
Institut für Theoretische Informatik
Algorithmik I • Prof. Dr. Dorothea Wagner

Diplomarbeit

Multi-Modal Route Planning

Thomas Pajor

30th March 2009

28
BLAHA LUJZA TÉR

(NÉPSZÍNHÁZ UTCA)

ÚJ KÖZTEMETŐ,
KOZMA UTCA

4272

R
5 8

R
5 8

28
BLAHA LUJZA TÉR

(NÉPSZÍNHÁZ UTCA)

ÚJ KÖZTEMETŐ,
KOZMA UTCA

4273

R
5 8

R
5 8

Supervisors:

Prof. Dr. Dorothea Wagner
Institut für Theoretische Informatik,
Universität Karlsruhe (TH),
Germany

Dr. Daniel Delling
Institut für Theoretische Informatik,
Universität Karlsruhe (TH),
Germany

Prof. Dr. Christos D. Zaroliagis
Dpt. of Computer Engineering & Informatics,
University of Patras,
Greece

Dr. Martin Holzer
Institut für Theoretische Informatik,
Universität Karlsruhe (TH),
Germany

The clip arts of the airplane, the ferry boat and the car are taken from the Microsoft Clip

Art Gallery. The Tatra T5C5 Tram from Budapest is drawn by myself.

Contents

1. Introduction 1

1.1. Related Work . 2
1.2. Our Contributions . 4
1.3. Overview . 6

2. Foundations 9

2.1. Graph Theory . 9
2.2. Languages and Automata . 11

3. Models 13

3.1. Time-Independent and Time-Dependent Models 13
3.1.1. Time-Independent Models . 14
3.1.2. Time-Dependent Models . 14

3.2. The Road Network . 16
3.3. The Railway Network . 17

3.3.1. Timetables . 18
3.3.2. The Condensed Model . 18
3.3.3. Time-Expanded Models . 19
3.3.4. Time-Dependent Models . 21

3.4. The Flight Network . 26
3.4.1. Timetables . 26
3.4.2. Using the Railway Model . 27
3.4.3. A Flexible Model for Flight Networks 29

3.5. Combining the Networks . 33
3.5.1. The Nearest Neighbor Problem . 33
3.5.2. Merging and Linking . 36

iii

Contents

3.6. Summary . 38

4. Routing 41

4.1. The Earliest Arrival Problem and Shortest Paths 42
4.1.1. The Earliest Arrival Problem . 42
4.1.2. Shortest Paths . 43

4.2. Uni-Modal Routing . 45
4.2.1. Time-Independent Routing . 46
4.2.2. Time-Dependent Routing . 47

4.3. Multi-Modal Routing . 51
4.3.1. The Label Constrained Shortest Path Problem 52
4.3.2. Algorithms . 53

4.4. Summary . 58

5. Speed-Up Techniques 61

5.1. Basic Ingredients . 63
5.1.1. Bi-Directional Search . 63
5.1.2. A* with Landmarks (ALT) . 66
5.1.3. Arc-Flags . 69
5.1.4. Contraction . 76

5.2. Core-Based Routing . 82
5.2.1. Preprocessing . 83
5.2.2. Query . 86
5.2.3. Proof of Correctness . 87
5.2.4. Discussion . 90

5.3. Core-ALT . 91
5.3.1. Preprocessing . 92
5.3.2. Query . 92
5.3.3. Proof of Correctness . 94
5.3.4. Discussion . 94

5.4. Access-Node Routing . 95
5.4.1. Motivation . 97
5.4.2. Formal Introduction . 98
5.4.3. Preprocessing . 100
5.4.4. Query . 105
5.4.5. Core-Based Access-Node Routing 107
5.4.6. Proof of Correctness . 110
5.4.7. Discussion . 113

iv

Contents

5.5. Summary . 114

6. Experiments 117

6.1. Input . 117
6.1.1. Graphs . 118
6.1.2. Automata . 120

6.2. Experimental Setup . 121
6.3. Multi-Modal Routing . 122
6.4. Core-ALT . 123
6.5. Access-Node Routing . 126
6.6. Summary . 130

7. Conclusion 133

7.1. Future Work . 136

A. Data Structures 139

A.1. Graphs . 139
A.1.1. Static Graphs . 140
A.1.2. Dynamic Graphs . 142

A.2. Piecewise Linear Functions . 144
A.3. Finite Automata . 145
A.4. Priority Queue . 147

B. Raw Data Processing 149

B.1. Road Data . 149
B.2. Railway Data . 150
B.3. Flight Data . 151

v

Chapter 1
Introduction

In modern life, route planning is gaining more and more importance. As transporta-
tion networks become more complex and mobility in our society more important, the
demand for efficient methods in route planning increases even further. Handheld sat-
nav systems for cars already established as commodity items and most railway and
flight companies offer some kind of route planning facilities through the Internet.

However, all these systems have one common limitation: They only allow route
planning within their respective domain. For example, sat-nav system only show the
way around the road network. If we rather like to use means of public transportation,
we are stuck with the task of getting to and from the nearest station or airport since
route planning facilities of public transportation companies usually do not involve the
road network. Even worse, when planning a flight, this usually involves putting the
following stages of the journey together manually. First, select a convenient flight,
after that, choose a train that arrives at the airport in time and, further, match the time
of leaving the house correctly in order to catch the train at the station.

The problem of route planning involving different modes of transportation is called
multi-modal route planning. Our goal is very simple. We would like to be able to state
source and target addresses (in the road network) together with a departure time,
select our desired means of transportation (for example, car, trains and flights, but the
car only in the beginning) and the system should return an optimal route with respect
to travel time that shows us what roads to use and which trains and flights to take.

The involved networks may have very different properties. For example, the road
network can be used at any given time, however, trains and flights only operate at
defined times according to some timetable. The challenge of combining the individual
networks in a realistic way such that we are able to perform efficient queries is the
topic of this thesis.

1

Chapter 1. Introduction

1.1. Related Work

Routing is a widely researched topic in computer science, mainly because of its rel-
evance to real world applications. The problem of route planning can be modeled
by finding a shortest path on a directed weighted graph. First algorithms to solve
this problem are quite old and are presented in the 1950s and 60s by Dijkstra [Dij59],
Bellmann and Ford [Jr.56, Bel58] and Hart, Nilsson and Raphael [HNR68] (A*).

While these algorithms compute optimal shortest paths with optimal theoretic time
complexity, they are too slow to process real world data sets like large scale road net-
works, even on today’s computers. However, only in recent years computer hardware
has become efficient enough to allow the handling of large networks like they occur
in route planning, at all. Thus, during the past years research focused on developing
speed-up techniques to accelerate the basic shortest paths algorithms by reducing their
search space. A comprehensive overview is given in [DSSW09a]. In this section we
mention work on the subject of road and public transportation networks separately.

Routing in Road Networks. Although, the first attempts to speed up Dijkstra’s
algorithm were conducted regarding timetable information on railway networks in
1999 (see [SWW99]), in 2005 huge road networks were made publicly available which
led research toward road networks. This culminated in the 9th DIMACS Challenge on
shortest paths [DGJ09] in 2006.

It turns out that there are a few basic ingredients to all modern speed-up tech-
niques [Sch08a, Del09a]: Bi-directional search, goal-directed search and contraction.
In Section 5.1 we present these basic ingredients in more detail.

In short, bi-directional search (due to [Dan62, GH05]) not only computes the shortest
path from the source s to the target t, but simultaneously computes the shortest path
from t to s on the backward graph. The final shortest path is then combined from
partial paths obtained by the forward and backward searches. While this approach
works well in time-independent networks where the edge weights are constant in the
graph, adapting bi-directional routing to time-dependent networks where the edge
weights are time-dependent functions is not straightforward [NDLS08].

