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Abstract

This work introduces the concept of min-wise independent permu-
tation families and their use for various applications to handle large
data. We analyze the theory and implementation of an existing library
and document its optimization and testing. Furthermore we give some
hints to recent developments in the field of minwise hashing and related
concepts that eventually could lead to faster implementations.
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1 Introduction

In the analysis and application of hashing functions a property often resorted
to is that, given the sets A and B, the hashing function considered is chosen
at random from all possible functions A — B. For a “classical” example see
the work of Knuth on Sorting and Searching [8]. However the specification
of such a function needs |A|log|B| bits!, which is too much for most practical
situations, where hashing is usually used to handle the big set A efficiently.
This led to the concept of universal hashing. Although this notion is used
in slightly different meanings,? it generally implies the concept of choosing
from a smaller set of hashing functions that behave under certain conditions
given in most situations as if they were selected randomly from all possible
functions. For example in [2] universal hashing functions are defined as
functions for which holds Pr(h(xz1) = y; and h(xzs) = y2) < ﬁ where
h € A — B, for any z; and x5, y; and y, arbitrary. There exist functions
that have this property — which would also result from truly random selection
— and that have only size O(|B|?). Oestlin and Pagh in [10] included a list
of pertinent publications concerning such families.

Following these results Broder, Charikar, Frietze and Mitzenmacher in
[2] define min-wise independent permutations. They are useful for example
in streaming algorithms, (e.g. estimating the rarity of elements in a data
stream) or elsewhere when a huge amount of data is to be dealt with (e.g.
estimating the similarity of web-pages by search engines). We will present
these two examples more circumstantially below. Their practicability stems
from the fact that in respect to certain qualities, which often are the only
ones really required by realistic applications, they also behave like truly ran-
dom functions. This enables their use in approximation schemes exploiting
the fact that noticeable particularities of their results allow to infer certain
properties of their input data: Random functions with random input should
have a more or less equally distributed result. If now certain results are
more frequent than others and the function behaves as if it was random it
can only mean that the input has certain characteristics that lead to the
observed behavior.

In section 2 we give exact definitions and preliminaries for those func-
tions. Section 3 presents some sample applications of minwise independent
permutations. In section 4 we present the analysis and optimization of a li-

Lef. [2] p. 2

2Carter and Wegman who introduced this term in [5] applied it to functions with certain
defined properties whereas for example according to the NIST Dictionary of Algorithms
and Data Structures [7] it only denotes the random choice from an arbitrary set of hash
functions.



brary implementing such a family whose testing and application is described
in section 5. Finally we present some recent results in section 6 that could
lead to faster implementations.

2 Minwise independent permutation families

We intend with [n] the set of natural numbers {1...n} and with S, the set
of all possible permutations on this set. A family of permutations F C §,, is
defined to be min-wise independent if for any set X C [n] and any =z € X,
when 7 € F is chosen at random we have

Pr(min{(X)} = x(x)) = 57 (1)

or in other words any element in X has an equal chance of being mapped to
the minimum by the permutation chosen.

For practical purposes it is not necessary that this property holds exactly.
Approzrimately min-wise independent permutations are used instead. These
are families F C S, for which holds for any set X C [n] and any z € X,
when 7 € F' is chosen at random

Pr(min{r(X)} = n(z)) % < ﬁ (2)

where € is called the relative error. We are also seldom interested in permu-
tations of the entire universe (i.e. the set [n]) or large portions of it. Instead,
we want to calculate the position of only a few values after the permutation.
Thus, we define a family F C 5, of permutations to be min-wise independent
for sets up to size k if for any set X C [n] with |X| < k and any = € X,
when 7 € F is chosen at random

Pr(min{r(X)} = n(z)) = X <k (3)

| X

The exact min-wise property (1) needs exponential size, whereas the ap-
proximate property (2) can be satisfied by polynomial size families,® that
hence can be implemented more efficiently. Also the restriction of the set
size allows saving of computation time?*.

3see [2] for more specific results
“Note the factor k in the complexity data in section 4



3 Sample Applications

To give a better intuition of the benefits of the aforementioned properties
we present two applications of min-wise independent permutations. We de-
scribe the techniques always in terms of exact independence to simplify the
argument, an implementation however would use permutations with both
relaxations.

