
Efficient Computation of
Many-to-Many Shortest Paths

Sebastian Knopp

Diplomarbeit

Institut für Theoretische Informatik

Algorithmik I, Lehrstuhl Prof Dr. Dorothea Wagner

Fakultät für Informatik

Universität Karlsruhe (TH)

ii

iii

Danksagung

An erster Stelle möchte ich meinen Eltern danken. Ich hatte während meines gesamten
Studiums jederzeit ihre volle Unterstützung. Für die großartige Betreuung meiner Di-
plomarbeit danke ich Dr. Frank Schulz. Vielen Dank auch an Prof. Dr. Peter Sanders und
Dominik Schultes, die mir beim Thema Highway Hierarchies mit vielen Ideen und Dis-
kussionen weiter geholfen und mir die Vorberechnung für diese Beschleunigungstechnik zur
Verfügung gestellt haben. Ich danke Stefan Hug und den Kollegen bei der PTV AG für
die Unterstützung und die Möglichkeit dieses interessante Thema in einer immer sehr an-
genehmen Arbeitsatmosphäre bearbeiten zu können. Ich danke Prof. Dr. Dorothea Wagner
für die Bereitschaft diese Arbeit zu betreuen und die Unterstützung der Zusammenarbeit
mit einem Unternehmen. Außerdem danke ich Daniel Delling, dem Betreuer dieser Arbeit
am Institut für theoretische Informatik.

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt habe und
nur die angegebenen Hilfsmittel und Quellen verwendet wurden.

Karlsruhe, im Oktober 2006

iv

Abstract

Considering large road networks, we are interested in finding all quickest connections be-
tween given source and target locations. The computation of such a distance table is what
we call the many-to-many shortest path problem. For several problems in the field of logis-
tics this is an important subtask. For example it is required as an input for vehicle routing
problems. Also, distance tables are used as an auxiliary tool for several tasks concerning
exact and heuristic shortest path computations.

To solve the many-to-many shortest path problem one can simply run Dijkstra’s shortest
path algorithm for every source node. Considering huge graphs, this approach affords a
lot of time: In the road network of Europe instances with 1 000 locations need about three
hours, computing distance tables for 10 000 locations takes more than one day. Hence,
there is considerable interest to speed up this task.

We consider two general situations in this thesis: The first one does not allow any
preprocessing to get along with flexible edge weights. The second setting considers the
graph to be static and allows a preprocessing step. We drove extensive experiments to
measure the performance of our approaches.

Without preprocessing, two techniques can be used to accelerate point-to-point shortest
path queries: goal-directed search and bidirectional search. We show that both approaches
can be also used to compute many-to-many shortest paths efficiently. One of our goal-
directed many-to-many techniques uses geographical information to search towards the
targets. Depending on the input this method is two times faster than Dijkstra’s Algo-
rithm. An elaborated variant of goal-directed search uses implicit landmarks to improve
the sense of goal direction. This is useful in particular for larger problem instances. Also,
bidirectional search can be turned to a method that accelerates the computation of distance
tables. For this we also can measure speedups of about two.

Highway hierarchies is a concept that explores the hierarchical structure of a road
network in a preprocessing step and uses this information to accelerate all further queries.
This efficient technique for point-to-point queries can be used to obtain a very efficient
many-to-many algorithm. In the road graph of Europe we see speedups of more than
1 000. As an impressive example, notice that our highway hierarchy based many-to-many
technique can solve the problem with 10 000 locations in less than one minute—Dijkstra’s
Algorithm would take far more than one day.

Contents

1 Introduction 1
1.1 Applications . 2

1.1.1 Vehicle Routing Problem . 2
1.1.2 Large Auxiliary Distance Tables . 3

1.2 Related Work . 4
1.3 Overview . 6

2 Preliminaries 7
2.1 Definitions . 7

2.1.1 Many-to-Many Shortest Path Problem 7
2.2 Dijkstra’s Algorithm . 8
2.3 Implementation . 9

2.3.1 Data Structures . 9
2.3.2 Implementation . 11

2.4 Experimental Setup . 14
2.4.1 Environment . 14
2.4.2 Road Networks . 14
2.4.3 Requests and Instances . 15

3 Without Preprocessing 19
3.1 Goal-Directed Search . 20

3.1.1 Potential Functions . 20
3.1.2 Changing Potentials Online . 21
3.1.3 Many-to-Many Algorithm . 22
3.1.4 Geometric Potential Functions . 23
3.1.5 Landmark based Potential Functions 27
3.1.6 Many-to-Many Landmark Algorithm 28
3.1.7 Experimental Results . 31

3.2 Bidirectional Search . 37
3.2.1 Many-to-Many Algorithm . 38
3.2.2 Specifying Backward Radii A Priori 40
3.2.3 Experimental Results . 43

3.3 Comparison of Real World Results . 46

vi CONTENTS

4 Highway Hierarchies 49
4.1 Point-to-Point Algorithm . 49

4.1.1 Highway Hierarchy . 50
4.1.2 Query . 50

4.2 Many-to-Many Algorithm . 51
4.2.1 Optimisation . 52
4.2.2 Outputting Paths . 54
4.2.3 Computing Shortest Connections Incrementally 54

4.3 Analysis . 55
4.4 Experimental Results . 56

5 Conclusion 63
5.1 Outlook . 63

A Additional Experimental Results 77

Chapter 1

Introduction

Considering large road networks we are interested in finding quickest connections with
respect to costs assigned to each street segment. Costs can be chosen by an objective
function we want the routes to be optimised for. In the case of route planning in road net-
works, this could be travel times for a specific vehicle type depending on the road category
of an edge, travel distances or a combination of both. In the field of algorithmic graph
theory this task is known as shortest path problem. Common variants are the single source
shortest path problem, the all pairs shortest path problem or the point-to-point shortest path
problem.

What we consider in this work is the many-to-many shortest path problem. Given a
set of sources S and a set of targets T located somewhere on a road graph, we want to
know the distances from all nodes s ∈ S to all targets t ∈ T . The answer of such a query
is a matrix with |S| · |T | entries. Every one of the |S| rows of such a table represents
distances from a certain source s, every column represents distances to a certain target t.
In practice we deal most often with source and target sets with the property S = T , hence
the matrices are quadratic.

To solve this, one can simply run Dijkstra’s shortest path algorithm for every source
node. But if we regard the computation of a large matrix of distances in a huge street graph,
for example the detailed road network of Europe with more than 18 millions of nodes, this
approach can be very slow. As an example, consider the computation of a matrix with
1 000 sources and 1 000 targets. A fast implementation of Dijkstra’s Algorithm takes about
12 seconds to compute one single source query and has to be run for every one of the 1 000
source nodes. Hence, the computation of this single matrix lasts about three hours and
20 minutes. Computing an even bigger matrix would of course take even longer—far more
than one day for a 10 000 × 10 000 matrix. The goal of this work is to speed up the
computation of distance matrices in road networks.

We are going to consider two different settings. The first one does not allow any
preprocessing. The costs for traversing road segments can be defined right before a query,
satisfying custom requirements. This allows the usage of very flexible edge weights. For
example a user can freely configure the velocity profile of his vehicle on different road types
or up to date traffic information can be included.

In the second setting we assume that the graph can be considered as static to allow
a preprocessing step that accelerates all further shortest path queries. In this work we

2 Chapter 1: Introduction

(a) German road network (b) Many-to-Many request (c) Dijkstra search space

Figure 1.1: A many-to-many request consists of several source and target nodes located in a
road network. The standard method to solve this, is to run Dijkstra’s Algorithm for every source
node. Dijkstra’s Algorithm visits all nodes that are closer to the source node than the farthest
target.

are going to consider both approaches: Chapter 3 deals with the first setup, that forbids
preprocessing and in Chapter 4, a preprocessing step is allowed. Chapter 5 shortly discusses
some other approaches, among others we will consider how an heuristic algorithm, often
used in commercial systems, can profit from the cognition of the former chapters.

1.1 Applications

For road networks two major fields require the computation of distance matrices. Section
1.1.1 explains with the vehicle routing problem a task occurring in the context of logistics,
Section 1.1.2 explains the usefulness of large distance matrices as an auxiliary tool that
has to be preprocessed and is used to accelerate several other tasks.

1.1.1 Vehicle Routing Problem

Important applications for the computation of many-to-many shortest paths are actual
problems as they appear in the field of logistics. A lot of companies, acting in all sorts of
branches of trades, have to plan daily tours for a large pool of motor cars, light commercial
vehicles or trucks. Examples can be found in a huge number of domains. To name just
some of them for example publishing, parcel services, sales representatives, field services or
companies transporting many different kinds of goods, like foodstuff, furniture, construc-
tion material, etc., should be mentioned here. In literature problems of this kind can be
found as vehicle routing problem.

1.1 Applications 3

For such scenarios the input for an instance of the vehicle routing problem consists
of several locations, e.g. factories, shops, depots or customers and a number of domain
specific constraints, such as the number and load capacity of vehicles, opening times of
depots, timed customer requests and so on. From an algorithmic perspective there are
two core problems: The first step is the computation of a matrix of distances between the
given locations in a road graph. The second step is to solve one of the various variants
of the vehicle routing problem. Although this are NP-hard problems, there are heuristic
algorithms that work very well in practice and even for large problem instances they afford
reasonable time in practice. In this work we consider the first problem of computing
distance matrices in large road networks between given locations. The vehicle routing
problem itself is not considered here, for an overview consider for example [5]. Note, that
here the computation of a quadratic matrix with asymmetric1 distances is required, which
seems to be the most common application in road networks.

Regarding algorithm complexity, we have with the vehicle routing problem an NP-hard
problem and with the distance matrix calculation one that can be solved by an algorithm
with a polynomial running time2 of O(|S| ·m · log n). It seems to be a somewhat curious
result from practice, that for common inputs using an even fast implementation of the
plain version of Dijkstra’s Algorithm to determine the distance matrix could last hours,
while for the second task of vehicle routing, good heuristics can compute the vehicle tours
in less than a minute. Hence, the environment of vehicle routing problems can heavily
profit from speeding up the initial task of finding routes in road networks.

Considering the distribution of the locations for which we want the distance matrix to be
determined, arbitrary constellations are possible. In some cases, e.g. for a local newspaper
delivery, points can be concentrated around one city. In other cases the locations could be
distributed in a large area, e.g. one country like Germany or even a whole continent like
Europe. Also having a handful of clusters is a situation that occurs often in real world
data. Practitioners report that common input sizes, requiring at least daily a complete
recomputation, are distance matrices with about 200 up to 500 locations.

1.1.2 Large Auxiliary Distance Tables

Very large distance matrices are often used as an auxiliary tool in miscellaneous applica-
tions. For example consider a situation, where one is interested in a very fast approximation
of distances, though such distances do not have to be exact to the last detail. Hence, a
good estimation is sufficient here. For this task in road networks, an approximation using
the flight distance is often too coarse, because of several geographical conditions such as
rivers or mountains. A precomputed distance matrix, that stores distances between nodes
positioned on a grid lying over the graph, can do better here. A reasonable estimation for

1In directed graphs in general d(s, t) 6= d(t, s)
2Standard implementation of Dijkstra’s Algorithm using a binary heap. Better theoretical bounds are

known.

4 Chapter 1: Introduction

distances is obtained by taking the sum of the flight distances from source and target to
its respective nearest grid point plus the distance of those corresponding grid points, that
can be easily looked up from the distance table. Practitioners report that relevant sizes of
matrices for this application reach from about 8 000× 8 000 up to 12 000× 12 000.

There are also up to date results of shortest path research that use large distance tables
to accelerate shortest path queries in huge graphs. The preprocessing of the extremely fast
technique of transit node routing [1] profits from a fast method for the determination of
distance matrices and actually already uses our algorithm presented in Chapter 4. The
method of precomputed cluster distances [19] can also profit from this approach.

The preprocessing of this approach requires to compute cluster distances d(Vi, Vj) :=

mins∈Vi,t∈Vj
d(s, t) between clusters V1

.
∪ · · ·

.
∪ Vk. With the introduction of additional

nodes si and ti, 0 < i ≤ k, that are connected to the border nodes of a cluster by weight
zero edges this can be done by solving the many-to-many problem for S = {s1, . . . , sk} and
T = {t1, . . . , tk}.

1.2 Related Work

There are results that accelerate many-to-many shortest paths for rather dense graphs
with m � n, e.g., [33]. The only specific result that would be useful for road networks
(or any other kind of sparse graphs) we are aware of is [29]. There, goal-directed search
is turned to a many-to-many algorithm by combining geometric potential functions of all
targets. A bidirectional approach is introduced in terms of goal-directed search, using a
Voronoi partitioning of the graph with respect to the target nodes to determine a potential
function.

A lot of recent work deals with the acceleration of point-to-point shortest path queries.
Before we review several known speedup techniques for such single-pair shortest path
queries we give a rough estimation of the performance of a naive adaption. The sim-
plest way is to apply the speedup technique for every pair (s, t) ∈ S × T . Considering
large matrices, even for the fastest point-to-point queries this is outperformed by simply
executing the plain version of Dijkstra’s algorithm min{|S|, |T |} times3. We denote the
average time for one Dijkstra run by tDijkstra and suppose a technique with an average

point-to-point speedup of s =
tDijkstra

tSpeedup
. Then, with the naive adaption the computation of

the matrix needs about tSpeedup · |S| · |T | compared to tDijkstra ·min{|S|, |T |} using Dijkstra’s
Algorithm. Hence, comparing both rough estimations we conclude that an acceleration of
the matrix computation is only possible for s > max{|S|, |T |}.

In practice, it is very common to speed up the single-pair variant of Dijkstra’s algo-
rithm using goal-directed search [13] or bidirectional search. These techniques need no
preprocessing and usually yield a speed-up factor of around 2. In Chapter 3 we present
approaches to adapt these techniques to the many-to-many shortest path problem. Also,

3W.l.o.g. we suppose |S| < |T |, else the reverse graph is considered.

1.2 Related Work 5

we describe an approach that turns the goal-directed search with preprocessed information
(e.g., [10, 19]) into a technique without preprocessing by using some of the query nodes as
implicit landmarks.

A lot of recent publications deal with the task of accelerating shortest path queries in a
situation where the graph is considered to be static and a certain amount of preprocessing
is affordable. This situation allows speed-up factors that are orders of magnitude larger.

One of the currently fastest speedup techniques for shortest path queries in road net-
works is the approach of highway hierarchies [25] that takes advantage of the hierarchical
structure of the input. Outside some local areas around the source and the target node,
only important edges have to be considered during the query. Speedups of up to 8 000 are
possible for continental road networks with a preceding preprocessing step that takes only
about 20 minutes. This approach is based only on hierarchical properties of the graph and
does not use any goal-directing methods4. It turns out that this is very well suitable for
many-to-many shortest paths. In Chapter 4 we present a very efficient algorithm based on
the concept of highway hierarchies to compute many-to-many shortest paths.

Very recently, transit node routing [1] has accelerated point-to-point shortest path
queries by another two orders of magnitude. However, transit node routing needs consider-
ably more preprocessing time and space. Furthermore its preprocessing uses our highway
hierarchy based algorithm to precompute a huge distance table. Even if the information
for transit node routing is available, our algorithm remains up to one order of magnitude
faster for large distance tables.

Reach based routing [12] prunes edges if they are sufficiently far away from both source
and target. By pruning edges based on the supposedly closest target, reach based routing
can search for several targets. However, this is a very conservative assumption and the
involved bookkeeping is likely to be prohibitive unless |T | is very small.

The bidirectional ‘self bounded’ variant of reach based routing [7] can perform inde-
pendent forward and backward searches. We can use techniques described in Chapter 4
to use this for solving many-to-many problems quite efficiently. However, currently, reach
based routing without augmentation by goal-directed search produces larger search spaces
than highway hierarchies.

Also, the separator based multi-level method (e.g., [28, 3]) could be adapted to the
many-to-many problem using methods analogous to ours. However, we do not pursue this
since considerably more preprocessing time and space are required by this method.

Geometric containers [32] and edge flags [20, 16] prune the search at edges that do
not lead to the target. Although this test could be generalized to test efficiently whether
an edge leads to some target, this is not likely to be successful if the target nodes spread
widely over the graph.

4A combination that adds goal-direction based on landmarks to highway hierarchies is presented in [4]

6 Chapter 1: Introduction

1.3 Overview

We present an overview of the structure of this work:

Chapter 2, Preliminaries In this chapter basic definitions of graph theory and graph al-
gorithms are given to have a consistent notation throughout this work. A formal
problem description is given and Dijkstra’s Algorithm is introduced. Further we
describe implementation details and the experimental setup in this chapter because
references to experimental results are interspersed at various points in the later chap-
ters.

Chapter 3, Without Preprocessing Without preprocessing, two techniques can be used to
accelerate point-to-point shortest path queries: goal-directed search and bidirectional
search. We show that both approaches can be also used to compute many-to-many
shortest paths efficiently. One of our goal-directed many-to-many techniques uses
geographical information to search towards the targets. Depending on the input this
method is two times faster than Dijkstra’s Algorithm. An elaborated variant of goal-
directed search uses implicit landmarks to improve the sense of goal direction. This
is useful in particular for larger problem instances. Also, bidirectional search can be
turned to a method that accelerates the computation of distance tables. For this we
also can measure speedups of about two.

Chapter 4, Highway Hierarchies Highway hierarchies is a concept that explores the hier-
archical structure of a road network in a preprocessing step and uses this information
to accelerate all further queries. This efficient technique for point-to-point queries
can be used to obtain a very efficient many-to-many algorithm. In the road graph of
Europe this technique yields speedups of more than 1 000. The problem with 10 000
locations can be solved in less than one minute—Dijkstra’s Algorithm would take far
more than one day.

Chapter 5, Conclusion We give a conclusion of this work and give an overview of the
performance of our many-to-many algorithms concerning real world instances. An
outlook is given that describes possible further developments and the application of
our ideas for an heuristic approach that is often used in commercial systems.

Chapter 2

Preliminaries

In this chapter we start with basic definitions of graph theory and graph algorithms.
Mostly well known facts which can be found in basic textbooks are presented here. We
repeat them to have a consistent notation throughout this work. A formal problem de-
scription is given and Dijkstra’s Algorithm is introduced.