Regarding goal-directed search basically two approaches exist. Based on the A* al-
gorithm by Nilsson and Raphael [HNR68], Goldberg et al. enhanced A* by intro-
ducing landmarks to compute feasible potential functions using the triangle inequal-
ity [GH05, GW05]. Their approach is called ALT and turns out as a very robust tech-
nique [BDW07]. The adaption to time-dependency is easy as shown in [DW07].

The second goal-directed approach is using edge-labels to guide the search. Wag-
ner et al. introduced in [WW03, WWZ05] a method called geometric containers where

2

1.1. Related Work

each edge contains a label that represents some geometric object containing all nodes
to which a shortest path begins at the respective edge. During the query, edges that
do not contain the target node can be pruned. This approach is refined by Lauther
in [Lau04] called Arc-Flags. Instead of geometric containers, the graph is partitioned
into k cells and k edge-labels (arc-flags) are attached to every edge to indicate whether
the respective edge is important for at least one target node in each cell. Regard-
ing the choice of the partition, studies have been conducted using grid based ap-
proaches [Lau04, KMS05] and several partitioning algorithms that do not rely on geo-
metric information [MS04, Kar07, Pel07].

Regarding contraction there are a variety of approaches. Highway Hierarchies by
Sanders and Schultes [SS05, SS06a] exploits the implicitly given hierarchy in road net-
works regarding different road categories. Contraction Hierarchies presented by Geis-
berger et al. [Gei08, GSSD08] is solely based on contracting the graph yielding a very
efficient speed-up technique.

Although, not a basic ingredients as mentioned above, there is another approach
for speeding up shortest path queries: Table-lookups. In Transit-Node Routing [SS06b,
BFM+07, BFSS07] a set of relevant transit nodes are determined where almost all ‘far’
shortest path pass through. Distances are then precomputed between each pair of
transit-nodes. Several approaches exist for selecting transit-nodes: Separators [Mül06,
DHM+09], border nodes of partitions [BFM+07, BFSS07, BFM09] and nodes turning
out important by other speed-up techniques [BFM+07, BFSS07, SS09].

Several speed-up techniques arose that use combinations of the ingredients from
above [HSW04, HSWW06, Sch08a, BDS+08]. Bi-directional routing can be combined
with goal-direction and contraction [BDS+08, DN08]. Relevant for this work is the
combination of contraction with goal-directed search (especially ALT). In [BDS+08]
Core-ALT is introduced for time-independent and time-dependent networks where
the graph is contracted yielding a much smaller core-graph on which then ALT is
applied. Further combinations of contraction with ALT are presented in [GKW06b,
GKW06a, GKW09, DSSW09b]. Combining contraction with Arc-Flags yields a very
efficient uni-directional speed-up technique called SHARC [BD09, Del09b] which can
be combined further with bi-directional routing. The fastest speed-up techniques on
road networks as of today are CHASE (Contraction Hierarchies plus Arc-Flags) and
the combination of Transit-Node Routing with Arc-Flags [BDS+08, BDS+09] yielding
query times down to 2 microseconds on continental-sized road networks.

Routing in Public Transportation Networks. Routing in public transportation net-
works turns out harder than in road networks. Research focused on timetable informa-
tion for railway networks. In [SWW99, PSWZ04, Sch05, PSWZ07, MSWZ07, DPW08]

3

Chapter 1. Introduction

different models regarding different levels of realism and algorithms are presented.
Basically there are two approaches to cope with the inherent time-dependency of a
railway timetable: The time-expanded and the time-dependent approach. While the
first allows more flexible modeling of additional constraints, the latter yields smaller
graph sizes and, thus, faster query times [PSWZ07]. See also Section 3.3 for an in-
depth presentation of the several models.

Dijkstra’s algorithm can be adapted to solve the Earliest Arrival Problem (i.e.,
we minimize travel time) on both the time-independent and time-dependent approach.
Experimental studies on timetable information have been conducted using speed-
up techniques from road networks [PSWZ07, BDW07, BDW09, DPW08]. It turns
out that speed-up techniques are much harder to adapt to timetable information
than one might expect, although a combination of ALT and Arc-Flags harmonizes
well [DPW08].

Furthermore, in public transportation networks multi-criteria optimization turns out
more important (e.g., not only minimize the travel time, but also costs, transfers, etc).
This problem has been studied by Müller-Hannemann et al. [MW01, MS07, DMS08].
However, in this work we restrict ourselves to single-criteria search, i.e., optimizing
travel time alone.

Multi-Modal Routing. Multi-modal route planning can be solved by the Label Con-
strained Shortest Path Problem [BBH+09]. In [BJM00] an extensive theoretical
study is conducted on the complexity of the Label Constrained Shortest Path
Problem regarding various types of languages. It is shown in [BJM00] that the La-
bel Constrained Shortest Path Problem is solvable in deterministic polynomial
time when restricted to regular languages by a generalization of Dijkstra’s algo-
rithm [Dij59]. The first experimental study is conducted in [BBJ+02] using the special
case of linear regular languages.

Basic speed-up techniques including bi-directional search (see [Dan62, GH05]), A*
(see [HNR68]) and the Sedgewick-Vitter-Heuristic (see [SV86]) are tested in the context
of multi-modal routing in [Hol08, BBH+09].

1.2. Our Contributions

In this thesis we approach the problem of efficient multi-modal routing on hetero-
geneous continental-sized networks composed of road, railway and flight networks.
Basically, our work is divided into three parts: Modeling, Routing and Speed-Up Tech-
niques.

4

1.2. Our Contributions

Models. The first part is devoted to introducing realistic models for each of the net-
work types. While regarding road and railway networks we use existing models, we
work out that despite similarities between railway and flight timetables, using the ex-
isting railway models on flight timetables yields unnecessarily large graphs. Thus,
we propose a series of new flight models with increasing complexity (and realism)
that resemble flight timetables in a more fitting manner. Moreover, we present ef-
ficient methods for linking each of the networks together in order to obtain a huge
multi-modal graph.

Routing. In this part we lay foundations for multi-modal route planning by aug-
menting Dijkstra’s algorithm first to time-dependency and later to multi-modality.

Speed-Up Techniques. Our main contributions stem from this part of our work.
Query times using naive algorithms turn out too high as in our experiments we ob-
serve query times of up to 87 s on our largest inputs. Thus, we systematically develop
methods for accelerating the shortest path search.

First, we identify basic ingredients that are common to all modern speed-up tech-
niques. We adapt each of the ingredients to multi-modality or show that adaption
turns out hard.

From the ingredients we then choose contraction and develop a multi-modal Core-
Based Routing approach upon it. The basic idea is to contract the input graph to a
much smaller core graph. By using contraction only on the time-independent road
network we obtain a feasible contraction based technique that is general in the sense
that the query still works with all ‘reasonable’ language based constraints. Further-
more, our Core-Based Routing approach allows any speed-up technique to be applied
on the core.

In previous work it was shown that contraction harmonizes well with goal-direction.
Unfortunately, regarding Arc-Flags we work out that this goal-directed technique is
very hard to adapt to multi-modality in a meaningful way as paths pruned during
preprocessing may turn out important if we change the language constraints after
preprocessing. Thus, we adapt the ALT algorithm to multi-modality and combine
it with our Core-Based Routing approach yielding a robust multi-modal variant of
Core-ALT.

However, experiments on Core-ALT only yield mild speed-ups. Therefore, we pur-
sue the following observation. The biggest parts of our multi-modal graphs are made
up by the time-independent road network. However, computing shortest paths on
pure road networks is easy as with recent speed-up techniques this can be done in a
matter of microseconds. The public transportation networks are the hard part. Un-

5

Chapter 1. Introduction

fortunately, in multi-modal routing the hardness of the time-dependent public trans-
portation network is carried over to the road network.