3.1 Estimating the similarity of web pages

The search engine Altavista applied min-wise independent permutations to
get an efficient estimate of the similarity of the pages in its cache. Although
we do not know of any current application of this concept its simplicity makes
it an alternative being worth to be considered to handle huge amounts of
documents. This was the original application that led to the idea of min-wise
independent permutations as described in [2| whereon we base the following
presentation. Similar ideas however have been conceived independently in
several works, see [4] p.20 for an overview.

The relevant property of min-wise independent permutations is: given
two sets A and B, w chosen at random from a min-wise independent family

B |AN B|

Pr(min{n(A)} = min{r(B)}) = AUD (4)

From (1) we have that for a fixed element the probability of becoming
minimum is the inverse of the set size which is now \ATlBr As min{m(A)} =
min{m(B)} if and only if the minimum is in AN B we have |A N B| possible
elements and (4) follows.

It is relatively easy to transform web pages into subsets of [n] by asso-
ciating each word with a certain number. The ratio }’:Bg} can then be used
as a sensible measure of their similarity. There exist more refined methods
for constructing subsets of [n] from documents for the use with this measure,
for an example see [3]. Now it suffices to compute for each document the set
D C [n] and then calculate and store the list (min{m(D)}...min{m(D)}).
The fraction of common elements in the corresponding lists of two web pages
can then be used as an approximation of their similarity. The number [ of
permutations used depends on the desired accuracy of the estimate. The
authors of 2] suggest using 100 permutations. So the comparison of only
100 integer values is enough to give an estimate of the similarity, which is a
very small effort compared to dealing with the documents.




3.2 Estimating rarity of elements in data streams

M. Datar and S. Muthukrishnan present an algorithm to estimate the rarity
of elements in a data stream whereof we want to give a basic sketch. For
details see [6].

Very generally speaking, streaming algorithms get as input a stream of
data items whose summed size exceeds the available memory and thus have
to be processed “on the fly” with limited time and space per item. For a
good introduction on these algorithms see [9]. As it is our intention to show
the efficiency of computations using min-wise independent permutations we
will present the algorithm on a level of abstraction such that a thorough
knowledge of streaming algorithms is not necessary. This algorithm is also
presented because enabling its implementation was the primary purpose of
our optimization of the permutation library described below.

Let S be a multiset containing all the elements of the stream. Let D be
the set of all distinct elements in S and R, = {i|i € D, multiplicity of 7 in S

is a}. Then the a-rarity is the ratio p, := ‘ﬁ)"” which we want to compute.

Since R, C D holds: }gzgg} = ‘ﬁ' = po and thus, using again (4), we
have Pr( min{m(R,)} = min{m (D)} ) = p.. So again simply maintaining
hash values suffices for an estimation. Moreover, 7(R,) = m(D) if and only
if the element of D that became minimum after permutating is contained in
R,. Accordingly, we need only to calculate the values for D. This yields the

following algorithm:

Given an input stream of data items aq, ao, ...,
e Chose k permutations 7y...7y

e Per permutation we maintain a counter ¢;(¢) and a variable 7} :=
Ming; j<i{mi(a;)} that stores the current minimum result of the j-th
permutation.

e For each new data item a; the permutations are calculated. If a value
m;i(ay) is strictly smaller than the current minimum 7 (¢t — 1) it is up-
dated and the corresponding counter ¢;() is set to zero

e When the current minimum is observed again (i.e. m;(a;) = 7} (t — 1))
the corresponding counter is incremented

Now the fraction of counters that have value «,
Pa(t) == {1 <1< k,¢(t) = a}|/k is an approximation of the a-rarity p,.
The number k of permutations used depends on the desired accuracy of the
estimate.



4 Optimization of a min-wise independent per-
mutation library

At the time of writing, the only freely available implementation of a min-wise
independent permutation family we know of is by Jerry Zhao®, which offers
a C++ library as well as some code to test the statistical properties. It has
a good space complexity of O(loglog n+log k+ log%) and a time complexity
of O(n(loglog n+log k+log+)) for calculating the position of one value after
the permutation on [1...n] with independence restricted to sets of size k& and
error €. However, it is too slow for practical purposes; its optimization will
be described in the following section.