Further we describe implementation details and the experimental setup already in this
chapter, because references to experimental results are interspersed at various points in
the later chapters.

2.1 Definitions

A directed graph G = (V, E) is a pair of nodes V and edges E ⊂ V × V . We will denote
the number of nodes |V | by n and the number of edges |E| by m throughout this thesis.
We call G = (V, E) with E = {(v, u) : (u, v) ∈ E} the reverse graph of G.

A path P in the graph G is a sequence of nodes (v0, v1, . . . , vn) such that (vi, vi+1) ∈ E
for all 0 ≤ i < n. If 0 < k < l < n then P |vk→vl

denotes the subpath (vk, . . . , vl) of P .
A graph is called connected if for every pair (u, v) of nodes there is a path from u to v.
Edge weights are given by a function l : E → R>0. The length l(P) of a path is the sum
of the weights of its edges l(P) =

∑n
i=0 l(vi, vi+1). We call P a shortest path from s to t, if

there is no P ′ with l(P ′) < l(P) and its length is denoted by d(P). The distance d(s, t) of
two vertices is the length of a shortest path from s to t. A function L : V → R2 is called
layout.

2.1.1 Many-to-Many Shortest Path Problem

The task we address in this work is formally described in the following. Given a set of
sources S = {si : 0 ≤ i < |S|} ⊂ V and a set of targets T = {ti : 0 ≤ j < |T |} ⊂ V
we want to compute a distance matrix di,j = D ∈ R|S|×|T | such that di,j = d(si, tj) is the
length of a shortest path from si to ti. We will refer to this as the many-to-many shortest
path problem. If |S| = |T | we call a distance matrix quadratic, otherwise asymmetric.

8 Chapter 2: Preliminaries

1 DIJKSTRA(s)
2 ∀ u ∈ V : dist(u)←∞
3 ∀ u ∈ V : state(u)← unreached
4 dist(s)← 0
5 pqueue.insert(s)
6 while (not pqueue.empty())
7 u← pqueue.extractMin()
8 state(u)← settled
9 for all outgoing edges (u, v) of u

10 RELAX(u, v)

1 RELAX(u, v)
2 i f (dist(u) + l(u, v) < dist(v))
3 dist(v)← dist(u) + l(u, v)
4 i f (state(v) == unreached)
5 pqueue.insert(v, dist(v))
6 state(v)← reached
7 else
8 pqueue.decreaseKey(v, dist(v))

Figure 2.1: Dijkstra’s Algorithm in pseudo code representation.

2.2 Dijkstra’s Algorithm

The classic algorithm for the Single Source Shortest Path problem is the algorithm of
Dijkstra (Figure 2.1), which finds shortest paths form a source s to all vertices in the
graph. During the algorithm for every node a tentative distance is maintained and every
node takes one of the three states settled, reached or unreached. Initially, all nodes
are unreached. Nodes to those any path—not necessarily shortest—has been found are
reached. A node v is settled if a shortest path from s to v has been found, and the
distance is exact. We call a tentative distance from s to v exact, if it is equal to the length
of a shortest path from s to v.

Reached nodes are managed in a priority queue, which supports the operations insert,
decreaseKey and extractMin. We have a function RELAX that checks for an edge (u, v)
if it can improve the path to v. The method insert adds an element to the queue. This
happens when an edge to an unreached node is relaxed. Then, this node is inserted into
the queue with its tentative distance as key. Calls to decreaseKey are made if RELAX can
improve the distance to a reached node. This step updates the key to the new tentative
distance. Calls to extractMin are performed to get the smallest element of the queue.
Elements obtained by this operation are known to be exact and can be set to settled.
We sometimes refer to nodes currently contained in the priority queue as active nodes.

2.3 Implementation 9

2.3 Implementation

In this work, a number of techniques to speed up the computation of many-to-many shortest
path queries are examined. An important goal of this work is to compare them using a
competitive and efficient implementation. In this chapter, we present important aspects
of our implementation, that is written in C++ using the Standard Template Library. A
first implementation was made using the algorithm library LEDA [17] and its static graph
data type, but we skipped this because of several difficulties. A main problem therewith
was an obscure time behaviour that did not correspond to the operation counts we made.
Our STL based implementation was at least 25% faster than the one using LEDA static
graphs. Also, some preliminary experiments were made with the by far slower general
graph type of LEDA. So, all time measurements that we refer to in this work use our
graph implementation based on the STL. In a few cases we present results of the LEDA
static graph implementation in terms of settled nodes.

2.3.1 Data Structures

The basic data structure we need is a representation of the graph, suitable to perform fast
shortest path queries. The structure of the graph is assumed to be static, no new edges and
nodes are introduced or deleted after the graph was read once. This assumption applies only
when we want to answer queries, a possible preprocessing step is not considered here and
is assumed to be part of the input for now. A static graph allows the usage of the efficient
forward star representation of graphs. This is our method of choice for implementing
the graph data structure. Schultes [23] used this representation in his implementation of
Highway Hierarchies, enriched with an additional layer for the hierarchical information.
Also the implementation of LEDA static graphs [21] is based on this data structure.

The forward star (or adjacency array) representation stores the complete graph in two
arrays, one for the nodes and one for the edges. The position within those arrays induces a
numbering of the nodes and edges. Nodes can be stored in arbitrary order, edges must be
sorted by the index of its source node. Every node stores the index of its first outgoing edge.
Due to the sorting, all of the nodes outgoing edges are stored on consecutive positions. This
construction is sufficient to represent the graph.

Using this forward star representation, iterating efficiently over all outgoing edges of
a node is easy. To search the reverse graph we need an also efficient way to traverse all
incoming edges. For this purpose, we store every directed edge twice, and maintain two
flags for each edge. The first flag specifies if an edge may be passed in the forward direction,
the second flag shows that it can be passed backwards. If there are two edges (u, v) and
(v, u) with the same weight, they can be summed up by using only one edge representation
for both, and allowing the forward and the backward direction.

10 Chapter 2: Preliminaries

...

...

...

...

nodes

level nodes

buckets

edges

Figure 2.2: Forward star graph representation, extended by level nodes and buckets. Data
structures that are used to store the raw graph are indicated by the thicker lines.

Level Nodes

For Highway Hierarchies, the algorithm presented in Chapter 4, we additionally store
subgraphs G ⊂ G1 ⊂ · · · ⊂ Gk of the graph G. For this, we use a level node layer that
was introduced in [23]. Every node has some additional level nodes that are stored in an
adjacency array in the same way as edges are stored in the forward star representation.
Those level nodes point to the first outgoing edge of a node in its level. Hence, this
construction induces subgraphs and also allows additional attributes to be stored at nodes
for each level seperately.

Buckets

Buckets are a concept that is needed later by techniques explained in Section 3.2 and
Chapter 4. Because both approaches use bidirectional search, the forward and backward
search spaces have to be intersected in some way. Therefore, we introduce a bucket data
structure that provides a set of operations to handle this intersection. We store a set of
pairs (d, t) at each node, where d is a number representing a distance and t is the index
of a target node. We call such a pair bucket entry, the number of bucket entries that are
stored at a node can reach from 0 to |T |. We differentiate between an initial state, where
all buckets are empty, and a write phase that is followed by a read phase.

During the write phase we need an operation v.insert(d,t), that stores a pair (d, t)
at a node v. After all insert operations are done, i.e. the write phase is finished, the
buckets can be switched to the read phase. Therefore an operation v.scan() is needed,

2.3 Implementation 11

which allows to iterate over all pairs (d, t) that have been attached to v by previous insert
operations. Note that during the write phase no scan operations, and during the read
phase no insert operations are performed.

One could use basic algorithmic data structures to implement this. A linked list for
every node could store the pairs, also an resizeable array is a possible implementation. For
both of them several drawbacks appear. For dynamic arrays, during the write phase a
lot of resize operations are necessary. This for itself takes a lot of time and also leads to
memory fragmentation. Linked lists are slower during the read phase, since there is an
additional indirection for every bucket entry. If one wishes a sorting of the stored pairs,
linked lists are also not very suitable.

An implementation that avoids the drawbacks listed in the previous paragraph can be
done using an adjacency array representation of the buckets. This technique makes use
of the separation into a read and a write phase. During write phase one large array is
maintained to store entries made by insert operations, v.insert(d,t) simply appends a
triple (v, d, t) at the end of the array. After the write phase is completed, the entries of
this array are reordered: nodes are grouped by v. Then, at each node that has at least
one bucket entry we store the index of its first entry and the number of entries at this
node. From here on the information about v is implicitly represented by the grouping
and indexing of this array. Hence, we need only to store pairs (d, t) instead of the full
triples. This reduces storage size and increases memory locality. Now, bucket entries can
be accessed as adjacency arrays.

The grouping that has to be performed when we switch from write to read phase, can
be done very efficiently in linear time by a slight modification of counting sort. Preliminary
experiments showed that this adjacency array representation of buckets is more than two
times faster than an implementation that uses dynamic arrays, even though we have to
spend the extra effort for grouping the array of buckets by its corresponding nodes v.

2.3.2 Implementation

A major point in this work is the implementation of the developed many-to-many shortest
path algorithms. Main point of view thereby is the efficiency of our implementation to get
sound experimental results. Because various speedup techniques are examined, also the
flexibility of the framework is an important issue. We want to switch easily between several
variants of the algorithms and it would be practical to have one framework to perform time
measurements and create algorithm visualizations.

Dijkstra’s Algorithm is implemented as a basic member function of a class with hooks
where aspects can plug in their functionality. The aspects we speak of modify or extend the
basic algorithm, e.g. they implement a speedup technique, perform operation counting or
visualize the algorithm. The actual source code of our C++ implementation of Dijkstra’s
Algorithm with hooks is shown in Figure 2.4. If one would realize hooks as virtual functions,
aspects could be realized by derived classes that overwrite these virtual functions. They

12 Chapter 2: Preliminaries

can perform additional work there and eventually have to call the base class function again.
More flexibility could be added to this basic object oriented idea by using parametrized
inheritance, as suggested in [34] (Chapter 4, Implementation). In this generic programming
approach the base class of an aspect is a template parameter. So, different aspects can
be combined freely by plugging template parameters together when an actual object is
instantiated.

Although this method provides flexibility, virtual function calls, especially in inner
loops, are prohibitive in the implementation of efficient algorithms. The reason is that
compiler optimisation that perform function inlining can not be applied for virtual function
calls in general. The compiler has to generate code for actual function calls, because during
compile time it is not clear a priori which function has to be called. Especially for simple
functions in inner loops consisting only of a few lines of code this is an immense overhead
that can not be afforded.

But it is possible to keep the gain of flexibility of this approach without the drawback
of virtual function calls. For this, we exploit the fact that there is only one spot where
we need the functionality of virtual functions, namely in the hook enriched method of
Dijkstra’s Algorithm. Everywhere else, usual function calls are sufficient since there calls
go upward in the class hierarchy. So, we outhouse this basic hook based method run() of
Dijkstra’s Algorithm in an extra class RunDijkstra. This class inherits from a base class
that is given as template parameter. When the class is instantiated, the desired aspect
can be inserted here. All data members remain in the base class Dijkstra, so they can be
accessed from all classes. Figure 2.3 gives an schematic overview of this idea, where the
aspect classes are enclosed by the two classes Dijkstra and RunDijksta.

To give an example for this, suppose we want to visualize the searchspace of Dijkstra’s
Algorithm that stops when all targets have been found. To create an algorithm object that
deals with this, aspects can be plugged together at instantiation:

RunDijkstra<VisualDijkstra<AbortDijkstra> > dijkstra(Graph);

The basic algorithm implemented in Dijkstra always expands the search to the complete
graph, finished() always returns false. We introduce a new class AbortDijksta that
counts the number of found targets by overwriting the method settled() and overwrite
finished() so that it returns true after |T | targets have been found. Additionally we have
a class VisualDijkstra that provides visualization functionality. AbortDijkstra inherits
directly from Dijkstra, the base class of VisualDijkstra is given as template argument.

2.3 Implementation 13

Dijkstra

RunDijkstra

Aspects

Aspects

template<typename BaseDijkstra>
class RunDijkstra : public BaseDijkstra {

// ...
};

Figure 2.3: UML class diagram providing the idea of our class hierarchy. Aspects are given to
RunDijkstra as a template argument.

1 void run () {
2 i n i t () ;
3 while (! f i n i s h e d () && ! Queue . empty ()) {
4

5 pr io r i tyType cur r entPr i o ;
6 s t node cur rent = Queue . de l min (cur r entPr io) ;
7

8 s e t t l e (current , cu r r entPr i o) ;
9 i f (! processNode (cur rent)) continue ;

10

11 s t edge e ;
12 f o r a l l o u t e d g e s (e , cur rent) {
13 s t node dest = Graph . t a r g e t (e) ;
14

15 i f (! processEdge (e , current , des t)) continue ;
16

17 pr io r i tyType newPrio = p r i o r i t y (dest , e , cu r r entPr io) ;
18 i f (isNodeNew (dest)) {
19 i n s e r t (dest , newPrio , cur rent) ;
20 } else {
21 dec rea se (dest , newPrio , cur rent) ;
22 }
23 }
24 }
25 post () ;
26 }

Figure 2.4: Implementation of Dijkstra’s Algorithm using C++. Function calls at key points of
the algorithm provide hooks to add aspects to the algorithm.

14 Chapter 2: Preliminaries

2.4 Experimental Setup

In order to evaluate the implemented speedup techniques we drove extensive experiments.
In this section we present the environment of our experiments, the utilized road networks
and the instances of distances table requests we used. The experimental results itself can be
found embedded in the chapters, where the respective techniques are presented. Additional
results can be found in Appendix A.

2.4.1 Environment

We performed the experiments on two 64-bit machines with 8 GB and 16 GB of main
memory, respectively, 1 MB L2 cache using one out of two AMD Opteron processors clocked
at 2.6 GHz, running SUSE Linux 10.1. Our programs were compiled with the GNU C++
compiler version 3.4 using optimisation level 3. To plot analyses of the experimental results
we used the statistical program package R [22]. For visualisation purposes we used the
geographical software package MapInfo [18].

Goal of this work is to optimise the running time of many-to-many shortest path algo-
rithms. Hence, the main quality measure is the overall running time. We will sometimes
use the term speedup: The factor of runtime reduction compared to the plain version of
Dijkstra’s Algorithm that is stopped after a shortest path to every target t ∈ T is found.
A second measure we sometimes use is the number of settled nodes as an implementation
independent information.

2.4.2 Road Networks

Almost all experiments deal with the detailed road network of Western Europe. It covers
the 14 European countries Austria, Belgium, Denmark, France, Germany, Italy, Luxem-
bourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the UK. In
some cases we consider queries in the graph of the road network of Germany. For some
experiments we also used the road network of North America that encompasses Canada
and the USA with all Federal States. Data was provided by the company PTV AG for
research purposes. The original graphs contain for each edge a length in meter and a speed

Europe USA / CAN Germany
#nodes 18 029 721 18 741 705 4 378 447
#edges 42 199 587 47 244 849 10 668 389

Table 2.1: Number of nodes and number of directed edges in the road networks of Europe, North
America and Germany

2.4 Experimental Setup 15

category. There are 13 different speed categories. Edge weights are obtained by assuming
average speeds of 10-130 km/h for the European road network and 16-112 km/h for North
America. For Germany the 10-130 km/h setup applies too, if not stated otherwise.

Figure 2.5: Road networks of Europe and North America. In this picture local roads are not
drawn.

2.4.3 Requests and Instances

For our experiments we use fixed sets of requests. What we call a request is a pair of sets of
nodes (S, T), S ⊂ V, T ⊂ V . For a many-to-many shortest path request we want to know
the distances d(s, t) for all (s, t) ∈ S × T . This leads to a setup for our experiments. The
first step is to generate requests. The next paragraph describes the methods that are used
to do this. The second step is to precompute a distance table for every request using the
plain version of Dijkstra’s Algorithm. Then the complete matrix is stored together with
the corresponding request. With such sets of fixed requests we have a robust method to
compare different algorithm variants. Stored distance tables enable us to do some sort of
program checking. After time measurements are finished we compare all stored and newly
computed matrix entries. Assuming a correct Dijkstra implementation, with this we have
proven the implementation of our speedup techniques to be correct for every input instance
of the experiments.

16 Chapter 2: Preliminaries

Request Generation

We need methods to generate requests (S, T) for our experiments. In the following we
present three methods that we used to generate requests. Note that we ensured for all
generation methods the mathematical property of a set to contain an element at most
once.

Real World Instances We use nine instances of many-to-many requests stemming from
real world vehicle routing problems. The data was provided by the company PTV AG
and was given in form of geographical coordinates of locations in the road network
of Western Europe. Attaching each coordinate to its closest node in the graph yields
the sets S = T . Table 2.2 provides an overview of size and location of the node
sets. All experiments comprehend the nodes as part of the graph of Western Europe
and perform the experiments within this graph. Exemplarily two of the real world
instances are depicted in Figure 2.6.

Random Instances To generate random queries we pick random nodes of the graph to
create the sets S and T . This method leads to an even distribution of the locations
over the graph. If nothing else is stated, for quadratic requests we choose the node
sets such that S = T .

Clustered Random Instances We have two parameters to generate clustered instances:
The number of clusters q and the cluster size k in number of nodes. The method
works the same like the generation of random instances, but restricted to a subset
C ⊂ V of the nodes.

Let Nk(s) ⊂ V be a set of nodes with |Nk(s)| = k. We call Nk(s) the k-Neighbourhood
of s, if for every v ∈ V , w ∈ Nk(s) the implication d(s, v) < d(s, w) ⇒ v ∈ Nk(s)
holds. We denote a fixed k-Neighbourhood of s by Nk(s).

Then to define C we pick q random nodes ci, 0 < i ≤ q, and set C :=

q⋃
i=1

Nk(ci).

