL04] James Larminie and John Lowry. Electric Vehicle Modelling, pages 183–212.
John Wiley & Sons, Ltd, 2004.

74

Bibliography

[MD79] R Garey Michael and S Johnson David. Computers and intractability: A guide
to the theory of np-completeness. WH Freeman & Co., San Francisco, 1979.

[Mil12] Nikola Milosavljević. On optimal preprocessing for contraction hierarchies.
In Proceedings of the 5th ACM SIGSPATIAL International Workshop on
Computational Transportation Science, IWCTS ’12, pages 33–38, New York,
NY, USA, 2012. ACM.

[OR90] Ariel Orda and Raphael Rom. Shortest-path and minimum-delay algorithms
in networks with time-dependent edge-length. J. ACM, 37(3):607–625, July
1990.

[SH76] Michael Ian Shamos and Dan Hoey. Geometric intersection problems. In
Foundations of Computer Science, 1976., 17th Annual Symposium on, pages
208–215. IEEE, 1976.

[Sto12] Sabine Storandt. Quick and energy-efficient routes: Computing constrained
shortest paths for electric vehicles. In Proceedings of the 5th ACM SIGSPATIAL
International Workshop on Computational Transportation Science, IWCTS
’12, pages 20–25, New York, NY, USA, 2012. ACM.

[VW93] Maheswari Visvalingam and JD Whyatt. Line generalisation by repeated
elimination of points. The Cartographic Journal, 30(1):46–51, 1993.

[Zün14] Tobias Zündorf. Route planning for electric vehicles with realistic charging
models. Master’s thesis, 2014.

75

Appendix

A. Appendix
A.1. Numerical Issues

The integer function representation we utilize does not come without numerical problems,
even though it avoids most of the typical such problems. We now present issues which
break our implementations, instead of simply causing deviating results.

Merge Rounding. We start with a mild and expected issue. Whenever we merge two
tradeoff functions, we must test whether two segments intersect. For this, we compute a line
intersection and test whether it lies on both segments. At times, an inner intersection is in
close proximity to one of the segment end-points and due to floating point imprecision lies
outside one segment. This is a false negative which causes the merge algorithm (Chapter
3) to ignore an intersection. As a result, an entire section of the dominating function
directly after the intersection is ignored. An improvement is therefore skipped, leading to
an incorrect result. To avoid this problem we only compute intersections of segments with
intersecting bounding boxes. We then test if either the intersection point or the rounded
intersection point lies on the segments. An improvement would be to use the half-plane
test, which would allow us to check whether two segments intersect without error.

No Termination. A more subtle problem causes an endless loop in the standard profile
search (Chapter 4). The loop results from improvement propagation combined with the
fact that we round intersections up. Consider vertices u and v with staircase-like profiles fu
resp. fv, where fu and fv intersect at some points. Suppose the first half (w.r.t. τ axis) of
fu is computed correctly and in the second half rounding occurred. Suppose the opposite
for fv. A u–v path lands on the correct portion of fu over the incorrect one of fv. The
same is done by a v–u path and the correct portion of fv resp. incorrect portion of fu.
Given choice profiles on both paths, each time an improvement is propagated from v to u,
and then back from u to v, the correct and incorrect portions of the two tradeoff functions
swap. We solve this problem by testing, after each merge, whether the original function
at the vertex dominates the merge result transposed by the point (1, 1). If so, we ignore
the improvement. Of course, this introduces further error to the algorithm. Note that this
error is also included in Table 6.8.

Rounding Lower Bounds. As mentioned, during the CH preprocessing we round
lower bounds down. Whenever we do so during the half-convex linking operation, we may
compute incorrect results. Specifically, when merging two adjacent links `1 and `2 the
merge stops at the first found intersection. If `2 has a portion which is rounded down, it is
possible for `1 to intersect this portion. The linking of `1 will stop at this intersection and
miss a portion of `1 which is contained in `1 ∪ `2. This problem results in cases where the
lower bound of a shortcut does not dominate the upper bound of the same shortcut. A
possible solution to this problem is shifting the lower bound down by (0,−1), whenever
this occurs. However, we did not experience largely deviating results during the CH queries
and so chose to omit such shifts.

77

7. Appendix

Domination Tests. And last, whenever we check for domination we must multiply
numbers. As soon as we start using function simplification, the gaps between interpolation
points become very wide. At times, the multiplication results may no longer be contained
by standard 32 bit integers and require larger containers (such as longs). When ignored the
problem leads to computing wrong bounds: the domination test may give a false positive,
causing the algorithm to skip function improvements. The latter steps of the CH query
(Chapter 5) in turn become incorrect.

78

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Outline

	2 Preliminaries
	2.1 Mathematics
	2.2 Graph Theory
	2.3 Time-Dependent Routing
	2.4 Electric Vehicle Routing
	2.5 Contraction Hierarchies
	2.6 Time-Dependent Contraction Hierarchies

	3 Profile Operations
	3.1 Merge Operation
	3.2 Link Operation
	3.2.1 Convex Case
	3.2.2 Arbitrary Case

	3.3 Domination Test

	4 Basic Approach
	4.1 Label Correcting
	4.2 Label Setting

	5 Advanced Techniques
	5.1 A* Search
	5.2 Contraction Hierarchies
	5.2.1 Offline Phase
	5.2.2 Query

	6 Experimental Evaluation
	6.1 Experiments
	6.1.1 Problem Instances
	6.1.2 Algorithms Evaluation

	6.2 Case Study
	6.3 Implementation Details

	7 Conclusion
	Bibliography
	Appendix
	A Appendix
	A.1 Numerical Issues