4.1 Analysis of the implementation

The permutations are implemented using a combination of several k-wise
independent hashing functions. Such a hashing function behaves like a truly
random function on sets up to size k. They also are implemented with a
certain error € permitted, in analogy to the permutations. Each of those
functions decides a certain number of bits of the permutation value, where
this number is reduced recursively, allowing the parameter k£ — and thus space
and time cost — to be less for each recursion.

For constructing a permutation on [n], restricted to kpern, With error e,
we use a certain number of hash functions h; that map from [n] to a set [r;].
The function h, is restricted to kpe,m, function h; iy to h;/2. The sets [r;] are
chosen so that log r; > 2—1—,%_ (log% + log log kperm). Broder, Charikar, Frieze
and Mitzenmacher show’ that this yields the desired permutation, taking the
result of h; as the most significant bits of the permutated value, that of h,
as the second most significant bits and so on recursively until all required
bits are calculated. That way also the required number of hashing functions
is determined.

This construction is implemented in the class mwPermutation, whereas
the k-wise independent hashing functions are implemented in the class
kwHashFunction. The right hand side (classes drawn black) of figure 2
shows the composition of the library in UML. Profiling indicates that most
of the computation time is used for calculating the single k-wise indepen-
dent hashes, whereas combining them does not offer much possibility for
optimization. So the focus of the remainder of this section will lie on these

Shttp://www.icsi.berkeley.edu/~zhao/minwise/
6ibid.
[2] p-12 et seqq.



computations.

The k-wise independent hashes are constructed following [1] using a linear
feedback shift register(LFSR):

Given two bit-sequences, the random start sequence s = s, ..., S;,—1 and
the feedback rule f = fo, ..., fm—1, Where f(t) :=t™ + ¥75" f; - ¥/ is an irre-
ducible polynomial, they generate a shift register sequence r = 1, ...rp:

r; = s; for i <m
ri = 200 fi Ticmey for i >m

The n-bit hash-value of a number x is calculated by interpreting the n
bits from r,., onwards as digits of a binary number. The length m depends
on the desired size and accuracy of the hashing function: For a shift register
sequence of p bits which are e-away (in L; norm) from k-wise independence
m = 2([£ + logL + log(1 + @)1) is necessary.

This is implemented in the class LFSR. Profiling reveals that the calcula-
tion of this sequence takes up the major part of computation time. Figure
1 shows the output of the gprof profiler® for the permutation of 4000 values
from a test data set, that would also be used to test streaming algorithms as
the one described above. The permutations were on [0..2%? — 1] restricted to
pairs (k = 2) with error € = 3—12, choosing also here a configuration common
the application in the algorithm of section 3.2. __moddi3 is a libc-function,
which implements modulus calculations for long long int variables, so we
didn’t see much room for improvement there. However, we succeeded in
omitting a huge part of these costly calculations, as described below. Nearly
all of the calls of __moddi3 are in LFSR: :getBits, which thus takes up vir-
tually all of the computation time, so the optimization has to focus on this
function.

The function LFSR::getBits implements the calculation of the LESR
sequence, using an array of length m + 1, which is sufficient as the preceding
m bits are enough to calculate the next bit in the sequence, which can be
stored in the (m + 1)th position. A pointer modulo m circles on the array
thus simulating an infinite sequence. This is a very memory efficient design,
especially considering that the shift register sequence can theoretically grow
up to a length of 2% bits, which cannot be stored. However, the calculation
has to restart every time the function is called from the first m bits, i.e. the
start sequence s. So the first optimization step is to include a storage for

8The names of the functions where edited for better readability. All tests concerning
computation times where performed on a Celeron 700 MHz with 192 MB RAM, linux
operating system and GCC 3.3.6



intermediate results.

Flaches Profil:

Jedes Muster z&hlt als 0.01 seconds.

% kumulativ Selbst Selbst Gesamt

Zeit seconds seconds Aufrufe s/Aufru s/Aufru Name

72.44 608.51 608.51 __moddi3

27.54 839.82 231.31 39990 0.01 0.01 LFSR::getBits

0.01 839.92 0.10 39990 0.00 0.01 mwPermutation::map

0.00 839.95 0.03 1 0.03 231.45 testfile

[...]

