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1 Introdution
Have you ever questioned the quality of a route-planning system's output? You mightbe surprised that popular route-planners do not always ompute optimal itinery. Figure1 shows an example of a non-optimal route omputed by an automated route-planningsystem. When talking of suh a system we are thinking of the following, onrete appli-ation: an online-working route-planner whih has to answer a huge number of querieseah onerning the fastest onnetion between two plaes and eah to be answered byan exat solution.In most ases, the reason for the non-optimality of the given routes is the usage of heuristialgorithms to speed up the query. These heuristis do not guarantee the optimality ofthe omputed path. During the last years strong e�orts have been made to develop fastalgorithms that also ompute exat results. The ahievements on this area, ombinedwith the advane in atual hardware, now make it imaginable to use output-optimalmethods in ommerial appliations.Unfortunately, most of the established output-optimal algorithms are stati in the fol-lowing sense: in order to operate they need extra data omputed by a time-onsumingpreproessing. This preproessing an last days for huge input data and often onlyfast omputers are able to perform it. Therefore these tehniques hardly arrange withhanges in reality suh as tra� jams, road works or aneled trains even if these hangesare `small' ompared with the whole underlying graph. At worst this would e�et in aomplete reomputation from srath after the hange of only one edge on the graph.Therefore solutions are needed that ompute optimal routes but are �exible enough todeal with hanges in the algorithm's input. This work shows how to e�iently reomputethe preproessed data of some of the reent output-optimal algorithms without startingfrom srath. As in real-world data those hanges normally aumulate (think of atra� jam that slows down surrounding roads) we demand of the update routine toproess several updates in bath and to take advantage of the loseness of the updates ifpossible.OverviewIn Chapter 2 the topi of this work, the (dynami) single-soure single-target shortest pathproblem, is formally de�ned and Dijkstra's algorithm, the basi algorithm solving thatproblem, is introdued. As Dijkstra's algorithm is fundamental for all later presented6



CHAPTER 1. INTRODUCTION

Fig. 1.1: Shortest path from Hausgesund to Trondheim (both in Norway) omputed byMirosoft MapPoint in 2005tehniques we analyze important properties of the algorithm. The hapter loses with adynami variant of Dijkstra's algorithm.The next hapter gives an overview of the tehniques used to speed up Dijkstra's algo-rithm while granting the optimality of the result. Furthermore, we sketh a dynamiupdate method for most tehniques.Chapter 4 preisely desribes the preproessing of a speed-up tehnique using reah-bounds. This is a relatively new, promising method by Gutman (2004) and improved byGoldberg (2005).In Chapter 5 we present our main ontribution to the problem: an e�ient method toupdate the preproessing used by the reah-bound speed-up tehnique. The methodonly slightly inreases the spae-onsumption of the preproessed data, bene�ts frombath-updating several hanges and reomputes the same data as a full reomputationfrom srath would do. Chapter 6 shows the results of some own experiments onerningreah-bounds.The last hapter summarizes the results and points out several �elds of researh, theauthor onsiders promising for a further development on the �eld of this topi.
7



2 FundamentalsIn this hapter we formally de�ne the fundamentals of the topi of this thesis. Themost important notions are: single-soure single-target problem, single-soure all-targetsproblem, speed-up tehnique and update of a speed-up tehnique. Referenes to re-lated problems and related work are being given. Then Dijkstra's algorithm, the mostimportant algorithm for the solution of the single-soure single/all-target(s) problem isdesribed and some important properties of that algorithm are analyzed. Finally, asolution for the dynami single-soure all-targets problem is given.2.1 Presentation of the problemLet G = (V,E) be a weighted, direted graph with n verties, m edges and lengths
len : E → R+

0 . A path with soure s and target t (or shorter an s-t-path) in G is a k-tupel of verties P = (s = u0, u1, . . . , uk−1 = t) where for every i between 1 and k−1 theedge (ui−1, ui) exists in E. The length of P is de�ned as len(P ) :=
∑k−1

i=1 len(ui−1, ui).An s-t path is alled a shortest path if its length is minimal among the lengths of all
s-t-paths. Given two verties s and t the distane from s and t is the length of a shortest
s-t-path.The most fundamental problems when dealing with shortest paths are:single-soure single-target. Given two verties s and t, �nd a shortest s-t-path.single-soure all-targets. Given a vertex s. For eah other vertex t in the graph, �nda shortest s-t-path.all-pairs shortest-paths. For eah (s, t) ∈ V 2, �nd a shortest s-t-path.A graph is alled onneted if for eah (s, t) ∈ V 2 an s-t-path exists. A graph is alleddense if the number of its edges is lose to the maximal number of edges. A graph isalled sparse if it has only few edges. We all a lass of graphs large if one an onlya�ord the onsumption of O(n) memory.In this work, we onentrate on the single-soure single-target problem on onneted,large and sparse graphs. We an solve this problem e�ently in O(m log n) time usingDijkstra's algorithm whih we present in the next setion. As even this asymptotially8



CHAPTER 2. FUNDAMENTALSgood runtime needs too muh time for very large graphs, various variants of Dijkstra'salgorithm have been developed that improve its runtime, often using additional, prepro-essed data. We all suh algorithms speed-up tehniques. Most of these speed-up teh-niques work as follows: �rst, a preproessing step is performed. The input of that steponsists of the graph, the graph's edge lengths and sometimes additional data, attahedto the graph. Then, using the preproessed data, onrete single-soure single-targetqueries are answered, most times signi�antly faster than through Dijkstra's algorithm.We want to emphasize that speed-up tehniques work exatly onerning the problem'ssolution but are heuristi in the runtime. Therefore a query performed by a speed-uptehnique may even take more time than a query performed by Dijkstra's algorithm.An update on the graph is a hange in the graph's length funtion. If for eah edge ofthe graph the new length of the edge is greater (lower) or equal to the old length theupdate is alled inremental (deremental). If both, at least one edge with inreased andone with dereased length exists, the update is alled fully dynami. Further, we willabbreviate `update of an edge's length' with `edge update'.We regard edge deletions and edge insertions as speial ase of updated edges: when wewant to delete an edge we simply set its length to in�nity. As we want to keep our proofssimple we assume that the graph remains onneted after an edge has been deleted. Toinsert an edge we onsider it as already existent with length in�nity in the unalteredgraph and set the edge's length in the altered graph to the value given by the update.This proeeding has to be justi�ed separately for eah speed-up tehnique but mostlyworks well: unless stated otherwise the preproessing of the speed-up tehniques doesnot hange beause of the insertion of an edge with length in�nity.The problem this work is about is that of e�iently updating the preproessed data of aspeed-up tehnique after the underlying graph has been updated: let G be a graph withnon-negative edge lengths lenold and an altered (non-negative) length funtion lennew.Further let Dold (Dnew) be the data omputed in the preproessing step of a speed-up tehnique using lenold (lennew). We say an algorithm alg(G, lenold, lennew,Dold) isan exat reomputation of (G, lenold, lennew,Dold) if its output is Dnew. We say (veryfuzzy) an algorithm alg(G, lenold, lennew,Dold) is a quality preserving reomputation of
(G, lenold, lennew,Dold) if its output is as good as Dnew with respet to the runtime ofthe queries speed-up tehnique.Related work. Further reading on the stati ase of eah speed-up tehnique anbe found at the beginning of the aording setion in the next hapter. Most of thespeed-up tehniques desribed in this thesis are fairly new. Therefore only little re-searh has been made on the dynami ase of these tehniques. Fundamental thoughtsabout benhmarking dynami shortest paths algorithms were published by Ramalingamin [RR96℄. The dynami update of shortest paths trees has been studied by Frigioni,Marhetti-Spaamela and Nanni in [FMSN96℄, [FMSN98℄ and [FMSN00℄. A solutionfor the dynami update of geometri ontainers was given by Wagner, Willhalm andZaroliagis in [WWZ04℄. To our best knowledge no papers are available for the dynamiupdate of multi-level graphs, highway hierarhies and reah-values so far.9



CHAPTER 2. FUNDAMENTALSRelated problems. We onsider only graphs with non-negative edge lengths. Thisseems to be a small restrition, but enormously sales down the omplexity of the single-soure (single/all)-target(s) problem. In fat, the general problem allowing negative edgelengths is NP-hard, therefore e�ent solutions are not likely to exist. The main problemwhen dealing with negative edge lengths is the existane of negative yles. If no negativeyles exist, a problem with negative edge lengths an be transformed to one with non-negative edge lengths in polynomial time. [AMO93℄ gives a good overview of fundamentalshortest path problems and algorithms.An area in whih proeedings that help �nd solutions for the reomputation of speed-uptehniques may be found is the dynami all-pairs shortest-paths problem. We refer toDemetresu's and Italiano's paper [DI05℄ for a list of related work on the topi and aninteresting, new algorithm solving this problem.2.2 Canonial Shortest PathsAt this point, we want to remind the reader that a shortest path is not neessarily unique.While some appliations bene�t from obtaining a list of all possible shortest paths for agiven problem many others are su�iently solved by omputing just one of suh paths.The requirement for knowing all shortest paths ours partiularly when an algorithm�rst pre-selets some interesting paths and later determines the one to use.In order to simplify the mathematial treatment of a shortest-path algorithm it is on-venient to ensure the uniqueness of the shortest path for a given problem. We oulddo so by adding frations to eah edge, all so small that they do not have any in�uenefurther than determining whih of all shortest paths for a given problem to hoose. Thisapproah seems to be very unomfortable beause of the ouring numerial problems.Another possibility is to use a deterministi rule that deides whih of a set of paths totake.
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Fig. 2.1: Two shortest paths from s to t. The numbers within the verties represent theanonial ordering, the orange verties indue the anonial shortest pathWe use an injetive mapping from every vertex to N to determine one path from the setof all shortest s-t-paths. We all suh a path a anonial shortest path:
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CHAPTER 2. FUNDAMENTALSDe�nition 1 (Canonial Shortest Paths) An injetive mapping o : V → N isalled a anonial ordering of V .Given a anonial ordering o. A shortest path P with start vertex s and end vertex
t is said to be a anonial (shortest) path if for any shortest path P̃ between s and tfollows:Let (w, . . . , t) be the maximal subpath ending at t that P and P̃ have in ommon.Further, let v (ṽ) be the predeessor of w on P (P̃ ). Then

o(v) < o(ṽ).Figure 2.1 gives an example for hoosing a anonial path in a graph with two shortestpaths between soure and target. Note that a subpath onsisting of only one vertex maybe possible and that a anonial ordering is impliitly given by the order in whih theverties are put down in the omputer's memory.When we desribe the highway hierarhies tehnique (setion 3.6) and reah-based prun-ing (setion 3.7, hapter 4, hapter 5) our aim is to ompute only anonial shortestpaths and therefore we refer to anonial shortest paths as shortest paths. Wewant to stress that all speed-up tehniques desribed in this work an be modi�ed forhandling all shortest paths. We do not do that in order to inrease the readability of thetext and to emphasize the real idea behind the algorithms.Further we will use the following properties of anonial paths without expliitly men-tioning them:Uniqueness The most important property of anonial paths is that they are unique.Existene Furthermore we will use that on a onneted graph for all pairs of verties
s, t the existene of a anonial path is guaranteed.Inheritane The subpaths of anonial paths are also anonial paths.Computability In order to make Dijkstra's algorithm hoose the anonial out of allshortest paths the algorithm has only to be slightly adapted. The hanges will beshown in the next setion.Proof 1 (Properties of Canonial Shortest Paths)The uniqueness follows diretly from the de�nition of the anonial shortest path.To proof the inheritane-property of shortest paths we onsider a anonial shortestpath P = (s1, s2, . . . , sn, u1, . . . , um, t1, . . . tk) and assume that a anonial shortest path

Q = (si, . . . , sn, v1, . . . , vl, t1, . . . , tk) with u1 6= v1 and um 6= vl exists. Then must
o(vl) < o(um) and sine Q̃ = (s1, s2, . . . , sn, v1, . . . , vl, t1, . . . tk) is also a shortest pathan P not be a anonial shortest path. Therfore all subpaths of a anonial shortest path11



CHAPTER 2. FUNDAMENTALSthat end with the same vertex are also anonial shortest paths. The same argumentationholds for all subpaths that start with the same vertex. Applying both diretions we knowthat all subpaths of anonial shortest paths are also anonial.To show the existene of a anonial shortest path we desribe a onstrution of it. Giventwo verties s and t and the set S0 of all shortest s-t-paths (S0 an be onstruted by avariant of Dijkstra's algorithm). Starting with i = 0 we iteratively onstrut a sequeneof sets of paths Si: Let P̃i = (p0, p1, . . . , pk = t) be the maximal subpath that ends with
t and that all paths in Si have in ommon. We want Si+1 to onsist of exatly all pathsin Si for whih the anonial ordering of the predeessor vertex of p0 is minimal amongthe anonial orderings of predeessor verties of p0 of paths in Si. The onstrutionstops at iteration step j if #Sj = 1. It is easy to see that the path inluded in Sj is aanonial s-t-path.

�2.3 Dijkstra's AlgorithmDijkstra's algorithm is one of the most fundamental algorithms for the single-souresingle/all-target(s) shortest path problem. The output of the algorithm is a list, providingfor every vertex v the predeessor of v on the shortest path from the soure to v and thelength of that path.The algorithm has to store the output and some extra information on its progress travers-ing the graph: it maintains for eah vertex v a distane label d(v), a parent vertex p(v)and a status marker representing one of the states unvisited, visited and �nished. Allstatus markers are initialized to be unvisited, the distane labels to be in�nity and theparent to be nil. After that, the soure vertex is set to be visited and its distane is setto zero.We provide a priority queue that ontains all visited verties keyed by the distane label,the lower the better. While there are visited labels the algorithm removes the one withthe smallest distane label from the queue, marks it as �nished and relaxes all its outgoingedges.The relaxation of an edge (v,w) goes as follows: �rst it is tested if d(w) > d(v)+len(v,w)or (d(w) = d(v) + len(v,w) and o(v) < o(p(w)). If that is true, the vertex w is markedas visited, the parent of w is set to v, and the value of the distane label is hanged to
d(v)+ len(v,w). Finally, if the vertex w was unvisited before, it will be inserted into thepriority queue.Note that the ondition's seond possibility d(w) = d(v) + len(v,w) and o(v) < o(p(w))is not a lassial part of Dijkstra's algorithm. We added it here to ensure that only theanonial out of all shortest paths is hosen.When a single-target problem is queried, the algorithm an break after the target-vertexhas been marked as �nished. 12



CHAPTER 2. FUNDAMENTALS
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Fig. 2.2: Weighted Digraph (left side) and its shortest paths tree rooted at s (right side)Algorithm 1: DIJKSTRAfor v ∈ V \ {s} do d(v) := ∞1
d(s) := 02 insert s in Q3 while Q 6= ∅ do4 remove minimal Element v from Q5 mark v as �nished6 for e := (v,w) ∈ E do7 if w is not marked as �nished then8 if d(v) + len(e) < d(w) or (d(v) + len(e) = d(w) and o(v) < o(p(w)))9 then

d(w) := d(v) + len(e)10
p(w) = v11 if e /∈ Q then insert w in Q12Proof 2 (Corretness)The orretness of Dijkstra's algorithm relies on the fat, that at eah step, the tentativepath from the soure to the vertex minimal in the priority queue already is a shortestpath. A omplete proof an be found in [AMO93℄.Given a anonial ordering o and an s-t-query. In order to prove that only anonialshortest paths are omputed we assume that at least one path P = (u1, . . . , un) isontained in the shortest-paths tree that is not anonial. Let Q be the anonial s-t-path and P̃ = (uk, . . . , un) be the maximal subpath ending at t that both paths have inommon. Let q be the predeessor of uk on Q. Then is o(q) < o(uk−1) and the adaptionof Dijkstra's algorithm would not have settled uk via uk−1.

�Later, we will use the following notation: given the tentative shortest paths tree at anarbitrary step of Dijkstra's algorithm. Then, the �nished part of that tree is the tree'ssubgraph indued by all verties marked as �nished.13



CHAPTER 2. FUNDAMENTALSRuntime. Even if the worst-ase runtime of the algorithm is O(n2) on dense graphs, onean do muh better on sparse graphs. The hoie of the priority queue is a ruial point forthe performane. If the edge lengths are natural numbers bounded by a onstant C, DialsImplementation needs O(m + nC), Johnson's Implementation O(m log log C) runtime.Binary Heaps (runtime of O(m log n)) and Fibonai-Heaps (runtime of O(m + n log n))are the best performing priority queues that are known for general sparse graphs. [CLL90℄ontains a preise desription of all these algorithms.SetDijkstra. Dijkstra's algorithm an also be used to �nd for eah vertex on the graphthe shortest path from the nearest of a set of given verties. We will fae that problemin Chapter 5 as a subproblem of a speed-up tehnique's reomputation. A pratialappliation is to hek the overage of infrastrutural failities.SetDijkstra works as follows: given a set of `soure verties' we run Dijkstra's algorithm,but initialize it using all soure verties instead of using only one soure vertex. Theresulting output ontains for eah vertex the predeessor on the way from the nearestsoure vertex. We refer to that variant as SetDijkstra.2.4 Updating Shortest Path TreesBased on the algorithms desribed by Frigioni, Marhetti-Spaamela and Nanni in[FMSN00℄, we present an algorithm that updates an existing shortest paths tree after aset of edges has been updated. We assume that the shortest paths tree is identi�ed bya label ontaining the tree-predeessor of eah vertex. Furthermore the distane of eahvertex to the soure shall be given. The update algorithm proeeds muh like Dijkstra'salgorithm.Notation. Given a graph G = (V,E) with length funtion lenold : E → R+ and asubset of edges U with updated edge lengths. The new length funtion is denoted by
lennew : E → R+. Let Told be the shortest-paths tree on G with respet to lenold rootedat a vertex s. Let Tnew be the tentative shortest paths tree omputed by our algorithm.Initially Tnew equals Told. Let Pold(v)/Pnew(v) be the predeessor of the vertex v on
Told/Tnew. For eah v ∈ V let distold(v)/distnew(v) be the distane from s to v withrespet to the old/new length funtion. With D(v) we denote the tentative distanefrom s to v urrently omputed by our algorithm. Initally D(v) equals distold(v).Initialization. At the initialization step we update the distanes of the target vertiesof edges in U . In order to do that we provide a priority queue H ontaining all edges
(u, v) of U keyed by the distane label D(u). We iteratively remove the minimal edge
(u, v) from H and set D(v) := D(u) + lennew(u, v) if D(v) > D(u) + lennew(u, v) or
Pnew(v) = u. We update the priority of an edge in the queue if the distane label of theaording soure vertex has been updated.We maintain a seond priority queue Q that ontains eah vertex v with altered andtentative distane label. The priority of v is D(v). When we hange the distane labelof a vertex v whih is not ontained in Q we insert v into Q (with the new distane14
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CHAPTER 2. FUNDAMENTALSas priority) and the original distane of the vertex (the atual value of D(v) before thehange) is saved. We all that saved value DinsQueue(v). Eah time the distane label ofthis vertex is hanged, the priority of the vertex has to be hanged to the new distane.Main Algorithm. At the main algorithm we remove the minimal vertex m from thequeue and `proess' it. We iteratively repeat that until the queue is empty. The proessingof a vertex depends on the relation of its original and its atual distane:
• DinsQueue(v) = D(v). If the original distane equals the atual one, nothing is tobe done.
• DinsQueue(v) > D(v). If the distane label of m has dereased we hek for everyoutgoing edge (m, t) if the path to t ontaining the edge (m, t) is shorter than theshortest path to t found so far. In that ase we update distane label D(t) andpredeessor P (t) of t aordingly.
• DinsQueue(v) < D(v). If the distane label of m has inreased, we hek everyinoming edge (s,m) if a path using that edge is shorter than the shortest pathto m found so far. In that ase we update distane label D(t) and predeessor