Thus, we ‘outsource’ the road network by precomputing for each node of the road
network a set of access-nodes in the public transportation network that are at least
important once during the day. This set of important access-nodes is relatively small.
A query is then conducted by jumping directly into the public transportation network
from the source and target nodes of the road network, skipping the search through
the road network. By these means, we reduce a point-to-point query on the whole
graph to a many-to-many query on the proportionally small public transportation
network. Local queries that do not use the public transportation network (but solely
the road network) can be computed in parallel in a few microseconds time by using
existing uni-modal speed-up techniques on road networks. This carries almost no
weight regarding overall query time.

Hence, we separate the road network from the public transportation network in a
modular way such that we are able to apply different algorithms on the road and
public transportation networks orthogonally. We call this approach Access-Node Rout-
ing and we are able to achieve speed-ups of up to over 30 000 even when using plain
Dijkstra on the public transportation network.

Even further, Access-Node Routing can be combined with our multi-modal Core-
Based Routing approach, yielding a Core-Based variant of Access-Node Routing that
drastically reduces the amount of preprocessed data whereas the loss in query per-
formance is almost negligible. With this approach we are able to perform interconti-
nental queries on a graph containing the road networks of Europe and North America
together with a flight network in 2.3 ms time.

Please note that we do not intend to develop new speed-up techniques solely for
road or public transportation networks in this work. Instead, with our main contribu-
tion Access-Node Routing we present a method that allows isolating the public trans-
portation network from the road network in a multi-modal context. Thus, the two
main parts of our multi-modal networks (road and public transportation networks)
with their very different properties can be treated individually.

1.3. Overview

This thesis is organized as follows.

Chapter 2: Foundations. Chapter 2 lays the essential foundations for our work. We
define basic notion for graphs including (time-dependent) edge weights and paths.
Furthermore, we introduce the concept of languages (whereas we focus on regular

6

1.3. Overview

languages) and non-deterministic finite automata which correspond to regular lan-
guages.

Chapter 3: Models. In Chapter 3 we present models for each of our network types.
First, we distinguish between time-dependent and time-independent models on a
more abstract level. Regarding time-dependency, we introduce the term of piecewise
linear functions which are used as travel time functions in all of our time-dependent
models in this work. Right after that, we conduct a survey on available models for
road and railway networks working out their individual pros and cons with respect to
multi-modal routing. While for both the road and railway networks we make use of
existing models (the road model is time-independent while we use the realistic time-
dependent railway model with constant transfer times), we work out in Section 3.4
why using the railway model for flight networks is undesirable. Instead, we propose a
set of models with increasing complexity to model flight timetables more adequately
yielding smaller graph sizes. Finally, in Section 3.5 we describe how individual uni-
modal graphs from each of the networks (road, rail and flight) are merged into a huge
multi-modal graph. It turns out that we have to solve large instances of the Nearest
Neighbor Problem which requires some extra considerations.

Chapter 4: Routing. This chapter is devoted to introducing basic routing. First of
all, in Section 4.1 we formally state the Earliest Arrival Problem and show how it is
related to the Shortest Path Problem on our graphs. We then introduce Dijkstra’s
algorithm, which can compute shortest paths on uni-modal networks in Section 4.2.
We start off with the simple time-independent case and generalize the algorithm to
cope for time-dependency. Furthermore, regarding time-dependency we present algo-
rithms for both solving time queries where we are interested in a shortest path for one
given departure time τ and also profile queries where we are interested for a travel
time function that represents shortest paths for every possible departure time τ during
the day.

The second part of this chapter introduces algorithms for multi-modal route plan-
ning in Section 4.3. In the beginning, we work out that the simple Shortest Path
Problem is not sufficient for computing adequate routes on multi-modal networks,
as the shortest path may correspond to an undesirable sequence of different modes
of transportation (e.g., using the car in the middle of a journey may be undesirable).
Thus, we augment the Shortest Path Problem yielding the Label Constrained
Shortest Path Problem which restricts valid shortest paths through languages. Fi-
nally, in Section 4.3.2 we present a generalization of Dijkstra’s algorithm that ef-
ficiently solves the Label Constrained Shortest Path Problem on multi-modal

7

Chapter 1. Introduction

graphs restricted by regular languages.

Chapter 5: Speed-Up Techniques. This Chapter makes up the biggest part of this
thesis. As most of today’s high-performance speed-up techniques are composed of
a few basic ingredients, in Section 5.1 we give a brief overview about the most im-
portant ingredients bi-directional routing, goal-directed search (ALT and Arc-Flags)
and contraction. For every ingredient we follow the same paradigm: We explain each
ingredient with regard to uni-modal time-independent routing, as this is the scenario
they were initially developed for. Then we show how they can be adapted to time-
dependency and finally to multi-modality explaining the difficulties arising along the
way.

With the basics laid out, in Section 5.2 we introduce Core-Based Routing tailored
to multi-modal route planning. Its basic idea is to restrict contraction to the time-
independent road network. In Section 5.3 we build upon Core-Based Routing by
introducing the ALT algorithm on the core graph obtained from the contraction rou-
tine. This speed-up technique is called Core-ALT. Finally, we introduce Access-Node
Routing in Section 5.4 which computes for each node in the road network a set of
relevant entry- and exit-points into the public transportation network, thus, allowing
the restriction of the query to the public transportation network. Regarding each of
the speed-up techniques we present the preprocessing and the query algorithm in
separate subsections. Furthermore, we give detailed proofs of correctness.

Chapter 6: Experiments. In Chapter 6 we conduct several multi-modal experiments.
At first, in Section 6.1 we present our inputs used throughout the experiments (graphs
and automata). In Sections 6.3, 6.4 and 6.5 we show figures for basic multi-modal rout-
ing, Core-ALT and Access-Node Routing, respectively. While Core-ALT yields mild
speed-ups, with Access-Node Routing we are able to perform queries on continental-
sized networks in 1.9 ms time corresponding to a speed-up of over 30 000 when com-
pared to the basic multi-modal query algorithm.

Chapter 7: Conclusion. Chapter 7 gives a final conclusion and an outlook regarding
future research on the topic of multi-modal route planning.

Appendices. We provide two appendices regarding implementation details. In Ap-
pendix A we introduce the most relevant data structures used for our experiments.
Especially, we present our static and dynamic graphs, our finite automata and our im-
plementation of piecewise linear functions. In Appendix B we describe the process of
converting the raw data on which our road, railway and flight graphs are based upon.

8

Chapter 2
Foundations

In this section we develop the basic notation which is needed throughout the work.
Since all of our algorithms work on graphs, the underlying concepts of graph theory
are introduced first. Furthermore, for multi-modal route planning we require basic
concepts of regular languages and automata.

2.1. Graph Theory

Graphs. A graph is a tuple G = (V, E) consisting of a finite set V of nodes and a set
E ⊆ V × V of edges. We say there is an edge from u ∈ V to v ∈ V if and only if
(u, v) ∈ E. All of our graphs are directed, i.e., the direction of an edge is important. A
reflecting edge e = (v, v) is called a loop. The graph obtained by flipping all edges is
called the backward graph

←−
G := (V,

←−
E) where (u, v) ∈ ←−E ⇔ (v, u) ∈ E.

A node induced subgraph G′ ⊆ G with G′ = (V ′, E′) and V ′ ⊆ V is obtained by
E′ := {(u, v) | u ∈ V ′, v ∈ V ′ and (u, v) ∈ E}. Further, an edge induced subgraph G′ ⊆ G
given E′ ⊆ E is obtained by the node set V ′ := {v | ∃(u, v) ∈ E′ or (v, u) ∈ E′, u ∈ V}.