2.4 Experimental Setup 17

Description #Locations
Real World 1 (RW1) BeNeLux, slightly clustered 173
Real World 2 (RW2) BeNeLux, nine clusters 325
Real World 3 (RW3) Ruhr Area, slightly clustered 354
Real World 4 (RW4) BeNeLux, five clusters 784
Real World 5 (RW5) BeNeLux, one cluster 800
Real World 6 (RW6) Germany, uniformly distributed 990
Real World 7 (RW7) Germany, uniformly distributed 1463
Real World 8 (RW8) BeNeLux, uniformly distributed 2403
Real World 9 (RW9) Germany and Austria, slightly clustered 2892

Table 2.2: Description of real world instances located in the road network of Europe that we
used in our experiments.

(a) Real World 4 (b) Real World 9

Figure 2.6: Locations originating from real world instances located in the road network of Europe.

Chapter 3

Without Preprocessing

For practical applications it is important to be able to configure shortest path requests
in road networks. For example, user defined vehicle profiles define variable speeds for
several types of street segments or prohibit the usage of certain edges, trucks transporting
hazardous materials are not allowed to use every route or the usage of bridges, tunnels
or pass roads can be limited due to the weight or size of the vehicle. Also up to date
network information, that takes current events like traffic jams or the weather situation
into account, can influence edge weights. The usage of time dependent edge weights that
try to predict realistic travel times is another example for a situation where flexibility is
important.

The examples from the preceding paragraph show that in practice the input graph not
always can be considered as static. This is an requirement for the various recent speedup
techniques for point-to-point shortest path queries that rely on a preprocessing step. Hence,
we study in this chapter many-to-many techniques without preprocessing. Furthermore,
due to the fact that we are not aware of any literature about specific results that would
speed up many-to-many shortest path queries in our situation, it is a natural approach to
study the adaption of classical point-to-point speedup techniques.

For the acceleration of point-to-point queries basic techniques that can do without
preprocessing are bidirectional search and goal-directed search. Both are investigated in
detail in this chapter and variants of the algorithms to solve the many-to-many shortest
problem are developed. We start with the goal-directed approach using the common way
of estimation the distance to the target geometrically. This is followed by an approach
that turns landmark based goal-directed search into a many-to-many technique without
preprocessing. The second part of this chapter deals with bidirectional search. This turns
out to adapt to a practical approach in the situation without preprocessing. Crucial ideas
of this algorithm are further used in the highway hierarchy based algorithm of Chapter 4
that is based on a bidirectional approach.

20 Chapter 3: Without Preprocessing

3.1 Goal-Directed Search

Goal-directed Search, also known as A* Search, is a technique originating from the field of
artificial intelligence. It is based on a distance approximation that provides a lower bound
for distances between nodes. Heuristics based on distances are used to give the search a
sense of direction to guide it towards a target.

Usually, goal-directed search is used with one source and one destination. The aim of
this section is to study how these ideas can be applied to the many-to-many shortest path
problem. To estimate distances to target nodes we introduce so called potential functions
in Section 3.1.1 and present general properties. First, we introduce some general properties
of potential functions to be able to apply this technique to the computation of many-to-
many shortest paths. Then, we turn to concrete potentials, starting with the examination
of lower bounds given by geometric distances, followed by an approach that shows how a
landmark based approach can be turned into a technique without preprocessing.

3.1.1 Potential Functions

To introduce general properties of potential functions we follow the depiction in [9] and
[10]. A potential function π : V → R is a function from nodes to reals. For a given potential
we define the reduced cost of an edge as lπ(v, w) = l(v, w)− π(v) + π(w).

Lemma 3.1. Every shortest path from s to t with respect to edge weights given by l is also
a shortest path with respect to the reduced edge weights lπ.

Proof. For a fixed potential function the length with respect to lπ of an arbitrary path
from s to t differs only by the constant value π(t) − π(s) from the length of a path with
unmodified weights.

Dijkstra’s Algorithm requires the graph to contain no edges with negative weights. This
leads to the following

Definition 3.2. A potential function π is called feasible, iff lπ(v, w) ≥ 0 ∀ (v, w) ∈ E.

With such a feasible potential function we can apply Dijkstra’s Algorithm to the graph
with the corresponding reduced edge weights. As shown in Lemma 3.1 this yields shortest
paths for the graph with unmodified edge weights.

The next Lemma explains why we can think of the potential function as a lower bound
of distances:

Lemma 3.3. Suppose π is feasible and for a vertex t ∈ V we have π(t) ≤ 0. Then for any
v ∈ V : π(v) ≤ d(v, t).

3.1 Goal-Directed Search 21

Proof. The distance with respect to π is a sum of non-negative edge weights, hence, the
distance is also not negative:

dπ(v, t) =
∑

(u,w) ∈ P |v→t
lπ(u, w)

=
∑

(u,w) ∈ P |v→t
l(u, w)− π(u) + π(w)

= d(v, t)− π(v) + π(t)

≥ 0

It follows that d(v, t) + π(t) ≥ π(v) and with the assumption that π(t) is not positive we
have π(v) ≤ d(v, t).

According to [31] we can combine feasible potential functions in various ways:

Lemma 3.4. If π1 and π2 are feasible potential functions, then p = max{π1, π2}, p =
min{π1, π2} and any convex linear combination are feasible potential functions, too.

3.1.2 Changing Potentials Online

During the following paragraph we suppose all potentials to be feasible. In several sit-
uations it is useful to change the potential function during a Dijkstra run. We call this
an online change of the potential function and show that this is possible while preserving
correctness. During Dijkstra’ Algorithm is running, we have found a shortest path to every
node that is in the state settled. Hence, with Lemma 3.1, we can conclude that those
nodes can remain settled if we switch to another potential function. So, what we have
to deal with are the reached nodes which are managed in the priority queue.

The counterexample in Figure 3.1.2 shows that continuing the algorithm without chang-
ing its keys in the queue leads to incorrect shortest paths. We now explain what goes wrong
in this case. First, note that π1 and π2 are feasible. We start using π1 as our potential
function. Dijkstra’s Algorithm starts with scanning s, so t1 and v are inserted into the
queue with dπ1(t1) = 1, dπ1(v) = 3. Then, t1 is scanned and w is inserted into the queue
with dπ1(w) = 2. Now, the first target node t1 is settled and we change to the potential
function π2. The next step is to scan w, thereby t2 is inserted with dπ2(t2) = 2. Beside t2
now only v is in the queue with dπ1(v) = 3. So, t2 is scanned next, although v is involved
in the correct shortest path to t2. Hence, this method leads to a path with length three,
although there is a path of length two.

To restore the correctness of the algorithm we follow the idea of [9] and refresh the
priority queue after the potential was changed. In [9] this is proven to be correct in
the section about restarting. Refreshing the priority queue is easy, all we have to do is
to reinsert all reached nodes with their new tentative distance with respect to the new
potential.

22 Chapter 3: Without Preprocessing

s

t1
w

t2

1
v

1

1

1

1 π1 π2

s 0 1
v 2 0
w 0 1
t1 0 2
t2 1 0

Figure 3.1: This counterexample shows that refreshing the priority queue is necessary.

3.1.3 Many-to-Many Algorithm

To run a goal-directed search in the standard case of a point-to-point query we use Di-
jkstra’s Algorithm on a graph with edge weights modified by a potential function. This
construction drives the search towards the sole target. But in our situation there are mul-
tiple targets located in different directions, so we need to modify the approach. Now, we
have for every node in the set of targets T = {ti : 0 ≤ j < N} a potential function πi that
drives the search towards that target. In the next paragraphs we point out two techniques
of goal-directed search that can be applied to the many-to-many shortest path problem.

Minimum Potential. According to Lemma 3.4 we can combine the potentials by taking
the minimum πmin := min {πi : 0 ≤ j < N} over all target specific potential functions.
This minimum potential yields low values for nodes near one target, but high potentials
for nodes in areas away from the targets. The query algorithm remains unchanged, we just
use an adapted potential function.

Sequential Search. The second approach is to search only towards one target at the
same time. We start the search using πk with k = 1. After tk was found we use πj as the
current potential, where j is the smallest j > k with the state of tj not being settled. We
continue until all targets are found. This switching of potential functions during a Dijkstra
run still yields correct results if we rearrange the priority queue every time we switch to a
new potential as described in Section 3.1.2. One observation is that different orders of the
targets result in different search space sizes. In our experiments we use two variants: one
that searches towards the nearest, and one that searches towards the farthest target that
has not been found yet.

Until here, we made general remarks about potential functions. With this foundation we
can turn to concrete lower bounds now. The following sections deal witch actual potentials
that are computed using geometrical information or by information provided by a set of
implicit landmarks.

3.1 Goal-Directed Search 23

3.1.4 Geometric Potential Functions

The traditional approach for goal-directed search in road networks uses a layout L : V → R2

of the graph, which for road networks is mostly given by geographic data. Let ||L(v) −
L(t)|| : V 2 → R be a metric called flight distance that gives an approximation for the
shortest path distance of two nodes. In particular, the triangle inequality holds for flight
distances. For classic goal-directed search Euclidean distances are used. We define the
maximum velocity of the graph as vmax := max{ ||L(u)−L(v)||

l(u,v)
| (u, v) ∈ E}.

Lemma 3.5. π(v) := ||L(v)−L(t)||
vmax

is a feasible potential function.

Proof.

lπ(u, v) = l(u, v)− π(u) + π(v)

= l(u, v)− ||L(u)− L(t)||
vmax

+
||L(v)− L(t)||

vmax

=
l(u, v) · vmax + ||L(u)− L(t)|| − ||L(v)− L(t)||

vmax

≥
l(u, v) · ||L(u)−L(v)||

l(u,v)
+ ||L(u)− L(t)|| − ||L(v)− L(t)||

vmax

=
||L(u)− L(v)|| − ||L(v)− L(t)||+ ||L(u)− L(t)||

vmax

≥ 0

Hence, a layout of the graph provides a potential function that can be used for goal-
directed search. Using such a potential function arising from geographical information is
the classic way to apply goal-directed search to graphs representing street networks. For
the considered problem of computing many-to-many shortest paths this geographical po-
tential provides three techniques of goal-directed search: we can use the minimum potential
(similarly explained in [29]) and we can use sequential search as described in the preceding
paragraph. We will refer to these techniques in experimental evaluations as:

GoalMin Combining potential functions by taking its minimum.

GoalSeqN Searching towards one target at the same time, nearest first.

GoalSeqF Searching towards one target at the same time, farthest first.

24 Chapter 3: Without Preprocessing

Flight Distances and Edge Weights

The performance of goal-directed search is dependent on the quality of the distance approx-
imation. For geometric potentials this is provided as an interaction between edge weights
and the determination of the flight distance from the layout of the graph. We studied the
behaviour of both matters experimentally and explain several details about edge weights
and flight distances in the following paragraphs. Note that this preliminary considerations
are related to goal-directed search in general and not specifically tailored to the many-to-
many problem. Nonetheless we consider this to be an important topic because the setup
of our experiments for goal-directed search becomes more clear.

A setting that works well with goal-directed search is the usage of flight distance
||L(u) − L(v)|| for edges (u, v). Practical settings that we compare in this section obtain
the edge weights by computing travel times from a given length in meters and a velocity for
every edge. Note that this edge length differs from the calculated flight distance because an
edge can represent a curved route. The velocity for an edge is determined by considering
the raw input that assigns one out of 13 road categories to every edge. Then, a vehicle
specific velocity profile determines the travel time as weight for each edge. Hence, we
compare several velocity profiles. The Linear profile uses linearly 130-10 km/h for the 13
road categories, Motor Car uses typical average speeds of a car, Motor Car 2 is a
similar setting but with a 20% emphasis on travel distance that is realized by a scaling
towards 50 km/h. Finally, Constant uses a fixed velocity for all types of roads and so
shortest paths in the corresponding graph give actual shortest travel distances.

Linear 130 120 110 100 90 80 70 60 50 40 30 20 10
Motor Car 125 115 110 60 50 45 45 40 35 30 25 20 10
Motor Car 2 110 102 98 58 50 46 46 42 38 34 30 26 18
Constant 50 50 50 50 50 50 50 50 50 50 50 50 50

Table 3.1: Velocity profiles assign a speed in km/h to each road category to determine a travel
time as edge weight.

For the computation of flight distances one has to recall the origin of the layout data.
The given coordinates are the result of a map projection, mapping points from the curved
surface of the earth on a plane. There are different projections that preserve certain
geometric properties of the entities on the earths surface. As an instance of such projections
we could mention conformal, equal-area or equidistant map projections. We need this
geographical information to compute the flight distances. Then they are used as distance
approximation and are related to the edge weights of the graph with the definition of a
maximum velocity. Due to Lemma 3.5 this construction of lower bounds for distances
gives correct results for arbitrary flight distances. However, to reduce the search space
considerably, a good lower bound is necessary.

Here, the crucial point about map projections is the computation of flight distances. If

3.1 Goal-Directed Search 25

we treat the coordinates as points of the plane R2 we can use Euclidean distances. This is a
simple and in particular fast method because no expensive trigonometric computations are
required. The drawback of Euclidean distances is that they are not exact flight distances
that are actually given by an arc of a great circle, an orthodrome, rather than a straight
line. This effect becomes more important, the more the street network expands in north,
south, east and west direction. For large traffic graphs encompassing a broad range of
longitudes and latitudes, this effect is not negligible anymore.

Independent of the concrete map projection that is used, the computation of an exact
flight distance between two points is expensive because of the required trigonometric com-
putations. So, in terms of the regarded goal-directed search algorithm there seems to be a
tradeoff at this point: Due to the better distance approximation the search spaces with the
exact flight distance computation are smaller, but using Euclidean distances affords less
time per node because no trigonometric computations have to be performed. A way to get
along with this is to use an approximation for the flight distances. Results of the exper-
iments we made show that this works quite well. Our data uses a plate carrée projection
that is obtained by comprehending the decimal representation of latitude and longitude as
coordinates in the plane. This cylindrical projection shows a stretching in east-west direc-
tion that is the stronger the closer one gets to a pole. So the approximation we use applies
a correction factor for the latitude that depends on the longitude of a point that involves
only one cosine computation—in contrast to five trigonometric functions used for the exact
flight distance. Then, Euclidean distances are used on the so corrected coordinates.

Experimental results in terms of speedup relative to Dijkstra’s Algorithm are given in
Figures 3.2 and 3.3, results in terms of absolute numbers can be found in Table 3.2 and
Appendix A. The strong difference between runtimes is at a first glance somewhat surpris-
ing, because search space sizes do not differ significantly. This can be explained by the
number of decreaseKey operations. We see a big improvement of the search space when
we switch from Euclidean to exact distances, whereas regarding query time, Euclidean
distances are still slightly faster. They are both outperformed by the distance approxima-
tion that shows a very similar search space gain as exact distances without loosing this
performance in terms of query time. Hence, for all further considerations of geometrical
goal-directed search we use this distance approximation to determine the lower bounds.

Dijkstra Euclidean Exact Approx
Linear 959 593 616 468
Motor Car 964 614 600 456
Motor Car 2 858 523 525 389
Constant 595 355 432 294
Flight Distance 583 341 334 227

Table 3.2: Average query times [ms] for different setups of goal-directed search for point-to-point
queries in the road network of Germany.

26 Chapter 3: Without Preprocessing

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●
●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●●

●

●

●

●

●

●

●

●

●●

●●
●
●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●
●

●
●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●
●
●●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●●
●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●
●●

●

●

●

●

●

●

●

●

●●

●●
●
●

●
●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

Linear Motor Car Motor Car 2 Constant Flight Distance

0
2

4
6

8
10

12
14

0
2

4
6

8
10

12
14

A* (Euclidean)
A* (Exact)
A* (Approx)

Figure 3.2: Query time comparison of different setups of goal-directed search for random point-
to-point queries in the road network of Germany

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●●●●●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●●

●
●
●
●
●
●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●●
●
●

●
●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●●

●

●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●●●●●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●●●

●

●

●

●
●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●
●

●

●

●●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●●

●
●●

●
●
●
●
●
●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●

●

●●●
●
●

●
●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●
●

●

●●●

●

●

●

Linear Motor Car Motor Car 2 Constant Flight Distance

0
2

4
6

8
10

12
14

0
5

10
15

A* (Euclidean)
A* (Exact)
A* (Approx)

Figure 3.3: Search space comparison of different setups of goal-directed search for random point-
to-point queries in the road network of Germany

3.1 Goal-Directed Search 27

3.1.5 Landmark based Potential Functions

The concept of landmark based goal-directed search that was proposed by Goldberg as
ALT algorithm1 takes advantage of an improved potential function to accelerate point-to-
point shortest path queries. Better lower bounds for distances are obtained by a distance
estimation that uses a set of prominent nodes, called landmarks.

Now, some nodes L ∈ V are fixed as landmark nodes. Obviously, for shortest path
distances d the triangle inequality d(a, b) ≤ d(a, c) + d(c, b) holds for all a, b, c ∈ V . With
the prerequisite that all the shortest path distances to and from L are known, this property
can be used to compute lower bounds on shortest path distances between arbitrary nodes
in the graph. We will denote distances to landmarks by Dto,L(v) := d(v, L) and distances
from landmarks by Dfrom,L(v) := d(L, v).

The triangle inequality yields d(v, t) ≥ Dto,L(v) − Dto,L(t) and d(v, t) ≥ Dfrom,L(t) −
Dfrom,L(v) as lower bound for the shortest path distance d(v, t) from a node v to a target t.
Those lower bounds exactly provide the potential functions that can be used for landmark
based goal-directed search: πfrom,L(v) := Dfrom,L(v) − Dfrom,L(t), πto,L(v) := Dto,L(t) −
Dto,L(v). The proof that they are feasible is obvious:

Proof. Let (v, w) ∈ E be an arbitrary edge of G. Then lπto,L
(v, w) = l(v, w) + πto,L(w) −

πto,L(v) = l(v, w)+Dto,L(t)−Dto,L(w)−Dto,L(t)+Dto,L(v) = l(v, w)−Dto,L(w)+Dto,L(v) ≥
0. (Proof for πfrom,L analogous)

To obtain a tight lower bound these potentials can be combined by taking its maximum
πL := max{πto,L, πfrom,L}. According to Lemma 3.4 this leads again to a feasible potential
function. To combine potentials of several landmarks the maximum of their respective
potential functions is taken.