0.00 840.01 0.01 167 0.00 0.00 irreduciblePolynomial::iptest
[...]

0.00 840.02 0.00 39990 0.00 0.01 kwHashFunction::hash

0.00 840.02 0.00 7267 0.00 0.00 RNGImplementation::next

0.00 840.02 0.00 10 0.00 0.00 mwPermutation::mwPermutation
0.00 840.02 0.00 10 0.00 0.00 kwHashFunction::kwHashFunction
0.00 840.02 0.00 10 0.00 0.00 irreduciblePolynomial::getBits
0.00 840.02 0.00 10 0.00 0.00 irreduciblePolynomial::irreduciblePolynomial
0.00 840.02 0.00 10 0.00 0.00 LFSR::LFSR

0.00 840.02 0.00 1 0.00 0.00 RNG::set_seed

0.00 840.02 0.00 1 0.00 231.45 main

Figure 1: Profiling results of the original implementation

4.2 The landmark storage

We decided against a results cache in favor of a design more independent of
the locality of potential application data. The basic idea is to periodically
store blocks of m bits, which we call landmarks. These allow to resume the
calculation at the respective position in the shift register sequence, omitting
the need of restarting from the very beginning.

The landmark storage is implemented as a separate class 1lmStorage,
which has at its center a bitvector-object that wraps a vector from the
Standard Template Library, conveniently allowing to store and retrieve single
bits. The class LFSR is extended by a 1mStorage member object that offers
five public functions:

e checkRecord() checks if the current position in the shift register se-
quence is part of a landmark block and thus has to be stored. It also
checks if enough bits will be calculated to fill the landmark entirely.

e recordValue() saves the calculated value in the landmark storage.

These two functions are included in the loop calculating the LFSR values.
So every time a request is made for bits with an index higher than the last
landmark block, the storage is automatically extended.
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e getMax () returns the position in the shift register that corresponds to
the last landmark block. If calculations are below this point,
checkRecord()is disabled as no new landmark blocks will be passed.

e getPos() Given the position of the requested bits, this function re-
turns the position of the next landmark below where calculation can
be resumed to arrive at the desired bits.

e load() loads the landmark indicated by getPos() into the array and
sets all pointers and index variables to the correct values to resume
calculation.

These functions are called at the very beginning of the function calculating
the LFSR sequence, assuring that only the minimum of computation needed
is performed.

The interface of the LFSR class remains unchanged, as well as the other
classes of the min-wise library. Figure 2 shows the integration of the new
classes (drawn in blue) in UML. The only change for the user is the need to
specify an additional constant LANDMARK_DISTANCE, which specifies in blocks
of size m the distance between the landmarks; i.e. a value of 1000 means
that every 1000th block of m bits in the LFSR sequence is stored. Obviously,
the gain in computation time increases with a smaller distance, but memory
usage increases. A “good” value for this parameter depends on two parame-
ters: the amount of memory which the user wants to dedicate to the program
and the highest position of requested bits in the sequence, which is in the
paradigm of streaming algorithms unknown to the program as a matter of
principle. Thus we decided to leave the decision to the user. An alternative
would be to only ask for (or even estimate) the amount of available memory
and spread the landmarks evenly, assuming that the entire sequence will be
needed.

4.3 Complexity analysis

The running time of the two function calls included in the sequence calcu-
lation, checkRecord() and recordValue(), is independent of input values.
The reading of m bits at the beginning to resume the calculation is the same
effort as reading the start sequence, plus a constant time to compute the
position of the landmark at which to resume. Thus the time complexity of
the calculation remains the same.

The space required is the amount needed by the original implementation
plus m times the number of landmark blocks stored, which is limited by the

11
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Figure 2: UML-Diagram of the optimized library. Existing classes drawn in
black, added classes in blue.

Flaches Profil:

Jedes Muster zdhlt als 0.01 seconds.
Selbst Selbst Gesamt

%

Zeit

72.
26.
.36
.32
.08

[l [l
QO+ OO O

[=lNe e Ne N

[l

QO OO OO0 OO

.02
.02
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

.00
.00

27
86

]

]

]

38.
52.
52.
52.
53.

53.
53.