Edge Weights. The main difference between time-independent and time-dependent
route planning is the type of edge weights. Whereas for time-independent route plan-
ning it is sufficient to have constant weights, we generalize this concept to periodic
functions to accommodate for different edge weights at different times of day.

All functions associated with the edges are elements of a function space F consisting
of functions f : R+

0 → R+
0 . The function associated to an edge e ∈ E is denoted by fe.

In this work, we restrict ourselves to periodic functions with a (time-) period Π, meaning
that for all τ ∈ R+

0 it has to hold that f (τ) = f (τ mod Π). Furthermore, we are only
interested in travel time functions, which means that the function value f (τ) is a time

9

Chapter 2. Foundations

span. For that reason, all functions have to fulfill the FIFO-property, i.e., for any two
τ1, τ2 ∈ R+

0 with τ1 < τ2 it must hold that f (τ1) + τ1 < f (τ2) + τ2. The FIFO-property
guarantees that along an edge it is never possible to depart later but arrive earlier. If it
holds for all τ ∈ R+

0 that f (τ) = c for some c ∈ R+
0 then f is called a constant function.

Let f , g ∈ F be two functions, then we define f ⊕ g := f + g ◦ (f + id) as link-
operation. Here, id denotes the identity function. If both f and g are constant functions
we shall simply write f + g. This operation is used to cascade functions, i.e., to com-
pute the travel time along two or more subsequent edges. Please note that linking
is neither associative nor commutative, hence, the order of evaluation is important.
The minimum operation of two functions f , g ∈ F, denoted by min(f , g), is obtained by
taking the minimum value from f and g for each input τ ∈ R+

0 . Sometimes, we also
refer to this operation as merge-operation since it merges two functions together.

The lower bound of a function f is the minimum value of f for any τ ∈ R+
0 , denoted

by f := minτ∈R+
0

f (τ). Analogously, the upper bound of a function is the maximum

value of all its values: f := maxτ∈R+
0

f (τ).

A time-independent lower/upper bound graph G/G can be obtained from G by
replacing each edge function with their lower/upper bounds.

Paths. A path P in G is a sequence of nodes [v1, v2, . . . , vk] such that for each 1 ≤ i < k
the condition (vi, vi+1) ∈ E holds. If additionally v1 = vk, then we call P a cycle. Note
that a path may contain certain nodes multiple times without being a cycle. A subpath
S ⊂ P is a path itself which is fully contained in P. By |P| we denote the number of
edges along the path.

The length of a path P is the sum of its edge weights along the path and is denoted
by

len(P) :=
k−1

∑
i=1

f(vi ,vi+1)

= f(v1,v2) ⊕ f(v2,v3) ⊕ · · · ⊕ f(vk−1,vk).

(2.1)

Note that len(P) yields a function which can be interpreted as the travel time along
the path at any given time point τ. However, if all edge weights along the path are
constant, then len P is constant as well.

Often we are only interested in the length of a path for a given departure time
τ ∈ R+

0 . In this case len(P, τ) is defined recursively as follows.

• For |P| = 1: len(P, τ) := f(v1,v2)(τ),

• for |P| > 1: len(P, τ) := len(P− vk, τ) + f(vk−1,vk)(τ + len(P− vk, τ)).

10

2.2. Languages and Automata

In other words, len(P, τ) is obtained by walking along the path starting at time τ

and evaluating each edge function at time τ plus the distance already covered along
the path. For that reason, the result obtained by len(P, τ) is a scalar value.

The distance between two nodes u, v ∈ V, written by dist(u, v, τ), for a given depar-
ture time τ, is the minimal length of all paths P from u to v. Note that it is possible
that there might be more than one minimal path from u to v. A minimal path P be-
tween two nodes u and v at time τ is called shortest path from u to v. The travel time
function representing the length of all shortest path over all times of day is denoted
by dist∗(u, v).

We call two nodes u, v ∈ V connected, if there exists a path from u to v. If this is true
for all pairs of nodes u, v ∈ V, we call the whole graph connected. For a non-connected
graph G, a connected subgraph G′ ⊆ G is called strong connected component of G.

2.2. Languages and Automata

Languages. Let Σ be a finite set of symbols often called alphabet. A sequence w :=
[σ1, σ2, . . . , σk] of symbols from Σ is called a word. For simplicity, we just write w =
σ1σ2 . . . σk. The length of a word is the number of symbols it is composed of. The
empty word is denoted by ε and has length 0. For two words w1 := σ1 . . . σk and
w2 := σk+1 . . . σl the concatenation of the two words w := w1w2 is obtained by simply
appending the second word to the first, hence w = σ1 . . . σk . . . σl .

A not necessarily finite set L of words over Σ is called a language over Σ. All opera-
tions on sets like union, intersection and difference also apply to languages. If L is an
arbitrary language, then the i’th power set of L is defined recursively by

• If i = 0: L0 := {ε} and

• if i > 0: Li := {wv | w ∈ Li−1 and v ∈ L}.

With this notion, we introduce an additional operation. The Kleene-Closure of a lan-
guage L is defined by

L∗ :=
⋃
i≥0

Li. (2.2)

In the special case of L = Σ, the Kleene-Closure yields all possible words (includ-
ing the empty word) that can be created by the alphabet of Σ. Finally, for two lan-
guages L1, L2 ⊆ Σ∗ the concatenated language L1 · L2 is obtained by L1 · L2 := {vw | v ∈
L1 and w ∈ L2}.

It turns out that for our purposes general languages are too powerful. Therefore,
we restrict ourselves to regular languages for which we give a detailed definition.

11

Chapter 2. Foundations

l
l

l

c r

f

c

Figure 2.1.: A simple finite automaton given by its transition graph with 4 states from which 2 are

initial states and 3 are final states.

Definition 1 (Regular Languages). Let Σ be an alphabet. Then a language L over Σ is
regular if and only if it conforms to the following construction rules.

• The empty language ∅ is regular.

• For each σ ∈ Σ the singleton language {σ} is regular.

• If L1 and L2 are regular languages, then L1 ∪ L2, L1 · L2 and L∗1 are also regular lan-
guages.

Besides using regular expressions, another way to describe regular languages is by
defining a finite automaton.

Finite Automata. A non-deterministic finite automaton A := (Q, Σ, δ, S, F) consists of
a finite set Q of states, an alphabet Σ, the transition function δ : Q × Σ → P(Q), a
set S of initial states and a set F of final states. Most of the time, we describe a finite
automaton visually by its transition graph: States q ∈ Q are drawn as nodes and for
each state q ∈ Q and every symbol σ ∈ Σ we draw an edge from q to q′ labeled by σ

if and only if q′ ∈ δ(q, σ). Initial states are marked by an incoming edge-tip whereas
final states are twin-framed. Figure 2.1 shows a simple example of a finite automaton.

Let L ⊆ Σ∗ be an arbitrary language. We say that a word w ∈ L is accepted by A,
if there is a path in the transition graph starting at an initial state q0 ∈ S, leading
to a final state q f ∈ F and where the subsequent edges on the path are labeled by
the subsequent symbols of w. If no path fulfilling these properties exists, the word
is rejected. If it holds for every word w ∈ L that w is accepted by A, we say that the
language L is accepted by A.

By Kleene’s Theorem [Kle, RS59] each regular language L can be described by a
(non-deterministic) finite automaton A in the sense that for every word w ∈ Σ∗ it
holds that A accepts w if and only if w ∈ L. On the other hand it is true that for
every finite automaton A the set of words accepted by A has the properties of being
a regular language. Hence, the terms regular language and finite automaton can be
interchanged.