P (m) of m aordingly. Now the distane label of m is orret and we searh everyoutgoing edge (m, t) that is part of the tentative shortest paths tree Tnew. For eahfound edge (m, t), we set the distane label of t to dist(m) + len(m, t).after proessing a vertex it is removed from the queue Q. The algorithm terminates when
Q is empty. Figure 2.3, page 15 shows the algorithm at work on an example graph.Comparison with the algorithm in [FMSN00℄ Though the main ideas of the formerdesribed algorithm are the same as that in [FMSN00℄ we want to list the di�erenes:

• The reomputation of our algorithm handles not only one edge update per timebut is a fully dynami algorithm.
• In [FMSN00℄ the existane of a speial assignment of eah edge to one of its end-verties is used in ombination with a datastruture that sorts a subset of all edgesinident to a vertex in order to guarantee better worst ase runtime.
• The algorithm in [FMSN00℄ operates on undireted graphs.Coarse sketh of the proof of orretnessThe orretness for inremental or deremental updates is proven ompletely analogousto the proofs in [FMSN96, RR96℄.The proof of orretness for the fully dynami ase onsists of two steps: �rst it is shownthat the algorithm would work orret if the priority of eah vertex v in the queue Q wasthe orret new distane of v. That sub-proof works muh like the proof of orretnessfor Dijkstra's algorithm. 16



CHAPTER 2. FUNDAMENTALSThe seond step is to show that the order in whih the verties are removed from thequeue does not have any in�uene on the �nal values of Dv and (if shortest paths areare supposed to be unique) has no in�uene on the �nal values of the shortest paths treepredeessors P (v). The author wants to point out that he has not �nished that sub-proofin detail.Algorithm 2: UPDATE DIJKSTRAinput: Graph G, len(·), Distane[℄, Predeessor[℄/* init */forall edges e in update set U do1 insert e in queue H with priority distane[e.soure℄2 while queue H is not empty do3 edge e := get minimal element from H4 remove minimal element from H5 if predeessor[e.target℄=e.soure or distane[e.target℄>distane[e.soure℄+len[e℄6 thenUPDATE DISTANCE(e.soure, e.target)7 forall h in H with h.soure=e.target do8 update H-priority of h9 /* step down the tree */while queue Q is not empty do10 node n:=get minimal element from Q11 remove minimal element from Q12 if oldDistane[n℄<distane[n℄ then13 forall edges e with e.target=n do14 if distane[n℄>distane[e.soure℄+len[e℄ then15 UPDATE DISTANCE(e.soure, e.target)16 forall edges e with (e.soure=n and predeessor[e.target℄=n) do17 UPDATE DISTANCE(e.soure, e.target)18 if oldDistane[n℄>distane[n℄ then19 forall edges e with e.soure=n do20 if distane[e.target℄>distane[e.soure℄+len[e℄ then21 UPDATE DISTANCE(e.soure, e.target)22
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CHAPTER 2. FUNDAMENTALSAlgorithm 3: UPDATE DISTANCE(fromNode, toNode)if not Q ontains toNode then1 oldDistane[toNode℄:=distane[toNode℄2 distane[toNode℄:=distane[fromNode℄+len[(fromNode,toNode)℄3 predeessor[toNode℄:=fromNode4 if not Q ontains toNode then5 insert toNode into Q with priority distane[toNode℄)6 else7 hange priority of toNode in Q to distane[toNode℄)8Heuristi variant to improve a bath update.At this point we want to stress that the order how verties are removed from the queuedoes not in�uene the orretness of the algorithm. It is a heuristi strategy to improvethe runtime. Our strategy works well on deremental updates: the algorithm proeedslike Dijkstra's algorithm would do but shrinks the proessed part of the graph if possi-ble. However, on inremental or fully dynami updates there are many ases where thealgorithm does not perform better than iteratively reomputing the shortest paths treeedge-update by edge-update and performs worse than a full reomputation from srath.Figure 2.4 shows suh an example.
s u v w

10 10 10 10 10 10

1000 20
x y zFig. 2.4: Graph and shortest-paths tree rooted at s. The red numbers represent up-dated edge lengths. The optimal order to proess the verties is: u,v,w,x,y,z.Our update-algorithm would proess the verties in the following order:w,x,y,z,u,v,w,x,y,z.To improve the performane on inremental or fully dynami updates we propose a slighthange in the algorithm: the priority of an edge (u, v) in the initialization queue H is thedistane D(v) of (u, v)'s target vertex instead of its soure vertex. At the initializationonly the �rst edge in H is proessed, then the main algorithm is performed. The mainalgorithm almost works as desribed. The only di�erene is that, before a minimal vertex

m from the queue is proessed, the initialization step is performed for all elements of thequeue H with H-priority lower than the Q-priority of m.
18



3 Speed-Up TehniquesIn this hapter we desribe several tehniques that are used to speed up Dijkstra's searhwhen solving a single-soure single-target problem. All desribed tehniques exept bidi-retional searh and a goal-direted searh variant require a preproessing step to om-pute data whih is later used to speed up single-soure single-target queries.Goal-direted searh and the landmark tehnique, whih is a speial ase of goal-diretedsearh, alter the lengths of the original graph's edges in a way that preserves the propertythat shortest paths from soure to target remain shortests paths but `diret' Dijkstra'salgorithm to arrive at the target while visiting fewer useless verties.The main idea of multi-level graphs and highway hierarhies is to build a new graphwhose shortest paths orrespond to shortest paths on the original graph. The new graphis built in a manner that aims to minimize the number of verties visited by Dijkstra'salgorithm. This is supported by a set of speial rules whih edges (not) to relax.The edge-label tehnique and reah-based pruning attah additional data to eah edge orvertex. This data an be used to identify branhes of a shortest-paths tree that are notrelevant for the solution of a given single-soure single-target problem. Therefore thesebranhes an be omitted, resulting in a faster searh.Changing the underlying graph an result in a hange of the preproessed data. Thepreproessing is usually very time-onsuming and a omplete reomputation is oftennot possible. Therefore it is important to �nd proedures whih e�iently update thepreproessing without reomputing from srath when dealing with this situation. Wewill show suh dynami update strategies for most of the desribed speed-up tehniques.3.1 Bidiretional Searh3.1.1 QueryA very ommon speed-up tehnique for the single-soure single-target shortest pathsproblem is the bidiretional searh. This tehnique simultaniously performs two searhes.The �rst, a normal Dijkstra's algorithm starts at the soure and is alled the forwardsearh. The seond is rooted at the target and is also a Dijkstra's algorithm, but appliedto the reverse graph, whih is the graph with the same vertex set and the reverse edgeset E = {(u, v) | (v, u) ∈ E}. We all it the bakward searh. The algorithm terminates19



CHAPTER 3. SPEED-UP TECHNIQUES

Fig. 3.1: Verties visited (shown in red) by Dijkstra's algorithm (left) and bidiretionalsearh (right)when one vertex v is marked as �nished by both diretions. The shortest path betweensoure and target is omposed by the shortest path from soure to v found by the forwardsearh and the shortest path from v to target found by the bakward searh.In [GKW05℄ Goldberg proposes a better stopping riterion: stop the algorithm when thesum of the minimum labels of visited verties for the forward and reverse searhes is atleast the length of the shortest path seen so far.Although performing the two searhes ompletely simultanious would be possible onmulti ore/proessor mahines, alternating strategies must be used when using a singleproessor mahine. A simple approah is to swap to the ontrary diretion every timeafter visiting a vertex. Another possibility is to keep the minimum distane label fromvisited verties of the forward searh approximately equal to the minimum distanelabel from visited verties of the bakward searh. In order to do that the bidiretionalalgorithm swaps to the ontrary searh when the distane label of the minimal queuevertex is greater than the distane label of the minimal vertex of the ontrary queue. Weall this alternating strategy distane balaned.The reason why this tehnique ahieves an improvement of the runtime is a very intuitiveone. The set of verties whih are visited by Dijkstra's algorithm an be imagined as aball surrounding the soure of the searh. The unidiretional searh needs one ball withthe distane from soure to target as radius. The bidiretional searh on the other handneeds two balls with only half the radius, eah. This diminishes the visited area, whihis nothing else than the number of visited nodes.Note that this tehnique an be ombined with several other speed-up tehniques and isan integral part of the later shown speed-up tehnique using reah values.3.1.2 Dynami UpdateThis speed-up tehnique requires no preproessing and therefore no data has to be re-omputed after altering a graph.
20



CHAPTER 3. SPEED-UP TECHNIQUES3.2 Goal-Direted SearhThe goal-direted searh, whih is also alled A* was introdued in [HNBR68℄, the de-sription here is based on [WW06℄. Its main idea is to streth the ball of verties visitedby Dijkstra's algorithm in the diretion of the target. This way, many verties useless forthe solution of a given problem will not be visited and an improvement in the algorithm'sruntime is ahieved.3.2.1 QueryThe searh is a normal Dijkstra's algorithm but performed on an altered graph. Thevertex and the edge set of the original graph stay the same but the lengths of the edgesare altered in the following way:The goal-direted searh uses additional data in form of a funtion from the graph'sverties to reals. This funtion an di�er for di�erent targets. In this ontext, we allsuh a funtion a potential funtion and denote it by p. The new length of an edge (u, v)is assigned to lennew(u, v) = lenold(u, v) + p(v) − p(u).Note, that a onrete implementation of the goal-direted searh does not need to alterthe underlying graph at initialization. It only has to add the di�erene of the potentialfuntion p(v)− p(u) to the length of (u, v) when this edge is relaxed. This way, only theedges whih get relaxed during the searh have to be onsidered to the hange, whihimproves the runtime of the algorithm. Furthermore the searh is easier to ombine withother algorithms if the underlying graph stays the same.Remember that Dijkstra's algorithm an only be applied if the underlying graph is freefrom negative yles. We ensure that by laiming all new edge lengths to be non-negative.A potential funtion granting that property is alled feasible:De�nition: given a weighted graph G = (V,E) and a length funtion len : V → R+
0 , apotential funtion p : V → R is alled feasible if len(u, v)− p(u) + p(v) ≥ 0 for all edges

(u, v) ∈ E.To �nd feasible potential funtions it is useful to searh tight lower bounds for the distaneto the target vertex t: if p(t) ≤ 0 then p(v) is a lower bound for the distane from v to
t. Hene, we an shift every feasible potential p to gain a new one pnew(v) = p(v) − p(t)whih is a valid lower bound and will result in the same searh (will visit the sameverties in the same order). As tighter lower bounds will push the searh more into thediretion of the target, the main aim is to searh those good potentials. A simple trikto extrat a better potential funtion from a set of others is to ombine them by takingthe maximum:If p1, p2, . . . , pn are feasible potential funtions, then p(v) = max{p1(v), p2(v), . . . , pn(v)}is a feasible potential funtion.3.2.2 CorretnessNow, we are going to hek the orretness of the algorithm: for eah path P = (s =
v1, v2, . . . , vn = t) on the graph the length of the path applying the old edge lengths21



CHAPTER 3. SPEED-UP TECHNIQUESdi�ers from the length of the path applying the new edge length by the same amount
p(t) − p(s):

lennew(P ) =

n
∑

i=1

lennew(vi, vi+1) =

n
∑

i=1

lenold(vi, vi+1) − p(vi) + p(vi+1)

= −p(s) + p(t) +

n
∑

i=1

lenold(vi, vi+1)

= −p(s) + p(t) + lenold(P )Therefore a shortest path in the altered graph is also a shortest path in the original graph.
�3.2.3 Example Potential FuntionsFor road maps or other graphs with a geographi origin good lower bounds an oftenbe found by exploiting the real-world oordinates of eah vertex. These oordinatesdetermine a layout L : V → R2 of the graph. We now assume that the length of an edge

(u, v) is the Eulidean distane ‖L(u) − L(v)‖ of the edge's soure and target vertex.Then, the Eulidean distane to the target t, p(v) = ‖L(v) − L(t)‖ represents a feasiblepotential.
source

target

source

target

Fig. 3.2: Part of a graph whose edge lengths are indued by the Eulidean distanes ofthe end verties (left) and the same graph with altered edge lengths (by goaldireted searh). The irles entered at the target vertex represent the potentialof eah vertex.Often however, problems are given where the edge lengths are not exatly proportional tothe Eulidean distanes but orrelate. A ommon example for that situation is the traveltime on a road map. There a orretive fator vmax = max(u,v)∈E {len(u, v)/‖L(u) − L(v)‖}has to be multiplied to p: pcorr(v) = vmax · ‖L(v) − L(t)‖.Note that this proeeding will work in any normed vetor spae if appropriate edgelengths are given. 22



CHAPTER 3. SPEED-UP TECHNIQUES3.2.4 Dynami Update of the Example Potential FuntionsThe �rst example where edge lengths are proportional to the Eulidean distanes requiresno preproessing and therefore is fully dynami.The only preproessing used in the seond example is �guring out vmax. Pure inrementaledge updates an reompute vmax by alulating the maximum
vmax/update = max(u,v)∈U (len(u, v)/‖L(u) − L(v)‖ over all edges in the set of updatededges U . The old value vmax has to be substituted by the maximum of vmax and
vmax/update. This needs linear time in the number of updated edges.For dealing with the fully dynami ase we propose a slight hange in the data struture.The edges shall be sorted by len(u, v)/‖L(u)−L(v)‖. This slows the preproessing from
O(m) to O(m log m) where m is the number of edges in the graph. Updated edges nowonly have to be re-sorted. This is done in O(k log m) time, where k denotes the numberof updated edges and m the number of the edges in the graph. The new value for vmaxis the value of the last edge in the list.
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CHAPTER 3. SPEED-UP TECHNIQUES3.3 LandmarksThe landmark tehnique has been introdued in [GH05℄ as main part of the ALT-algorithms (ALT is an abbreviation for A-star, landmarks, triangular inequality). Itis a method to get potential funtions for the goal-direted searh only using the graphand its length funtion as input. Therefore it an be applied in ase no domain spei�information is given. Its idea is to grow full shortest-paths trees on a very small numberof verties (whih we all landmarks in that ontext) and exploit lower bounds for the dis-tane to the target out of these trees using the triangular inequality for graphs. We wantto refer to [GH05℄ for an experimental study on this tehnique and some optimizationsinluding the ombination with bidiretional searh.3.3.1 PreproessingThe preproessing starts by hoosing a small number of verties of the graph, whih weall landmarks. Then, for eah landmark L we grow a full shortest paths tree rooted at
L.

L

v

t
dist(v, L) − dist(t, L)

dist(t, v)

Given a landmark L, the triangle inequalityon graphs, dist(v, L) − dist(t, L) ≤ dist(v, t)holds. The �gure to the left is a shematiexample of that inequality. Therefore p(v) =
dist(v, L) − dist(t, L) provides a lower boundfor the distane dist(v, t) from a vertex v tothe target t whih we use as a feasible potentialfuntion.As desribed in the last setion, the poten-tial funtions pi(v) derived from di�erent land-marks an be ombined to one, better potential funtion by taking the maximum

p(v) = maxi{pi(v)}. For speeding-up the query it may be useful to identify a subsetof landmarks whih provide strong lower bounds for the distane from soure to targetof the searh. Then the query is run only using these landmarks. Even though thismay e�et in visiting slightly more nodes, the savings in the alulation of the potentialfuntion p often lead to a faster query.Piking the right landmarks is ruial for that tehnique. In [GH05℄ good results arereported for 1 to 16 landmarks at a graph size of 600.000 to 15 Mio edges. Some basiseletion strategies are:By Random. Choosing by random is a simple way of seleting the landmarks. However,the resulting potential funtion may be far away from being optimal.Geometri. This approah an be used for graphs with two dimensional layouts likethe ones desribed in the last setion. It derives from the observation that havinglandmarks geometrially lying behind the destination tend to give good potentialfuntions. The algorithm �rst piks the vertex c that is most lose to the enter24