Useful lower bounds

Figure 3.4 depicts schematically the effect of landmarks that show a pleasant behaviour.
Viewing from the perspective of v in Figure 3.4(a) the landmark L lies behind the target
node t. This means that a prefix of the shortest path from v to t and a prefix of the
shortest path from v to L are closely related to each other. In a best case both paths even
have a common subpath. In this situation Dijkstra’s Algorithm is able to find this correct
subpath immediately because the reduced cost weights of edges lying on this subpath are
zero. Note, that in this situation the lower bound πto(v) that uses distances from nodes v
to the landmark L is useful. Figure 3.4(b) shows the converse case where a landmark is
situated ahead of the current node v and the potential πfrom(v) works well.

Following the considerations of the preceding paragraph we can state two main obser-
vations. First, it seems comprehensible that for landmarks it is advantageous to lie behind
or ahead shortest paths. This is based on the idea that for a useful potential function

1A*, Landmarks, Triangle Inequality

28 Chapter 3: Without Preprocessing

L
v

t

Dto,L(t)

Dto,L(v)

d(v, t)

(a) To Landmark, d(v, t) ≥ Dto,L(v)−Dto,L(t)

L

v

t

Dfrom,L(v)

Dfrom,L(t)

d(v, t)

(b) From Landmark, d(v, t) ≥ Dfrom,L(t)−Dfrom,L(v)

Figure 3.4: Landmarks are prominent nodes in the graph that yield lower bounds for shortest
path distances using the triangle inequality.

shortest paths from (or to) landmarks should have commonalities with the shortest path
we are looking for. Known techniques of landmark selection such as avoid, maxcover or
advanced avoid ([9, 4]) make use of this observation and place landmarks near the border of
a street network. In contrast, Figure 3.5 shows a case where a landmark does not provide
a useful lower bound.

The second observation is, that both, the distances from and to landmarks are impor-
tant. Regarding Figure 3.4, it is obvious that only one of them is useful at a time while the
distance for the opposite direction yields a useless negative lower bound. Certainly notice,
that if one is willing to trade off storage size against search space size, one could use the
maximum of Dto and Dfrom for less memory consumption.

3.1.6 Many-to-Many Landmark Algorithm

The original version of landmark based goal-directed search for point-to-point queries [9]
requires a preprocessing step. During this initial work a set of landmarks is determined
and all distances between those landmarks and nodes in the graph are precomputed. In
contrast, this chapter deals about techniques that do not require such a preprocessing
step. We can resolve this contradiction by turning the landmark approach into a method
without any preprocessing. To do this we comprehend some of the source nodes as implicit
landmarks.

3.1 Goal-Directed Search 29

L

v
t

Dfrom,L(v)
Dfrom,L(t)

d(v, t)

Figure 3.5: A landmark between a node v and a target t does not yield tight lower bounds.

The idea of this approach is to kill two birds with one stone: We compute desired
shortest path information and get landmark distance information in one go. The algo-
rithm works as follows: For tuning parameter k that fixes the number of landmarks we
select source nodes L1, L2, . . . , Lk ∈ S as implicit landmarks. Then we run Dijkstra’s
algorithm for every landmark Li, 0 < i ≤ k and store the thereby found distances from
the landmarks to all nodes in the graph. For all further queries, starting from nodes
s ∈ S\{L1, . . . , Lk}, we use the maximum of the lower bounds on distances given by the
inequality of Figure 3.4(b) for all landmarks Li, 0 < i ≤ k as potential function for our
sequential goal-directed algorithm.

To obtain a feasible potential function that is based on landmarks we must know the
distances from landmarks to all nodes. Hence, we expand the searches from landmarks to
the complete graph—we do not abort the search after all targets have been found. This
extra effort is spent to accelerate all further searches from nodes s ∈ S\{L1, . . . , Lk}. The
potential function πuni := max{πfrom,Li

: 0 < i ≤ k} that is used here is weaker than the
one that also uses distances to landmarks. In contrast to the original landmark method
here distances to landmarks are not used. So, the question arises if this approach can be
improved by using both, distances to and from landmarks. This requires an additional
effort of complete backward searches for every landmark. In our experiments we see that
this drawback is outweighed by the advantage of the better potential function.

It is important to choose suitable landmarks from the set of source nodes. Landmarks
yield useful potential functions for the overall performance if they are positioned at the
border of the graph. To respect this insight, we select the leftmost source node as the
first landmark L1. To determine a leftmost node the given geographical coordinates are
used. All further landmarks are select by a technique that is called farthest ([10]) and uses
a greedy method to select landmarks. Suppose that already i < k landmarks are found.
Then, the node s ∈ S is chosen as the next landmark Li+1 that has the farthest distance
to all landmarks L1, . . . , Li.

We will refer to this algorithm in experimental evaluations as LM K. This denotes the
many-to-many landmark algorithm using K landmarks and a potential that is obtained by
distances to and from landmarks.

30 Chapter 3: Without Preprocessing

(a) A request in the road network of Germany (b) Dijkstra’s Algorithm

(c) Goal-directed search using a geometric po-
tential

(d) Goal-directed search using landmarks

Figure 3.6: Comparison of Dijkstra’s algorithm, goal-directed search using a geometric potential
and goal-directed search using landmarks. Landmarks are marked as diamonds, targets are drawn
as squares and the circle shows the position of the source node.

3.1 Goal-Directed Search 31

3.1.7 Experimental Results

We made our experiments for goal-directed search in the road network of Germany that has
4 378 447 nodes and 10 668 389 directed edges. We use matrix sizes between |S| = |T | = 10
and |S| = |T | = 320 for our tests with randomly generated requests. The random instances
are generated as described in Section 2.4.3. We use Random generated requests that are
uniformly distributed in the complete graph without any clustering. 1 Cluster uses the
method that generates clustered random instances with 1 cluster of size 1 000 000 nodes.
2 Clusters are generated with a size of 100 000 nodes, 5 Clusters with a size of 20 000
nodes per cluster.

The first experiment given in Figure 3.7 compares the basic algorithm variants of goal-
directed search. There the number of settled nodes are considered. We see that goal-
directed search using a combination of the target potentials by taking its minimum can
reduce the search space for clustered input instances. Sequential goal-directed search works
far better. There is almost no difference between the order of the targets we search for
during this sequential many-to-many algorithm. Note, that for the random instances that
are uniformly distributed in the graph almost no speedup is possible with goal-directed
search. The reason is that Dijkstra’s algorithm is pruned at the border of the graph and so
a speedup can hardly be achieved by goal-directed techniques. For all further experiments
we stick to the sequential goal-directed algorithm that searches towards the farthest target
first.

Experimental results for sequential goal-directed search using different clustered re-
quests in the road network of Germany are given in Figures 3.8, 3.9 and 3.10. Each bar
in the box-and-whisker plots (see [22]) represents 50 fixed requests. For all table sizes and
clustered random requests we see a speedup of more than two. The search space speedup
is somewhat better than the query time speedup because of the additional effort per node.
This extra time is spent for the computation of the geometric potential function and for
refreshing of the priority queue. Goal-directed search allows a larger speedup for smaller
matrices. For growing matrix sizes wee see a reduction of the speedup.

Considering the landmark technique, we first regard an experiment that examines if it
is useful to spend extra effort for additional backward searches from landmarks to obtain
better lower bounds. We compare the version that uses only distances from landmarks
(unidirectional landmarks) with the one that uses both distances (bidirectional landmarks)
and consumes the same amount of memory. Figures 3.11, 3.12 and 3.13 show that it
pays to spend this extra effort. The improvement of the potential functions outweighs the
drawback of the additional searches of the complete graph. So, for all further experiments
we use bidirectional landmarks.

The next interesting question is how to choose the tuning parameter that determines the
number of landmarks. The experiments given in Figures 3.14, 3.15 and 3.16 show that three
landmarks are a reasonable choice. Probably a better landmark selection algorithm could
improve the results for more than three landmarks. For point-to-point queries the method
of active landmarks was shown to be useful. We made several preliminary experiments to

32 Chapter 3: Without Preprocessing

●●●
●●●●

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
10

00
00

0]

●●●
●●●●

●

●
●

Random 1 Cluster 2 Clusters 5 Clusters

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Dijkstra
GoalMin
GoalSeqN
GoalSeqF

Figure 3.7: Comparison of several variants of goal-directed search for random matrices with
|S| = |T | = 160. Sequential goal-directed search yields smaller search spaces than goal-directed
search using a combination of the target potential functions. The clustering of the input is im-
portant for the performance of goal-directed search.

use only some ’active’ landmarks for many-to-many queries without achieving considerable
further speedup of search space or query time. However, considering the experimental
results in terms of query time in contrast to the search space size (Figure A.3, A.4 and
A.5) we see that the more landmarks are used, the more time is spend per node.

Experimental results for landmark based goal-directed search using different clustered
requests in the road network of Germany are given in Figure 3.17, 3.18 and 3.19. Similar
speedups as for goal-directed search with a geometric potential function can be observed.
However, here for small instances the speedup is low because there a major part of the
runtime is needed for the computation of landmark distances. The best speedups—about
three or four times faster than Dijkstra’s algorithm—are achieved for large instances with
two clusters.

Further experiments concerning the real world instances in the road network of Europe
are presented in Section 3.3.

3.1 Goal-Directed Search 33

●

●●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

●
●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●
●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
5

2.
5

3.
5

4.
5

Figure 3.8: Speedup of sequential goal-directed search in the road network of Germany for
instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 1 Cluster.

●

●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

2
3

4
5

● ●

●
●

Q
ue

ry
 T

im
e

S
pe

ed
up

● ●

●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1
2

3
4

5
6

Figure 3.9: Speedup of sequential goal-directed search in the road network of Germany for
instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 2 Clusters.

●

●

●

●

●
●

●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●

●

●

●
●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
5

2.
0

2.
5

3.
0

3.
5

●

●

● ●

●

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up ●

●

● ●

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Figure 3.10: Speedup of sequential goal-directed search in the road network of Germany for
instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 5 Clusters.

34 Chapter 3: Without Preprocessing

●

●

●
●
●●

●●

●

●

●

●

Number of Landmarks

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
 1

00
00

00
]

●

●

●
●
●●

●●

●

●

●

●

1 2 2 4 3 6 4 8

0
10

0
20

0
30

0
40

0
50

0
60

0

0
10

0
20

0
30

0
40

0
50

0
60

0Bidirectional Landmarks
Unidirectional Landmarks

Figure 3.11: Comparison of the search space of bidirectional and unidirectional landmark based
goal-directed search in the road network of Germany for instances with |S| = |T | = 160 dis-
tributed in 1 Cluster.

Number of Landmarks

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
 1

00
00

00
]

1 2 2 4 3 6 4 8

0
10

0
20

0
30

0
40

0
50

0

0
10

0
20

0
30

0
40

0
50

0Bidirectional Landmarks
Unidirectional Landmarks

Figure 3.12: Comparison of the search space of bidirectional and unidirectional landmark based
goal-directed search in the road network of Germany for instances with |S| = |T | = 160 dis-
tributed in 2 Clusters.

●

●

●

●

●

●

●
●

Number of Landmarks

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
 1

00
00

00
]

●

●

●

●

●

●

●
●

1 2 2 4 3 6 4 8

0
10

0
20

0
30

0
40

0
50

0
60

0

0
10

0
20

0
30

0
40

0
50

0
60

0

Bidirectional Landmarks
Unidirectional Landmarks

Figure 3.13: Comparison of the search space of bidirectional and unidirectional landmark based
goal-directed search in the road network of Germany for instances with |S| = |T | = 160 dis-
tributed in 5 Clusters.

3.1 Goal-Directed Search 35

●●

●
●
●●●

●
● ●

●●

●

●

●●●

●
●

●
●

● ●
●

●●●

●
●

●

●

Number of Landmarks

Q
ue

ry
 T

im
e

[s
]

●●

●
●
●●●

●
● ●

●●

●

●

●●●

●
●

●
●

● ●
●

●●●

●
●

●

●

1 2 3 4 5 6 7 8 9

0
50

10
0

15
0

20
0

25
0 Dijkstra

Landmarks

Figure 3.14: Comparison of query time of landmark based goal-directed search with different
choices for the number of landmarks in the road network of Germany for instances with |S| =
|T | = 160 distributed in 1 Cluster.

●

●
●

●

Number of Landmarks

Q
ue

ry
 T

im
e

[s
]

●

●
●

●

1 2 3 4 5 6 7 8 9

0
10

0
20

0
30

0

Dijkstra
Landmarks

Figure 3.15: Comparison of query time of landmark based goal-directed search with different
choices for the number of landmarks in the road network of Germany for instances with |S| =
|T | = 160 distributed in 2 Clusters.

●

● ●

●

●

●
●

●
●

Number of Landmarks

Q
ue

ry
 T

im
e

[s
]

●

● ●

●

●

●
●

●
●

1 2 3 4 5 6 7 8 9

0
10

0
20

0
30

0
40

0

Dijkstra
Landmarks

Figure 3.16: Comparison of query time of landmark based goal-directed search with different
choices for the number of landmarks in the road network of Germany for instances with |S| =
|T | = 160 distributed in 5 Clusters.

36 Chapter 3: Without Preprocessing

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1
2

3
4

Figure 3.17: Speedup of landmark based goal-directed search using three landmarks in the road
network of Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
1 Cluster.

●

●

●

●

●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●

●

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

0
1

2
3

4
5 ●

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

0
1

2
3

4
5

6

Figure 3.18: Speedup of landmark based goal-directed search using three landmarks in the road
network of Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
2 Clusters.

●

●

●

●

●

●

●
●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●

●

●

●

●

●
●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1
2

3
4

5

●

●

●
●

●
●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●
●

●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1
2

3
4

5

Figure 3.19: Speedup of landmark based goal-directed search using three landmarks in the road
network of Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
5 Clusters.

3.2 Bidirectional Search 37

3.2 Bidirectional Search

Bidirectional Search is a basic approach to accelerate Dijkstra’s algorithm for point-to-
point queries. It performs simultaneously a backward search from the target and a forward
search from the source. The procedure can be finished if both search spaces have met. For
our case where graphs represent road networks we can expect a search space reduction of
about factor two. We can imagine the search space of Dijkstra’s algorithm as a ball around
the source node with radius r, so about r2 nodes are visited. If we have two touching balls
of half the size, the search space reduces to about 2 · (r

2
)2 = 1

2
· r2 nodes.

While designing such a bidirectional search we must pay attention to an abort criterion
that ensures correct results and a strategy to alternate between the forward and backward
search. During the search we maintain the shortest path that has been found so far. We
abort the search if a node becomes settled that was settled in the opposite direction
before. Using Dijkstra’s algorithm the distance of settled nodes are monotonic increasing,
so the shortest path can not be improved from here. Hence, this abort criterion yields
correct results. We use the following stopping criterion that is at least as strong as the one
above and correct for the same reason.

Lemma 3.6 (Abort Criterion for Bidirectional Search). The bidirectional search can be
stopped, if the sum of the minimum labels of the reached nodes for the forward and reverse
searches is at least the length of the shortest path seen so far.

For alternating between forward and backward search several strategies are possible.
One can simply use a rotational strategy that processes a node of one direction and then
a node of the opposite direction. Regarding cache issues, switching the direction after a
larger number of nodes could improve the performance by taking advantage of memory
locality. Another possibility for selecting the next node to be settled is to choose the
direction with the minimum distance label. This leads to an implementation with only one
priority queue for both directions.

Our goal is to adapt this speedup technique for point-to-point shortest paths queries
to the many-to-many shortest path problem. There is no straightforward way to do this.
The basic idea of bidirectional search to expand a forward search from every source and
a backward search from every target until all (s, t) search spaces have met remains, but
there are a lot of open questions about the details of this approach. Is it necessary to
expand the searches in parallel or is there a practical sequential algorithm to process the
numerous searches? How do we manage the intersections of the search spaces and how far
do we have to expand the searches?

In the following we present a bidirectional speedup technique for the many-to-many
shortest path problem that can be implemented as a sequential algorithm and leads to
an appreciable speedup compared to the plain version of Dijkstra’s Algorithm. Section
3.2.1 describes the general framework of our algorithm. An important sub task there is
the determination of radii for the backward searches a priori. Section 3.2.2 deals with this
topic.

38 Chapter 3: Without Preprocessing

3.2.1 Many-to-Many Algorithm

The first step of our bidirectional many-to-many algorithm is to run all the backward
searches successively. The problem about this approach is that it is not clear how far the
backward searches should be extended, since there is no parallel forward search to apply
a stopping criterion. What we do is to estimate a search radius r(t) for every backward
search from t ∈ T a priori. We defer the explanation of this procedure to the following
Section 3.2.2 and assume that this step will yield appropriate backward distances for now.
These backward radii are used to stop the backward searches: A backward search from t is
stopped, if the minimum key µ of the priority queue exceeds the given backward radius r(t).

The second step is the expansion of the forward searches. We also expand them one
after another and apply the abort criterion for bidirectional search (Lemma 3.6) to stop
them: A forward search from a node s ∈ V can be stopped if µ+r(t) ≥ D(s, t) for all t ∈ T ,
again µ denoting the current minimum key of the priority queue. The implementation of
this test requires a loop with |T | iterations that is too costly to perform it every time
when a node was settled. So, we perform this as a batch job and check the criterion just
periodically after a fixed number of settled nodes, in our experiments we used 1 000.

Together with the bidirectional stopping criterion this method guarantees that every
node lying on any of the |S × T | shortest paths has been settled at least by one of both
search directions.

Bucket Data Structure

Of course, to determine entries of the distance table just expanding the forward and back-
ward searches is not sufficient. To extract the inherent shortest path information one has
to consider search space intersections, i.e. nodes that are examined from both search di-
rections. For this reason we introduce a container that stores distances to target nodes
t ∈ T . We maintain for every node v ∈ V a bucket that stores a set of pairs (d, t). Such
a pair contains the length of a path2 from v to t, where t ∈ T is a node from the set of
targets and d ∈ R the weight of this path. We will refer to bucket entries attached to a
certain node v ∈ V as b(v).