53.
53.
53.
53.
53.

53.
53.
53.
53.
53.
53.
53.
53.
53.

kumulativ
seconds

37
63
82
99
03

06
07

09
09
09
09
09

09
09
09
09
09
09
09
09
09

seconds Aufrufe s/Aufru s/Aufru Name

38.37

14.26 39990 0.00 0.
0.19 39440 0.00 0.
0.17

0.04 39990 0.00 0.
0.01 39880 0.00 0.
0.01 167 0.00 0
0.00 403870 0.00 0
0.00 403100 0.00 0
0.00 40100 0.00 0
0.00 39990 0.00 0
0.00 7267 0.00 0
0.00 10 0.00 0
0.00 10 0.00 0
0.00 10 0.00 0
0.00 10 0.00 0
0.00 10 0.00 0
0.00 10 0.00 0
0.00 1 0.00 14
0.00 1 0.00 0
0.00 1 0.00 14

Figure 3: Profiling results
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memory and the constant LANDMARK_DISTANCE. Accordingly also the space
complexity remains in the same magnitude.

4.4 Removing modulus calculations

Figure 3 shows the profiling output after inclusion of the ImStorage-Object
when called with the same parameters as used for figure 1.

It is possible to observe the fast performance of the 1ImStorage functions
and the reduced amount of LFSR computation time (here quite significantly
using a landmark distance of only ten, which usually is too memory consum-
ing for practical purposes). Yet, the corresponding function still consumes
most of the time due to its calling of the costly __moddi3 function for the pur-
pose of computing index positions in the array storing the LFSR sequence:
The position in the array is the position in the sequence modulus m. We
replaced these calls by if-then statements. To demonstrate the efficiency
of this technique we used the toy programs shown in figures 4 and 5 that
perform the same computation.

int k=0;
int a=0;

for(long long int i=0; i<NUM_IT; i++){
a+=(i%2);
}

Figure 4: Loop using modulus

long long int k=0;
int a=0;

for(int i=0; i<NUM_IT; i++){
k++;

if (k==2){k=0;}
at+=k;

Figure 5: Loop using if-then statements

13



Even though they show the worst case using modulus 2 which means that

in figure 5 the variable k has to be reset the largest number of times possible
(and the condition k==0 changes very often between true and false irritating
branch prediction mechanisms) the loop in figure 5 took 25.240 seconds to
compute compared to 44.650 seconds for the loop in figure 4 (1.024 - 10°
iterations). Thus all of the modulus calculations where replaced with if-then
statements, apart from initially computing the start values from the function
parameters. Those where stored in additional variables reducing further the
amount of __moddi3 calls.

Flaches Profil:

Jedes Muster zdhlt als 0.01 seconds.

% kumulativ  Selbst Selbst  Gesamt
Zeit seconds seconds Aufrufe s/Aufru s/Aufru Name
93.24 4.14 4.14 39990 0.00 0.00 LFSR::getBits

2.25 4.24 0.10 __moddi3

1.80 4.32 0.08 39440 0.00 0.00 LmStorage::load

0.90 4.36 0.04 39990 0.00 0.00 mwPermutation::map

0.68 4.39 0.03 403870 0.00 0.00 LmStorage::recordValue

0.45 4.41 0.02 167 0.00 0.00 irreduciblePolynomial::iptest
0.23 4.42 0.01 403100 0.00 0.00 LmStorage::checkRecord

0.23 4.43 0.01 39880 0.00 0.00 LmStorage::getPos

[...]

0.00 4.44 0.00 40100 0.00 0.00 LmStorage::getMax

0.00 4.44 0.00 39990 0.00 0.00 kwHashFunction::hash

0.00 4.44 0.00 7267 0.00 0.00 RNGImplementation::next

[...]