CHAPTER 3. SPEED-UP TECHNIQUESof the graph (here, all geometri statements are meant with respet to the given2-dimensional layout). Then, the graph is divided into pie-slie setors enteredat c, all of the setors should ontain approximately the same number of verties.Now, for eah setor, the vertex farthest away from c is hosen as landmark.Farthest Landmark. Starting at an arbitrary vertex as �rst landmark, this proeedingiteratively adds new landmarks. The following ondition has to be satis�ed: eahnew landmark is hosen suh that the distane of the new landmark to the nearestof all urrent landmarks is maximal.3.3.2 Dynami UpdateThe preproessing of the landmark tehnique onsists of two steps: �rst hoosing thelandmarks and then performing Dijkstra's algorithm for eah landmark.If the landmarks stay the same the preproessing an be e�ently updated by the algo-rithm presented in setion 2.4, page 14. Note that for most landmark seletion strategiesonly reomputing the shortest paths trees will not give the same result as a full reom-putation from sath would do, beause the landmarks stay the same.However, the landmarks that result from a omplete re-hoosing are near to the oldlandmarks as long as the hanges in the graph stay 'little enough'. In this ase, thereomputation is quality preserving. When updating the preproessing without hangingthe landmarks it is important to know wether the seletion remains `good'. An indiationfor that is the new distane between the landmarks whih is expliitely known by theshortest paths trees. Landmarks near to eah other are ine�ient and should by replaedby new ones.We do not have to apply that proeeding on the random and the geometri landmarkseletion strategy: the edges have no in�uene on these strategies and therefore thelandmarks remain the same after an edge update.To deal with the farthest landmark strategy we reompute the shortest paths trees withthe algorithm presented in setion 2.4. Then we hek on landmarks near to another.If we �nd a pair of suh landmarks, one of both is removed and replaed by a new oneseleted by the farthest landmark riterion.
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CHAPTER 3. SPEED-UP TECHNIQUES3.4 Edge LabelsThis tehnique needs a geometri layout of the underlying graph and tagges to eah edge
(u, v) some preproessed geometri information (the edge label) about the area of allverties that lie on a shortest path that begins with (u, v). When an edge (u, v) is tobe relaxed it is heked whether the target vertex t of the searh is within the aordingarea of (u, v). The edge (u, v) an be ignored if t is not within that area.One an distuingish two types of edge labels: bit-vetors and geometri ontainers. Whenusing bit-vetors the whole graph is separated into several areas. Given an edge (u, v),the bit-vetor of (u, v) odes the information whih areas ontain at least one vertexon a shortest path starting at (u, v). Further reading on bit-vetors an be found in[KMS04, Lau04, MSS+05℄.Geometri ontainers are due to Shulz, Wagner and Weihe [SWW99℄ and have been im-proved and experimental studied by Wagner, Willhalm and Zaroliagis in [Wil05, WWZ04,WW06℄. The geometri ontainer of an edge (u, v) is a geometri objet that ontains atleast all verties to whih a shortest path starts at (u, v).3.4.1 BasisIf for eah edge (u, v) the exat set H(u, v) of all verties t for whih (u, v) is on theshortest path from u to t is known, good pruning an be ahieved: Dijkstra's algorithman leave out the relaxation of eah edge for whih the attahed target set does notontain the target of the searh. It is easy to see that this pruning keeps the optimalityof the omputed path from soure to target.As storing all these sets is prohibitive beause of the memory onsumption, appropriatesupersets have to be found. Suh a superset H(u, v) has to satisfy three requirements:�rst, it must be possible to determine very fast if a vertex is ontained in H(u, v). Seond,
H(u, v) should not ontain too muh verties that are on no shortest path starting atthe edge (u, v). Finally, H(u, v) has to be storaged with onstant or at least very fewmemory. For real-world data with a given two-dimensional layout L : V → R2 likeroad-networks geometri objets seem to be a good hoie.Note that this proeeding also works without a given real-world justi�ed layout. Onean also try to ompute layouts that promise to e�et in a good speed-up.3.4.2 Geometri ContainersThe geometri ontainer of an edge (u, v) is a `simple' geometri objet that ontainsat least all verties of H(u, v). Out of onvex objets like angular setors or irles,retangles have been reported to produe the best results in the algorithms runtime.The minimal, retangular shaped, parallel to the axes geometri ontainer of an edge isalled its bounding box.A bidiretional variant of pruning using bounding boxes is due to [WWZ04℄. It uses twodi�erent edge-labels:The (onsistent) target ontainer T (v,w) of an edge (v,w) is an retangle (an area26



CHAPTER 3. SPEED-UP TECHNIQUES
u

v

Fig. 3.3: Bounding Box of the edge (u, v). The graph's shortest paths tree rooted at u isdrawn with solid lines.
R ⊂ R2 of the form {(x, y) ∈ R2 | xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax}) that ontainsat least all verties t for whih there is a shortest path from v to t using the edge (v,w).The (onsistent) soure ontainer S(v,w) of an edge (v,w) is a retangle that ontainsat least all verties s for whih there is a shortest path from s to w using the edge (v,w).We want to point out that suh a ontainer does not have to be minimal. It only has toontain the aording bounding box.Preproessing. To get the target ontainers we run for eah vertex r on the graph aslightly enhaned Dijkstra's algorithm rooted at r. During the algorithm we keep, foreah labeled vertex v, the edge (r, u) on the tentative shortest path to v. When v is�nished we enhane the bounding box of (r, u) to ontain v, if neessary. We use thismethod on the reverse graph to get the soure ontainers.Query. To answer a single-soure single-target problem with soure s and target t abidiretional Dijkstra's searh is used. The forward searh is altered suh that eah edge
(u, v) is not relaxed if t is not in T (u, v), the bakward searh does not relax every edge
(u, v) with s not in S(u, v).3.4.3 Bit-VetorsThis proeeding works as follows: �rst, we partition the graph into k areas. Then, weassign to eah edge a bit-vetor with k bits. Eah bit represents one of the preomputedareas. We �x an arbitrary area A and an arbitrary edge (u, v). The bit of (u, v) thatrepresents A is set to false if (u, v) lies on no shortest path with at least one vertex in A.Otherwise the bit is set to true.Aording to [Wil05℄, useful partitions an be found through kd-trees when dealing withroad maps and through the method desribed in [HK00℄ in the general ase.Preproessing. The preproessing diretly transfers from the preproessing of geomet-27



CHAPTER 3. SPEED-UP TECHNIQUESri ontainers. [WW06℄ mentions a great speed-up for the preproessing of bit-vetors:every shortest path inident to at least two di�erent areas has to enter an area at onevertex. Therefore it is su�ent to onsider only verties on the border of an area insteadof solving the omplete all-pairs shortest-paths problem. We do that by solving, for eahvertex that is on the border of at least one area, the single-soure all-targets problem ofthe reverse graph.
u

v

A

C

B

D

Fig. 3.4: Sample partition in 4 areas. The graph's shortest paths tree rooted at u is drawnwith solid lines. The bitvetor of the edge (u, v) is (A = 0, B = 1, C = 0,D = 1).3.4.4 Dynami Update of Geometri ContainersA routine to update the preproessing of the bidiretional variant of geometri ontainershas been published in [WWZ04℄. It handles one edge update per time and is split into aderemental and an inremental proeeding. Both proeedings do not onsider shortestpaths that have been destroyed by the update but only reompute all shortest paths thathave been reated due to the edge update. Therefore existing edge ontainers annotshrink and the update routine is not an exat reomputation. The update method hasbeen reported to be four times faster than a reomputation from srath would be.Inremental Update. Given an edge (u, v) with inreased length we want to limitthe area of all shortest paths that have been reated by the update: if an s-t path hasbeen reated by the inrement of the length of the edge (u, v) then must (u, v) be on theshortest s-t-path on the old graph. It follows that (u, v) is the last edge of a shortest
s-v-path and the �rst edge of a shortest u-t-path in the original graph. Therefore is sontained in Sold(u, v) and t in Told(u, v).To update the geometri ontainers we grow a full shortest-paths tree on eah vertex in
Sold(u, v) when omputing the target ontainers and on eah vertex in Told(u, v) whenomputing the soure ontainers. The existing geometri ontainers of verties outgoingfrom these verties are augmented like in the stati preproessing routine.28



CHAPTER 3. SPEED-UP TECHNIQUESA seond improvement is as follows. It an be shown that for eah node x on a shortest
s-t-path reated by the update of the edge (u, v):

distnew(s, x) < distnew(s, u) + lennew(u, v) + distnew(v, x)Note that the inequality only holds in ase shortest paths are unique. In the generalase the < has to be replaed by a ≤. To exploit the inequality we �rst run a Dijkstra'salgorithm on the bakward graph rooted u and a Dijkstra's algorithm rooted at v. Then
distnew(s, u) and distnew(v, x) are known for every s and x. When we perform theupdate algorithm this inequality an be heked everytime an edge is relaxed by Dijkstra'salgorithm and we an omit those edges whose target verties do not ful�ll it.Deremental Update. Now we deal with the situation that the length of an edge (u, v)has been dereased. Here, the former statement hanges to:If an s-t path has been reated by the derement of the length of the edge (u, v) thenmust (u, v) be on the shortest s-t-path on the new graph. It follows that (u, v) is the lastedge of a shortest s-v-path and the �rst edge of a shortest u-t-path on the new graph.Therefore is s ontained in Snew(u, v) and t in Tnew(u, v).Sine Snew(u, v) and Tnew(u, v) are unknown at the beginning of the update the �rst stepof the algorithm is to reompute them like in the stati ase. Then we proeed like inthe inremental ase only replaing Sold and Told by Snew and Tnew.The improvement hanges to

distnew(s, x) < distnew(s, u) + lenold(u, v) + distnew(v, x)and an also be applied like in the inremental ase.
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CHAPTER 3. SPEED-UP TECHNIQUES3.5 Multi-Level GraphsMulti-level graphs have been intensively experimentally studied sine they were intro-dued by Shulz, Wagner and Weihe in [SWW99, SWW00, SWZ02℄. This desription isa summary of [HSW06℄, the most reent paper on the topi. We enhaned it by a skethof a new update algorithm for the method.The speed-up of this tehnique results from a preproessing step at whih the input graphis deomposed into l + 1 levels. This deomposition is used to limit the searh spae ofDijkstra's algorithm. Furthermore additional edges are inserted that represent shortestpaths onneting important verties on the graph. These edges an be used as shortutsfor Dijkstra's Algorithm.3.5.1 Data StrutureGiven a graph G = (V,E) with non-negative edge lengths len : E → R+ and a subsetof the graph's verties S ⊂ V , we want to onstrut the shortest path overlay graph
G′ = (S,E′) that is de�ned as follows: for eah (u, v) ∈ S × S there is an edge (u, v) in
E′ if and only if for any shortest u-v-path in G no internal vertex belongs to S (internalverties are all verties on the path exept u and v). The length of eah edge in E′is determined by the following ondition: for eah pair of verties (u, v) ∈ S × S thedistane from u to v on G′ equals the distane of the two verties on G.The onstrution of that graph an be done by the min-overlay algorithm:Algorithm 4: min-overlay(G, len(), S)forall verties u ∈ S do

• run Dijkstra's algorithm on the graph G with root u

• the edge weights are pairs (len(e), se), addition is done pairwise, theorder is lexiographi, se =

{

−1 ; source(e) ∈ S \ {u}
0 ; otherwise ,

• break if all verties in the queue have distane of at most (·,−1)forall verties v ∈ S \ {u} doif dist(u, v) = (·, 0) thenintrodue an edge (u, v) in E′ with weight dist(u, v)Given a sequene of l subsets of verties Si (1 ≤ i ≤ l) with V = S0 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Slthe basi multi-level graph is the result of iteratively applying the min-overlay algorithm:starting with G and S1, the min-overlay algorithm inserts a set E1 of edges. Eahfollowing step i, min-overlay is applied to (Si, Ei) and Si+1 and inserts the set Ei+1 ofedges. We all the subgraph (Si, Ei) the level i. We say a vertex v is of level i (or alevel-i vertex) if i is the maximal level that ontains v.30



CHAPTER 3. SPEED-UP TECHNIQUES

Fig. 3.5: Bidireted 2-level multilevel-graph. The quadrati verties represent verties in
S. The lower �gure shows the original graph, the upper �gure shows the edgesinserted by the min-overlay algorithm.If the usage of more preproessing time and memory onsumption is aeptable, theshortest-paths queries an further be sped up by inserting even more edges to the basimulti-level graph. The resulting extended multi-level graph ontains two new types ofedges: upward edges from verties in Si−1 \ Si to verties in Si and downward edgesfrom verties in Si to verties in Si−1 \ Si. As in the basi multi-level graph, the lengthof an edge equals the length of a shortest path on the underlying graph. An upward edge

(u, v) with u ∈ Si−1 \Si and v ∈ Si (or an downward edge with v ∈ Si−1 \Si and u ∈ Si)is only inserted if and only if no other vertex w ∈ Si is on a shortest path from u to v.The min-overlay algorithm an be altered to onstrut the extended multi-level graph.By hanging the last step where the new edges are introdued we an onstrut downwardedges: we onsider also verties v ∈ V \S and an edge is introdued if dist(u, v) = (·, 0).Upward edges are onstruted by running Dijkstra's algorithm for all verties of theunderlying graph instead of running it only for verties in Si, and by introduing an edge
(u, v) if and only if dist(u, v) = (·, 0).3.5.2 QueryTo answer a given s-t-query, only a subgraph of the basi/extended multi-level graph hasto be searhed. This subgraph is theoretially determined by a onstrut alled tree ofonneted omponents, whose desription we want to omit beause it is not of importanefor the update of the multi-level graph. Therefore, we only sketh the searh algorithm.The extra information of the tree of onneted omponents that is used for the query isa partition of eah level i− 1 that is indued by the verties in Si. We use the followingnotation: given an integer 1 ≤ i ≤ l and a vertex v on the subgraph of the multi-levelgraph that is indued by the verties Si−1 \ Si, then Cv

i denotes the maximal onnetedomponent on that subgraph ontaining v. From now on, we assume that the struture31



CHAPTER 3. SPEED-UP TECHNIQUESof the omponents Cv
i is known.Assume that s is a level-k, t is a level-h vertex. Starting a Dijkstra's searh at s, theshortest s-t-path query on the basi multi-level graph has to onsider only edges ontainedin Ek while searhing in Cs

k. The omponent Cs
k may only be left to a vertex v of higherlevel k + n, n ∈ N>0. When relaxing the outgoing edges e of v, only those ontainedin Ek+n are onsidered. The same holds for eah following level: onneted omponentsmay only be left to a vertex of higher level.When the searh asends to the highest level or a level i on whih s and t are in the sameonneted omponent on the subgraph of G indued by the verties V \ Si+1, no higherlevels have to be onsidered. All edges of that level i may be used and the searh maydesend in diretion of t. Here, the searh spae is pruned analogously. When we relaxoutgoing edges from a vertex of level k + n with k + n > i we onsider all edges of level

i instead of all edges of level k + n.The query an be further improved by a similar searh using the edges of the extendedmulti-level graph.

s

tFig. 3.6: searh-spae for an s-t-query on the example 2-level multi-level graphThe important tuning parameter of this tehnique are number of levels and numberand seletion of the verties in Si. We refer to [HSW06℄ for an experimental study ofdi�erent riteria for seleting these verties. An exat desription of the query algorithmand proofs of the orretness of the method an be found in [SWZ02℄.3.5.3 Dynami UpdateMotivationWe onsider a graph G = (V,E) and its min-overlay graph MO indued by a set ofverties S whih we all separator verties here. Intuitively speaking, the verties in Sseparate the graph and the subgraph G− indued by the verties V \ S onsists of manylittle onneted omponents if the verties in S are `well' hosen. It is obvious that an32



CHAPTER 3. SPEED-UP TECHNIQUESedge on the min-overlay graph either represents only one edge with end-verties in S oronnets verties adjaent to the same omponent of G−: a path ontaining more thanone edge between two separator-verties that are not adjaent to the same omponenthas to traverse at least two omponents. Therefore it has to pass at least one otherseparator-vertex and is not represented by an edge in the min-overlay graph.Let us assume an edge u has been updated. To reompute the min-overlay graph of G, weonly have to onsider separator verties adjaent to the onneted omponent ontaining
u. The overlay edges of all other verties stay the same. We will later treat some speialases where an edge u is not ontained in any onneted omponent.As we allow edge insertions and deletions the struture of the onneted omponents mayalter due to an edge udate: omponents an grow or shrink, be unioned, parted, reatedor destroyed. In this ase we have to identify these struture-altered omponents andmust onsider all separator verties adjaent to either the original or the altered/newomponents.We now present an algorithm that reomputes an existing multi-level graph level-by-level.The min-overlay graph of eah level is reomputed only onsidering separator vertiesadjaent to omponents with updated edges. We also give some strategies to furtherdiminish the set of separator verties onsidered for reomputation.OutlineGiven a graph G = (V,E) with length funtion lenold : E → R+, a sequene of l subsetsof verties Si (1 ≤ i ≤ l) with V = S0 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sl and the multi-level graph
ML of G with respet to that sequene. The update is given by a new length funtion
lennew : E → R+. The set of all edges with altered length is denoted by U . We all Gthe original graph if we apply the edge lengths lenold and all it the altered graph if weapply the edge lengths lennew.To avoid that edges exist that are ontained in no onneted omponent we alter ournotion of onneted omponent Cv

i (page 31): we want Cv
i to inlude also all adjaentseparator verties of that level and the edges between these verties. If an edge onnetstwo separator verties not adjaent to the same omponent we regard those two vertiesand the edge onneting them as a separate, degenerated omponent. We further assumethat for eah vertex and eah level, the vertex is ontained in, a label is given thatidenti�es the aording onneted omponent(s) Cv

i .To reompute the multi-level graph of G the graph has to be updated level-by-level.Starting with i = 0, we know the set of all updated edges Ui of level i and reomputethat level as follows: �rst, we update the verties' onneted omponent labels. Thisis neessary beause edge insertions or edge deletions may a�et the struture of theonneted omponents.Then for eah separator vertex s ontained in at least one omponent C that eitherontains at least one element of Ui or that has hanged its form, we reompute themin-overlay edges outgoing from s. We remove the min-overlay edges of deleted ompo-33



CHAPTER 3. SPEED-UP TECHNIQUESnents. Finally, the hanges Ui+1 between the old and the new overlay graphs have to beidenti�ed.The orretness of this algorithm follows diretly from the observation that the edges in-serted by the min-overlay algorithm represent only paths within a onneted omponent.Reomputation of the min-overlay edges outgoing from a given separator vertexWe use the min-overlay algorithm to reompute the min-overlay edges outgoing from aseparator vertex s. The only hange in the algorithm is to grow a shortest paths treeonly from s instead of growing a shortest-paths tree on eah separator vertex. Thereforethe �rst line of Algorithm 4, page 30 hanges to for vertex s do.Full Reomputation of a Conneted ComponentWhen dealing with updates that `seem to have a great impat on the shortest path stru-ture of a onneted omponent C', it is reasonable to reompute the overlay edges for eahseparator vertex ontained in that omponent. Espeially in the ase that many edges ofa omponent have hanged their lengths, this approah is likely to be runtime-optimalamong all possibilities that use no extra information gathered for handling dynami up-dates.Sophistiated Reomputation of a Conneted ComponentBasis. However, we believe that another strategy does better if the number of updatededges within a onneted omponent is small in relation to the omponent. For simpliity,we restrit this desription to omponents that have not hanged their form. Given aomponent C on a graph G, the set of separator verties S ontained in C, old and newlength funtions lenold, lennew and the set U of edges with updated length. We all Gthe original graph if we apply lenold and all it the altered graph if we apply lennew.Reomputation. We know that the update of an edge (u, v) an only in�uene an edgebetween two separator verties s and t on the min-overlay graph if at least one shortestpath between s and t has no other separator vertex on the subpath from s to u and noother separator vertex on the subpath from v to t.We use a modi�ation of the min-overlay algorithm to identify all verties S− ⊆ S thatare soure verties of overlay edges that have to be onsidered for the reompution: to �nd
S− we run, for eah edge (u, v) in U , Dijkstra's algorithm rooted at v on the bakwardomponent (the omponent with the bakward edge set) of the original graph. The edgeweights and addition are de�ned analogously to the edge weights and addition in themin-overlay algorithm: the length of an edge (x, s) with s ∈ S (that are all edges thatgo out from a separator vertex on the bakward edge set) is (len(x, s),−1). The lengthof eah edge (w, v) with w 6= u is (len(w, v),−1). The length of all other edges (x, y) is
(len(x, y), 0). We stop the searh when all verties in the queue have distane of at most
(·,−1). We repeat the searhes on the altered graph.34



CHAPTER 3. SPEED-UP TECHNIQUESLet S− denote the set of all verties w ∈ S with distane (·, 0) visited in at least one of thesearhes. By the onstrution of S− we know that S− ontains all separator verties fromwhih, either on the original or the altered graph, a shortest path starts that ontains anupdated edge (u, v) and has no other separator vertex on the path from w to v.
S
−Fig. 3.7: Shemati representation of S− in a onneted omponent ontaining an up-dated edge.