There are different requirements for accessing buckets during the forward and the back-
ward search. The latter needs an operation v.insert(d, t) that appends a pair (d, t) to
the bucket at a node v. In contrast, during forward search, new bucket entries are not
stored but they have to be accessed. Hence, we need a method v.scan() that is able
to iterate over all bucket entries and so allows to access the recorded pairs at a node v.
In Section 2.3.1 we give the details of an efficient implementation of this data structure.
Note that the method of storing distances in this bucket data structure will be also used
in Chapter 4 for the very efficient method of many-to-many highway hierarchies as well.

2not necessarily shortest

3.2 Bidirectional Search 39

The usage of this bucket data structure in general works as follows: During a backward
search from a target t ∈ T we insert at some nodes v ∈ V pairs (d, t) into buckets b(v)
attached to v. Then, during a forward search from a node s ∈ S the bucket of every node
that becomes settled is scanned. The term bucket scan of a node v denotes the following
procedure: For all pairs (d, t) ∈ b(v) we try to improve the current entry of D(s, t) of the
tentative distance table. That means we set D(s, t) to d(s, v) + d if D(s, t) > d(s, v) + d.
Then the node v lies on the current tentative shortest path from s to t.

Search Space Intersection

We insert bucket entries only at some nodes during the backward searches. This should be
as less nodes as possible to reduce the time spent for all kinds of operations that involve
the bucket data structure. To remain correctness we must ensure for all (s, t) ∈ S × T
that at least one of the nodes on the shortest path from s to t that are found by both
search directions gets a bucket entry during backward search. This property for sure is
fulfilled in a naive implementation that stores for every settled node v of a backward
search originating from t ∈ T the pair (d(v, t), t). Obviously, this strategy will not lead to
an efficient algorithm due to overwhelming storage and time consumption.

A first observation is the following: If d(s, t) < r(t), the shortest path from s to t will
be found solely by the backward search and we can immediately store the exact length
of this shortest path in the tentative distance matrix. To find shortest paths from all the
remaining sources we create bucket entries for all nodes that are contained in the priority
queue when a backward search stops. What remains to be shown is that shortest paths
are actually found by forward searches from nodes v with d(s, t) > r(t).

Lemma 3.7. The bidirectional many-to-many algorithm remains correct, if bucket entries
are stored only at border nodes of the backward search space.

Proof. During the execution of Dijkstra’s Algorithm every node takes one of the three states
unreached, visited or settled. Now consider the shortest path (s = v0, v1, . . . , vk = t)
from a source node s to a target node t that was found during a run of Dijkstra’s Algorithm
in the reverse graph, starting the search from t ∈ T and continue until s ∈ S was settled.
We assume that there is a node vr such that d(vr, t) < r(t) ≤ d(vr−1, t), otherwise s would
be found directly by the backward search.

Dijkstra’s Algorithm starts with setting the node t to settled and relaxing its outgoing
edges whereby the penultimate node on the shortest path, vk−1, is set to visited. Contin-
uing the relaxation procedure in this way the nodes vi (r ≤ i ≤ k) are settled successively
in the order vk, vk−1, . . . , vr because every predecessor of a settled node has to be settled
himself. We stop the algorithm after the minimum key of the priority queue exceeds the
radius r(t). Hence, vr is settled and vr−1 is visited.

For a node, being visited is equivalent to be contained in the priority queue. So,
after stopping the backward search from t, (d(vr, t)+ l(vr−1, vr), t) will be inserted into the
bucket b(vr−1). The forward search is continued until the bidirectional stopping criterion

40 Chapter 3: Without Preprocessing

holds, so at least all nodes v with d(s, v) < d(s, t) − r(t) will be settled. Hence, vr−1 is
scanned and therefore the shortest path from s to t running across vr−1 will be found.

3.2.2 Specifying Backward Radii A Priori

As mentioned above, the proposed algorithm requires the radii for the backward searches
to be known a priori. So, in this section we define a method that determines those radii.
For the considered street networks a geographical layout of the graph is given. We use this
layout to estimate graph distances. A nice property of our algorithm is that it can smoothly
balance both search directions for different shaped asymmetric problem instances.

Our considerations are based on the assumption that a search spreads circularly around
a source node and the search space grows roughly proportional to the area of a circle with
a source node s ∈ S lying in the centre and a radius corresponding to the current minimum
key of the priority queue. Figure 3.20(b) shows that this quadratic relation is not very
exact, but gives a course picture of the search space that we can expect.

0 100 200 300 400 500 600 700

0
2

4
6

8

Flight Distance [km]

T
ra

ve
l T

im
e

[h
]

(a) Graph distance in relation to flight distance.

0 100 200 300 400 500 600

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Flight Distance [km]

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
 1

.0
00

.0
00

]

(b) Search space in relation to flight distance.

Figure 3.20: 30 000 random routes in the road network of Germany

Estimation of Shortest Path Distances

Bidirectional search is based on partitioning the search into two parts that both do half of
the work. In our algorithm the balancing between forward and backward searches is done
by the choice of the backward radii. The basic idea is to set the backward radii of a target
t ∈ T to half the length of a shortest path from s to t, where s is the source with the
greatest distance to t. Of course, the shortest path length is unknown at this time. Hence,
we use an approximation of shortest paths distances.

3.2 Bidirectional Search 41

The correlation between the given geographical layout and the length of a shortest
path in the road network is used to estimate yet unknown shortest path distances. We
ran several shortest path queries for random source-target pairs to get an average ratio
between both variables. Results of this experiment can be found in Figure 3.20(a) that
shows a linear relation. Note that we use the approximation method described in Section
3.1.4 to determine geometric distances. This ratio can be expected to remain invariant due
to typical changes of the graph as traffic jams, new road segments or similar events and
hence it can be ascertained without demanding the graph to be static.

Balancing Forward and Backward Search

For point-to-point queries bidirectional search usually balances the search spaces equiva-
lently between both search directions. We would probably do the same for the computation
of quadratic matrices, but for asymmetric problems with |S| 6= |T | perhaps another way
of balancing is useful.

The next step is to do an analysis of the search space sizes of the bidirectional many-
to-many algorithm to find a reasonable balancing. First, we introduce a balancing factor
α ∈ [0, 1] that determines the ratio between the forward and backward radii. Then, we
assume an average search radius r for all forward and backward searches. Together with
our assumption that the search spaces correspond to the area of a circle, we can estimate
the overall search space by the following formula:

S(α) = |S| · (α · r)2 + |T | · ((1− α) · r)2

We want to minimize this function depending on the balancing factor α. The derivative of
S(α) is

S ′(α) = 2r2((|S|+ |T |)α− |T |)
and the second derivative is

S ′′(α) = 2r2(|S|+ |T |)
and obviously always positive. Hence, S(α) takes its minimum at the root

α =
|T |

|S|+ |T |
of S ′(α). For quadratic matrices we get α = 1

2
as to be expected. For asymmetric matrices

this choice of α introduces automatically a smooth balancing and in principle it makes the
case distinction superfluous that decides whether to search the reverse graph if |T | < |S|.

Basic Radius Selection

Now, we sum up the basic radius selection algorithm we have developed so far. For each
target t ∈ T the distance to the farthest source node sf = max{||L(s, t)|| : s ∈ S} defines
the a priori radius r(t) = (1−α) ·sf ·γ, where γ is the average ratio between the geometric
distance and shortest path length and α the balance factor between forward and backward
search.

42 Chapter 3: Without Preprocessing

Alternative Radius Selection

There are situations where the basic radius selection algorithm obviously chooses some of
the backward radii too large. As an example, consider a query with S = T = {a, b, c}
as depicted in Figure 3.21. There a node c is located somewhere between nodes a and b.
Here α = 1

2
, hence the backward radii ra and rb of a and b span over half the distance

between a and b. In our model of circular search spaces this is an optimal choice. The
potential for improvement comes out if we regard the backward radius rc of the node c.
The basic radius selection we use so far sets the backward radius of c to half the distance
between c and b. But the backward search spaces of a and b anyway spread very far and
r′c = ||L(b, c)|| · γ − rb would be sufficient for the backward radius of c. Note that the
forward search from c automatically gets a similar search radius due to the bidirectional
stopping criterion.

a

c

b

ra rb

rcr′
c

Figure 3.21: Schematic representation of search spaces in a situation where the basic backward
radii determination can be improved.

This observation leads to an improved algorithm for the determination of the backward
radii. The idea of this algorithm is based on an estimation of the forward search radii rs of
source nodes s ∈ S. A forward radius can be estimated as rs = α·γ ·max{||L(s, t)|| : t ∈ T},
the distance estimation to its farthest target adjusted by the balancing factor. Then we
define the backward radius of a node t ∈ T as rt = max{0, max{||L(s, t)|| ·γ− rs : s ∈ S}}.
This yields backward radii that have at most the size of the radii determined by the basic
selection method.

The main effect of this method is the reduction of the radii of central nodes. Conceptu-
ally this method would strengthen the search space reduction more than a parallel variant
that spreads the searches simultaneously and for that we assume to have no additional
communication overhead for the intersection of the search spaces. In our experiments the
overhead for this advanced radius determination was imperceptible small in comparison to
the overall runtime.

3.2 Bidirectional Search 43

3.2.3 Experimental Results

We made experiments in the road network of Germany (4 378 447 nodes and 10 668 389
directed edges) for our bidirectional many-to-many algorithm. We have two versions of the
bidirectional algorithm that are evaluated in our experiments and refer to them as follows:

BiDir Bidirectional search using the basic method to determine backward radii.

BiDir2 Bidirectional search using the alternative method to determine backward radii.

First, we investigate how the backward radius selection performs for asymmetric prob-
lem instances. For this, we considered several asymmetric matrices with |S| · |T | = 32 400,
source and target locations randomly distributed in 1 Cluster with a size of 1 000 000
nodes. Table 3.3 shows the results of these experiments. We compare the runtime of Dijk-
stra’s algorithm with the runtime of the bidirectional algorithm that uses the alternative
backward radius selection. We see that up to |S| = 100 the bidirectional algorithm remains
faster than Dijkstra’s algorithm. Although wee see that the scaling of the balancing factor
works, for very asymmetric instances no speedup is achieved. One possible reason is that
the average speed of short paths is overestimated by the average ratio between travel time
and flight distance. So, the backward searches spread too far. Another point is, that the
more asymmetric the instance is, the more overhead of the intersections comes into play
and the less is the gain caused by the smaller priority queues.

|S| |T | Dijkstra BiDir2
180 180 191.0 89.8
150 216 196.8 118.3
120 270 133.8 103.7
100 324 85.8 85.2
80 405 80.6 98.7
60 540 55.3 68.7
40 810 56.1 66.0
20 1 620 21.4 28.2
10 3 240 7.9 11.1

Table 3.3: Query time [s] of Dijkstra’s algorithm and bidirectional search with alternative radius
selection in the road network of Germany for random instances with |S| · |T | = 32 400 distributed
in 1 Cluster.

For our experiments with quadratic instances we use sizes between |S| = |T | = 10 and
|S| = |T | = 320 for the distance tables. The random instances are generated as described
in Section 2.4.3. 1 Cluster uses the method that generates clustered random instances
with 1 cluster of size 1 000 000 nodes. 2 Clusters are generated with a size of 100 000
nodes, 5 Clusters with a size of 20 000 nodes per cluster.

44 Chapter 3: Without Preprocessing

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up ●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
5

2.
0

2.
5

3.
0

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
5

2.
0

2.
5

3.
0

3.
5

Figure 3.22: Speedup of bidirectional search with basic radius selection in the road network of
Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 1 Cluster.

●
●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up ●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

●

●

●
●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1
2

3
4

5

Figure 3.23: Speedup of bidirectional search with basic radius selection in the road network of
Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 2 Clusters.

●

●

● ●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●

● ●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

2.
5

3.
0

●

●

●
●

●

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●
●

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1
2

3
4

Figure 3.24: Speedup of bidirectional search with basic radius selection in the road network of
Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 5 Clusters.

3.2 Bidirectional Search 45

●●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up ●●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
5

2.
0

2.
5

3.
0

●

●

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Figure 3.25: Speedup of bidirectional search with alternative radius selection in the road net-
work of Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
1 Cluster.

●
●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●
●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
5

2.
0

2.
5

3.
0

3.
5

●

●

●

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1
2

3
4

5

Figure 3.26: Speedup of bidirectional search with alternative radius selection in the road net-
work of Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
2 Clusters.

●●

●

●
●●
●

●
●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up ●●

●

●
●●
●

●
●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

2.
5

3.
0

●●

●
●

●

●

●●
●

●

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●●

●
●

●

●

●●
●

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Figure 3.27: Speedup of bidirectional search with alternative radius selection in the road net-
work of Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
5 Clusters.

46 Chapter 3: Without Preprocessing

Experimental results for bidirectional search using requests with different clustering in
the road network of Germany are given in Figures 3.22, 3.23 and 3.24 for the basic radius
selection and in Figures 3.25, 3.26 and 3.27 for the alternative radius selection. Again,
each bar in the box-and-whisker plots represents 50 fixed requests. For all table sizes and
clustered random requests we see a speedup of about two. In most cases the basic radius
selection works better. Only for instances with five clusters the alternative radius selection
yields higher speedups. One can observe that the query time speedup is better than the
search space speedup. A reason for this behaviour is the size of the priority queue. If
we have search spaces of half the size, then there are less visited nodes maintained in the
queue.

3.3 Comparison of Real World Results

Finally, in this chapter about methods without any preprocessing, we apply the presented
techniques to the real world instances. As explained in Section 2.4.3, we use nine many-to-
many requests having between 173 and 2 892 nodes located in the road network of Europe.

Tables 3.4 and 3.5 show experimental results concerning real world instances and the
algorithms without preprocessing. All of the techniques accelerate the real world instances
considerably. Most speedups that can be observed are around factor two. Regarding goal-
directed search, landmarks work better for larger instances, geometric goal-directed search
works very well for all instances. Also, bidirectional search yields speedups of around two
for the smaller instances. For the larger instances with our implementation no speedup
was measured.

3.3 Comparison of Real World Results 47

Dijkstra GoalSeqF LM 2 LM 3 LM 4 BiDir BiDir2
RW1 248 101 117 146 173 121 109
RW2 347 121 132 154 182 155 167
RW3 533 221 225 230 272 270 251
RW4 1363 637 662 651 818 1322 1476
RW5 304 126 148 186 232 279 288
RW6 7408 3906 2341 2468 2488 6670 7682
RW7 8028 5051 3578 3215 3485 9505 13683
RW8 3924 1867 2211 2340 2968 5660 6550
RW9 21882 12817 8022 7395 8526 64922 76818

Table 3.4: Comparison of many-to-many algorithms without preprocessing. This table gives the
query time in seconds for real world instances located in the road network of Europe.

GoalSeqF LM 2 LM 3 LM 4 BiDir BiDir2
RW1 2.46 2.11 1.69 1.44 2.05 2.28
RW2 2.87 2.63 2.26 1.91 2.24 2.08
RW3 2.41 2.36 2.32 1.96 1.97 2.12
RW4 2.14 2.06 2.09 1.67 1.03 0.92
RW5 2.41 2.06 1.63 1.31 1.09 1.05
RW6 1.90 3.16 3.00 2.98 1.11 0.96
RW7 1.59 2.24 2.50 2.30 0.84 0.59
RW8 2.10 1.77 1.68 1.32 0.69 0.60
RW9 1.71 2.73 2.96 2.57 0.34 0.28

Table 3.5: Comparison of many-to-many algorithms without preprocessing. This table gives the
query time speedup relative to Dijkstra’s algorithm for real world instances located in the road
network of Europe.

Chapter 4

Highway Hierarchies

In this chapter we assume the graph to be static. In contrast to Chapter 3 in this
situation a preprocessing step to accelerate all further queries is suitable. Regarding the
various recent speedup techniques (see Section 1.2 for an overview) we consider highway
hierarchies ([25])—one of the currently fastest methods to perform point-to-point queries
in road networks—to be a very suitable candidate to be adapted to the many-to-many
shortest path problem. The property to use a strong hierarchy without any sense of goal-
direction seems to be tailored to accelerate the computation of distance tables.

So, based on highway hierarchies, we present a very efficient algorithm to compute
many-to-many shortest paths in a static graph. For example, a huge matrix with an input
size of |S| = |T | = 10 000 can be solved in about one minute by our algorithm—Dijkstra’s
Algorithm would take far more than one day. The one million shortest path distances of
a matrix with a size of 1 000× 1 000 can be computed in 2.5 seconds—4680 times faster
than Dijkstra’s Algorithm.

A straightforward approach to apply highway hierarchies to solve this problem is to use
the point-to-point query algorithm, which can answer an s–t query in about one millisecond,
for every single entry of the distance table. However, for large matrices this approach is
not able to speed up this task considerably. For example a 10 000× 10 000 matrix would
need about the same time as Dijkstra’s algorithm—more than one day. But, as mentioned
before, the problem can be solved very efficiently using an other approach that is based on
highway hierarchies. We review the basic concepts needed for this technique in Section 4.1
and present our algorithm in Section 4.2. Refinements of the approach are discussed in
Section 4.2.1, followed by an analysis in Section 4.3. Finally, experimental results are given
in Section 4.4.

4.1 Point-to-Point Algorithm

We start with explaining the concept of highway hierarchies according to [25]. This method
was developed for point-to-point queries in large road networks. The basic idea is that
outside some local areas around the source and the target node, only a subset of ’important’
edges has to be considered in order to be able to find the shortest path. The search can
be pruned at roads that are not important for long itineraries. The next section presents

50 Chapter 4: Highway Hierarchies

the definition of a highway hierarchy that can be computed in a preprocessing step. For
details about the preprocessing, we refer to [25].

4.1.1 Highway Hierarchy

The concept of a local area is formalised by the definition of a neighbourhood node set.
With given neighbourhood radii r(v) ∈ R for nodes v in a graph G = (V, E) the neighbour-
hood of a node u is defined as N(u) := {v ∈ V : du(u, v) ≤ r(u)}, where du(u, v) denotes
the distance between u and v in the bidirected graph Gu := (V, E ∪ {(u, v) : (v, u) ∈ E}).
To deal with several paths of the same length the definition of a canonical shortest path is
needed: For each connected node pair (s, t) we select a canonical shortest path in such a
way that each subpath of a canonical shortest path is canonical as well.