12

Chapter 3
Models

In this chapter, we introduce the different models we use for our multi-modal routing
algorithms. Our work is mainly based on three different types of networks: Road
networks, railway networks and flight networks. All of these networks have quite dif-
ferent properties which makes it unsuitable to use the same approach for all three of
them. Hence, we introduce the model behind each of the network types in a sepa-
rate section. Whereas the models for the road and railway networks are already well
known, we show that—despite strong similarities between rail and flight timetables—
it is not adequate to use the same modeling approach for flights as we do for railways.
For that reason, we propose a new approach for flight networks that is more compact
while still maintaining the required flexibility and realism.

To compute actual multi-modal queries, the query algorithm has to utilize multiple
networks simultaneously. For that reason, the different models—which yield different
graphs—have to be ‘glued’ together. Simply speaking, we do this by using the x and
y coordinates attached to the nodes and solve the Nearest Neighbor Problem on a
subset of pairs of nodes. The process of combining the networks is described in the
last section of this chapter.

3.1. Time-Independent and Time-Dependent Models

Before we turn toward each of the network types, we point out the fundamental dif-
ference between time-independent and time-dependent models, since both versions
are used in this work. While we use the time-independent approach for the road net-
work, we use time-dependent models for the railway and flight networks. The main
difference is due to the assigned edge-weights which are constant in one case and
functions in the other. Moreover, shortest paths in time-dependent networks depend

13

Chapter 3. Models

on the departure time at the source.

3.1.1. Time-Independent Models

Time-independent routing has been studied in great detail [DSSW09a] and is mostly
used in road networks. In a time-independent network each edge e is assigned one
constant value w(e) which may be travel time, geographical distance or any other met-
ric that we like to minimize. Suppose we have an edge reflecting a road segment in a
road network. If we assign this edge a constant value, our query will always produce
the same result when using this edge. While this is perfectly sufficient for certain met-
rics like geographical distance (The geographical distance of a road segment does not
depend on the time), it might not be realistic enough for others. If we use travel time
as metric, imagine using a motorway during rush hour in contrast to off hours. We are
much slower on the same motorway during the rush hour due to traffic congestions.

Not having time-dependencies makes the model simpler. To solve shortest path
queries on such a network, we can use Dijkstra’s algorithm with only minor modifi-
cations (See also Section 4.2.1). For that reason lots of research focused toward acceler-
ating shortest path queries on time-independent models (mostly road networks) which
resulted in very impressive speed-up techniques. An overview is given in [DSSW09a].

While in a road network the absence of time-dependency still yields useful queries,
other models like those for railway timetables most certainly do not. The prob-
lem of time-dependency is inherent to these models, because trains only operate at
certain times and therefore the choice of the quickest route highly depends on the
departure time of the journey. Although, there are approaches for eliminating the
time-dependency in the model, namely by time-expansion (See Section 3.3), the more
canonical approach is to generalize the time-independent model itself to incorporate
the concept of time-dependency.

3.1.2. Time-Dependent Models

In time-dependent routing we do no longer have constant weights assigned to the
edges. To accommodate for time-dependency, we replace the edge weights by arbitrary
functions f from some function space F. The shortest s-t-path in a time-dependent
model then depends on the departure time τs of the source node. This might result in
shortest paths of different length for different departure times or—in general—even a
completely different route.

In Section 2.1 we restricted ourselves to periodic functions f : R+
0 → R+

0 . However,
using arbitrary periodic functions is not adequate for an efficient implementation of
the query algorithm.

14

3.1. Time-Independent and Time-Dependent Models

τ

f (τ)

Πp3p2p1

(a) Road type with variable gradient.

τ

f (τ)

Πp3p2p1

(b) Public transportation type with fixed gra-

dient.

Figure 3.1.: Two piecewise linear functions. The left one is typical for time-dependent road networks

where we linearly interpolate between two interpolation points. The function to the right

is typical for public transportation networks.

Piecewise Linear Functions. A periodic function f : R+
0 → R+

0 is called piecewise
linear if it consists of a finite number of segments of linear functions. Let f be a
piecewise linear function then f can be described by a finite set P of interpolation
points where each interpolation point pi ∈ P consists of a departure time τi and an
associated function value f (τi).

The value of f for an arbitrary time τ is then computed by interpolation. This
is done differently for time-dependent road networks and public transportation net-
works. Whereas in road networks we interpolate linearly between two subsequent
interpolation points, the travel time function along a public transportation edge is in-
terpreted as follows. First we have to wait for the next train or airplane to depart
and then we have to add its mere travel time along that edge to that. Hence, for
some arbitrary time point τ we use the nearest interpolation point τi in the future and
interpolate by the formula

f (τ) = −γ · (τi − τ) + f (τi). (3.1)

Here, γ denotes the fixed gradient of f . In order to fulfill the FIFO-property (cf. Sec-
tions 2.1 and 3.3.4 on page 25), γ ∈ [−1, 0] has to hold.

Note that our functions are periodic with time-period Π. For that reason τi is chosen
with respect to the periodicity of f , meaning that if no τi exists with τi > τ, then τi

is set to be the smallest interpolation point τ0 of f . The function space consisting of
all piecewise linear functions with a certain gradient γ is denoted by FL(γ). Without
proof we like to mention that the function space FL(γ) for an arbitrary value of γ is
closed under addition as well as both link- and merge-operations. Figure 3.1 illustrates

15

Chapter 3. Models

two examples of piecewise linear functions that are typical for time-dependent route
planning models.

With the differences between time-independent and time-dependent route planning
laid out, we now turn toward describing each of the models in more detail.

3.2. The Road Network

The road network is the simplest model of all the three because its graph represen-
tation is straightforward. Junctions are modeled as nodes and an edge e = (u, v)
between two junctions u, v ∈ V is inserted if and only if a road segment from u to
v exists in the road network. Note that if in reality the road between u and v is a
two-way road, then two edges (u, v) and (v, u) are inserted into the graph as well.

Because we set ourselves the goal of using very large scale road networks for our ex-
periments, i.e., the road network of whole Europe and North America (See Section 6.1),
using the time-dependent approach on the road network is not viable. The space (and
therefore memory) required to store all interpolation points for every edge-function
in the network is simply too high. Note that the memory consumption of the multi-
modal query algorithm is higher than it is the case for an uni-modal algorithm (cf. Sec-
tion 4.3.2) which also adds to the space we require. Furthermore, in [Del09b, Del09a]
it has been shown that both link- and merge-operations on road type edge functions
are very expensive, as the number of interpolation points may increase up to their
sum when merging two road functions. This consumes even more space and compu-
tational time. So, in order to keep the problem manageable, we decide on using the
time-independent approach for our road network, i.e., only constants are assigned to
the edges.

Edge Weights. The edge weights w(e) in the road network represent the average
travel time on the specific road segment. The average travel time is computed by
taking the average traffic speed on the specific road segment, which is then charged
against the geographical length of that segment to obtain the travel time.

Foot Edges. When planning a multi-modal route using, it is a realistic assumption
not having a car available everywhere along the journey. In order to still be able
to make point to point queries in the road network, we thus require some sort of
foot edges, so any stage of the journey can be covered by foot. From a theoretical
point of view, we simply insert additional edges between two junctions u and v if the
road segment is available to pedestrians. The edge weight of the foot edge is then
computed by taking the geographical length of the road segment and assuming an

16

3.3. The Railway Network

Figure 3.2.: Example of a road network graph showing the center of Karlsruhe.

average walking speed s of a pedestrian to obtain an average travel time. Note that
there might be additional nodes created that are not reachable by car, for example
in pedestrian precincts. Just as well, there might be nodes in the graph that are not
reachable by foot, like those belonging to motorways.