Therefore, the outgoing overlay edges of all verties in S \S− remain the same. We onlyhave to reompute the overlay edges outgoing from a vertex in S−. Figure 3.7 shows ashemati example for S− within a onneted omponent.If the extended multi-level graph is to be updated, we de�ne S− to onsist of all verties
v ∈ S with distane (·, 0).
Bidiretional VariantAnalogously, we an run the searhes used to �nd S− also on the original edge set (insteadof on the reverse edge set) of the original and the altered graph with the soure vertexof eah updated edge as roots. We denote the resulting set by S+ and know that S+ontains all separator verties at whih, either on the original or the altered graph, ashortest path ends that ontains an updated edge and has no other separator vertex onthe path from the updated edge to the separator vertex. To reompute the aordingoverlay edges, we an proeed as in the �rst ase but have to run the algorithm on thereverse edge set.A promising heuristi to redue the ost of the min-overlay reomputation is to omputeboth sets, S+ and S−. Then, the reomputation should be performed using the setontaining fewer verties. Figure 3.8 shows an shemati example for S− and S+ withina onneted omponent. 35



CHAPTER 3. SPEED-UP TECHNIQUES
S
−

S
+

Fig. 3.8: Shemati representation of S− and S+ in a onneted omponent ontainingan updated edgeImprovement for the Bidiretional Variant. Assume that only one edge on thegraph has hanged its length. Before performing the update of the basi multi-levelgraph, S− and S+ an be further diminished. One again we want to stress that theupdate of an edge hanges the min-overlay graph only if it lies on a shortest path, eitheron the original or on the altered omponent.After performing the algorithm to ompute S− and S+, we know for eah updated edge
(u, v) and eah vertex s− ∈ S− the distane from s− to u on the original graph. For eahupdated edge e and eah vertex s+ ∈ S+ we know the distane from the v to s+.We observe that the inrement of an edge (u, v) an a�et the min-overlay graph only if
(u, v) is on a shortest path between two separator verties on the original graph. We anexlude that (u, v) is on a shortest path (represented on the min-overlay graph) between
s− ∈ S− and s+ ∈ S+ if dist(s−, u)old + len(u, v)old + dist(v, s+)old is greater than thelength of the min-overlay edge between s− and s+. Figure 3.9 visualizes that ondition.
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Fig. 3.9: Shemati representation of a onneted omponent. The red edge annot beon a path responsible for the dashed overlay edge between s− and s+.A similar argument works for deremented edges. The derement of an edge (u, v) anonly a�et the min-overlay graph if a path between two separator verties s− and s+ issmaller than the atual shortest path.Conluding, to reompute the overlay graph, we only have to onsider separator verties36



CHAPTER 3. SPEED-UP TECHNIQUES
s− ∈ S− for whih at least one edge with inremented length (u, v) and one vertex
s+ ∈ S+ exists suh that an overlay edge between s− and s+ exists and
distold(s

−, u)+ lengthold(u, v)+distold(v, s+) = lenold(overlay edge between s− and s+)or at least one edge with deremented length (u, v) and one vertex s+ ∈ S+ exists suhthat either no overlay edge between s− and s+ exists or
distnew(s−, u) + lengthnew(u, v) + distnew(v, s+) <

lenold(overlay edge between s− and s+)Note that this strategy an be enhaned to handle updates ontaining multiple edges. Theproeeding for pure inremental or pure deremental updates is obvious. The possibilityto enhane it to handle the fully dynami ase results from the observation that a shortestpath that hanges beause of the update of a set of edges U must ontain at least oneend vertex of an edge in U .With Use of Additional Data. If we store, for eah edge e of the overlay graph, allshortest paths that are responsible for the existene of e, we an further speed-up theupdate: we only have to onsider all verties v ∈ Si from whih suh a shortest pathontains either an inremented edge or an end-vertex of a deremented edge. A problemof this strategy is that it will e�et in the onsumation of a huge amount of memory.Comments. Finally, we want to stress that the hoie of the sets Si usually is dependenton the underlying graph. Our update strategy does not update the sets Si and thereforeall these proeedings are no exat reomputations of the preproessing. However, theproeedings are useful beause they are quality preserving as long as the hanges betweenoriginal and altered graph stay `little enough'.
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CHAPTER 3. SPEED-UP TECHNIQUES3.6 Highway HierarhiesThis fairly new tehnique is due to Sanders and Shultes [SS05℄ and works on undiretedgraphs. A paper [SS06℄ presenting an improved version that also works on diretedgraphs is to appear. Its main idea is to transform the original graph into a hierarhialgraph ontaining the original graph as �rst level. Eah level i is like the former level i− ibut only edges and verties that are in the middle of shortest paths that ontain manyverties on the level i − 1 are kept on level i. Additionally, the remaining subgraph getsontrated in some way. The query uses a modi�ed version of Dijkstra's algorithm thatis run on the preproessed, hierarhial graph and strongly prunes the searh spae.3.6.1 Data StrutureThe usage of highway hierarhies requires the notion of anonial shortest paths. Al-though in [SS05℄ the anonial shortest path is de�ned more general than in this work werestrit here to our de�nition and always think of the version that omputes anonialshortest paths when we talk of Dijkstra's algorithm.To distuingish whih edge is far enough to the ends of a shortest path to keep it on thenext level, we �rst have to de�ne the notion of H-neighbourhood: given the ase that thepriority queue used by Djikstra's Algorithm ontains more than one minimal element,we �x an arbitrary but deterministi rule whih vertex to take. Then, the Dijkstra rank
rs(v) is the number of verties already �nished by a Dijkstra's algorithm starting at s atthe time the vertex v gets marked as �nished. For a given vertex s and an integer H,we denote by dH(s) the distane of the H-losest vertex from s. The H-neighbourhood
NH(s) is de�ned as NH(s) := {v ∈ V | D(s, v) ≤ dh(S)}. From now on we �x anarbitrary H and only write N(s).Now we are able to desribe an iterative proeeding that onstruts a sequene of graphs
(Gi)i=0...n alled highway hierarhy. Eah graph in that sequene represents one level ofour hierarhial graph used for the searh. As mentioned, the �rst graph in the sequeneis the original one. Eah following graph is omputed by building the highway network
Gi+1 of a ontrated version G′

i of its predeessor. This is done in two steps:The �rst step removes all edges (u, v) from G′
i that do not belong to a (anonial) shortestpath P = (s, . . . , u, v, . . . , t) with v 6∈ N(s) and u 6∈ N(t). Furthermore all verties thatbeame isolated are also removed. The resulting graph is the highway network Gi+1.In the ontration step G′

i+1 is built: the graph is split into its maximal vertex induedsubgraph with minimum degree two (we all that the 2-ore of the graph) and all attahedtrees (that are trees whose roots belong to the 2-ore, but all other verties do not belongto it). Then all attahed trees are removed. The remaining graph may ontain paths
(u0, u1, . . . , uk) where eah inner vertex u1, u2, uk−1 has degree 2. We all that pathslines and replae every line by a new edge (u0, uk). The resulting graph is the ontratedhighway network G′

i+1.
38



CHAPTER 3. SPEED-UP TECHNIQUES3.6.2 QueryThe query used by this tehnique is a modi�ed bidiretional Dijkstra's algorithm that isrun on a graph G̃ = (Ṽ , Ẽ). This graph onsists of all graphs G0, G1, . . . , GL. Note thatfor every vertex v and every level l with v ∈ Gl the graph G̃ ontains a opy vl of v.For all verties v ∈ G and all pairs vl, vl+1 ∈ G̃ additional edges (vl, vl+1) with length 0are inserted. These edges are alled vertial edges and onnet the instanes of the samevertex in onseutive levels. We all all other edges (those are all ontained in Gi for an
i ≤ L) horizontal edges.The graph is enrihed with the following information: for eah vertex v ∈ G and eahlevel l ≤ L the distane to the H-losest node in level l, dl

H(v) is given. By de�nition weset dl
H to be in�nity if l = L or v 6∈ G′

l. We all the H-neighbourhood of a vertex v ∈ G′
l

N l(v) = {v′ ∈ V ′
l | d(v, v′) ≤ dl

H(v)}.To answer an s-t-query, both diretions of the bidiretional Dijkstra's algorithm areexpanded by the following rules:
• A vertex v is an entrane point if it either has been settled via an vertial edge orif v ∈ G′

i and has been �nished from an horizontal edge starting at a vertex in Gi.The orresponding entrane point of a �nished vertex v is the last entrane pointon the path to v. In eah level l, no horizontal edge is relaxed that would leave theneighbourhood N l(v∗) of the orresponding entrane point v∗.
• Never visit a vertex v ∈ Gi \ G′

i by a horizontal edge starting at a vertex v′ ∈ G′
i.Furthermore a di�erent abort riterion is used: proeed the searhes until both searhsopes have met. Proeed further and abort as soon as for eah diretion starting from

d ∈ {s, t} the searh from d has no reahed but unsettled vertex on levels i where i islower or equal to the level of an horizonal edges that has been skipped by the oppositesearh.3.6.3 CommentsA proof of the orretness, further improvements on that proeeding and a desription ofthe highway network's onstrution and ontration an be found in the original works.An interesting formulation of the highway-hierarhy tehnique that shows the onnetionbetween this tehnique and reah-based pruning is stated in [GKW05℄.
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CHAPTER 3. SPEED-UP TECHNIQUES3.7 Reah-Based PruningReah is an edge measure value introdued by Gutman in [Gut04℄. The reah of an edgeis high, if it lies in the middle of long shortest paths. This an be used for pruning edgeswhen performing Dijkstra's searh: if the searh is far enough from target and soure onlyedges with high reah have to be onsidered. This way, the searh spae is sparsi�atedusing the reah value. The de�nition of reah, desribed in the original work is a verygeneral one. The de�nition, onstrution- and pruning-strategies we use in this paperhold mainly to a modi�ation of the original reah desribed in [GKW05℄. Setion 4.8,page 57 shortly reports the di�erenes between this desription and the desriptions in[Gut04℄ and [GKW05℄. Chapter 4, page 44 explains how to onstrut reah values andupper bounds for reah values while Chapter 5, page 59 desribes a dynami algorithmthat e�ently updates preproessed upper bounds for reah values.3.7.1 De�nitionDe�nition 2 (Reah) Let P be a path from s to t and (v,w) be an edge on P . Wedenote by P(s,w) the subpath of P from s to w and by P(v,t) the subpath of P from
v to t. Then the reah of (v,w) with respet to PreahP (v,w) = min{len(P(s,w)), len(P(v,t))}is the minimum of the length of the pre�x of P and the length of the su�x of P .The reah of an edge (v,w) (within a graph G) is de�ned asreah(v,w) = max

P is anonial path on G
P ontains(v,w)

{reahP (v,w)}the maximum over all shortest paths P through (v,w), of the reah of (v,w) withrespet to P . We all a path P responsible for the reah of an edge (v,w) if the reahof (v,w) with respet to P is the reah of (v,w).
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Fig. 3.10: Reah values of a sample graph. Blak numbers represent edge lengths, rednumbers reah values. 40



CHAPTER 3. SPEED-UP TECHNIQUES
10 30 25 40

10 40 65 40Fig. 3.11: Reah values of a sample path. Blak numbers represent edge lengths, rednumbers reah values.An algorithm that omputes reah values an be found in the next setion. As omputingreah values is very time-expensive while upper reah values an be omputed in muhshorter time, these are used for reah-based pruning. Their onstrution an also befound in the next setion.3.7.2 QueryWe modify a distane balaned bidiretional Dijkstra's searh to sparsi�ate the searhspae using upper reah-bounds. It is obvious that an edge (u, v) an only be on a shortestpath from s to t if dist(s, u) + len(u, v) or dist(v, t) + len(u, v) is lower or equal to thereah of (u, v). If lower bounds dist(s, u) for the distanes from s to (u, v), dist(v, t) forthe distanes from (u, v) to t and an upper bound reach(u, v) for the reah of (u, v) areknown, we an exlude all edges (u, v) with
dist(s, u) + len(u, v) > reach(u, v) and dist(v, t) + len(u, v) > reach(u, v)from the searh. When the edge (u, v) is relaxed by the diretion that starts at s, theexat distane from s to u is known by the distane label dist(s, u) of u. If v has notbeen �nished by the opposite diretion the minimal distane of all verties in the queueof the opposite diretion is a lower bound for the distane from v to t. We all a distanebalaned bidiretional searh using that arguments a bidiretional bound algorithm:De�nition 3 (Bidiretional Bound Algorithm) Given a single-soure single-target problem with soure s and target t on a graph G = (V,E) and upper reah-bounds reach(u, v) for eah (u, v) ∈ E.By the bidiretional bound algorithm we denote the distane balaned bidiretionalDijkstra's algorithm whose forward searh does not relax every edge (u, v) with

dist(s, u) + len(u, v) > reach(u, v) and γ + len(u, v) > reach(u, v)and whose bakward searh does not relax every edge (u, v) with
dist(v, t) + len(u, v) > reach(u, v) and γ + len(u, v) > reach(u, v)where γ denotes the smallest distane label of all verties in the priority queue of theopposite searh.
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Fig. 3.12: Shemati view of a Dijkstra's searh from s to t. The area around the edge
(u, v) represents all verties with distane to (u, v) lower than the reah of theedge. The edge an be pruned by both, the bidiretional bound algorithm andthe self-bounding algorithmA variant of that proeeding where both searhes are more independent from eah otheris the self-bounding algorithm. Here, an edge (u, v) is not relaxed if dist(s, u)+len(u, v) >

reach(u, v). The reverse searh starting at t proeeds aordingly. Note, that an edgeon a shortest s-t-path that is not relaxed by one searh may be relaxed by the opposite.To assure the orretness of the algorithm the stopping riterion must be modi�ed.De�nition 4 (Self-Bounding Algorithm) Given a single-soure single-targetproblem with soure s and target t on a graph G = (V,E) and upper reah-bounds
reach(e) for every e ∈ E.By the self-bounding algorithm we denote the distane-balaned bidiretional Dijk-stra's algorithm whose forward searh does not relax every edge (u, v) with

dist(s, u) + len(u, v) > reach(u, v)and whose bakward searh does not relax every edge (u, v) with
dist(v, t) + len(u, v) > reach(u, v)and that uses the following stopping riterion: stop the searh in a given diretion ifthere are either no visited verties or the minimal distane label of all visited vertiesis at least half the length of the shortest path seen so far.The implementation of both algorithms an be improved by sorting the outgoing edges

(u, v) of eah vertex u desending by the value reach(u, v)−len(u, v). For eah edge (u, v)whih has been pruned from the searh, all edges (u,w) with minor value reach(u,w) −
len(u,w) also have to be pruned. Therefore, the sorting enables the implementation toskip these edges without heking the pruning ondition.42



CHAPTER 3. SPEED-UP TECHNIQUES
s

t

u

v

Fig. 3.13: Shemati view of a Dijkstra's searh from s to t. The area around the edge
(u, v) represents all verties with distane to (u, v) lower than the reah of theedge. The edge annot be pruned by the bidiretional bound algorithm but bythe searh starting at t when performing the self-bounding algorithm3.7.3 CorretnessThe orretness of the algorithms mainly transfers from the orretness of the bidire-tional searh. To prove the orretness of the self-bounding algorithm, the existene oftwo ases must be exluded additionally:

• There exists an edge e on a shortest s-t-path that is pruned by both searhes.
• There exists an edge e on a shortest s-t-path that is pruned by one searh and thestopping riterion of the opposite searh holds before e an be relaxed.The main argument to exlude both ases is that an edge e on a shortest s-t-path anonly be pruned by the searh starting at the vertex p ∈ {s, t} that is further away from

e.
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4 Stati Reah PreproessingWe preisely desribe a simpli�ed version of the preproessing used in [GKW05℄ to getupper reah-bounds for the speed-up tehnique desribed in setion 3.7.4.1 Exat ReahComputing reah values is very time-expensive. Just applying the plain de�nitions, theshortest paths between any two verties u, v must be onsidered. That leads to solvenearly n2 single-soure single-target shortest path problems. The following algorithmmerges these problems to n single-soure all-target problems and therefore grows a fullshortest paths tree Tx on eah vertex x. After a shortest paths tree Tx has been grown weompute for eah edge e on the tree the reah with respet to the longest path through
e that is ontained in Tx. After building all shortest paths trees we have onsidered allshortest paths that are responsible for the reah of at least one edge. Therefore, givenan edge e we gain the exat reah value of e by taking the maximum of its formerlyomputed reah values.Algorithm 5: Exat Reahforall edges e ∈ E do1 initialize reah(e)=02 forall verties x in V do3 grow full shortest path tree Tx with root x4 forall edges (u, v) in Tx do5

d = farthest desendant of v in Tx6
height(u, v) = dist(x, v)7
width(u, v) = dist(u, d)8
reach(u, v) = max(reach(u, v),min(height, width))9Unfortunately, this strategy is unsuitable for large graphs. As mentioned, we solve thatproblem by omputing upper reah-bounds instead of the exat ones. From now on, wewill refer to reah values as exat reahes and, as no lower bounds are used, to upperreah-bounds as reah-bounds.44



CHAPTER 4. STATIC REACH PREPROCESSING4.2 MotivationThe main idea of the reah-bound omputation algorithm is similar to the one for exatreahes. Shortest paths trees are grown from every vertex v. But other than in the exatase the trees are not grown over the whole graph but will be `ut' at a ertain length.We all the resulting tree a partial tree. But we are only able to ompute reah-boundsfor every edge with exat reah lower than a ertain treshold ǫ when we use partial treesinstead of full shortest paths trees.These edges will now be removed from the graph and new, bigger partial trees are grownon the resulting, sparsi�ated graph. Then we will use a penalty-funtion to take thedeleted edges into aount and are able to ompute reah-bounds for edges with reahlower than a new, bigger threshold ǫ2. This proess will be iteratively repeated untilenough reah-bounds are alulated.4.3 OutlineGiven a graph G = (V,E) with length funtion len : E → R+, two asending sequenesof numbers ǫi and δi whih are tuning parameters that restrit the size of the partialtrees, the stati reah-bound omputation algorithm works as follows:
Initialization Iteration Step Break Condition

yes

no

G0 = G = (V, E)