0.00 4.44 0.00 10 0.00 0.00 mwPermutation::mwPermutation
0.00 4.44 0.00 10 0.00 0.00 kwHashFunction::kwHashFunction
0.00 4.44 0.00 10 0.00 0.00 irreduciblePolynomial::getBits
0.00 4.44 0.00 10 0.00 0.00 irreduciblePolynomial::irreduciblePolynomial
0.00 4.44 0.00 10 0.00 0.00 LFSR::LFSR

0.00 4.44 0.00 10 0.00 0.00 LmStorage::LmStorage

0.00 4.44 0.00 1 0.00 4.33 testfile

0.00 4.44 0.00 1 0.00 0.00 RNG::set_seed

0.00 4.44 0.00 1 0.00 4.33 main

Figure 6: Profiling results with removed modulus calculations

Figure 6 shows the now increased percentage of time used for LFSR: : getBits,

but the huge gain in overall computation speed.

We also implemented another version using two alternative LFSR::getBits

functions, one using long long int, the other long int variables and a
function pointer switching between them, so that the cost intensive variables
would only be used when needed. In the long long int version the modulo
calls where substituted as mentioned above. This however gained very little
time. (Seemingly the increased object complexity cancels the gain.) We
decided not to pursue this approach esteeming clarity of design more than a

14



few milliseconds spared.

4.5 Results of the optimization

We summarize the profiling results shown in figures 1, 3 and 6 and add results
of a second run using the higher landmark distance of 100 blocks.

version ‘ runtime speedup

original | 840.02 s
with landmarks | 53.09 s 15.82
with reduced mods 4.44 s 11,96

overall speedup: 189,21

Table 1: Results with LANDMARK_DISTANCE 10

version ‘ runtime speedup

original | 840,02 s
with landmarks | 532.81 s 1.58
with reduced mods | 42.09 s 12,67

overall speedup : 20.02

Table 2: Results with LANDMARK_DISTANCE 100

Note that the computation time scales quasi linear with the number
of landmarks stored, which shows both the functioning and the space-time
tradeoff of our optimization.

5 Application in a streaming algorithm and tests

Now with a minwise library in hand running in reasonable time, together
with Dr. Buriol of the Algorithm engineering group at the Department of
Computer and System Sciences, University of Rome “La Sapienza” we ex-
perimented with using the min-wise library in an implementation of the rar-
ity algorithm introduced in section 3.2. However, the counters storing the
number of times the minimum was observed increased much more often than
this should happen, considering the test data. This led us to testing the
performance of the library in respect to the statistical requirements it was
supposed to meet.

For the tests we generated a set X of random values which were per-
mutated by p min-wise independent permutations, restricted to sets of size
at least | X|. For each value we recorded the number of times m it became

15



minimum after the permutation. From (2) follows

€<

(Pr<mm{w<x>} — n(a)) ﬁ) - |X||

thus we calculated

[ el

We present the results from a test run on sets of eight values and re-

quested error below 5 using 6000 permutations on [0...255] (For observing
statistical properties we had to use this relatively small permutation space

to cover a sufficiently large fraction of all possible permutations.)

In figure 7 the data for one value is shown, in figure 8 the mean error of all
values, plotting the results after each 100 permutations performed. The error
stays below the required value after circa 2500 permutations and stabilizes
at a level well below the requirement after around 5000 permutations. The
latter result was confirmed by a second test run on 20000 permutations whose
results are shown in figure 9.

A second test run was done using the same parameters as before but
permutations on [0..2'¢ — 1] instead of [0..255]. As figure 10 shows, having
now a bigger sample space, we needed more permutation runs until we could
observe the error value stabilizing. However, also in this case it eventually
stays way below the expected value. We conclude that the library fulfills the
statistical properties required well.

16
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6 Research

Even considering the improvements achieved optimizing the library, it still
runs several hours for applications as the rarity algorithm presented above.
Jerry Zhao suggests a re-implementation using a fast mathematics library on
his homepage. There also exist several interesting recent results concerning
min-wise independent permutations, both theoretically and constructive. We
could not further investigate into implementing another version or permu-
tation family in the scope of this work. However, we would like to present
some of these results that could lead to faster programs.