While the approach of modeling foot edges by creating multi-edges in the graph
seems a smart thing to do, in our implementation we stick to only using one edge
per road segment. Instead, we assign two separate weights to the edges. In regard
to our graph data structure, this has the advantages of consuming significantly less
space (See Appendix A.1.1). Furthermore, we do not need to support multi-edges in
our data structures and algorithms.

Figure 3.2 shows as a tiny example of a road network: The center of Karlsruhe.

3.3. The Railway Network

While the model of the road network is quite canonical, there are several approaches
for modeling railway networks. After formally introducing timetables—which are the
essence behind any of the railway models—we give an overview about existing models
discussing their pros and cons and finally go into more detail about the realistic time-
dependent model which we actually use in this work.

Be reminded that in the road network we use travel time as metric. So, in order to
be consistent with the road network all railway models presented here also use travel
time as metric.

17

Chapter 3. Models

3.3.1. Timetables

The basis for each of the models is a timetable from which we construct some kind of
graph on which we can then compute shortest paths.

A traffic timetable is a tuple (C,B,Z , Π) where B is a set of stations, Z a set of trains,
Π the periodicity of the timetable and C a set of elementary connections. An elementary
connection from C is defined by a tuple c := (Z, S1, S2, τ1, τ2) and is interpreted as train
Z ∈ Z going from station S1 ∈ B to station S2 ∈ B, departing at S1 at time τ1 < Π
and arriving at τ2 < Π. Please note that for one elementary connection the train has
to go from S1 to S2 without stops in-between. So, a train going along some route will
consist of multiple elementary connections in the timetable.

Some attention has to be put at computing the the travel time of an elementary
connection c. If the arrival time τ2 is greater than the departure time τ1 then the
travel time of c is simply the difference τ2 − τ1. However, due to the periodicity of the
timetable it is also possible to depart in the evening and arrive during the next day.
In this τ2 < τ1 holds and the travel time is composed of the travel time from τ1 until
midnight plus the travel time from midnight until τ1. With regard to the time period
Π we therefore obtain for the travel time

∆(τ1, τ2) :=

{
τ2 − τ1 if τ2 ≥ τ1,
Π− τ1 + τ2 otherwise.

(3.2)

Note that the ∆ function can be used to compute arbitrary travel times between two
points in time τ1 and τ2.

In the subsequent sections we give a brief overview of the existing railway models

3.3.2. The Condensed Model

The most basic approach is the time-independent condensed model. For every station
S ∈ B of the timetable there is exactly one node v ∈ V in the graph. An edge e = (u, v)
is introduced, if and only if at least one elementary connection exists in the timetable
that goes from u to v. The edge weight of an edge e = (u, v) is set to

w(e) := min
c∈C,

u=S1(c),
v=S2(c)

∆(τ1(c), τ2(c)), (3.3)

the minimum travel time of all connections going from u to v.

Discussion. While the condensed model yields a very small graph and represents
the structure of the railway network adequately, a shortest path query only results in a

18

3.3. The Railway Network

lower bound regarding the travel time between two stations. So, for computing exact
travel times this model cannot be used and, therefore, we discard it in our work.

3.3.3. Time-Expanded Models

The reason why the condensed model is not useful for exact shortest path queries is
that it does not account for departure and arrival times in the timetable. To address this
issue while still being able to use the time-independent approach, the time-expanded
model was developed. Historically there have been two versions: The simple time-
expanded model [Sch05] is a direct mapping from an itinerary as we defined it above.
Shortest path queries yield correct results. However, the simple model does not ac-
count for realistic transfers. When switching trains at a station S during the journey,
there is most likely a minimum transfer time transfer(S) involved that one needs to
get from one train to another. To incorporate this aspect, the simple model has been
enhanced to the realistic time-expanded model.

Simple Version. Nodes in the graph no longer correspond to stations in the timetable,
but rather to events. In the simple version of the time-expanded model there are two
types of events: Departure events and arrival events. For each elementary connection
c = (Z, S1, S2, τ1, τ2) there is a departure event of train Z at station S1 and time τ1

and an arrival event of train Z at station S2 and time τ2. So, we basically insert two
nodes u and v into the graph which correspond to the departure and arrival events.
To keep track to which station a node belongs, each node is assigned its station S and
furthermore its timestamp τ when the event occurs.

Besides the nodes, two types of edges are inserted. For two events (nodes) belong-
ing to the same elementary connection c there is an edge from the departure to the
respective arrival event. The edge weight is set to be the travel time ∆(τ1(c), τ2(c)). In
order to allow transfers, nodes belonging to the same station S are sorted in ascending
order wrt. their timestamp. For two subsequent nodes vi, vi+1 having timestamps τi

and τi+1 there is an internal station edge e := (vi, vi+1) with weight ∆(τi, τi+1). Finally,
to allow transfers over midnight, there is an edge from the latest node vk to the earliest
node v0 with weight ∆(vk, vo). Figure 3.3a gives a small example of the model.

As discussed above, the simple version of the time-expanded model allows arbitrary
small transfers. The realistic time-expanded model overcomes this issue.

Realistic Version. To cope with realistic transfers, the timetable C is extended by a
function transfer : B → N which assigns each station in the timetable a transfer time
transfer(S).

19

Chapter 3. Models

(a) Simple time-expanded model. (b) Realistic time-expanded model.

Figure 3.3.: The same station modeled in both the simple and the realistic time-expanded railway

models. Arrival nodes are yellow, departure nodes green and transfer nodes purple.

While in the simple version of the model the second train can be reached from the first,

this is not possible in the realistic model.

Regarding the realistic version of the time-expanded model there are now three
types of nodes: transfer, departure and arrival nodes. While arrival nodes still repre-
sent arrival events of the timetable, departure events are modeled by a pair of nodes
consisting of a transfer and a departure node. For each elementary connection c ∈ C
we insert three nodes vc,tra, vc,dep, vc,arr. The stations and timestamps are assigned to
the nodes analogously to the simple version of this model, whereas the transfer and
departure nodes have the same values.

Regarding edges, there are now five different edges.

(1) Departure-Edges.
For each elementary connection their transfer and departure nodes are connected
by an edge (vc,tra, vc,dep) with weight 0.

(2) Connection-Edges.
For each elementary connection there is an edge (vc,dep, vc,arr) connecting the de-
parture node with the arrival node.

(3) Station-Edges.
For every station S only their transfer nodes are sorted in ascending order and
internal station edges are inserted in the same manner as in the simple model.

20

3.3. The Railway Network

(4) Transfer-Edges.
These edges effectuate the demand of upholding the minimum transfer time crite-
rion. Let S be a fixed station. For each arrival node varr of S at time timestamp(varr)
we look for the smallest transfer node vtra at S satisfying ∆(varr, vtra) ≥ transfer(S).
An edge is then inserted accordingly.

(5) Train-Edges.
In order to be able to stay in the same train, for each arrival node varr we insert
an edge to the unique departure node vdep belonging to the same train. If there
is no such departure node (the train could end at the current station), this step is
omitted.

Figure 3.3 gives an example of the realistic time-expanded model and compares it to
the simple version of the model.