∀e ∈ E :

enough reach bounds computed
or
maximal iteration level reached

Input:
reachbounds[]

Output: Gi+1 = (Vi+1, Ei+1)
updated reachbounds[]

Gi = (Vi, Ei)

compute reachbounds by
growing partial trees on
each vertex v in Gi

reachbounds[e] = ∞

At initialization, we set G0 := (E0, V0) := G and denote for every edge e ∈ E with
reachBoundi(e) the omputed reah-bound of e at iteration step i. reachBound(e)0is set to in�nity for eah e in E. Then the algorithm iteratively performs (reah-boundomputation-)steps until a break ondition is ful�lled. We ount these steps starting withzero. The break ondition needs two more tuning parameteres maxIt and desiredBoundsand splits into two parts: stop the algorithm if either a ertain number of iterations maxItis reahed or reah-bounds have been found for at least desiredBounds edges.We now desribe the proeeding within a single step: the input of the i-th reah-boundomputation-step onsists of the original graph and the 4-tupel (Gi, reachBoundi(·), ǫi, δi).The output of the i-th reah-bound omputation-step is a graph Gi+1 ⊆ Gi and a validreah-bound reachBoundi+1(e) of eah edge e ∈ E \ Ei+1. Formerly omputed reah-bounds lower than in�nity stay the same while reah-bounds remain in�nity for edges45



CHAPTER 4. STATIC REACH PREPROCESSINGstill in the new graph Gi+1. Beause of that we will often write reachBound(u, v) insteadof reachBoundi(u, v).The i-th step omputes the reah-bounds impliitely by omputing valid upper boundsfor a variant of the original reah on the graph Gi whih we all penalty reah. In thisvariant penalty funtions alled in-penalty and out-penalty are added to the original reahon Gi to ompensate the removed edges.The step does so by growing shortest paths trees whose size (`size' in the sense of lengthof the ontained shortest paths) is ontroled by the tuning parameter ǫi. To prevent thesepartial trees from growing too big (`big' in the sense of ontained verties) the threshold
δi bloks all edges that have lengths greater than δi from being proessed.After all partial trees are grown we identify all edges e for whih valid penalty-reaheshave been determined. We remove these edges from the graph to get the input graph
Gi+1 of the next omputation-step and save their values as aording reah-bounds
reachBoundi(e). We furthermore remove all isolated nodes from Gi+1.Canonial Shortest Paths. We want to stress that we restrit ourselves to omputeanonial shortest paths (desription on page 10). In this and the following hapter we arethinking of a anonial shortest path when we speak of a shortest path. Consequently,when we speak of Dijkstra's algorithm we are thinking of the variant that omputesanonial shortest paths.4.4 Penalty ReahAs mentioned before, we have to transform the deleted edges into some form of penaltyfuntion.

u

v w

Consider the situation in the left �gure. We areat the beginning of an arbitrary iteration step i,the dotted edge (u, v) has been removed from thegraph G beause a valid reah-bound reach(u, v)has been found in a former step. When we tryto determine the reah of the edge (v,w) in theoriginal graph the problem ours that the path
P responsible for the original reah of (v,w) mayontain the deleted edge (u, v). We an omputean upper reah-bound for (v,w) the following way: either P lies fully on Gi and anbe omputed only onsidering edges on Gi or P ontains the edge (u, v). Then we anestimate (what we justify in setion 4.7, page 54) the length of the pre�x of P (thesubpath from the start vertex to w) by reachBound(u, v) + len(v,w) and ompute thelength of the su�x of P (the subpath from v to the endpoint) only onsidering edgeson Gi. The reah-bound is omputed by taking the minimum of su�x and pre�x of P .Sometimes we have to deal with more than one removed, inoming edge. This is doneby taking the greatest reah-bound among all inoming edges. The same proeeding46



CHAPTER 4. STATIC REACH PREPROCESSINGsymmetrially works for outgoing edges.As desribed in the last setion we do not proess edges higher than a threshold δi. Whenwe reinterpret the edge (u, v) of the last example to be suh an edge our proeeding staysnearly the same: instead of estimating the pre�x by reach(u, v) we set that bound toin�nity.Now, we summarize these ideas in the following de�nitions of in-penalty, out-penalty andpenalty-reah. The in/out penalties assign to eah vertex v on the graph a penalty-valuerepresenting the former possible shortest paths that ontain the removed or forbiddenedges.De�nition 5 (Penalty)Given valid upper bounds reachBound(u, v) for the reah of eah edge (u, v) ∈ G\Giwe de�ne the in-penalty at iteration step i of a vertex v ∈ Vi asiPi(v) =

{

∞ ,∃(u, v) ∈ Ei : len(u, v) > δi

max(u,v)∈E\Ei
{reahBound(u, v)}. , otherwiseAnalogously, the out-penalty of v isoPi(v) =

{

∞ ,∃(v, u) ∈ Ei : len(u, v) > δi

max(v,u)∈E\Ei
{reahBound(v, u)}. , otherwiseWe de�ne max{∅} to be 0.Given a shortest path P = (s, . . . , v, w, . . . , t), the penalty-reah of (v,w) with respetto P adds the in-penalty of s to the length of the pre�x and the out-penalty of t tothe length of the su�x of P . The penalty-reah of (v,w) on Gi is the maximum of thepenalty-reah of (v,w) with respet to P over all shortest paths P that ontain (v,w).It is a valid reah-bound for the exat reah of e. A proof of that fat is given in setion4.7.De�nition 6 (Penalty Reah)Let P be a shortest path on Gi starting from vertex s and ending in vertex t. Givenan edge (u, v) on P we de�ne the penalty reah of (u, v) with respet to P aspenReahP/Gi

(u, v) = min{iPi(s) + len(s, v), len(u, t) + oPi(t)}Similar to the exat ase, the penalty reah of an edge (u, v) ∈ Ei is de�ned aspenReahGi
(u, v) = max

P is anonial path on Gi
P ontains (u,v)

{penReahP /Gi(u, v)}
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CHAPTER 4. STATIC REACH PREPROCESSINGNote that the penalty-reah of an edge (u, v) ∈ Ei+1 an be di�erent from the penaltyreah of (u, v) ∈ Ei.4.5 Partial TreesWe now desribe how we an �nd penalty reah-bounds of iteration step i for (nearly)all edges e with penalty reah of iteration step i, penReachGi(e) lower than a threshold
ǫi. The idea is to grow a shortest paths tree on eah vertex v ∈ Gi with a speial breakondition.The break ondition of these partial shortest paths tree has to ensure the following twolaims, all values base on the graph Gi:

• Claim 1: For eah edge (u, v) with penReachGi(u, v) ≤ ǫi a shortest path Presponsible for the penalty reah of (u, v) shall be inluded in at least one partialtree.
• Claim 2: For eah edge (u, v) with penReachGi(u, v) > ǫi, at least one shortestpath P with penReachP (u, v) > ǫ shall be inluded in at least one partial tree.A partial tree is built as follows: start Dijkstra's algorithm and keep on proessing vertiesfrom the queue until all verties v that are at most ǫi away from the suessor of theroot on the path to v are �nished. We all all verties v suh that the distane from thesuessor of the root to v is lower or equal to ǫi the inner irle. Keep on proessingverties from the queue until the suessors of all verties that are at most ǫi away fromtheir nearest inner irle predeessor are �nished. See the next �gure for an examplepath on suh a partial tree.

v
w

≤ ǫ

≤ ǫ

> ǫ

> ǫ

We want to show the reason why the �rst edge outgoing from the root of the partial treemay not be ounted by the next �gure 4.1:48



CHAPTER 4. STATIC REACH PREPROCESSING
s1 s2

v w x t

ǫ 0.4ǫ 0.4ǫ 0.1ǫ 0.4ǫ 0.4ǫ 0.4ǫFig. 4.1: Minimal path responsible for the reah of (v,w). the partial tree rooted at s1without ounting the �rst edge ontains the full path. The partial tree rootedat s1 with ounting the �rst edge ontains only the subpath from s1 to x. Thepartial tree rooted at s2 ontains only the subpath from s2 to t whih is notresponsible for the reah of (v,w).Now we an explain the reason why we do not want very long edges to be proessed.Assume that an edge outgoing from the root is a hundred times longer than every otheredge. Then the partial tree has to �nish many other edges until this edge an be relaxed.It therefore takes a long time to build suh a partial tree. Figure 4.2 visualizes thatsituation by an example. Real-world data justify that proeeding: The distribution of theedge lengths of the graph of the road-map of Germany (where the edge lengths representthe Eulidean distane between two points, shown on Figure 6.1, page 83) approximatelyfollows a funtion of the form a · e−(length+t) where a and t are real numbers.
s

100

1.5

1.5

1

Fig. 4.2: Partial tree rooted at vertex s that was built without using the delta rule. Thered verties represent the partial tree that had been built with use of the deltarule. The aording value of epsilon is 1. All edge lengths not on the �gure are30 at most.We formalize the whole proeeding of building partial trees by the following de�nitionsof inner irle and partial tree:De�nition 7 (Inner Cirle)Given a path P with soure x. Let v be a vertex on P and x′ the suessor of x onthe path to v if exists. v is an element of the inner irle of P with respet to ǫ if itis either the soure x or dist(x′, v) ≤ ǫ. 49



CHAPTER 4. STATIC REACH PREPROCESSINGGiven a tree Tx rooted at x. Let v be a vertex on Tx. v is an element of the innerirle of Tx with respet to ǫ if it is in the inner irle of the path from x to v.
De�nition 8 (Partial Tree)Given two numbers ǫ and δ. Let Tx be the shortest paths tree generated by Dijkstra'salgorithm rooted at x for whih the following two extra rules are applied:Stopping rule Stop growing the tree when the inner irle is �nished and for everyvertex v whih is less or exat ǫ away from the nearest inner irle predeessorone of the following ondition holds: either it is a leaf and �nished or all diretsuessors of it are �nished.Delta rule Do not relax edges e with len(e) > δ.The partial tree rooted at x with size ǫ and delta δ is the subgraph of Tx indued bythe �nished verties.

≤ ǫ

< ǫ

> ǫ

Fig. 4.3: Example of a partial tree. Red and blak verties represent the inner irle,white verties represent `useless' verties that are in the partial tree beauseother longer paths had to be �nished50



CHAPTER 4. STATIC REACH PREPROCESSINGAfter a partial tree Tx is built we an ompute reachTx(u, v) of eah edge (u, v) on thetree. This is done by taking the minimum of the exat depth of (u, v) in Tx (the lengthof the path from the root to v) and the exat height of (u, v) in Tx (the length of thelongest path starting at u).To ompute the aording penalty reah of edges ontained in Tx we have to onsidereah path P = (s, . . . , v, w, . . . , t) on Tx and must add the in-penalties and out-penaltieswhen omputing the reah of (v,w) with respet to P . As we are only interested in themaximal penalty reah over all partial trees, we an �nd a slightly faster way: we onsideronly paths (x, . . . , v, w, . . . , t) where x is the root of the partial tree. The orretness ofthis proeeding is easy to see: given a path P ′ = (x′, . . . , v, w, . . . , t) on Tx with x 6= x′that has a higher penalty-reah than P = (x, . . . , v, w, . . . , t) then this path (or a subpathof it resulting in the ompuation of the same reah bound) is also ontained in the partialtree rooted at x′. Therefore we have to add the in-penalty of the root vertex to the depthand the out-penalty of the last vertex of a onsidered path to the height. We all thenew values depth and height of (v,w).One again, we formalize that proeedingDe�nition 9 (Depth and Height)Given a partial tree Tx. The depth of an edge (u, v) on Tx is dist(x, v) + iP(x).To every vertex l in Tx a new vertex, the so alled pseudo leaf, is appended. Theedge-length to the pseudo-leaf shall be oP(l). The height of an edge (u, v) on Tx isthe distane between u and its farthest pseudoleaf.
u

v

in Penalty: 10
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Fig. 4.4: Example for depth and height of an edge (u, v) in a partial tree. The exatdepth of (u, v) is 18, the depth 28. The exat height of (u, v) is 33, the height48.Summary. The whole omputation step i works as follows: grow a partial tree oneah vertex of Vi. For eah edge (u, v) in Ei save the maximal penalty reah-bound
possibleReachBound(u, v) of all penalty reah-bounds omputed by the partial trees.Then, for eah edge (u, v) with possibleReachBound(u, v) ≤ ǫi is possibleReachBound(u, v)51



CHAPTER 4. STATIC REACH PREPROCESSINGa valid upper bound for both, the exat reah of (u, v) and the penalty-reah of the atualiteration step of (u, v).Theorem 1 (Iteration Step Corretness) Given a graph Gi = (Vi, Ei) ⊆ G =
(Vi, E), a length funtion len : E → R+, valid upper reah-bounds reachbound(u, v)for every edge (u, v) in G \ Gi and two positive numbers ǫi and δi.Let possibleReachBound(u, v) be the maximum of

min{depthTx(u, v), heightTx (u, v)}over all partial trees Tx rooted at x with size ǫi and delta δi.If possibleReachBound(u, v) ≤ ǫ then possibleReachBound(u, v) is a valid upperbound for the reah of (u, v) in G.
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CHAPTER 4. STATIC REACH PREPROCESSING4.6 Pseudoode of the Stati AlgorithmAlgorithm 6: StatiReahBoundComputation(G,epsilon[℄,delta[℄)input : Graph G = (V,E), len : E → R>0Array epsilon[℄, Array delta[℄ both of same dimensionouput: Reah[℄// stores the ReahBoundsReahIterationStep[℄// stores the iteration step in whih the reah-bound was omputedPartialTreeRoot[℄// stores the root of the partial tree responsible for the reah-bound
G′ := G1 foreah edge e ∈ E do2

Reach[e] := 03
ReachIterationStep[e] := NULL4
PartialT reeRoot[e] := NULL5 foreah index i, of epsilon, in asending order do6 foreah vertex x in V ′ do7

Tx:=PartialTree(G′ ,x,epsilon[i],delta[i])8 foreah edge e ∈ Tx do9 if min(depth(e),height(e))>Reah[e℄ then10 Reah[e℄=min(depth(e),height(e))11 PartialTreeRoot[e℄=x12 foreah edge e ∈ E′ do13 if Reach[e] > epsilon[i] then14
Reach[e] := 015 else16 ReahIterationStep[e℄:=i17

E′ := {e | e ∈ E,bounds[e] = 0}18
V ′ := {v ∈ V | ∃(u, v) ∈ E′ or ∃(v, u) ∈ E′}19
G′ := (V ′, E′)20
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CHAPTER 4. STATIC REACH PREPROCESSING4.7 Proof of CorretnessTo guarantee that valid upper reah-bounds are omputed, we have to proof the followingtwo laims:1. Penalty-Reah is greater than reah: For eah Gt and eah e ∈ Et: penReahGt
(e) ≥reahG(e)2. The algorithm omputes upper bounds for penalty reahes orretly4.7.1 Penalty-Reah is greater or equal to ReahWe have to show that for eah Gt and eah e ∈ Et: penReahGt

(e) ≥ reahG(e). Wedo that by indution over the iteration step i. In the following we assume that partialtrees are grown without the delta rule, the in- and out-penalties are never set to in�nitybeause of an edge with length greater than δ. Beause of G = G0 penReahG0
(e) equalsthe reah of e and the initial step is proven.To prove the indution step we show that penReahGt+1

(v,w) is greater or equal topenReahGt
(v,w) for eah edge (v,w) in Gt+1.

s x’ v
w

y’ t
x yWe �x an arbitrary (v,w) in Gt+1 and onsider a anonial path P in Gt suh that in

Gt: penReahP (v,w) = penReah(v,w). Let s be the �rst, t be the last vertex on P ,respetively. Let (x, . . . , v, w, . . . , y) be the maximal subpath of P in Gt+1 that ontains
(v,w). Let x′ be the predeessor of x on P , y′ be the suessor of x on P .All following values in this proof belong to step t if no other index is given. Our aim is toshow that the penalty reah of (v,w) with respet to the path (x, x2, . . . , xk, v, w, yk, . . . , y2, y)in Gt+1 is at least as high as penReahP (v,w).Then, beause of the later following Lemma 1:penReahGt

(v,w) ≤ min{penReah(x′, x) + lenP (x,w),penReah(y, y′) + lenP (v, y)}This transforms topenReahGt
(v,w) ≤ min{iPGt+1(x) + lenP (x,w), oPGt+1(y) + len(v, y)}

≤ penReahGt+1
(v,w)The indution step is proven. Note, that the seond inequality uses both, the indutionhypothesis and the orret omputation of upper bounds for penalty reahes in Gt. The54



CHAPTER 4. STATIC REACH PREPROCESSINGlaim is also orret when the delta rule is to be applied beause at any step the penaltyreah-bounds omputed using the delta rule are at least as big as the penalty reah-bounds omputed without.
�Lemma 1 With the requisites of this setion the follwing two inequalities hold:penReah(x′, x) + lenP (x,w) ≥ penReahP (v,w)penReah(y, y′) + lenP (v, y) ≥ penReahP (v,w)Proof 3 penReah(x′, x) ≥ penReahP (x′, x)

= min{lenP (s, x) + iP(s), lenP (x′, t) + oP(t)}penReah(x′, x) + lenP (x,w) ≥ min{lenP (s, x) + lenP (x,w) + iP(s), lenP (x′, t)

−lenP (x′, v) + oP(t)}
= min{iP(s) + lenP (s,w), lenP (v, t) + oP(t)}
= penReahP (v,w)The seond inequality is proven analogously.

�4.7.2 The algorithm omputes upper bounds for penalty reahes orretlyAt the beginning of an iteration step i we �x an arbitrary edge (v,w). Let
possibleReachBound(v,w) be the maximum of

min{depthTx(v,w), heightTx (v,w)}over all partial trees Tx rooted at x with size ǫ and delta δ.We want to show that if possibleReachBound(v,w) is lower or equal to epsilon then
possibleReachBound(v,w) is greater or equal to the penalty reah of (v,w) at iterationstep i.It is straightforward to prove that the reah of (v,w) on Gi is lower than ǫ if
possibleReachBound(v,w) ≤ ǫ. Therefore for all shortest paths P = (s, . . . , v, w, . . . , t)is either dist(s,w) or dist(v, t) lower or equal to ǫ.Let possibleReachBound(v,w) ≤ ǫ and P̃ = (s, . . . , v, w, . . . , t) be a path responsiblefor the penalty reah of (v,w). Let prefix denote the subpath from s to w and suffixdenote the subpath from v to t. 55



CHAPTER 4. STATIC REACH PREPROCESSINGFirst ase: len(prefix) < len(suffix). Then is (s, . . . , v, w) fully ontained in Ts and
P̃ is fully ontained in Ts or the height of (v,w) in Ts is greater than ǫ.Seond ase: len(prefix) < len(suffix). If len(prefix) ≤ ǫ is P̃ fully ontained in
Ps.Let len(prefix) be greater than ǫ. Consider the minimal subpath minprefix = (s̃, . . . , v, w)of the prefix suh that len(minprefix) ≥ epsilon. Then is suffix fully ontained in
Ts̃ and the depth of (u, v) in Ts̃ is greater or equal to ǫ.