An important measure in the theoretical analysis of permutation fami-
lies is their size, i.e. the cardinality of the set of permutations they define.
The general goal is to find a family having the useful independence proper-
ties but being relatively small. As already mentioned in section 2 Broder,
Charikar, Frietze and Mitzenmacher in 2] showed that an exact min-wise
independent family® has at least a size of ¢"~°(). In [12] it is shown that
even lem(1,2,....,n) > ¢ °" is a lower bound'. The construction with re-
laxations used in the implementation we optimized (also from [2]|) yields a

log n

family of maximal size 24*+o(k) |;2los(=)

6.1 A family based on geometric rectangles

In [11] Saks, Srinivasan, Zhou and Zuckerman use a different approach con-
structing a polynomial size min-wise independent family if k < 2000”"n) and
€ > 2-0og?*n)  Theiy family uses geometric rectangles defined as follows:

The set of geometric rectangles GR(m, d, n) is the set [a1,by) X ... X [an, by,)
where i,a;,b; € {0,1,...,m — 1} with a; < b; and a; = 0,b; = m — 1 holds
simultaneously for at least n — d indices . The volume of such a rectangle
R is vol(R) = (TT7(b; — a;))/m".

Now let D C [0, m)"™ for which holds:

DN R 1
D —vol(R)| < —; (5)

VR € GR(m,n, d)

m2

Let m, € S, the permutation defined using r = (74, ...,7,) € D such that for
any 0 <i,j5 <n-—1,7.(i) <m.(j)if and only if r; <r; or r;, = r; but i < j.

%In this section we use as before n, k, € as in the definitions (1)-(3)
10¢f. also [11] p. 2
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Section 1 of [11] states that the multiset of all permutations defined using
the elements in D and setting m = 2d?/e is a min-wise independent permuta-

\/log(max{Q,d/log(l/e)}))

tion family of size L = n®1.(d/ e)o( . This is polynomial
in n given the abovementioned restrictions for £ and e. Furthermore, a lot
computational effort of this family, as for example assuring the discrepancy
property (5), is initialization work. Given log L random bits to index a per-
mutation 7 of the family, it is possible to calculate (i) for a value i € [n] in
time polylogarithmic in L .

6.2 Properties of min-wise independent permutations

In [4] Broder and Mitzenmacher analyze further the properties of min-wise
independent permutations. They show that in fact any randomized sampling
scheme used for testing relative intersection of sets based on equality of sam-
ples yields a min-wise independent family. More specifically, given a family
F of functions mapping from nonempty subsets of [n] to an arbitrary subset
), assume there exists a probability distribution on F such that when f € F
is chosen according to this distribution

Pr(A) = £B) = 5 75 )

for any sets A and B. Then there exists a min-wise independent permutation
family P such that every f € F is defined by

FX) = f ({7 (min{m;(X)})})

for some 7y € P.

Accordingly, every method of sampling to estimate resemblance using 6
is equivalent to sampling with min-wise independent permutations. Note
also, that the uniform distribution of the choice of the permutation, that we
implied throughout this text, is not necessary for an estimation scheme to
work. However, a uniformly distributed family obviously facilitates the work.

The choice of the minimum element as relevant is somehow arbitrary. In
[4] it is proven that any min-wise independent permutation family is also

maz-wise independent. This led to a generalization of (1): With a fixed
permutation o € S, m chosen at random, it is required:

Pr (min{o(x(X))} = o(x(x))) = (7)
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Max-wise independence for example can then be obtained choosing o (i) = n+
1—1. The choice of another order ¢ instead of the minimum does not improve
anything. However there exist families that have property (7) with respect to
several orders. For some n exist even families with (7) respect to all possible
orders on [n|. This yields the possibility of extracting a sample for several
orders avoiding costly computations of 7(X). A point that needs attention
however, is the need to find a bound for the correlation these samples will
obviously have.!!

7 Conclusions

We gave an introduction to the concept of minwise independent permuta-
tions and their properties. They make them useful to create highly efficient
estimates to extract information from large data sets. Two of these applica-
tions where presented: estimating the similarity of web pages and estimating
the rarity of elements in a data stream. We showed in detail how a spe-
cial permutation family of this kind is constructed from k-wise independent
hashing functions, that in turn are built on a linear feedback shift register.
Also its implementation was analyzed, which gave way to a quite successful
optimization. The correct functioning of the implementation was established
in several tests. However, the resulting library is slow used in the desired
applications. We presented some recent research results, that could lead to
an improvement, where especially the permutation family based on geomet-
ric rectangles seems promising. It has linear time complexity admitting an
error not too large and it should be possible to implement rather efficiently.

Hef. [4] p. 20 et seq.
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