Discussion. The time-expanded model ‘rolls out’ the time-dependencies of the rail-
way timetable and allows exact shortest path queries wrt. the Earliest Arrival Prob-
lem (introduced in Section 4.1). For a given departure time τ at some source station
S the source node is determined to be the earliest station or transfer node s (depend-
ing on the version of the model used) with timestamp(s) ≥ τ. While the greatest
advantage of the time-expanded model is its easy adaption of the standard Dijkstra
query algorithm, there are numerous disadvantages. First of all, the target node is not
known in advance of the query, since the arrival time is unknown. While this is no
problem to correctness, it makes the use of bidirectional speed-up techniques hard.
Furthermore, the size of the graph gets extremely large consuming a lot of memory
and also leading to a very big search space of Dijkstra’s algorithm. Although it could
be shown recently that the realistic time-expanded model can be enhanced with the
effect that the search space is reduced [DPW08], both disadvantages (not being able to
use bidirectional routing and the high memory consumptions) remain. Therefore, we
decide against using the time-expanded model in our work.

3.3.4. Time-Dependent Models

This section covers the time-dependent approach for modeling railway timetables. It
overcomes all disadvantages of the time-expanded model, but with the penalty of
introducing time-dependency in the graph. Historically—as with the time-expanded
approach—there were two versions of the model developed. The simple version, again,
does not respect the minimum transfer time criterion, whereas the realistic version
deals with this issue by enhancing the simple model.

21

Chapter 3. Models

τ

f (τ)

Π4:00 6:00 9:00 12:00 14:30 18:00 20:30

60 min

120 min

Figure 3.4.: This is a rail piecewise linear function with 7 interpolation points. There are 4 fast

trains departing at 4:00, 9:00, 14:30 and 20:30, each of which needs 60 minutes for the

journey. The slow trains at 6:00, 12:00 and 18:00 take 120 minutes for their journey.

Edge weights between times of departure are filled up with waiting time for the next

departing train.

Simple Version. The simple version is an immediate augmentation of the condensed
model introduced before. Again, the node set is exactly the set of stations and a
connection edge between two nodes u and v is inserted if and only if there is at least
one connection from u to v in the timetable. However, instead of using lower bounds
as edge weights, the edges become time-dependent.

As edge function type we use piecewise linear functions as introduced in Sec-
tion 3.1.2. For each connection c = (Z, S1, S2, τ1, τ2) in the timetable we add an in-
terpolation point p := (τ1, ∆(τ1, τ2)) to the function f that belongs to the edge between
S1 and S2. We can imagine this as a correspondence of interpolation points to depar-
ture events on the particular edge of the network. So, if we evaluate the function f at
one of its interpolation points τi, the value of f (τi) results precisely in the travel time
of the i’th train on that segment. If we, on the other hand, evaluate the edge at an
earlier point τ < τi, we have to wait at S1 for the train to depart. Therefore, the edge
weight f (τ) is composed of the travel time f (τi) plus the waiting time. This yields the
equation

f (τ) = (τi − τ)︸ ︷︷ ︸
waiting time

+ f (τi)︸ ︷︷ ︸
travel time

. (3.4)

Figure 3.4 shows a typical railway piecewise linear function while Figure 3.5a shows a
small example of the simple time-dependent model.

Again, the simple model does not account for realistic transfer times. Therefore, the
simple model has been enhanced to a realistic version coping with this issue.

22

3.3. The Railway Network

S1 S2

Z1, Z2, Z3

Z1, Z2

Z3

Z1, Z2

Z3

(a) Simple model.

S1 S2

Z3

Z1, Z2

(b) Realistic model.

Figure 3.5.: This is an excerpt of two stations S1 and S2 of the time-dependent model. The simple

version, i.e., without realistic transfers, is shown to the left and the realistic version is

shown to the right. Station nodes are blue, whereas route nodes are drawn in purple.

The trains Z1 and Z2 are equivalent (use the same route), while train Z3 uses a different

route. In the realistic version of the model switching between trains of different routes

can only be done by going through the station node. The transfer time is then charged

on the edges from station to route nodes.

Realistic Version. As with the realistic time-expanded model, we extend the timeta-
ble by a function transfer : B → R+

0 in order to assign each station a fixed transfer time.
The graph of the realistic version of the time-dependent model is then constructed as
follows.

For each station S ∈ B we introduce a super-node called station node into the graph.
For simplicity, if we write S and refer to a node, we always refer to the station node
of S. However, these station nodes are not directly interconnected as in the simple
model. The basic idea is to have an additional node type called route nodes in the
graph and have trains that take the same route go through subsequent route nodes.
These route nodes are then connected to their respective station nodes with the proper
weight matching the transfer time.

More formally, we divide the set of trains Z into train routes. The set of train routes
is denoted by R. Each train route R ∈ R is a maximal subset of Z containing only
trains following the exact same sequence of stations [S1, S2, . . . , Sk]. In other words, we
can regard two trains Z1 and Z2 as equivalent, denoted by Z1 ∼ Z2, if they follow the
same route. Hence, the set R of routes contains the equivalence classes regarding the
equivalence relation ∼ on Z .

Now let [S1, S2, . . . , Sk] be the sequence of stations belonging to some train route R ∈
R. Then for each station Si ∈ R we insert a route node ri into the graph. Furthermore,
we connect subsequent route nodes with time-dependent edges e = (ri, ri+1). The
interpolation points of the function fe at e are created just as with the simple model:
For each elementary connection c that belongs to a train Z using the route R we insert
an interpolation p = (τ1, ∆(τ1, τ2)). The fixed gradient of all functions is again −1.

23

Chapter 3. Models

(a) Constant transfer times. (b) Variable transfer times.

Figure 3.6.: This is a comparison between constant and variable transfer times in the realistic time-

dependent model within a station. With variable transfer times, the number of edges

grows quadratic in the number of route nodes and there are no more station nodes in

the graph.

To allow switching trains between different routes, we insert additional transfer edges
into the graph. For some station S consider each of the route nodes r belonging to S.
Then we insert two additional edges: One edge (r, S) from the route node to the
station node with constant weight 0. This models getting off a train, which is not
charged with any time. Another edge (S, r) is inserted which models boarding the
train. The weight of this edge is set to transfer(S). This approach is called constant
transfer time approach, since all trains at a station are boarded by the same value of
transfer(S). Figure 3.5b illustrates the realistic version of the time-dependent model
along the simple version of this approach.

Variable Transfer Times. The realistic time-dependent model can be generalized
even further to account for variable transfer times. This allows modeling of different
transfer times between different train routes running through a station S. For example,
there might be trains of a route r1 that are connecting trains of another train route r2

and therefore always arrive at the same platform. Then the minimum transfer time
could be less than in the general case when changing trains requires switching plat-
forms. However, there are a few reasons why we do not use variable transfer times in
our work. First, our raw data on which our graphs are based on, only contain constant
transfer times and, second, modeling variable transfer times increases the complexity
of the graph, particularly regarding the number of edges. But the main refutation is
that according to [PSWZ07] the station nodes are no longer present in the graph. This
makes linking the railway network to the other networks difficult as we need some
kind of unique station nodes to link them to the road network (See Section 3.5.2 for
details).

24

3.3. The Railway Network

Current Station Target Station

time

(a) Time-expanded graph.

τ

f (τ)

Πp3p2p1

(b) Time-dependent edge function.

Figure 3.7.: Violation of the FIFO-property in the time-expanded model (left) and the respective edge

function of the time-dependent model (right). The third train overtakes the second. In

the time-expanded model this has no effect on the query algorithm. However, in the

time-dependent model, for some τ between p1 and p2, it would pay off to use p3 for

evaluating f (dashed line) instead of using p2.