�
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CHAPTER 4. STATIC REACH PREPROCESSING4.8 Alternative Reah Pruning Strategies4.8.1 Gutman's ReahThe original onept of reah introdued in [Gut04℄ di�ers from the one we use. Minorimportant is that Gutman's reah values are assigned to verties instead of edges andthat the query is only unidiretional. The main di�erene is that Gutman's reah valueis indued by a separate, alternative metri while the shortest paths responsible for thesereah values remain shortest paths with respet to the original length funtion:Given a graph G = (V,E) with length funtion len : E → R+ Gutman assumes thata two-dimensional layout of G and a metri m : E → R+ is given suh that for eahedge (u, v) in E the value m(u, v) is greater or equal to the Eulidean distane of bothend-verties. For road-maps the Eulidean distane of the end-verties is reommendedas suh a metri.The reah of a vertex v with respet to a path (x1, x2, . . . , xl = v = y1, . . . , yk) is de�nedas min{∑l−1
1 m(xi, xi+1),

∑k−1
1 m(yi, yi+1)}. The reah of a vertex v is de�ned to bethe maximum over all shortest paths (with respet to the len-funtion) P ontaining vof reahes with respet to P . Gutman also uses upper reah-bounds for the query, thereah-bounds are omputed muh like in our desription. When performing the querya vertex v an be omitted if the reah of v is lower than the Eulidean distane of thesoure vertex and v and lower than the Eulidean distane of the target vertex and v.4.8.2 Goldberg's AlgorithmOur version of reah-based pruning is a simpli�ed and slightly altered version of Gold-berg's desription in [GKW05℄. The di�erenes are as follows:The most signi�ant di�erene is that in [GKW05℄ an additional tehnique is used tosparsi�ate the graph and to speed-up the preproessing and the query: between theiteration steps a shortut step is implemented that replaes the in- and outgoing edgesof verties that have only two neighbour-verties by a shortut edge. This proeedingdoes not in�uene the orretness of omputed reah values and Goldberg reports thatthe preproessing speeds up by fator 15 when using shortuts. Further, a speed-up offator 5 is reported when using the shortut edges for the query.Seond, an additional version of reah-based pruning is skethed: reah-based pruningan be ombined with the ALT-algorithm introdued in [GH05℄. The landmarks used inthat tehnique an be exploited as expliit lower bounds for reah-pruning.Minor important is that in [GKW05℄ a heuristi earlier stopping ondition for partialtrees is applied that e�ets in shorter partial trees but aepts the omputation of weakerupper bounds for the reah values.Further, Goldberg omputes reah values for edges but later transforms these edge reahvalues into vertex reah values. This is done to minimize the memory onsumption ofthe preproessed data while bene�ting from the stronger reah-bounds that result fromomputing edge reah values. This hange also requires a slightly di�erent handling of57



CHAPTER 4. STATIC REACH PREPROCESSINGthe query.To stronger the reah-bounds of edges with high reah a re�nement phase is appendedto the normal preproessing. This is done by performing an exat penalty-reah ompu-tation on a graph indued by verties with high reah.Our version of reah uses anonial shortest paths to ensure the uniqueness and inheri-tene property of shortest paths while in [GKW05℄ small frations are added to the edgelengths.Finally, Goldberg, Kaplan and Warwik do not expliitely speify how to treat very longedges when growing partial trees. We introdued the delta rule and expanded the in-and out-penalties to handle that problem.
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5 Dynami Update of the ReahPreproessingIn this hapter we present an algorithm that e�ently updates preomputed reah-boundsfor an altered graph while guaranteeing to get the same bounds that a full reomputationfrom srath by the stati algorithm would provide. The algorithm handles the updateof multiple edges at the same time and takes advantage of updates `near to eah other'.5.1 A �rst ApproahIn this setion we give a small example to show the main ideas of the update algorithm.To reeive a �rst impression of the `loality' of the partial tree omputation we take alook at the maximal height of a partial tree with size ǫ and delta δ.Consider a partial tree T and the last vertex v on T that gets �nished during the on-strution of the tree. Aording to the De�nitions 7 and 8, page 50 an the path fromthe root of the tree to v be separated into three subpaths, listed in asending distanefrom the root:
• the edge outgoing from the root
• all edges with inner irle targets without the edge outgoing from the root
• the remaining edges

≤ δ ≤ ǫ ≤ ǫ ≤ δ

. . . . . .

inner circleBeause of the delta rule the following boundaries hold: the length of the �rst subpathis at most δ, the length of the seond at most ǫ and the length of the third at most ǫ+ δ.This leads to the following lemma:Lemma 1 (Partial Tree Bounding Lemma) Let T be a partial tree of size ǫ anddelta δ. Then the length of every path P on T is at most 2ǫ + 2δ. 59



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGEah lemma in this hapter is proven at the end of the hapter in Setion 5.7, page 79.Example. Now, we onsider the following situation: reah-bounds have been omputedfor a graph Gold = (V,E) whih afterwards has been hanged to a graph Gnew by alteringthe length of one edge (u, v). Our aim is to reompute the reah preproessing's �rstiteration step without starting from srath. We an do so after identifying two sets:
• A set ontaining at least all edges whose reah-bounds omputed in the �rst iter-ation step has hanged due to the altered edge length. We all suh a set a reahupdate area.
• A set ontaining at least all verties on whih partial trees have to be built toreompute proper reah-bounds for all edges of an assoiated reah update area.We all suh a set a reah reomputation area (of the assoiated reah update area).Identi�ation of a Reah Update Area. To identify a reah update area we exploitthe former estimation of a partial tree's height. We do so by growing four speial shortest-paths trees. Two partial trees are rooted at v and are grown on the reverse edge set (oneon Gnew the other on Gold). The other two partial trees are rooted at u and are grownon the normal edge set (one on Gnew, the other on Gold). Eah searh will be stoppedwhen the queue is empty or every visited vertex is at least 2ǫ + 2δ away from the root.Eah shortest path P that has the following two properties
• the altered edge (u, v) is ontained in P

• P is ontained in a partial tree of size ǫ and delta δ on Gnew or Goldis ontained in the �nished part of one of the four shortest paths trees. It is easy tosee that only edges on suh paths an hange their reah-bounds when performing the�rst iteration step of a omplete new preproessing. Therefore the set of all edges thatis ontained in at least one of the four shortest paths trees is a reah update area.Identi�ation of a Reah Reomputation Area. To reompute the reah values ofeah edge (u, v) ontained in the reah update area we have to onsider eah partial treewhose root r has a distane to the edge's target v of at most 2ǫ+2δ. For eah edge (u, v)on the reah update area we grow two shortest paths trees rooted at v: one on the reverseedge set of Gnew the other one on the reverse edge set of Gold. We stop growing thesetrees when eah visited vertex is more than 2ǫ + 2δ away from v. The set of all �nishedverties that are ontained in at least one of the grown trees ful�lls all requirements tobe a reah reomputation area of the former stated reah update area.Reomputation Proess. The reomputation itself is done by building partial treeson eah vertex of the reah reomputation area and, for eah edge ontained in thereah update area, estimating new reah-bounds as done in the stati algorithm. Figure6.8, page 90 shows a shemati representation of the reah update area and the reahreomputation area. 60



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING
u

v

2ǫ + 2δ

2ǫ + 2δ

2ǫ + 2δ

2ǫ + 2δ

2ǫ + 2δ

Fig. 5.1: Shemati representation of the reah update area (inner area) and the reahreomputation area (inner and outer area)Improvement. The reah update area an be imagined as the set of all edges thatlie within a ball of radius 2δ + 2ǫ (here, the distane between two verties shall be theminimal distane of the verties on Gold and Gnew) around (u, v). Aordingly, the reahupdate area onsists of all verties that lie within a ball of radius 4δ + 4ǫ around (u, v).We observe (with Lemma 1, page 59) that only partial trees whose roots lie within a ballof radius 2δ + 2ǫ around the updated edge are in�uened by the update of (u, v).We exploit that the following way: we split the reah reomputation area into two areas:the �rst reah reomputation area onsists of all verties w whose distane from w to uis 2δ + 2ǫ at most (these are the roots of partial trees that may hange beause of theupdate of (u, v)). The seond reah reomputation area onsists of some verties w withdistane from w to u between 2δ+2ǫ and 4δ+4ǫ (all partial trees rooted at these vertiesstay the same as in the original omputation).We now reompute the reah values of all edges in the reah update area by growingpartial trees only on verties of the �rst reah update area. After this omputation weknow that all edges with tentative omputed reah bound greater than ǫ will be dumpedafter the iteration step. Therefore they do not have to be further onsidered. Assumethat we know for some edges that the reah we have omputed until now is alreadyorret. Then we do not have to onsider them for a further reomputation.Let S be the set of all edges with still possibly unorret reah bound lower than ǫ. Theseond reah reomputation area onsists of all verties that are at most 2ǫ + 2δ awayfrom the target of an edge in S and that are not in the �rst reah reomputation area.We get orret reah bounds for eah edge in S by growing partial trees on eah vertexof the seond reah reomputation area and orreting the reah bounds of edges in S.61



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGThis proeeding is motivated by the fat that the reah reomputation area onsists ofat least as muh verties as the union set of �rst and seond reah reomputation area.Good speed-up an be ahieved if the reah reomputation area ontains many vertiesthat are not in the �rst or the seond reah reomputation area beause we avoid buildingmany `useless' partial trees in this ase. Figure 5.2, page 62 visualizes that by a piture.

u

v

reach recomputation area

reach update area

1st reach recomputation area

2nd reach recomputation areaFig. 5.2: Shemati representation of the reah update area, the �rst reah reomputationarea, the seond reah reomputation area and the reah reomputation area.Red arrows represent all edges of the reah update area that have a possibleunorret reah bounds lower than ǫ after growing partial trees on the �rst reahreomputation area.
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.2 OutlineNotation. Given a graph G = (V,E) with length funtion lenold : E → R+ and two�nite sequenes of asending, positive real numbers ǫi, δi, 1 ≤ i ≤ k. We assume thatreah-bounds have been omputed for edges in E using the stati algorithm desribedin the last hapter to whih we refer here as original omputation. The epsilon anddelta values applied to the original reomputation are ǫi and δi. We denote by Gi/old =
(V,Ei/old) the subgraph proessed at iteration step i of the original omputation. Thereah-bound of eah edge (u, v) omputed by the original omputation is denoted by
reachBoundold(u, v). We set reachBoundold(u, v) to in�nity for eah edge (u, v) withoutvalid original-omputation reah-bound.We further assume that for eah edge (u, v) with reah-bound lower than in�nity theroot partialT reeRootold(u, v) of the partial tree responsible for the reah-bound of (u, v)omputed by the original omputation is known. Note that this is additional data notneessary in the stati ase but an be omputed very easily. To do that, we alreadyadded the lines 5 and 14 to the pseudo ode of Algorithm 6, page 53.Given an updated length funtion lennew : E → R+ our aim is to update the reah-bound preproessing. We denote by U the set of all edges with altered length. To avoidany ambiguity we refer to the omputation from srath with respet to lengthnew, ǫiand δi using the stati algorithm as full reomputation.The variable names when doing the full reomputation remain the same but the subsriptshange from old to new. Note that E0/old = E0/new = E.We will notate a partial tree with root x and grown on the graph Gi/new as Tx/new,grown on the graph Gi/old as Tx/old. We denote by penReachTx/new

(u, v) the maximumof penalty depth and penalty height of an edge (u, v) on Tx/new with respet to the graph
Gi/new. By onvention, penReachTx/new

(u, v) is set to in�nity if (u, v) is not inluded in
Tx/new.Edge deletions and insertions. As deribed in the presentation of the problem,page 9, we regard edge deletions and edge insertions as speial ase of updated edges bysetting the aording lengths to in�nity. We do not onsider suh edges when we omputepenalties. This proeeding is justi�ed by the observation that both, exat reah valuesand the omputed reah-bounds do not hange beause of edges with length in�nity.Algorithm. Our algorithm updates the stati omputation step-by-step using the same
ǫ and δ values as used in the original preproessing. The algorithm works as follows:
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING
identify changes in the input data

Iteration Step

all steps recomputed?
no

yes

identify a set of at least all roots of partial trees
that potentially alter because of the altered input
data (the 1st reach recomputation area)

compute reach bounds for all edges in the reach up-
date area by growing a partial tree on each vertex
in the 1st reach recomputation area

identify edges of the reach update area with possibly
still uncorrect reach bounds

identify a set of partial tree roots necessary to cor-
rect the possibly false reach bounds computed in the
last step (the 2nd reach update area)

correct reach bounds of edges in the reach update
area by growing partial trees on each vertex in the
2nd reach update area

identify a set of at least all edges with possibly
changing reach bounds (the reach update area)

Section 5.3

Section 5.4

Section 5.5

Section 5.6

Section 5.6

Section 5.6

Section 5.6

Fig. 5.3: Work�ow of the dynami reomputation algorithm64



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.3 Update TypeAt the beginning of the iteration step the hanges between the original and the new inputof the iteration step have to be found. We assign to eah edge e on the graph one of thefollowing six update types:De�nition 10 (Update Typei) An edge e is said to be ofUpdateTypein (no hange) if the attahed edge data has not hanged at all.Formal de�nition: (e ∈ Ei/new, e ∈ Ei/old and lennew(e) = lenold(e)) or
(e 6∈ Ei/new, e 6∈ Ei/old and reachBoundold(e) = reachBoundnew(e)).UpdateTypeild≤ δ (lengths di�er) if the edge is ontained in the new and theold input graph of the iteration step but the edge length has hanged and bothedge lengths are lower or equal to δi. Formal de�nition: e ∈ Ei/new, e ∈ Ei/old,
lennew(e) <> lenold(e), lennew(e) ≤ δi and lenold(e) ≤ δi.UpdateTypeild> δ (lengths di�er) if the edge is ontained in the new and theold input graph of the iteration step but the edge length has hanged and bothedge lengths are greater than δi. Formal de�nition: e ∈ Ei/new, e ∈ Ei/old,
lennew(e) <> lenold(e), lennew(e) > δi and lenold(e) > δi.UpdateTypeild>< δ (lengths di�er) if the edge is ontained in the new and theold input graph of the iteration step but the edge length has hanged, oneedge length is greater than δi and one lower or equal to δi. Formal de�nition:
e ∈ Ei/new, e ∈ Ei/old, lennew(e) <> lenold(e) and ((lennew(e) > δi and
lenold(e) ≤ δi) or (lennew(e) ≤ δi and lenold(e) > δi)).UpdateTypeibd (reah-bounds di�er) if reah-bounds have already been om-puted in the old and the new input data but di�er. Formal de�nition:
e 6∈ Ei/new, e 6∈ Ei/old and reachBoundold(e) <> reachBoundi/new(e).UpdateTypeis (omputation status di�ers) if a reah-bound has alreadybeen omputed in the old input but not in the new one or the other wayaround. Formal de�nition: e 6∈ Ei/new, e ∈ Ei/old or e ∈ Ei/new, e 6∈ Ei/oldWe denote by Ui the subset of E that ontains all edges that do not haveUpdateTypei n.We say an edge is of UpdateTypeild if it is of UpdateTypeild> δ, UpdateTypeild≤

δ or UpdateTypeild>< δ.Obviously every edge in Ei/old or Ei/new is of exat one UpdateTypei. We also observethat no reah-bound has been omputed for an edge of UpdateTypeild until step i.65



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.4 Reah Update AreaNow we are at the beginning of iteration step i. The input of the original omputationis the graph Gi/old and its output is Gi+1/old. The input of the full reomputation is thegraph Gi/new and its output is Gi+1/new. We know the di�erenes Ui between Gi/old and
Gi/new. If we know a set ontaining all edges that di�er in Gi+1/old and Gi+1/new (thatare all edges in Ui+1) we only have to reompute the reah bounds of these edges andan opy the reah bounds omputed at iteration step i of all other edges from Gi+1/oldto Gi+1/new.Therefore the �rst task is to �nd a set ontaining at least all edges for whih the inputdata of iteration step i + 1 in the original omputation di�ers from the input data of thefull reomputation. We all suh an area a reah update area.De�nition 11 (Reah Update Area)A set ontaining at least all edges of Ui+1 (all edges whih are not ofUpdateTypei+1n) is alled a reah update area (of iteration step i).5.4.1 Reverse Partial Trees and Max Partial TreesReverse Partial Trees. To �nd a reah update area we will often have to �nd pathsthat end at a given vertex u and are on partial trees performed in the original omputationor the full reomputation. To do that we grow shortest-paths trees rooted at u on thereverse edge set. As desribed in the �rst setion of this hapter the length of a path ona partial tree with size ǫ and delta δ is at most 2δ + 2ǫ. Therefore we an stop growingthe shortest paths tree when the shortest paths to all verties with distane of at most
2δ + 2ǫ are known.We all suh a shortest-paths tree a reverse partial tree. The next de�nition uses sets ofverties as roots. For the time being we will only use one vertex as root when growingreverse partial trees. The general de�nition will be helpful later in this setion.De�nition 12 (Reverse Partial Tree)Let N be a set of verties. The reverse partial tree rooted at N with size ǫ and delta δ(notation: RTN ) is the �nished part (the �nished part onsists of the �nished vertiesand the shortest paths edges onneting them) of the tentative shortest paths treegenerated by Dijkstra's algorithm for whih the following extra rules are applied:Set Initialization. For all verties v in N : set distane of v to zero and insert vinto the priority queue. 66