We then get a definition of a highway network of a graph G = (V, E): An edge (u, v) ∈ E
belongs to the highway network iff there are nodes s, t ∈ V such that the edge (u, v) appears
in the canonical shortest path 〈s, . . . , u, v, . . . , t〉 from s to t in G with the property that
v 6∈ N(s) and u 6∈ N(t).

In such a highway network there are a lot of nodes with a small degree. So, with a
contraction procedure the size of a highway network (in terms of number of nodes) can
be reduced considerably. For each node v, we check a bypassability criterion that decides
whether v should be bypassed. To bypass a node v means to create shortcut edges (u, w)
for edges (u, v), (v, w). The bypassability criterion is fulfilled for a node, if the number
of shortcuts that have to be created is smaller than c · (degin(v) + degout(v)) for a tuning
parameter c. The graph that is induced by the nodes that are not bypassable and enriched
by the shortcut edges forms the core of a highway network.

A highway hierarchy of a graph G consists of several levels G0, G1, G2, . . . , GL and is
defined inductively. Level 0 corresponds to the original graph: G′

0 := G0 := G. For i > 0,
G′

i = (V ′
i , E

′
i) is defined as the core of Gi = (Vi, Ei). Gi itself is the highway network of

the core G′
i−1 of Level i− 1.

4.1.2 Query

The highway hierarchies query algorithm [25] performs a modified bidirectional search.
We only describe the forward search, since the backward search works analogously. The
search is controlled by the current level ` of the search and the gap to the border of the
current neighbourhood. For every node in the priority queue both values are maintained.
Initially, a search starts at a node v ∈ V in level 0 and with the radius r(v) of v as gap.
When an edge (u, v) is relaxed and improves the current tentative path to v, v inherits
the level from u and the gap of u decreases by the weight of the edge (u, v). If the gap
would become negative, we leave the neighbourhood and the search can ascend to the next
level—` increases by one and the gap is set to the radius of v.

4.2 Many-to-Many Algorithm 51

A node s` is called an entrance point into level ` if it marks the point where the search
switches to level `. The next point s′` on a shortest path from s over s` that is in the core
G′

` of level ` is called an entrance point into the core of level `. If s` itself belongs to the
core of level `, we have s` = s′`.

The speedup of highway hierarchies is achieved by pruning the search space due to two
restrictions: Do not relax edges which are not in the current level of the highway hierarchy.
Do not relax edges going from nodes in the core of level ` to bypassed nodes. Note that the
usual stopping criterion for bidirectional search does not work with these pruning rules.
The search has to be continued until the search radius of both directions reaches the length
of the shortest path found so far. But anyway, in our adaption of the algorithm to the
many-to-many shortest path problem such a criterion is not used so far and the search is
continued until the priority queue is empty.

4.2 Many-to-Many Algorithm

In this section, we describe how the highway hierarchies query algorithm can be adapted
to solve the problem of finding many-to-many shortest paths. Even in very large graphs
with millions of nodes only very few nodes are visited by the highway hierarchies query
algorithm. These very small search space sizes allow us to store a lot of search spaces
completely. This is the basic idea for our many-to-many highway hierarchies algorithm:
We remember search spaces and intersect them to compute the desired distance matrices
quickly.

We start this section with introducing the terms of forward and backward search spaces
for highway hierarchies: The highway hierarchy forward search space F(s) ⊆ V for a node
s ∈ V is the set of nodes that are settled during a query that is performed as described in
Section 4.1.2 originating from a source node s in the graph G. Respectively, the highway
hierarchy backward search space B(t) ⊆ V for a node t ∈ V is the set of nodes that are
settled during a query originating from a target node t in the reverse graph G.

If we omit the abort criterion of the highway hierarchies query algorithm for point-
to-point queries, we can say that the shortest path distance from a source node s to a
target node t is determined by identifying a node v ∈ F(s) ∩ B(t) with d(s, v) + d(v, t) =
min{d(s, u)+d(u, t) : u ∈ F(s)∩F(t)}. The construction of the highway hierarchy guaran-
tees that a node with this property lies on a shortest path from s to t. In this way one can
obtain the distance from s to t for all the pairs (s, t) ∈ S×T . We will use this formulation
of the highway hierarchies algorithm for point-to-point queries to obtain a fast method to
obtain entries of the desired distance matrix.

Without loss of generality we will assume |T | ≥ |S|. Otherwise, it is more efficient
to apply the algorithm below to the reverse graph. Now, the idea of our algorithm is
the following: We store the backward search spaces B(t) for all t ∈ T and intersect them
consecutively with the forward search spaces F(s) for all s ∈ S to determine the shortest

52 Chapter 4: Highway Hierarchies

1 forall (s, t) ∈ S×T
2 D(s, t)←∞
3 forall t ∈ T
4 BackwardSearch(t)
5 settle(v) : store (d(v, t), t) in b(v) at node v
6 forall s ∈ S
7 ForwardSearch(s)
8 settle(v) : forall (dt, t) ∈ b(v)
9 if (d(s, v) + dt < D(s, t)) then

10 D(s, t)← d(s, v) + dt

Figure 4.1: Highway hierarchies algorithm for many-to-many shortest paths. During a forward
or a backward search additional operations are performed when a node becomes settled. In the
code listing above those modifications are denoted below the respective call of a Highway Hierarchy
search algorithm.

path distances. To store the backward search spaces we use the bucket data structure that
was introduced in Section 3.2.1 for bidirectional search. The implementation of this data
structure is described in Section 2.3.1.

Similarly to the idea of the bidirectional algorithm presented in Section 3.2, we start
with performing all backward searches from nodes t ∈ T to store the backward search
spaces: For all nodes v ∈ B(t) that are settled during a backward search from t the distance
d(v, t) is stored as a pair (d, t) in the bucket b(v) of v. Additionally, a tentative distance
matrix whose entries are initialised with infinity is maintained. So, after all backward
searches have been finished we can start the forward searches to do the intersections.
During a forward search no extra data has to be stored. Again, we use the highway
hierarchies query algorithm and modify it by introducing additional operations when a
node becomes settled. We use the method of bucket scanning that was introduced for
bidirectional search: At a node v we update all tentative entries of the distance matrix
that can be improved by a path including the current node v. To do this we examine for
every d(v, t) ∈ b(v) if d(s, v) + d(v, t) < D(s, t). An overview of the algorithm is given in
Figure 4.1 in pseudo code representation.

4.2.1 Optimisation

Asymmetric Search. The time that is spend during the algorithm is not only dependent
on the search space sizes. For very large distance matrices the time for bucket scanning
dominates the query time. The first idea to reduce the bucket scanning is to introduce an
asymmetric approach. Our first step is to introduce a tuning parameter K by using only
levels 0, . . . , K of the highway hierarchy. Since level K can have considerable size, it would
be wasteful to search it from both directions. So, we reduce the number of nodes with an
attached backward distance by stopping the backward searches earlier: Outgoing edges of

4.2 Many-to-Many Algorithm 53

s

t2

t1

t3
t5

t4

Level K

Figure 4.2: Schematic view of our asymmetric many-to-many highway algorithm. The forward
searches explore all of level K whereas the backward searches stop at entrance points to the core
of level K.

an entrance point to the core of level K are not relaxed. Hence, the backward searches
never look beyond such core entrance points of level K. The forward search is not aborted
and still expands completely in level K.

This approach works similar as an optimised version of the algorithm in [25] where
both search directions stop searching at level K and the remaining distance is covered by a
precomputed distance table between nodes in G′

K . The idea of the asymmetric approach is
that the backward searches rely on the forward search to explore enough of level K to meet
it. To show that this technique preserves the correctness of the algorithm, we consider a
node v ∈ F(s) ∩ B(t) lying on a shortest path P from s to t that was found by the basic
highway algorithm. If v is found while the backward search is in a level ` < K, obviously it
is also found by the asymmetric backward search. If v is found while the backward search
is in level K, then there is an entrance point e to the core of the topmost level that lies
between v and e on the shortest path P and that is found by the asymmetric backward
search. Every forward search finds this node because it explores all nodes v ∈ V ′

K , in
particular e ∈ V ′

K .

This observation leads to the next optimisation: Fewer Bucket Entries. From the
insights of the previous paragraph we can conclude that some of the bucket entries can be
omitted. Our algorithm finds a shortest path P from s ∈ S to t ∈ T if there is at least
one intermediate node v ∈ P that is settled during forward search from s and backward
search from t. Every additional bucket entry at an other node u with this property costs
unnecessary extra scanning time. We can save such scans based on the observation that
during a highway search the current search level can differ from the actual level of a node.
Due to this fact, bucket entries at nodes in the core of level K are made while the search is
still in a level ` < K. Because every forward search settles all nodes in G′

K , a bucket entry
(t, d) ∈ b(v) can be omitted if it corresponds to a path of the form (s, . . . , v′, v) where both
v′ and v are in the core of level K.

54 Chapter 4: Highway Hierarchies

Accurate Backward Search. The reduction of bucket scans described in the previous
paragraph can be strengthened by performing accurate backward searches. The current
version of backward search is not accurate because we break the search at entrance points
to the core of the topmost level. To make them exact, backward searches are enlarged: We
do not prune the search at core entrance points and continue until all nodes in the priority
queue are in the core of level K. This can be implemented by maintaining a state that can
be active or passive for every visited node. Initially all nodes are active. A node inherits
the state of its predecessor in the shortest path tree. At entrance points to the core of
the topmost level the state is set to passive. The search is continued until all nodes are
passive. This method leads to fewer bucket entries, because the restriction of the previous
paragraph applies more often.

4.2.2 Outputting Paths

So far we have only described how to compute distances. We now describe how the al-
gorithm can be modified so that it computes a data structure that allows to output an
(s, t)-shortest path P (for (s, t) ∈ S × T) in time O(|P |). First, note that any path in the
highway hierarchy can be efficiently converted to a path in the input: Store the constituent
edges (from the same level in the hierarchy) of each shortcut in a separate list. This leads
to a linear increase in space consumption and allows efficient recursive conversion of a
highway hierarchy edge into a path in the input graph.

We explicitly store the search spaces of forward and backward searches in the highway
hierarchy in the form of rooted trees. For each query pair (s, t), the shortest path from s to
t consists of a s–v path in the forward search space from s and a v–t path in the backwards
search space to t. Hence, all we need to store are pointers to v in the two search spaces.
This information is updated during the main computation whenever a better s–t path is
encountered.

4.2.3 Computing Shortest Connections Incrementally

In many applications we are not really interested in a complete distance table. For example,
many heuristics for the travelling salesman problem start with the closest connections for
each node and only compute additional connections on demand [11]. For such applications,
the asymmetry in our search algorithm is again helpful. As before, the (small) backward
search is done for all t ∈ T until all entrance points to level K are encountered. The (large)
forward searches that require heavy scanning of buckets are only progressing incrementally
after their search frontier is completely in the core of level K.

To do this we remember the number of entrance points to level K encountered by each
backward search. Each forward search is equipped with a copy of this counter array. When
the forward search encounters an entrance point to level K and scans a bucket entry (t, d)
it decrements the counter for t. When the counter reaches zero, D(s, t) = d(s, t) and we
can output the newly found distance.

4.3 Analysis 55

4.3 Analysis

Together with the entrance point restriction of the preceding paragraph, the level restriction
further reduces the size of the backward search spaces. The forward search spaces and the
overall search space grow, but we spend less time per node. So the choice of the level we
abort at is a parameter that has to deal with this tradeoff. Dependent on the problem size
different abort levels are useful. The bigger the matrix is, the smaller we can choose the
maximum level, because for larger matrices we have more backward distances to maintain
and to compare with. We also save storage space for the backward distances in main
memory which could be a limiting issue for very large matrices.

Since highway hierarchies do not give worst case performance guarantees that hold
for arbitrary graphs our analysis will be based on parameterisation and assumptions that
still have to be checked experimentally for a given instance. We nevertheless believe such
an analysis to be valuable because it explains the behaviour of the algorithm and helps
choosing the tuning parameters. For the following analysis, we consider the variant of the
algorithm that uses the basic version from Section 4.2 together with the asymmetric search
optimisation. Let H(`) denote the average number of nodes that are settled in level `
during one highway search that is aborted at the entrance points to the core of level K.
Let Dij(k) denote the cost of a Dijkstra-search when exploring k nodes in a road network.

The backward searches have a cost of about |T | · Dij(
∑K

`=0H(`)). This cost includes
the time for storing the distances to targets in the buckets. The forward searches have
cost of about |S| · Dij(|V ′

K | +
∑K−1

`=0 H(`)) for the search itself where V ′
K is the core of

level K. To estimate the cost of scanning buckets during forward search, we first state that
in level ` there are about H(`) · |T | bucket entries made during backward search. We have

an average number of bucket entries for each node in level ` of H(`)·|T |
|V ′

` |
. Hence, based on

the assumption that the target nodes are uniformly distributed, the forward searches scan
about |S| · H(`) · H(`)·|T |

|V ′
` |

bucket entries in level ` < K and |S| · |V ′
K | ·

H(K)·|T |
|V ′

K | in level K. So,

the overall number of bucket scans is

|S| · |T | ·

(
H(K) +

K−1∑
`=0

H(`)2

|V ′
` |

)
.

With this assumptions we get a total cost for the highway hierarchies many-to-many
algorithm of

|T | ·Dij

(
K∑

`=0

H(`)

)
+ |S| ·Dij

(
|V ′

K |+
K−1∑
`=0

H(`)

)
+ |S| · |T | · c ·

(
H(K) +

K−1∑
`=0

H(`)2

|V ′
` |

)
.

If both S and T are large, the dominating term is |S| · |T | · c ·
(
H(K) +

∑K−1
`=0

H(`)2

|V ′
` |

)
.

From this we can learn several things. First, the constant behind this term is very small so

56 Chapter 4: Highway Hierarchies

that we can expect very good performance for large problems. Second, it is obvious that we
can actually reduce the time for bucket scanning by choosing K smaller than the maximum
possible level. The experimental section will show that bucket scans only dominate cost
for rather large inputs. Based on this estimate and appropriately measured constants of
proportionality we would then get a cost model that is accurate enough to choose a (near)
optimal value for K.

It is also interesting to look at extreme cases. When |S| = |T | = 1, it is best to
choose K as the highest level and we essentially get the ordinary highway hierarchy query
algorithm (except that we do not stop the backward search early when source and target
are close together). When T = V , it is best to choose K = 0 and we get the ordinary
Dijkstra algorithm for (repeated) single source shortest path. In other words, our algorithm
smoothly interpolates between the best algorithms for these extreme cases and promises
considerable speedups in the middle where none of these other algorithms works very well.

4.4 Experimental Results

For our experiments we use the road network of Europe. For choosing S and T we use
random instances of two types. Symmetric instances with S = T and asymmetric ones
with |S| · |T | = 3240 000. We also tested the nine symmetric real world instances between
173 and 2 892 nodes stemming from vehicle routing problems. On the graph of North
America we have also tried random symmetric instances. The results are quite analogous
to those for Europe and can be found in Appendix A. The general setup of the experiments
is explained in Section 2.4.

Figure 4.3 gives running times for different variants of our algorithm using a large
symmetric instance with |S| = |T | = 20 000 and Figure 4.4 an asymmetric instance with
|S| = 100 and |T | = 32 400. We can see that reducing the number of bucket entries without
changing the backward search is always helpful. Investing more into backward search
pays only for large symmetric instances and is highly counterproductive for asymmetric
instances. From now on we stick to the variant with reducing the number of bucket entries
but without the accurate backward search. This seems to be a good compromise that
always improves on the basic variant.

Performance for random symmetric instances with |S| = |T | between 100 and 20 000
with maximum level K between 5 and 9 is given in Figure 4.5. We see that K = 7 is
always a good value. Only for very large inputs, K = 6 is somewhat better. The break
even point is near |S| = |T | = 6000. Since the inputs from our applications are usually
symmetric and not so big, we have decided not to implement an automatic algorithm for
selecting the best value of K. It is interesting to compare this with the running time
of alternative algorithms given in Figure 4.6. Over the entire range of input sizes, our
algorithm outclasses both Dijkstra’s algorithm and a naive highway hierarchy algorithm
that performs |S| × |T | individual queries.

4.4 Experimental Results 57

Topmost Level

T
im

e
[m

in
]

4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9

Basic Version Fewer Bucket Entries Accurate Backward Search
0

2
4

6
8

10
12

14

0
2

4
6

8
10

12
14

Bucket Scanning
Forward Search
Sorting
Backward Search

Figure 4.3: Performance of different algorithm variants for a large symmetric instance with
20 000 source and target nodes.

Topmost Level

T
im

e
[s

]

3 4 5 6 7 8 9 3 4 5 6 7 8 9 3 4 5 6 7 8 9

Basic Version Fewer Bucket Entries Accurate Backward Search

0
10

20
30

40
50

60

0
10

20
30

40
50

60

Bucket Scanning
Forward Search
Sorting
Backward Search

Figure 4.4: Performance of different algorithm variants for an asymmetric instance with 100
source nodes and 32 400 target nodes.

58 Chapter 4: Highway Hierarchies

Topmost Level

T
im

e
[m

s]

|S
|

0
5

10
15

20
25

0
5

10
15

20
25

0
5

10
15

20
25

0
5

10
15

20
25

0
5

10
15

20
25

5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9

100 x 100 500 x 500 2000 x 2000 8000 x 8000 20000 x 20000

0
5

10
15

20
25

Bucket Scanning
Forward Search
Sorting
Backward Search

Figure 4.5: Different choices of maximum level K for quadratic instances.

100 200 500 1000 2000 5000 10000 20000

1
10

0
10

00
0

Table Size (|S| = |T |)

T
im

e
[µ

s]

|S
| *

 |T
|

●

●

●

●
●

●

●
● ● ● ● ● ● ●

●

●

●

●
● ●

●
●

● ● ● ● ● ● ● ●

1
10

10
0

10
00

0

5
50

50
0

50
00

50
00

0●

●

Highway Hierarchies2

Dijkstra
Many−to−Many HH (Level 6)
Many−to−Many HH (Level 7)

Figure 4.6: Comparison of our algorithm with alternative algorithms.

4.4 Experimental Results 59

Topmost Level

T
im

e
[s

]

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70

1 2 3 4 2 3 4 5 3 4 5 6 4 5 6 7 5 6 7 8 6 7 8 9

20 x 162000 50 x 64800 100 x 32400 400 x 8100 1000 x 3240 1800 x 1800

0
10

20
30

40
50

60
70

Bucket Scanning
Forward Search
Sorting
Backward Search

Figure 4.7: Performance for asymmetric instances at different choices of the maximum level K.

T
im

e
[s

]

●

●

● ●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ● ● ●
● ●

●

2
5

50
50

0
50

00

1
10

10
0

10
00

10
00

0

5
x

64
80

00

10
 x

 3
24

00
0

20
 x

 1
62

00
0

50
 x

 6
48

00

10
0

x
32

40
0

20
0

x
16

20
0

40
0

x
81

00

60
0

x
54

00

80
0

x
40

50

10
00

 x
 3

24
0

12
00

 x
 2

70
0

15
00

 x
 2

16
0

18
00

 x
 1

80
0

● ●Highway Hierarchies2

Dijkstra
Many−to−Many HH (Level 1)

Many−to−Many HH (Level 2)
Many−to−Many HH (Level 3)
Many−to−Many HH (Level 4)

Many−to−Many HH (Level 5)
Many−to−Many HH (Level 6)
Many−to−Many HH (Level 7)

Figure 4.8: Comparison of algorithms and algorithm variants for asymmetric instances.

60 Chapter 4: Highway Hierarchies

4 5 6 7 8 9

0
10

0
20

0
30

0
40

0
50

0
60

0

Topmost Level

#B
uc

ke
t S

ca
ns

|S
| *

 |T
|

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

50
15

0
25

0
35

0
45

0
55

0

Real World (354 x 354)
Real World (800 x 800)
Real World (2403 x 2403)
Real World (2892 x 2892)
Worst Case (10000 x 10000)
Random (1000 x 1000)
Random (20000 x 20000)
Random (100 x 32400)

Figure 4.9: The number of bucket scans per entry of the distance matrix is only dependent on
the distributions of the source and target nodes in the graph. Independent of the number of sources
and targets it is identic for all random instances in this road network

Figure 4.7 shows the performance for asymmetric inputs with fixed |S| · |T | = 3 240 000.
As to be expected, forward search and bucket scanning dominates for near symmetric
instances while backward search dominates for large |T |. With decreasing |S|, the optimal
level for K goes all the way down from seven to one. But even for |S| = 5 our algorithm
with level 1 outperforms Dijkstra’s algorithm. Figure 4.8 gives the total execution time for
an even larger spectrum of size ratios and also includes the competing algorithms.

Figure 4.9 shows that the distribution of the nodes in the graph is crucial for the number
of bucket scans. The more the input is clustered, the more intersections occur in the lower
levels. A worst case scenario for this is the selection of S and T as the k-nearest nodes of
a random node in the graph. Very interesting is the fact, that for a random node selection
the number of sources and targets and also the rate of asymmetry is not relevant for the
number of bucket scans per table entry. All the tested instances yield invariant results for
this piece of data.

Of course, it is interesting whether our measurements with random data have any
relation to the performance on real world inputs. Figure 4.10 compares our real world
instances with random instances of the same size. An important difference in the inputs
is that the real world data is clustered (mostly in some area the size of the Netherlands).
Overall, the running times are fairly close together and never more than a factor 1.7 apart.
Hence, using random data for measurements is not completely unreasonable. The main
difference is that real world instance need considerably more time for bucket scanning.

4.4 Experimental Results 61

Random Instances vs. Real World Instances

T
im

e
[m

s]

|S
|

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

0
1

2
3

4
5

R W R W R W R W R W R W R W R W R W

17
3

x
17

3

32
5

x
32

5

35
4

x
35

4

78
4

x
78

4

80
0

x
80

0

99
0

x
99

0

14
63

 x
 1

46
3

24
03

 x
 2

40
3

28
92

 x
 2

89
2

0
1

2
3

4
5Bucket Scanning

Forward Search
Sorting
Backward Search

Figure 4.10: Comparison of random instances (R) and real world instances (W) of the same
size.

This is easily explained by the clustering since search spaces will more often overlap on
lower levels of the search. In Figure 4.9 we see the real world instances somewhere between
the worst case and uniformly distributed random instances. Real world instances need
noticeably less time for backward search and sorting although the search spaces are very
similar in size (data not shown here). A possible explanation are cache effects. Subsequent
backward searches from clustered nodes are more likely to find the graph data they need
in cache.

The time for forward search is about the same for both, real world and random, instance
families. The reason is that our current implementation does not break forward search
when all entrance points have been covered. Thus, it cannot profit from the clustering of
the inputs. it would be interesting to investigate the following modification of our query
algorithm that improves the behaviour exactly for such clustered inputs: A forward search
from s can stop when its remaining search space is completely in the core of level K and
when all nonempty buckets in the core of level K have been scanned. This condition
can be checked efficiently and might give significant speedup if sources and targets are
concentrated in a small part of the road network.

Chapter 5

Conclusion

We have proposed algorithms for the many-to-many problem in road networks that
are able to accelerate shortest path queries considerably. With our highway hierarchies
many-to-many algorithm we can achieve speedups of more than 1 000. In situations where
a preprocessing step is not permissible bidirectional and goal-directed search can be used
and need only half the time of Dijkstra’s algorithm.

If the tables are big enough and the locations spread far over a large road graph, our
highway hierarchies many-to-many algorithm even beats Dijkstra’s algorithm if computing
the highway hierarchy is considered to be part of our task. If this is necessary, it might be
interesting however to find ways to compute a hierarchy specially tailored to S and T—after
all we only need to preserve shortest paths between nodes in S and T . The hope would be
that this can be done more efficiently than building a complete highway hierarchy.

In Tables 5.1 and 5.2 we give an overview of the results for real world instances. Addi-
tionally, we consider here the highway hierarchies algorithm with a runtime that includes
the time for preprocessing (HHP). This illustrates that even if we include this extra effort,
for large problems we still get high speedups. For our largest real world instance this
method is 24 times faster than Dijkstra’s Algorithm.

One main observation regarding the Table 5.2 are the fluctuating speedups of the high-
way hierarchies many-to-many algorithm. The reason is the following: The highway algo-
rithm has very stable runtimes depending almost only on the number of locations. However,
in our real world instances the time for Dijkstra’s algorithm is dependent on the clustering
of the instances. If they are located only in a small area, e.g. only in BeNeLux (RW 8),
Dijkstra’s algorithm can abort earlier. However, the introduction of an abort criterion for
highway hierarchies as sketched at the end of Section 4.4 could weaken this issue.

5.1 Outlook

There are ideas to further improve our acceleration methods for the computation of many-
to-many shortest paths. One can image several approaches to refine our techniques without
preprocessing: An improved landmark selection method could speed up the method of im-
plicit landmarks. One could try to consider the clustering of the data when selecting the

64 Chapter 5: Conclusion

Dijkstra GoalSeqF LM 3 BiDir HHP HH
RW1 248 101 146 121 900 0.35
RW2 347 121 154 155 901 0.64
RW3 533 221 230 270 901 0.78
RW4 1363 637 651 1322 902 2.29
RW5 304 126 186 279 903 2.53
RW6 7408 3906 2468 6670 902 2.37
RW7 8028 5051 3215 9505 905 4.64
RW8 3924 1867 2340 5660 912 12.48
RW9 21882 12817 7395 64922 910 10.44

Table 5.1: Comparison of many-to-many algorithms. This table gives the query time in seconds
for real world instances located in the road network of Europe.

GoalSeqF LM 3 BiDir HHP HH
RW1 2.46 1.69 2.05 0.28 709
RW2 2.87 2.26 2.24 0.39 542
RW3 2.41 2.32 1.97 0.59 709
RW4 2.14 2.09 1.03 1.51 595
RW5 2.41 1.63 1.09 0.34 120
RW6 1.90 3.00 1.11 8.21 3125
RW7 1.59 2.50 0.84 8.87 1730
RW8 2.10 1.68 0.69 4.30 314
RW9 1.71 2.96 0.34 24.0 2096

Table 5.2: Comparison of many-to-many algorithms. This table gives the query time speedup
relative to Dijkstra’s algorithm for real world instances located in the road network of Europe.

5.1 Outlook 65

backward radii during bidirectional search. Another obvious approach is to combine bidi-
rectional and goal-directed search. Preliminary experiments showed that this combination
is useful to further reduce the search space.

Regarding the many-to-many highway hierarchies algorithm there is also some room
for improvements and generalizations. An improvement for instances with all sources and
targets positioned in a local area is an abort criterion that prevents the search to explore
the complete graph if not necessary. Incremental computation of the shortest path could be
useful in cooperation with travelling salesman algorithms that only need distances between
some neighbouring locations. If the performance of a complete matrix computation has to
be increased further, [15] sketches a possible parallel implementation of the algorithm.

We see a lot of commonalities between the bidirectional and the highway hierarchies
many-to-many algorithm. A compromise between both can be made in a situation where
we furthermore do not allow any preprocessing but allow a heuristic for the computation of
shortest paths. We accept small errors and are content with almost shortest path distances.
This concession is often made in commercial route planning systems. There a heuristic
levelling is used that is similar to the highway hierarchies approach—but it is not as fast as
the highway algorithm and does not yield exact shortest paths. However, this is a common
approach and a handy method that can be applied also in many dynamic situations. A
many-to-many algorithm based on such a levelling approach may be considerably faster
than our many-to-many methods without preprocessing. The main idea is to use techniques
from this thesis that turned out to work well: Perform a bidirectional search and use a
bucket data structure to store distances to targets. The backward distances can be stored
at nodes where the backward searches ascend to a higher level.

Bibliography

[1] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes. In transit to constant
time shortest-path queries in road networks. submitted for publication., 2006.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. The MIT Press, Cambridge Massachusetts, 2001.

[3] Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz, and Dorothea Wagner.
High-Performance Multi-Level Graphs. In 9th DIMACS Implementation Challenge -
Shortest Paths, 2006. To appear.

[4] Daniel Delling, Dominik Schultes, Peter Sanders, and Dorothea Wagner. Highway
Hierarchies Star. In 9th DIMACS Implementation Challenge - Shortest Paths, 2006.
To appear.

[5] Bernabé Dorronsoro Dı́az. The VRP Web, 2006. http://neo.lcc.uma.es/

radi-aeb/WebVRP/.

[6] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269-271, 1959.

[7] A. Goldberg, H. Kaplan, and R. Werneck. Reach for A∗: Efficient point-to-point
shortest path algorithms. In Workshop on Algorithm Engineering & Experiments,
Miami, 2006.

[8] Andrew V. Goldberg. A Simple Shortest Path Algorithm with Linear Average Time.
proceedings of the 9th European Symposium on Algorithms (ESA ’01), Springer Lecture
Notes in Computer Science LNCS 2161, pages 230–241, 2001.

[9] Andrew V. Goldberg and Chris Harrelson. Computing point-to-point shortest paths
from external memory. SIAM Workshop on Algorithms Engineering and Experimen-
tation (ALENEX ’05), Vancouver, Canada, 2005.

[10] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A∗ meets
graph theory. In 16th ACM-SIAM Symposium on Discrete Algorithms, pages 156–165,
2005.

[11] G. Gutin and A. Punnen, editors. The Traveling Salesman Problem and its Variations.
Kluwer, 2002.

http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://neo.lcc.uma.es/radi-aeb/WebVRP/

68 BIBLIOGRAPHY

[12] Ron Gutman. Reach-based routing: A new approach to shortest path algortihms op-
timized for road networks. In Lars Arge, Giuseppe F. Italiano, and Robert Sedgewick,
editors, Proc. Algorithm Engineering and Experiments (ALENEX’04), pages 100–111.
SIAM, 2004.

[13] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Transactions on System Science and Cybernetics,
4(2):100–107, 1968.

[14] Martin Holzer, Frank Schulz, and Thomas Willhalm. Combining speed-up techniques
for shortest-path computations. In Celso C. Ribeiro and Simone L. Martins, editors,
Experimental and Efficient Algorithms: Third International Workshop, (WEA 2004),
volume 3059 of LNCS, pages 269–284. Springer, 2004.

[15] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wag-
ner. Computing many-to-many shortest paths using highway hierarchies. Submitted to
SIAM Workshop on Algorithms Engineering and Experiments (ALENEX ’07), New
Orleans, Lousiana. To appear., 2006.

[16] U. Lauther. An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In Münster GI-Days, 2004.

[17] LEDA, Library of Efficient Data Types and Algorithms, Algorithmic Solutions Soft-
ware GmbH. http://www.algorithmic-solutions.com/enleda.htm.

[18] MapInfo. MapInfo Professional 7.0. http://www.mapinfo.de/mipro.

[19] J. Maue, P. Sanders, and D. Matijevic. Goal directed shortest path queries using
Precomputed Cluster Distances. In 5th Workshop on Experimental Algorithms
(WEA), number 4007 in LNCS, pages 316–328. Springer, 2006.

[20] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. Partitioning
graphs to speed up Dijkstra’s algorithm. In 4th International Workshop on Efficient
and Experimental Algorithms, 2005.

[21] Stefan Näher and Oliver Zlotkowski. Design and Implementation of Efficient Data
Types for Static Graphs. In 10th European Symposium on Algorithms (ESA), volume
2461 of LNCS, pages 748–759, 2002.

[22] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. http://www.r-project.org.

[23] Dominik Schultes. Fast and Exact Shortest Path Queries Using Highway Hierarchies.
Master-Arbeit, Universität des Saarlandes, 2005.

[24] Dominik Schultes and Peter Sanders. Highway Hierarchies Hasten Exact Shortest
Path Queries. 13th European Symposium on Algorithms (ESA), 2005.

http://www.algorithmic-solutions.com/enleda.htm
http://www.mapinfo.de/mipro
http://www.r-project.org

BIBLIOGRAPHY 69

[25] Dominik Schultes and Peter Sanders. Engineering Highway Hierarchies. 14th European
Symposium on Algorithms (ESA), 2006.

[26] Dominik Schultes and Peter Sanders. personal communication. 2006.

[27] F. Schulz. Timetable information and shortest paths. PhD thesis, Universität Karl-
sruhe (TH), Fakultät für Informatik, 2005.

[28] F. Schulz, D. Wagner, and C. D. Zaroliagis. Using multi-level graphs for timetable
information. In 4th Workshop on Algorithm Engineering and Experiments, volume
2409 of LNCS, pages 43–59. Springer, 2002.

[29] Tetsuo Shibuya. Computing the nxm shortest path efficiently. J. Exp. Algorithmics,
5:9, 2000.

[30] B. Stroustrup. The C++ Programming Language. Addison Wesley, 4th edition, 2000.

[31] T. Ikeda and Min-Yao Hsu and H. Imai and S. Nishimura and H. Shimoura and T.
Hashimoto and K. Tenmoku and K. Mitoh. A Fast Algorithm for Finding Better
Routes by AI Search Techniques. Vehicle Navigation and Information Systems Con-
ference. IEEE, 1994.

[32] D. Wagner and T. Willhalm. Geometric speed-up techniques for finding shortest paths
in large sparse graphs. In 11th European Symposium on Algorithms, volume 2832 of
LNCS, pages 776–787. Springer, 2003.

[33] I-Lin Wang. Shortest Paths and Multicommodity Network Flows. PhD thesis, Georgia
Inst. Tech., 2003.

[34] T. Willhalm. Engineering Shortest Path and Layout Algorithms for Large Graphs.
PhD thesis, Universität Karlsruhe (TH), Fakultät für Informatik, 2005.

List of Figures

1.1 A many-to-many request consists of several source and target nodes located
in a road network. The standard method to solve this, is to run Dijkstra’s
Algorithm for every source node. Dijkstra’s Algorithm visits all nodes that
are closer to the source node than the farthest target. 2

2.1 Dijkstra’s Algorithm in pseudo code representation. 8
2.2 Forward star graph representation, extended by level nodes and buckets.