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGEdge Set Rule. Use the reverse edge set.Stopping Rule. Stop growing the tree when all verties with distane of at most
2ǫ + 2δ from the nearest vertex in N are �nished.Delta Rule Do not relax edges with length greater than δ.Canonial Rule Choose shortest paths that are anonial with respet to the nor-mal edge set.We will often omit size and delta of a (reverse) partial tree Tx if we grow Tx at iterationstep i, the size of Tx is ǫi and delta of Tx is δi. The most important property of reversepartial trees is stated in the next lemma.Lemma 2 Let P be a path on a partial tree rooted at a vertex x with size ǫ anddelta δ. Let u be a vertex on P . Then the subpath from x to u on P is ontained inthe reverse partial tree rooted at {u} with same size and delta.Max Partial Trees. The pendant of reverse partial trees on the normal edge set aremax partial trees. We will grow them when we want to �nd paths that start at a givenvertex v and are ontained in a partial tree.De�nition 13 (Max Partial Tree)Let N be a set of verties. The max partial tree rooted at N with size ǫ and delta δ(notation: MTN ) is the �nished part of the tentative shortest paths tree generatedby Dijkstra's algorithm for whih the following extra rules are applied:Set Initialization. For all verties v in N : set distane of v to zero and insert vinto the priority queue.Stopping Rule. Stop growing the tree when all verties with distane of at most
2ǫ + 2δ from the nearest vertex in N are �nished.Delta Rule Do not relax edges with length greater than δ.Here the lemma hanges to:
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGLemma 3 Let P be a path on a partial tree rooted at x. Then eah subpath
(u1, u2, . . . , un) of P is inluded in the max partial tree rooted at {u1} with samesize and delta.Comments. Note that, in the graph theoretial sense, max partial trees and reversepartial trees are not trees but forests. We want to stress that Lemma 2 and 3 only holdbeause we ompute anonial shortest paths. When omputing arbitrary shortest pathsLemma 2 and 3 only hold on graphs where all shortest paths are unique.When growing partial trees without the delta-rule or if δi is greater than the length lenmaxof the longest edge on the graph then the length of every shortest path on a partial treewith size ǫi is 2ǫi+2lenmax at most. In this ase, the stopping rule of reverse/max partialtrees an be altered to: stop growing the tree when all verties with distane smaller than

2ǫi + 2lenmax are �nished. This hange does not a�et the orretness of Lemma 2 andLemma 3.5.4.2 Eager Constrution of a Reah Update AreaUnless stated otherwisely all laims in this subsetion that onern (penalty) reahbounds, partial trees or reverse partial trees refer to reah bounds, partial trees or reversepartial trees omputed at the atual iteration step i.Aim. Our aim is to �nd a superset of Ui+1. We know that an edge with UpdateTypei+1ldmust also be of UpdateTypeild and it is therefore easy to �nd all suh edges. Hene weonentrate on �nding edges of the other two types (that are edges (u, v) whose reahbounds reachBoundi+1(u, v) di�er in the original omputation and the full reomputa-tion).We observe two reasons why an edge (w, z) may be in Ui+1. First, it an already bein Ui. Seond, an edge (u, v) ∈ Ui is adjaent to (or ontained in) either a partial treeresponsible for the penalty reah of (w, z) on Gi/old or to a partial tree responsible forthe penalty reah of (w, z) on Gi/new.Plan. We onsider UpdateTypesi ld, bd and s separately and identify for eah edge
(u, v) in Ui a set of edges Ui+1(u, v) whose reah bounds omputed until the beginning ofstep i + 1 di�er (between the original omputation and the full reomputation) beauseof the hange of (u, v):
(u,v) is of UpdateTypeild> δ. In that ase the di�erene of the length of (u, v)between Gold and Gnew does not in�uene the reah omputation at iteration step i.Therefore Ui+1(u, v) is the empty set.Reason: until the beginning of iteration step i + 1, an edge (u, v) of UpdateTypeild> δis neither proessed in the original omputation nor in the full reomputation. The in-penalty of u and the out-penalty of v is set to in�nity in both omputations. Thereforeno reah value omputed until the beginning of step i + 1 hanges beause of an edge of68



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGthat update type.
(u,v) is of UpdateTypeild ≤ δ. Here, we grow four shortest paths trees: two maxpartial trees (one on Gi/old and one on Gi/new) rooted at u and two reverse partial trees(one on Gi/old and one on Gi/new) rooted at v. All edges that possibly hange their reahbounds omputed before iteration step i + 1 lie on the branh of one of the four shortestpaths trees that starts with the edge (u, v).Reason: an edge (u, v) of UpdateTypeild≤ δ must be ontained in a shortest path Presponsible for the penalty reah of an edge (w, z) (either on the old or on the new graph)to in�uene the penalty reah of (w, z). To �nd all edges (w, z) possibly a�eted by (u, v)we have to remember that (u, v) an be in front of or behind (w, z) on P . We do nothave to onsider shortest paths that are so long that they are not inluded in a partialtree built on this iteration step.We get all suh edges behind (w, z) by growing two max partial trees (one on Gi/old andone on Gi/new) rooted at u. Then all possibly a�eted edges are on the branh of theresulting shortest-paths trees that start with the edge (u, v). To get the edges in frontof (u, v) we grow two reverse partial trees (one on Gi/old and one on Gi/new) rooted at
v. All possibly a�eted edges (w, z) in front of (u, v) are ontained in the branh thatbegins with the edge (u, v) of one of both reverse partial trees.
(u,v) is of UpdateTypeibd. In that ase all edges of Ui+1(u, v) lie on either a maxpartial tree rooted at v or a reverse partial tree rooted at u that is grown on either
Gi/old or on Gi/new. We do not have to onsider the max partial trees if in G \ Gi/oldan edge (u, v) exists with reachboundold(u, v) > reachboundold(u, v) and in G \ Gi/newan edge (ũ, v) exists with reachboundnew(ũ, v) > reachboundnew(u, v). The same holdssymmetrially for the reverse partial trees.Reason: given an edge (u, v) of UpdateTypeibd. Let (u, v) in�uene the penalty-reah ofanother edge (w, z) with path P responsible for the penalty-reah of (w, z). Then either
v must be in front of w on P or u must be behind z on P . We �nd suh edges (w, z) bygrowing max partial trees rooted at v and reverse partial trees rooted at u on Gi/old andon Gi/new.Given an edge (u, v) of UpdateTypeibd. This edge has no in�uene on the in-penaltyof v if in G \ Gi/old an edge (u, v) exists with reachboundold(u, v) > reachboundold(u, v)and in G\Gi/new an edge (ũ, v) exists with reachboundnew(ũ, v) > reachboundnew(u, v).The same holds symmetrially for out-penalty of u.
(u,v) is of UpdateType s or ld>< δ. In that ase all edges of Ui+1(u, v) lie on theunion of a max partial tree rooted at v and a reverse partial tree rooted at u that isgrown on either Gi/old or on Gi/new.Reason: given an edge (u, v) of UpdateTypeis or ld>< δ. Let (u, v) in�uene thepenalty-reah of another edge (w, z) with path P responsible for the penalty-reah of
(w, z). Then either v must be on P in front of w or u must be on P behind z. We �ndsuh edges (w, z) by growing a max partial tree rooted at v and a reverse partial treerooted at u on Gi/old and on Gi/new. 69



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGAlgorithm to ompute a reah update area. For eah edge (v,w) of Ui we knowhow to get a set of edges Ui+1(v,w) whose reah bounds omputed at iteration step idi�er between original reomputation and full reomputation beause of the hange of
(v,w). The union set of Ui and all Ui+1(v,w) where (v,w) is in Ui is a reah updatearea. We summarize that in the following theorem:Theorem 2 (Eager Constrution of Reah Update Area)Let

Nld = { v ∈ V | ∃(u, v) of UpdateTypeild ≤ δ}

Nbd,cs = { u ∈ V | ∃(u, v) of UpdateTypeis or ld >< δ}∪
{ u ∈ V | ∃(u, v) of UpdateTypeibd,

∄(u, ṽ) ∈ E \ Ei/new with reachnew(u, ṽ) ≥ reachnew(u, v),

∄(u, v) ∈ E \ Ei/old with reachold(u, v) ≥ reachold(u, v)}

Ñld = { u ∈ V | ∃(u, v) is of UpdateTypeild ≤ δ}

Ñbd,cs = { v ∈ V | ∃(u, v) is of UpdateTypeis or ld >< δ}∪
{ v ∈ V | ∃(u, v) is of UpdateTypeibd,

∄(ũ, v) ∈ E \ Ei/new with reachnew(ũ, v) ≥ reachnew(u, v),

∄(u, v) ∈ E \ Ei/old with reachold(u, v) ≥ reachold(u, v)}.Then the set of all edges ontained in
{e | e ∈ Ui}∪
{T | T is rev. par. tree grown on Gi/old or on Gi/new, rooted at v ∈ Nbd,cs}∪
{B | B is a branh of the rev. par. tree grown on Gi/new or on Gi/old,rooted at v ∈ Nld beginning with an edge (w, v) of UpdateTypei ld≤ δ}∪
{T | T is max par. tree grown on Gi/old or on Gi/new, rooted at v ∈ Ñbd,cs}∪
{B | B is a branh of the max par. tree grown on Gi/new or on Gi/old,rooted at v ∈ Ñld beginning with an edge (v,w) of UpdateTypei ld≤ δ}is a reah update area of iteration step i.To union an edge (u, v) with a subgraph G we identify (u, v) with the subgraph ({u, v}, {(u, v)}).
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.4.3 Lazy Constrution of a Reah Update AreaIdentifying a reah update area using the eager onstrution is very time onsumingbeause many max partial trees and reverse partial trees have to be built. If many edgesin Ui are `near to eah other' the reverse/max partial trees rooted at the end vertiesof these edges often visit almost the same verties. We want to exploit this observationto speed-up the onstrution of the reah update area and aept to get a reah updatearea that may ontain more edges than the one omputed by the eager onstrution.Given a set of verties N . To �nd the set of all verties marked as �nished by at least onemax/reverse partial tree rooted at an element of N we an grow a max/reverse partialtree rooted at N . The next Lemma 4 gives the main argument for the orretness of thatproeeding.Lemma 4 (Monotony of Max Partial Trees and Reverse Partial Trees)Let v be a vertex on a max partial tree / reverse partial tree rooted at a set N1.Then, for every set N2, v is on the max partial tree / reverse partial tree rooted at
N1 ∪ N2 that uses the same ǫ and δ values.As speial ase this implies that all verties on a partial tree with root x are ontainedin every max partial tree whose root set ontains x.We want to stress that though the union of all verties ontained in at least one maxpartial tree with root in N is inluded in the set of verties ontained in a max partialtree with root N , the edges ontained in the set partial tree may be di�erent from theset of edges ontained in the aording partial trees. The same holds for reverse partialtrees.

Fig. 5.4: Sample Graph. The left piture shows the max partial tree rooted at the blakvertex. The right piture shows a max partial tree on the same graph with anadditional root. Edges that are on the left max partial tree but not on the rightare drawn green.
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGLazy Constrution. To get a reah update area we remember the sets ouring inTheorem 2 and grow a max partial tree rooted at Ñld ∪ Ñbd,cs and a reverse partial treerooted at Nld ∪ Nbd,cs on both, Gi/old and Gi/new. We know that we �nish the sameverties as in Theorem 2. Therefore the set of all edges omputed by Theorem 2 isinluded in the set of all edges (u, v) in Gi/new where u and v are both ontained in thesame of one of the four max/reverse partial trees grown. We all the resulting proeedingthe lazy onstrution of a reah update area.

Fig. 5.5: Sample Graph. The red edge is in Ui. The blue edges represent the reahupdate area edges. The left piture shows the eager onstrution, the rightpiture shows the lazy onstrution.Theorem 3 (Lazy Constrution of Reah Update Area)Let Nld, Nbd,cs, Ñld and Ñbc,cs be as in Theorem 2. Further, let
• RTold be the reverse partial tree rooted at Nld ∪ Nbd,cs built on Gi/old

• RTnew be the reverse partial tree rooted at Nld ∪ Nbd,cs built on Gi/new

• Told be the max partial tree rooted at Ñld ∪ Ñbd,cs built on Gi/old

• Tnew be the max partial tree rooted at Ñld ∪ Ñbd,cs built on Gi/newThen the union set of Ui and all edges for whih at least one of these subgraphsontains the soure and the target
Ui ∪

{(u, v) | u, v ∈ RTold, (u, v) ∈ Ei/old} ∪ {(u, v) | u, v ∈ RTnew, (u, v) ∈ Ei/new} ∪
{(u, v) | u, v ∈ Told, (u, v) ∈ Ei/old} ∪ {(u, v) | u, v ∈ Tnew, (u, v) ∈ Ei/new}is a reah update area (of iteration step i).
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGDeremental or inremental improvement for the lazy onstrution. The lazyonstrution an be sped-up if the update on the original graph (or, more preise, thedi�erene between Gi/old and Gi/new) was pure inrementel or pure deremental.If for eah edge (u, v) on Gi/new follows that (u, v) is in Gi/old and lennew(u, v) ≥
lenold(u, v) then the vertex set of a reverse/max partial tree grown on the new graph isontained in the vertex set of the aording reverse/max partial tree grown on the oldgraph. Therefore it su�es to build all ouring trees on Gi/old.The same argument justi�es to build all ouring trees only on Gi/new when dealing withpure deremental updates.Corollary 1 (Der. and Inr. Lazy Reah Update Area Constrution)With the requisites of Theorem 3 follows: let Ei/new ⊆ Ei/old and for all edges (u, v)in Gi/new be lenold(u, v) ≤ lennew(u, v).Then is

Ui ∪ {(u, v) | u, v ∈ RTold, (u, v) ∈ Ei/old} ∪ {(u, v) | u, v ∈ Told, (u, v) ∈ Ei/old}a reah update area. Let Ei/new ⊇ Ei/old and for all edges (u, v) in Gi/old be
lenold(u, v) ≥ lennew(u, v). Then is
Ui ∪ {(u, v) | u, v ∈ RTnew, (u, v) ∈ Ei/new} ∪ {(u, v) | u, v ∈ Tnew, (u, v) ∈ Ei/new}a reah update area (of iteration step i).
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.5 First Reah Reomputation AreaWe now searh a set that ontains at least all verties from whih partial trees an begrown that are `in�uened' by the hange of edges in Ui. We all suh a set a �rstreah reomputation area. We will later use that knowledge to shrink the area whih isneessary to ompute the reah bounds of edges in the reah update area.De�nition 14 (First Reah Reomputation Area)A set that ontains at least all verties x for whih
• either the partial tree Tx/old rooted at x and grown on Gi/old di�ers from (doesnot onsist of the same edge set as) the partial tree Tx/new rooted at x andgrown on Gi/new

• or Tx/old and Tx/new are equal with respet to the edge set but at least oneedge (u, v) exists suh that penReachTx/new
(u, v) 6= penReachTx/old

(u, v)is alled a �rst reah reomputation area (of iteration step i).The methods used to �nd a reah update area an also be used to �nd a �rst reahreomputation area. Given an edge (u, v) in Ui the di�erene between �nding a reahupdate area and �nding a reah reomputation area is that we only have to �nd pathsontained in partial trees that end with u or v instead of �nding paths on partial treesthat ontain u or v. Therefore we only have to onsider the reverse partial trees grown toidentify a reah update area. The orretness of that proeeding follows from the samearguments as the eager onstrution of the reah update area in the last setion.The eager onstrution of a �rst reah reomputation area uses the same reverse partialtrees as the eager onstrution of a reah update area but does not onsider the maxpartial trees:Theorem 4 (Eager Constrution of a First Reah Reomputation Area)Let Nld, Nbd,cs, Ñld and Ñbd,cs be like in Theorem 2. The set of all verties ontainedin
{u | u ∈ Ui and u ∈ Gi/new}∪
{T | T is rev. par. tree grown on Gi/old or on Gi/new, rooted at v ∈ Nbd,cs}∪
{B | B is a branh of the rev. par. tree grown on Gi/new or on Gi/old,rooted at v ∈ Nld beginning with an edge (w, v) of UpdateTypei ld≤ ǫ}is a �rst reah reomputation area (of iteration step i).74



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGThe same holds for the lazy onstrution:Theorem 5 (Lazy Constrution of a First Reah Reomputation Area)Let RTold and RTnew be like in Theorem 3.The set of all verties ontained in RTold or RTnew is a �rst reah reomputationarea (of iteration step i).
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.6 Seond Reah Reomputation AreaBy now, we have identi�ed a reah update area R and a �rst reah reomputation area N1.We an reompute reah-bounds of eah edge (u, v) ∈ R by growing a partial tree rootedat w for eah vertex w ∈ N1. The reomputation is done like in the stati algorithm butwe only reompute the penalty reah-bounds of edges ontained in R.Our remaining problem is that the reah-bounds we ompute that way are not neessarilyvalid. In this setion we desribe how we an �nd a set of verties, the seond reahreomputation area on whih partial trees have to be additionally grown to guarantee theorretness of the omputed penalty reah-bounds.De�nition 15 (2nd Reah Reomputation Area)Given a �rst reah reomputation area N1 (of iteration step i) and a reah updatearea R (of iteration step i). A set of verties N2 suh that for eah edge (u, v) in R

max
x∈N1∪N2

{

penReachTx/new
(u, v)

}

= max
x∈Gi/new

{

penReachTx/new
(u, v)

}or
max

x∈N1∪N2

{

penReachTx/new
(u, v)

}

> ǫiholds is alled a seond reah reomputation area (of iteration step i with respet to
N1 and R).Basi Method. Given an edge (u, v) of the reah update area we already know aproeeding to �nd a set N of verties on whih we have to grow partial trees to reomputethe penReachGi/new

(u, v): we have to onsider all partial trees built on Gi/new thatontain (u, v). We get the roots of these by growing a reverse partial tree rooted at v on
Gi/new. The set of all verties inluded in the branh of the resulting `reverse' shortestpaths tree that starts with the edge (u, v) is suh a set N and therefore N \N1 is a seondreah reomputation area.We also know that we an �nd the aording verties of all edges by growing one partialtree initialized with the target verties of all edges. The handiap of this `lazy' methodis that we have to onsider all verties of the resulting reverse shortest paths tree andannot restrit ourselves to the verties inluded in speial branhes.Sophistiated Method. There is a simple way to identify edges of the reah update area
S whose penalty reah-bounds are already orret after the reomputation by growingpartial trees rooted only at verties of the �rst reah reomputation area N1. We denotethe penalty reah of an edge (u, v) omputed only by onsidering partial trees grownon Gi/new with roots in N1 as penReachN1(u, v) and the penalty reah of the atualiteration step on the original omputation as penReachold(u, v). We remember that we76