Data structures that are used to store the raw graph are indicated by the
thicker lines. 10

2.3 UML class diagram providing the idea of our class hierarchy. Aspects are
given to RunDijkstra as a template argument. 13

2.4 Implementation of Dijkstra’s Algorithm using C++. Function calls at key
points of the algorithm provide hooks to add aspects to the algorithm. . . 13

2.5 Road networks of Europe and North America. In this picture local roads
are not drawn. 15

2.6 Locations originating from real world instances located in the road network
of Europe. 17

3.1 This counterexample shows that refreshing the priority queue is necessary. 22
3.2 Query time comparison of different setups of goal-directed search for random

point-to-point queries in the road network of Germany 26
3.3 Search space comparison of different setups of goal-directed search for ran-

dom point-to-point queries in the road network of Germany 26
3.4 Landmarks are prominent nodes in the graph that yield lower bounds for

shortest path distances using the triangle inequality. 28
3.5 A landmark between a node v and a target t does not yield tight lower bounds. 29
3.6 Comparison of Dijkstra’s algorithm, goal-directed search using a geometric

potential and goal-directed search using landmarks. Landmarks are marked
as diamonds, targets are drawn as squares and the circle shows the position
of the source node. 30

3.7 Comparison of several variants of goal-directed search for random matrices
with |S| = |T | = 160. Sequential goal-directed search yields smaller search
spaces than goal-directed search using a combination of the target potential
functions. The clustering of the input is important for the performance of
goal-directed search. 32

72 LIST OF FIGURES

3.8 Speedup of sequential goal-directed search in the road network of Germany
for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
1 Cluster. 33

3.9 Speedup of sequential goal-directed search in the road network of Germany
for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
2 Clusters. 33

3.10 Speedup of sequential goal-directed search in the road network of Germany
for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in
5 Clusters. 33

3.11 Comparison of the search space of bidirectional and unidirectional landmark
based goal-directed search in the road network of Germany for instances with
|S| = |T | = 160 distributed in 1 Cluster. 34

3.12 Comparison of the search space of bidirectional and unidirectional landmark
based goal-directed search in the road network of Germany for instances with
|S| = |T | = 160 distributed in 2 Clusters. 34

3.13 Comparison of the search space of bidirectional and unidirectional landmark
based goal-directed search in the road network of Germany for instances with
|S| = |T | = 160 distributed in 5 Clusters. 34

3.14 Comparison of query time of landmark based goal-directed search with dif-
ferent choices for the number of landmarks in the road network of Germany
for instances with |S| = |T | = 160 distributed in 1 Cluster. 35

3.15 Comparison of query time of landmark based goal-directed search with dif-
ferent choices for the number of landmarks in the road network of Germany
for instances with |S| = |T | = 160 distributed in 2 Clusters. 35

3.16 Comparison of query time of landmark based goal-directed search with dif-
ferent choices for the number of landmarks in the road network of Germany
for instances with |S| = |T | = 160 distributed in 5 Clusters. 35

3.17 Speedup of landmark based goal-directed search using three landmarks in
the road network of Germany for instances between |S| = |T | = 10 and
|S| = |T | = 320 distributed in 1 Cluster. 36

3.18 Speedup of landmark based goal-directed search using three landmarks in
the road network of Germany for instances between |S| = |T | = 10 and
|S| = |T | = 320 distributed in 2 Clusters. 36

3.19 Speedup of landmark based goal-directed search using three landmarks in
the road network of Germany for instances between |S| = |T | = 10 and
|S| = |T | = 320 distributed in 5 Clusters. 36

3.20 30 000 random routes in the road network of Germany 40
3.21 Schematic representation of search spaces in a situation where the basic

backward radii determination can be improved. 42
3.22 Speedup of bidirectional search with basic radius selection in the road net-

work of Germany for instances between |S| = |T | = 10 and |S| = |T | =
320 distributed in 1 Cluster. 44

LIST OF FIGURES 73

3.23 Speedup of bidirectional search with basic radius selection in the road net-
work of Germany for instances between |S| = |T | = 10 and |S| = |T | =
320 distributed in 2 Clusters. 44

3.24 Speedup of bidirectional search with basic radius selection in the road net-
work of Germany for instances between |S| = |T | = 10 and |S| = |T | =
320 distributed in 5 Clusters. 44

3.25 Speedup of bidirectional search with alternative radius selection in the road
network of Germany for instances between |S| = |T | = 10 and |S| =
|T | = 320 distributed in 1 Cluster. 45

3.26 Speedup of bidirectional search with alternative radius selection in the road
network of Germany for instances between |S| = |T | = 10 and |S| =
|T | = 320 distributed in 2 Clusters. 45

3.27 Speedup of bidirectional search with alternative radius selection in the road
network of Germany for instances between |S| = |T | = 10 and |S| =
|T | = 320 distributed in 5 Clusters. 45

4.1 Highway hierarchies algorithm for many-to-many shortest paths. During
a forward or a backward search additional operations are performed when
a node becomes settled. In the code listing above those modifications are
denoted below the respective call of a Highway Hierarchy search algorithm. 52

4.2 Schematic view of our asymmetric many-to-many highway algorithm. The
forward searches explore all of level K whereas the backward searches stop
at entrance points to the core of level K. 53

4.3 Performance of different algorithm variants for a large symmetric instance
with 20 000 source and target nodes. 57

4.4 Performance of different algorithm variants for an asymmetric instance with
100 source nodes and 32 400 target nodes. 57

4.5 Different choices of maximum level K for quadratic instances. 58
4.6 Comparison of our algorithm with alternative algorithms. 58
4.7 Performance for asymmetric instances at different choices of the maximum

level K. 59
4.8 Comparison of algorithms and algorithm variants for asymmetric instances. 59
4.9 The number of bucket scans per entry of the distance matrix is only de-

pendent on the distributions of the source and target nodes in the graph.
Independent of the number of sources and targets it is identic for all random
instances in this road network . 60

4.10 Comparison of random instances (R) and real world instances (W) of the
same size. 61

A.1 Comparison of goaldirected search using different methods to determine ge-
ometric distances. 78

A.2 Comparison of goaldirected search using different methods to determine ge-
ometric distances. 78

74 LIST OF FIGURES

A.3 Comparison of search space sizes of landmark based goal-directed search
with different choices for the number of landmarks in the road network of
Germany for instances with |S| = |T | = 160 distributed in 1 Cluster. . 79

A.4 Comparison of search space sizes of landmark based goal-directed search
with different choices for the number of landmarks in the road network of
Germany for instances with |S| = |T | = 160 distributed in 2 Clusters. . 79

A.5 Comparison of search space sizes of landmark based goal-directed search
with different choices for the number of landmarks in the road network of
Germany for instances with |S| = |T | = 160 distributed in 5 Clusters. . 79

A.6 Speedup of geometric goal-directed search in the road network of Germany
for randomly distributed instances between |S| = |T | = 10 and |S| =
|T | = 320. 80

A.7 Speedup of landmark based goal-directed search using three landmarks in
the road network of Germany for randomly distributed instances between
|S| = |T | = 10 and |S| = |T | = 320. 80

A.8 Speedup of bidirectional search in the road network of Germany for ran-
domly distributed instances between |S| = |T | = 10 and |S| = |T | = 320. 80

A.9 Speedup of bidirectional search with the alternative backward radius selec-
tion in the road network of Germany for instances between |S| = |T | = 10
and |S| = |T | = 320 randomly distributed. 81

A.10 Speedup of the highway hierarchies many-to-many algorithm in the road net-
work of Germany for randomly distributed instances between |S| = |T | =
10 and |S| = |T | = 320. 81

A.11 Speedup of the highway hierarchies many-to-many algorithm in the road
network of Germany for instances between |S| = |T | = 10 and |S| =
|T | = 320 distributed in 1 Cluster. 82

A.12 Speedup of the highway hierarchies many-to-many algorithm in the road
network of Germany for instances between |S| = |T | = 10 and |S| =
|T | = 320 distributed in 2 Clusters. 82

A.13 Speedup of the highway hierarchies many-to-many algorithm in the road
network of Germany for instances between |S| = |T | = 10 and |S| =
|T | = 320 distributed in 5 Clusters. 82

A.14 Performance of different variants of the many-to-many highway hierarchies
algorithm for a large symmetric instance with 1 000 source and target nodes. 83

A.15 Performance of different variants of the many-to-many highway hierarchies
algorithm for a large symmetric instance with 10 000 source and target nodes. 83

A.16 Many-to-many highway hierarchies algorithm with different choices of max-
imum level K for quadratic instances located in the road network of North
America. 84

List of Tables

2.1 Number of nodes and number of directed edges in the road networks of
Europe, North America and Germany . 14

2.2 Description of real world instances located in the road network of Europe
that we used in our experiments. 17

3.1 Velocity profiles assign a speed in km/h to each road category to determine
a travel time as edge weight. 24

3.2 Average query times [ms] for different setups of goal-directed search for
point-to-point queries in the road network of Germany. 25

3.3 Query time [s] of Dijkstra’s algorithm and bidirectional search with alterna-
tive radius selection in the road network of Germany for random instances
with |S| · |T | = 32 400 distributed in 1 Cluster. 43

3.4 Comparison of many-to-many algorithms without preprocessing. This table
gives the query time in seconds for real world instances located in the road
network of Europe. 47

3.5 Comparison of many-to-many algorithms without preprocessing. This table
gives the query time speedup relative to Dijkstra’s algorithm for real world
instances located in the road network of Europe. 47

5.1 Comparison of many-to-many algorithms. This table gives the query time
in seconds for real world instances located in the road network of Europe. . 64

5.2 Comparison of many-to-many algorithms. This table gives the query time
speedup relative to Dijkstra’s algorithm for real world instances located in
the road network of Europe. 64

Index

adjacency array representation, 9

balancing factor, 41
bucket, 10, 38
bucket entry, 10
bucket scan, 39
bypassability criterion, 50

canonical shortest path, 50
core, 50
core entrance point, 51

decreaseKey, 8
distance matrix, 7

asymmetric, 7
quadratic, 7

entrance point, 51
extractMin, 8

flight distance, 23
forward star representation, 9

GoalMin, 23
GoalSeqF, 23
GoalSeqN, 23
graph, 7

connected, 7
reverse, 7

highway hierarchy, 50

insert, 8

landmark
implicit, 28

landmarks, 27
level node, 10
LM K, 29

many-to-many shortest path problem, 7
maximum velocity, 23

neighbourhood, 50
neighbourhood radius, 50

path, 7
potential function, 20

feasible, 20

reached, 8
relax, 8

settled, 8
shortest path, 7
speedup, 14

tentative distance, 8

unreached, 8

vehicle routing problem, 2

76

Appendix A

Additional Experimental Results

78 Chapter A: Additional Experimental Results

●
●
●

●

●

●●●
●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●
●

●

●
●

●●
●●

●
●

●

●

●

●●
●
●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●
●

●

●

●●●

●●

●
●
●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●
●

●

●
●
●
●●●
●●

●

●
●●
●
●●
●

●●

●

●

●
●
●

●

●

●

●
●

●

●●●●
●●

●

●
●

●

●
●●
●

●
●

●
●
●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●
●
●

●

●

●●
●
●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●
●
●

●

●
●
●●●

●

●
●●●
●

●
●●

●

●

●

●
●
●

●
●

Q
ue

ry
 T

im
e

[s
]

●
●
●

●

●

●●●
●

●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●
●

●

●
●

●●
●●

●
●

●

●

●

●●
●
●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●
●

●

●

●●●

●●

●
●
●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●
●
●

●

●
●
●
●●●
●●

●

●
●●
●
●●
●

●●

●

●

●
●
●

●

●

●

●
●

●

●●●●
●●

●

●
●

●

●
●●
●

●
●

●
●
●●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●

●
●
●

●

●

●●
●
●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●
●
●

●

●
●
●●●

●

●
●●●
●

●
●●

●

●

●

●
●
●

●
●

Linear Motor Car Motor Car 2 Constant Flight Distance

0
1

2
3

0.
5

1.
5

2.
5

Dijksta
A* (Euclidean)
A* (Exact)
A* (Approx)

Figure A.1: Comparison of goaldirected search using different methods to determine geometric
distances.

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●●●
●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●
●

●

●
●
●●
●

●

●
●

●

●
●

●

●

●●●●

●

●

●●●
●

●

●

●
●

●●

●

●●

●

●

●●●

●

●
●

●

●

●

●●
●
●
●

●

●●
●
●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●
●
●

●

●

●●
●
●

●●●

●

●
●●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●
●

●●

●

●

●

●●●●

●

●
●
●●
●

●

●
●●

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
 1

.0
00

.0
00

]

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●
●●

●

●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●●●
●

●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●
●

●

●
●
●●
●

●

●
●

●

●
●

●

●

●●●●

●

●

●●●
●

●

●

●
●

●●

●

●●

●

●

●●●

●

●
●

●

●

●

●●
●
●
●

●

●●
●
●

●

●

●

●

●●

●

●●

●

●

●

●
●●

●
●
●

●

●

●●
●
●

●●●

●

●
●●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●

●
●
●
●

●

●
●

●●

●

●

●

●●●●

●

●
●
●●
●

●

●
●●

Linear Motor Car Motor Car 2 Constant Flight Distance

0
1

2
3

4

0.
5

1.
5

2.
5

3.
5

Figure A.2: Comparison of goaldirected search using different methods to determine geometric
distances.

79

●
●
●

●
●

●●

●

● ●● ● ●
● ● ● ●

Number of Landmarks

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
10

00
00

0]

●
●
●

●
●

●●

●

● ●● ● ●
● ● ● ●

1 2 3 4 5 6 7 8 9

0
10

0
20

0
30

0
40

0

Dijkstra
Landmarks

Figure A.3: Comparison of search space sizes of landmark based goal-directed search with dif-
ferent choices for the number of landmarks in the road network of Germany for instances with
|S| = |T | = 160 distributed in 1 Cluster.

●

Number of Landmarks

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
10

00
00

0]

●

1 2 3 4 5 6 7 8 9

0
10

0
20

0
30

0
40

0
50

0
60

0 Dijkstra
Landmarks

Figure A.4: Comparison of search space sizes of landmark based goal-directed search with dif-
ferent choices for the number of landmarks in the road network of Germany for instances with
|S| = |T | = 160 distributed in 2 Clusters.

●●
● ● ● ● ● ● ●

Number of Landmarks

S
ea

rc
h

S
pa

ce
 [#

se
ttl

ed
 n

od
es

 *
10

00
00

0]

●●
● ● ● ● ● ● ●

1 2 3 4 5 6 7 8 9

0
10

0
20

0
30

0
40

0
50

0
60

0

Dijkstra
Landmarks

Figure A.5: Comparison of search space sizes of landmark based goal-directed search with dif-
ferent choices for the number of landmarks in the road network of Germany for instances with
|S| = |T | = 160 distributed in 5 Clusters.

80 Chapter A: Additional Experimental Results

●

●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

2.
5

●

●

●● ●●
●
●
●Q

ue
ry

 T
im

e
S

pe
ed

up

●

●

●● ●●
●
●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

2.
5

Figure A.6: Speedup of geometric goal-directed search in the road network of Germany for
randomly distributed instances between |S| = |T | = 10 and |S| = |T | = 320.

●

●

●
●
●
●

●

●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●

●
●
●
●

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
2

1.
4

1.
6

●

●

●
●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

Figure A.7: Speedup of landmark based goal-directed search using three landmarks in the road
network of Germany for randomly distributed instances between |S| = |T | = 10 and |S| = |T | =
320.

●

●
●●● ●●

●

●
●
●●●●

●●

● ●
●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●
●●● ●●

●

●
●
●●●●

●●

● ●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

0.
6

1.
0

1.
4

1.
8

● ●
●
●

●

●

●

●●

●●●
●

●
●

Q
ue

ry
 T

im
e

S
pe

ed
up

● ●
●
●

●

●

●

●●

●●●
●

●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

0.
5

1.
0

1.
5

Figure A.8: Speedup of bidirectional search in the road network of Germany for randomly
distributed instances between |S| = |T | = 10 and |S| = |T | = 320.

81

●
●●
● ●

●●●●●●●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●
●●
● ●

●●●●●●●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

0.
8

1.
2

1.
6

2.
0

●
●
●●

●

●
●●●
●●
●

Q
ue

ry
 T

im
e

S
pe

ed
up

●
●
●●

●

●
●●●
●●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

1.
0

1.
5

2.
0

Figure A.9: Speedup of bidirectional search with the alternative backward radius selection in the
road network of Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 randomly
distributed.

●

●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

18
00

22
00

26
00

●

●

●

●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●

●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

14
00

16
00

18
00

20
00

Figure A.10: Speedup of the highway hierarchies many-to-many algorithm in the road network
of Germany for randomly distributed instances between |S| = |T | = 10 and |S| = |T | = 320.

82 Chapter A: Additional Experimental Results

●
●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up ●
●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

60
0

10
00

14
00

18
00

Q
ue

ry
 T

im
e

S
pe

ed
up

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

40
0

60
0

80
0

12
00

Figure A.11: Speedup of the highway hierarchies many-to-many algorithm in the road network of
Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 1 Cluster.

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

50
0

15
00

25
00

Q
ue

ry
 T

im
e

S
pe

ed
up

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

0
50

0
10

00
15

00
20

00

Figure A.12: Speedup of the highway hierarchies many-to-many algorithm in the road network of
Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 2 Clusters.

●

●
●
●

●
●

●
●

●

S
ea

rc
h

S
pa

ce
 S

pe
ed

up

●

●
●
●

●
●

●
●

●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

50
0

10
00

20
00

30
00

●

●●

●●

●

●
●
●

Q
ue

ry
 T

im
e

S
pe

ed
up

●

●●

●●

●

●
●
●

10
 x

 1
0

20
 x

 2
0

40
 x

 4
0

80
 x

 8
0

16
0

x
16

0

32
0

x
32

0

50
0

10
00

15
00

20
00

25
00

Figure A.13: Speedup of the highway hierarchies many-to-many algorithm in the road network of
Germany for instances between |S| = |T | = 10 and |S| = |T | = 320 distributed in 5 Clusters.

83

Topmost Level

T
im

e
[s

]

4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9

Basic Version Fewer Bucket Entries Accurate Backward Search
0

5
10

15
20

25
30

0
5

10
15

20
25

30Bucket Scanning
Forward Search
Sorting
Backward Search

Figure A.14: Performance of different variants of the many-to-many highway hierarchies algo-
rithm for a large symmetric instance with 1 000 source and target nodes.

Topmost Level

T
im

e
[s

]

4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9

Basic Version Fewer Bucket Entries Accurate Backward Search

0
60

12
0

18
0

24
0

30
0

36
0

0
60

12
0

18
0

24
0

30
0

36
0

Bucket Scanning
Forward Search
Sorting
Backward Search

Figure A.15: Performance of different variants of the many-to-many highway hierarchies algo-
rithm for a large symmetric instance with 10 000 source and target nodes.

84 Chapter A: Additional Experimental Results

Topmost Level

T
im

e
[m

s]

|S
|

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

0
5

10
15

20
25

30
35

5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9

100 x 100 500 x 500 2000 x 2000 8000 x 8000 20000 x 20000

0
5

10
15

20
25

30
35

Bucket Scanning
Forward Search
Sorting
Backward Search

Figure A.16: Many-to-many highway hierarchies algorithm with different choices of maximum
level K for quadratic instances located in the road network of North America.

	Introduction
	Applications
	Vehicle Routing Problem
	Large Auxiliary Distance Tables

	Related Work
	Overview

	Preliminaries
	Definitions
	Many-to-Many Shortest Path Problem

	Dijkstra's Algorithm
	Implementation
	Data Structures
	Implementation

	Experimental Setup
	Environment
	Road Networks
	Requests and Instances

	Without Preprocessing
	Goal-Directed Search
	Potential Functions
	Changing Potentials Online
	Many-to-Many Algorithm
	Geometric Potential Functions
	Landmark based Potential Functions
	Many-to-Many Landmark Algorithm
	Experimental Results

	Bidirectional Search
	Many-to-Many Algorithm
	Specifying Backward Radii A Priori
	Experimental Results

	Comparison of Real World Results

	Highway Hierarchies
	Point-to-Point Algorithm
	Highway Hierarchy
	Query

	Many-to-Many Algorithm
	Optimisation
	Outputting Paths
	Computing Shortest Connections Incrementally

	Analysis
	Experimental Results

	Conclusion
	Outlook

	Additional Experimental Results