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGmodi�ed the stati reah omputation to store for eah edge (u, v) the root root(u,v) of apartial tree responsible for the penalty reah bound of (u, v).First of all we do not have to onsider eah edge (u, v) with penReachN1(u, v) greaterthan ǫi for further reomputation beause the resulting reah-bound of (u, v) will bedumped anyway.We an assign to eah edge (u, v) ∈ R with penReachN1(u, v) ≤ ǫ and a valid reah-bound omputed in the original omputation until (and inluding) the atual step (thatis an edge not inluded in Gi+1/old) one of the following four ases:1. [ root(u,v) ∈ N1 and penReachold(u, v) > penReachN1(u, v) ℄In this ase there may be a partial tree Tx with root x outside of N1 suh that (u, v) is on
Tx and penReachTx(u, v) > penReachN1(u, v). Therefore the tentative omputed penaltyreah-bound penReachN1(u, v) does not have to be orret and has to be onsidered fora seond reomputation.2. [ root(u,v) ∈ N1 and penReachold(u, v) ≤ penReachN1(u, v) ℄In this ase the tentative omputed penalty reah-bound penReachN1(u, v) is alreadyorret: beause of the onstrution of N1 all partial trees that have hanged are rootedat an element of N1. We know by the result of the original omputation that no partialtree rooted outside N1 is responsible for a reah of (u, v) greater than the atual known.3. [ root(u,v) 6∈ N1 and penReachold(u, v) > penReachN1(u, v) ℄In this ase the tentative omputed penalty reah-bound penReachN1(u, v) is not orretbut we know that the old value penReachold(u, v) stays a orret penalty reah-bound:beause of the onstrution of N1 all partial trees that have hanged are rooted at anelement of N1. We know that no partial tree rooted at an element in N1 is responsiblefor a reah-bound greater than penReachold(u, v) and sine all other partial trees do nothave hanged penReachold(u, v) stays a orret bound.4. [ root(u,v) 6∈ N1 and penReachold(u, v) ≤ penReachN1(u, v) ℄In this ase the tentative omputed penalty reah-bound penReachN1(u, v) is alreadyorret, the argumentation is the same as in ase 2.Conlusion. We summarize the results: assume penalty reah-bounds penReachN1(u, v)have been omputed for eah (u, v) on the reah update area R by growing partial treeson N1. Then the reah-bounds of all edges (u, v) are orret for whih a valid reah-boundhas been omputed until (and inluding) the atual step of the original omputation andwhih either apply to ase 2 or ase 4. Edges whih apply to ase 3 keep their originalreah-bounds. For edges with penReachN1(u, v) greater than ǫ no reah-bound will beomputed in the atual step. The reah-bounds omputed for the remaining edges of thegiven reah update area are possibly still unorret.Hene we an ompute a seond reah reomputation area using either the eager orthe lazy basi method but grow the reverse partial tree(s) onsidering only edges withpossibly still inorret and unknown penalty reah-bounds.
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGTheorem 6 (Constrution of 2nd Reah Reomputation Area)Let R be a reah update area (of iteration step i). Let N1 be a �rst reah reom-putation area (of iteration step i). Let R̃ be the set of all edges (u, v) in R with
penReachN1(u, v) ≤ ǫi. Let

R1 =
{

(u, v) | (u, v) ∈ R̃, (u, v) ∈ Gi+1/old

}

R2 =
{

(u, v) ∈ R̃, (u, v) 6∈ Gi+1/old, root(u,v) ∈ N1

}

H =
{

r | r ∈ V, r 6∈ N1,∃(u, v) ∈ R̃ : root(u,v) = r
}Let S be

{

(u, v) ∈ R2 | max
x∈N1

{

penReachTx/new
(u, v)

}

< max
x∈Gi/old

{

penReachTx/old
(u, v)

}

}Then the set of verties that lie on the branh of a reverse partial tree grown on
Gi/new and rooted at v that starts with the edge (u, v) where (u, v) ∈ R1∪S unionedwith H is a seond reah reomputation area (eager onstrution).Then the set of all verties that lie on the reverse partial tree grown on Gi/new androoted at the end verties of edges in R1 ∪ S unioned with H is a seond reahreomputation area (lazy onstrution).Improvement using more memoryThe sophistiated onstrution of the seond reah reomputation area an only sort outedges whih either already have a tentative reah-bound greater than ǫ after buildingpartial trees on the �rst reah reomputation area or for whih reah-bounds have beenomputed in the original omputation until (and inlusive) the atual iteration step.We an sort out even more edges if we store for eah edge (u, v) and eah iteration step

i the root of a shortest path responsible for the penalty reah-bound of (u, v) at step i.Note that we store the root even if the reah-bound is greater than ǫ and will be dumped.Then we know that the reah-bound of eah edge (u, v) of the reah update area forwhih no reah-bound has been omputed in the atual step of the original omputationand for whih the stored partial tree root is outside the �rst reah reomputation areawill not be omputed in the reomputation at the atual step. Therefore we do not haveto onsider (u, v) when we onstrut a seond reah reomputation area.
78



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSING5.7 Proof of CorretnessWe have to show that all reah bounds reomputed by an iteration step are valid.The orretness of the reah-bounds of edges not in the reah update area follows diretlyfrom the de�nition of reah update area. The orretness of the eager and the lazyonstrution of a reah update area follows from Theorem 2, page 70 and Theorem 3,page 72. The orretness of Theorem 2 follows from the ase analysis in the same setion.The orretness of Theorem 3 follows diretly from Theorem 2 and Lemma 4, page 71.The orretness of the reah-bounds of edges in the reah reomputation area followsfrom the de�nition of the seond reah reomputation area. The orretness of theonstrution of the seond reah reomputation area is due to Theorem 6, page 78. Thistheorem is proven in the text of the same setion. To be able to apply Theorem 6, a �rstreah reomputation area must be orretly identi�ed. The orretness of the lazy andeager onstrution of the �rst reah reomputation area is due to Theorem 4, page 74,Theorem 4, page 74.We have used the following lemmata without proving them:Proof 4 (Proof of the Partial Tree Bounding Lemma 1, page 59)Denote by an un�nished path P on a partial tree (with size ǫ and delta δ) a paththat either ontains un�nished inner irle verties or verties with distane from theirnearest inner irle predeessor of at most ǫ whih are un�nished or for whih un�nishedsuessors exist. Obviously, a partial tree is grown until no un�nished paths exist.An un�nished path has length of at most 2ǫ + 2δ: the length of the edge outgoing fromthe root has length of at most δ, the sum of the lenghts of all other inner irle edgeshas length of at most ǫ. The length of the remaining edges is ǫ + δ at most.Let P̃ be a path on a partial tree. Then must either P̃ be un�nished or an un�nishedpath with length greater than the length of P̃ must be ontained in the partial tree. Letthe length of P̃ be greater than 2ǫ + 2δ. This is a ontradition to the fat that thelength of eah un�nished path is 2ǫ + 2δ at most.
�Proof 5 (Proof of Lemma 2, page 67)Let P = (x = x0, . . . , xn = u) be a x-u-path on a partial tree with size ǫ and delta

δ rooted at x and grown on G = (V,Ei). Then P is a shortest path on the graph
G̃ = (V, Ẽi) where Ẽi = E \ {(u, v) | len(u, v) > δ}. Therefore (u = xn, . . . , x0) is ashortest path on the reverse graph of G̃. By Lemma 1 we know that the length of P is
2ǫ + 2δ at most.Therefore (u = xn, . . . , x0) is inluded in the shortest paths tree rooted at u on thereverse graph of G̃ whih ontains all verties with distane from u of at most 2ǫ + 2δ.

�Proof 6 (Proof of Lemma 3, page 68)As subpath of a shortest path, (u1, . . . un) is also a shortest path. Beause of Lemma 179



CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGis len(u1, . . . , un) lower or equal to 2ǫ + 2δ. Therefore it is inluded in the max partialtree rooted at {u}.
�Proof 7 (Proof of Lemma 4, page 71)Given a set of verties N1. The max partial tree rooted at N1 with size ǫ and delta δontains all verties that have a distane of at most 2ǫ + 2δ to at least one vertex n in

N1. Sine n is also ontained in N1 ∪ N2 for an arbitrary set of verties N2, v is alsoontained in the max partial tree rooted at N1 ∪N2. The same argumentation holds forreverse partial trees.
�5.8 Implementation of the Dynami AlgorithmHere we give the pseudo-ode for the dynami reomputation algorithm desribed in thehapter. The ode refers to the lazy onstrution of a reah update area (Theorem 3,page 72), the lazy onstrution of a �rst reah reomputation area (Theorem 5, page 75)and the sophistiated lazy onstrution of a seond reah reomputation area (Theorem6, page 78). The improvement on the seond reah reomputation area skethed on page78 is not inluded.The following algorithm is a sub-routine used by Algorithm 8.Algorithm 7: ComputeReahinput: reah update area RUAreah reomputation area RRAforeah vertex v in RRA do1

T := partial tree on Gi/new rooted at v2 foreah edge e in T ∩ RUA do3 if ReachT (e) > Reachnew[e] then4
Reachnew[e] := ReachT (e)5
PartialT reeRootnew[e] := v6
ReachIterationStepnew[e] := i7
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CHAPTER 5. DYNAMIC UPDATE OF THE REACH PREPROCESSINGAlgorithm 8: Lazy Dynami Reah Bound Reomputationinput : Graph G = (V, E), Lenold[], Lennew [] epsilon[], delta[]
Reachold[], ReachIterationStepold[], PartialT reeRootold[]ouput: Reachnew[], ReachIterationStepnew[], PartialT reeRootnew[]/* all max/reverse partial trees grown on iteration step i have size epsilon[i] anddelta delta[i] */Initialize Reachnew with Reachold, ReachIterationStepnew with ReachIterationStepold,1

PartialT reeRootnew with PartialT reeRootoldfor i := 1 to maxiterationstep do2 RUA=∅;RUA2=∅; RRA1=∅; RRA2=∅;3
Gnew = (V, Enew), Enew = {e ∈ E | ReachIterationStepnew[e] ≥ i}4
Gold = (V, Eold), Eold = {e ∈ E | ReachIterationStepold[e] ≥ i}5 UPDATE Ui, Nld, Nbc,cs, Ñld, Ñbc,cs6 /* ReahUpdateArea, 1stReahReomputationArea */
Told = max partial tree grown on Gold, rooted at Ñld ∪ Ñbd,cs7
Tnew =max partial tree grown on Gnew , rooted at Ñld ∪ Ñbd,cs8
RTold = reverse partial tree grown on Gold, rooted at Nld ∪ Nbd,cs9
RTnew = reverse partial tree grown on Gnew , rooted at Nld ∪ Nbd,cs10
RUA = set of edges (u, v) where u, v ∈ Told or u, v ∈ Tnew or u, v ∈ RTold or u, v ∈ RTnew11
RRA1 = set of all verties ontained in RTold, RTnew or Ui12 foreah e in RUA do Reachnew(e) := 013 ComputeReah(RUA, RRA)14 /* 2ndReahReomputationArea */foreah edge e in RUA do15 if (Reachnew[e] ≤ epsilon[i], ReachIterationStepold[e] ≤ i, Reachnew[e] < Reachold[e] and16

PartialT reeRootold[e] ∈ RRA1) or (ReachIterationStepold[e] > i and
Reachnew[e] ≤ epsilon[i]) theninsert e into RUA217 if Reachnew[e] ≤ epsilon[i], ReachIterationStepold[e] ≤ i, Reachnew[e] < Reachold[e] and18
PartialT reeRootold[e] 6∈ RRA1 then

Reachnew[e] := Reachold[e]19
PartialT reeRootnew[e] = PartialT reeRootold[e]20
ReachIterationStepnew = i21 RRA2=set of all verties ontained in a reverse partial tree rooted at RUA2 grown on Gi/new22 ComputeReah(RUA2, RRA2)23 /* delete reah bounds greater than epsilon[i] */foreah edge e in RUA with Reachnew[e] > epsilon[i] and ReachIterationStepold[e] ≤ i do24

Reachnew[e] = 025
ReachIterationStepnew[e] = ∞26
PartialT reeRootnew[e] = null27 foreah edge e in RUA with Reachnew[e] > epsilon[i] and ReachIterationStepold[e] > i do28
Reachnew[e] = Reachold[e]29
ReachIterationStepnew[e] = ReachIterationStepold[e]30
PartialT reeRootnew[e] = PartialT reeRootold[e]31
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6 ExperimentsRoad networks are extremly sparse and ontain a ertain hierarhy (of importane withrespet to long shortest-paths) whih explains why reah-based pruning performs well onroad networks. Goldberg, Kaplan and Wernek experimentally have shown the extremlygood performane of reah-based pruning on road networks in [GKW05℄.In this hapter we report the results of some own experiments omputing reah boundson road networks.6.1 Choie of tuning parametersIn [GKW05℄ the following strategy for seleting ǫi is proposed: given a parameter k,we hoose k verties at random and grow, for eah vertex, a shortest-paths tree withexatly ⌊n/k⌋ verties. ǫ0 is assigned to be twie the minimum of the distane labels ofthe last sanned vertex over all shortest paths trees. Furthermore min{500, ⌈√n⌉/3} isproposed as good value for the parameter k. Given a seond parameter α, ǫi is omputedby ǫi = αiǫ0. Here α = 3.0 is reported to be a good value.Sine the delta-rule is not stated in [GKW05℄, no good values for delta are given. To geta �rst impression what good values for delta ould be, we have a look at the distributionof the edge lengths on the underlying road networks. Figure 6.1 shows the distribution ofthe edge lengths on a graph representing Germany. Values between epsilon fourth and
epsilon half turned out to give a good tradeo� between the speed of the preproessingand the quality of the omputed reah bounds.6.2 Desription of the tested graphsWe have tested the reah-bound preproessing and query on graphs mapping parts ofthe road network of Europe. The graphs were provided by the PTV AG and the lengthof an edge on a graph refers to the Eulidean distane between the soure and the targetvertex of the edge. The following table gives an overview and a short desription of allgraphs used.82



CHAPTER 6. EXPERIMENTSname #verties #edges desriptionger 4.377.787 10.997.366 road network of germanydnk 473.537 1.075.012 road network of denmark�n 460.693 1.020.008 road network of �nlandka50.000 49.625 125.018 road network of a bounding box around karlsruheka100.000 99.529 252.530 road network of a bounding box around karlsruheka200.000 199.739 501.948 road network of a bounding box around karlsruhedkb100.000 99.878 250.490 road network of a rural area in franoniast100.000 99.928 258.072 road network of an urban area in stuttgartOn page 49 we justi�ed the delta rule by mentioning that most road networks ontainmany short and only few long edges. The following �gure 6.1 shows the distribution ofthe edge lengths on the graph ger.
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Fig. 6.1: Distribution of the lengths of 10000 randomly hosen edges of the germanygraph where edge lengths orrespond to travel times. The edge lengths aregiven relative to the length of the longest of the 10000 edges.We want to remind the reader that at iteration step i of the stati reah-bound prepro-essing only valid reah bounds for edges with exat reah lower than ǫi an be omputed.Only edges with an already omputed valid upper reah bound are removed from theinput-graph of the next iteration step. The strategy used for the stati preproessingmainly depends on the assumption that the graph strongly sparsi�ates after eah itera-tion step. The strategy used for the reah-query also mainly depends on the assumption83



CHAPTER 6. EXPERIMENTSthat most edges have low reah while only few edges with high reah exist. The next�gure 6.2 shows the distribution of the exat reah values on the graph KA50.000.
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Fig. 6.2: Distribution of exat reah values on KA50.000Figure 6.1 and 6.2 show that the distribution of the edge lengths and the distributionof the exat reah values are very similiar. We heked on a orrelation between edgelengths and exat reah values on KA50.000. The following satterplot and the littleorrelation oe�ient of 0.165 suggest that suh a orrelation does not exist.

Fig. 6.3: Correlation between edge length and exat edge reah on KA50.00084



CHAPTER 6. EXPERIMENTS6.3 Preproessing E�ort and Speed-Up of the StatiAlgorithmWe reall that the reah-bound omputation desribed in [GKW05℄ di�ers from the onedesribed in this work. Therefore we experimentally tested preproessing and query ofour algorithm on the graphs desribed in the last setion.The hoie of the tuning parameters desribed in [GKW05℄ turned out to be also a goodompromise between preproessing time and quality of the omputed reah bounds forour variant of the reah-bound omputation. Furthermore we set δi to be 0.3ǫi.In order to be independent from onrete implementations and hardware we measured theaverage speed-up by the average quotient of the number of verties visited by Dijkstra'salgorithm and the number of verties visited by the bidiretional bound algorithm afterperforming 1000 randomly hosen s-t-queries. The preproessing e�ort is measured bythe number of partial trees built and the average number of verties visited by thesepartial trees.name #partial trees built avg #verties avg speed-updnk 778.606 11.513 10.1�n 641.637 14.359 11.4ka50.000 77.093 3571 7.0exat ka50.000 49.625 49.625 7.5ka100.000 135.939 11.216 7.0ka200.000 360.881 11.629 5.8dkb100.000 201.892 7.775 5.0st100.000 184.288 6.780 5.6
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CHAPTER 6. EXPERIMENTS6.4 Example for the sparsi�ation during the reah-boundomputation

Fig. 6.4: The graph KA50.000. The number of edges is 125.018.86
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Fig. 6.5: The sparsi�ated KA50.000 after the �rst iteration step. The number of edgesis 31.177.
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Fig. 6.6: The sparsi�ated KA50.000 after the seond iteration step. The number ofedges is 19.632.
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Fig. 6.7: The sparsi�ated KA50.000 after the third iteration step. The number of edgesis 7.020.
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Fig. 6.8: The sparsi�ated KA50.000 after the fourth iteration step. The number of edgesis 16.
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7 Final Remarks
Conlusion. In this work, we gave an overview of some of the reent tehniques usedto speed-up Dijkstra's algorithm exploiting additional, preproessed data. Consideringmost desribed speed-up tehniques, we gave proposals how to dynamially update thepreproessing after a set of edges on the underlying graph have hanged their lengths.Here, we foused on landmarks, multi-level graphs and preomputed reah-bounds.The preproessing algorithms of landmarks and multi-level graphs need a pre-seletion ofsome verties on the graph. The update strategies we proposed for both data struturesompute the same preproessed data as a reomputation from srath by the statialgorithm would provide if the hoie of these verties stayed the same. The statialgorithm for omputing upper-bounds for reah values requires two tuning parametersthat usually are hosen using information on the underlying graph. The update strategywe proposed for these reah-bounds omputes the same bounds as a full reomputationfrom srath by the stati algorithm would provide if these tuning parameters stayedthe same.Outlook. The runtime of all update algorithms is heuristi. In the worst ase the usageof the update strategy may take more time than a full reomputation from srath wouldneed. Therefore it is important to experimentally study the performane of the updatealgorithms when applying them to real-world data (that onsists of using real-worldgraphs and applying real-world edge updates).Another task is to �nd riteria that deide whether the seletion of the separator vertiesused to build multi-level graphs remains good after an update on the graph and thatare fast to determine. Strategies for re-hoosing bad separator verties have to be foundand the update algorithm must be altered to be able to ope with re-hosen separatorverties.The usage of shortuts is reported to speed-up the stati preproessing of reah-boundsby fator 15 and the query by fator 5. Therefore, the most promising improvement onthe reah-bounds update algorithm seems to be an enhanement that enables it to dealwith shortuts.Sine highway hierarhies are one of the fastest available speed-up tehniques (in bothquery and preproessing) a dynami variant of that tehnique is desirable.Finally, we want to mention that we onentrated on solutions using only few additionalmemory. The development of methods using more memory may further speed-up the91



CHAPTER 7. FINAL REMARKSupdate of the preproessed data.
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