FIFO-Property. The time-dependent model has one restriction when compared to
the time-expanded model. The time-dependent Earliest Arrival Problem becomes
NP-hard to solve if the edge weight functions of the graph do not fulfill the FIFO-
property, see [OR90]. The FIFO-property states that for each function f it has to hold
that f (τ1) + τ1 < f (τ2) + τ2 for any two τ1 < τ2. If we transfer this onto our model,
this means that overtaking of trains must be prohibited, i.e., there must not exist two
trains Z1, Z2 ∈ R for which between two subsequent stations S1 and S2 train Z1 leaves
after Z2 at S1 but arrives before Z2 at S2. See Figure 3.7 for an illustration. The figure
also shows that the time-expanded model is immune to this problem. However, this
problem can be avoided (with a small increase in graph size) by splitting the route
R into a minimal set of routes where each of the routes does not contain conflicting
trains any longer. Since overtaking trains are very rare in real world timetables, the
increase in graph size is insignificant.

Discussion. Time-dependent model allow exact shortest path queries for the Earli-
est Arrival Problem in a time-dependent fashion. At least for the simple version
and the realistic version with constant transfer times, both source and target nodes are
known in advance: They are simply the station nodes corresponding to the source and
target station of the query. The variable transfer time version requires a many-to-many
shortest path query, since each of the route nodes may be a potential source resp. target

25

Chapter 3. Models

node of the query. Furthermore, when using a time-dependent model the graph size
is much smaller than that of the time-expanded model. The simple approach has the
same graph size as the condensed model which is extremely small, while the graph
size of the realistic model increases approximately by a factor of 5 compared to the
simple model, which is still much smaller than any of the realistic models.

All these advantages come with a penalty. First, the graph is no longer time-inde-
pendent. This requires an augmentation of the query algorithm (See Section 4.2.2),
as well as additional memory to store the piecewise linear functions. However, ex-
periments revealed [PSWZ07] that these disadvantages generally do not outweigh the
advantage of the smaller graph size, since query times on the time-dependent model
are smaller. This led us to the decision to use the realistic time-dependent model (with
constant transfer times) as railway model in our work.

3.4. The Flight Network

This section covers the model behind the flight networks we use in our work. In
contrast to railway models, there has been no explicit development of an efficient
model for timetable information so far. Using the same approach as for railways yields
graphs with unnecessarily many nodes and edges. Therefore, we propose several new
approaches. However, we restrict ourselves to time-dependent versions of the model.

The section is organized as follows. First we introduce flight timetables which form
the basis of our models. Next, we work out why the realistic time-dependent railway
model is not suited well to model flight timetables. Based on these observations, we
develop a family of flight models: The constant-time model, the flight-class model and
the variable-time model, each being a generalization of the previous one.

3.4.1. Timetables

Creating a flight graph requires an underlying flight timetable. The flight timetable has
almost the same structure as a railway timetable (See Section 3.3.1). However, we are
using the terms airport instead of station and flight instead of train. Therefore, a flight
timetable is a tuple (C,A,F , ζ, Π) where C is a set of elementary (flight-) connections,
A a set of airports, F a set of flights and Π the time period. An addition to the
railway timetable is ζ : A → Z which maps each airport to the timezone it belongs
to. Timezones are represented as UTC (coordinated universal time) offset from UTC+0

with the same resolution as time points in general (e.g., seconds). An elementary
connection c ∈ C is a tuple c = (F, A1, A2, τ1, τ2). Again, this is interpreted as flight
F ∈ F departing at airport A1 ∈ A at time τ1 and arriving at airport A2 ∈ A at time

26

3.4. The Flight Network

τ2. Note that τ1 and τ2 are time points relative to the timezone of the airports A1 and
A2.

Computing Flight Lengths. In order to compute valid flight lengths, we cannot sim-
ply use ∆ as defined in Section 3.3.1. This would yield false results because we omitted
to account for the timezones. So, suppose there is a flight between two airports A1

and A2 with departure time τ1 at A1 and arrival time τ2 at A2. Then the actual flight
duration can be computed by converting both the departure and arrival time to UTC+0

time. This can be done by subtracting the timezone offset off the time, i.e.,

τ′1 := τ1 − ζ(A1) mod Π and τ′2 := τ2 − ζ(A2) mod Π. (3.5)

Given these results, we can compute the length of a flight using ∆ as usual: ∆(τ′1, τ′2).
For the sake of simplicity, we write τ∗ when referring to the time point τ after conver-
sion to UTC-0 time.

3.4.2. Using the Railway Model

Because of the striking similarity between railway and flight timetables it is tempting
to use the same modeling approach as for railways. However, it turns out that there
are some differences regarding routes and also regarding procedures at airports which
makes the use of the railway model unfitting.

Adapting the Simple Time-Dependent Railway Model. The simple time-dependent
railway model can be adapted to flight timetables in a straightforward manner. Nodes
correspond to airports and a time-dependent edge is inserted between two airports A1

and A2 if and only if there is at least one flight departing at A1 heading to A2. Inter-
polation points for the edge functions are created identically as for railway functions.
While this may lead to exact solutions to the Earliest Arrival Problem, the problem
of instantaneous transfers has an even greater impact on realism for flights than on
railway queries. Usually we have to spend more than an hour for procedures at the
airport before we actually depart. Therefore, adapting the simple model is of no avail.

Adapting the Realistic Time-Dependent Railway Model. As we worked out for rail-
ways, the realistic version of the time-dependent railway model is a good way to in-
corporate realistic transfer times into the model. This requires us to define a function
transfer : A → R+

0 which maps each airport to some (constant) transfer time. Before
we work out why this might not suffice for realism, we show a few other disadvan-
tages that are inherent to the realistic model when applied to flight timetables.

27

Chapter 3. Models

No Routes. There are no routes in flight timetables (in the sense of the realistic railway
model), or to say it differently: All routes have length 1. There is no case where we
stay in the plane and travel through an airport. Even if there are flights in the timetable
that have stops in between, these are always regarded as direct connections between
the first and the last airport.

This makes the concept of routes in the graph somewhat awkward, but if we wanted
to force this concept on us, it would have the following consequence. For each airport
A we had one route node per airport where at least one flight reaches to and also one
route node per airport where at least one flight arrives from. Basically, the number of
route nodes per airport can be bounded by 2 times the number of neighbors of A (in
the condensed graph). This leads directly to the second point.

High Number of Neighbors. Whereas in railway networks the number of neighbors
for each station is relatively small (less than 5) for most of the stations [DPW08],
airports tend to have many more neighbors. So, when mixing this with the previous
observation, we end up having extremely many nodes per airport. Even worse, if we
consider variable transfer times we end up having Θ(n2) edges between the route nodes
of the airport A, if A has n neighbors. For small n—like in railway networks—this is
not such a big problem but in flight networks this weighs heavier.

Constant Transfer Time Assumption is Unrealistic. If we bring back to mind how the
transfer time criterion is modeled into the realistic railway model (with constant trans-
fer times), namely that we charge the transfer time for entering a train (no matter if we
transfer between trains or enter a train the first time of the journey), this is another
drawback concerning realism. Usually, if we board a flight at the departure airport
we have to spend more time for checking in our luggage and security checks than for
switching flights which only requires us to walk from one gate to another. For that rea-
son, modeling realistic airport procedures requires at least two different types of times
per airport: Check-in time to account for the whole procedure involving check-in, secu-
rity checks and the waiting time at the gate and, secondly, a transfer time which only
accounts for the time needed to switch planes within the airport. Another desirable
issue having modeled is a third type of time for getting off at the destination airport.
This time should cope for customs and baggage claim. While this can be modeled
into the realistic railway model by changing the edge weights of the edges connecting
route nodes to station nodes, incorporating a dedicated transfer time could only be
done by inserting transfer edges between all route nodes. Here, the high number of
neighbors per airport leads again to unnecessarily many edges in the graph.

These problems lead us to proposing a family of entirely new models for flight

28

3.4. The Flight Network

timetables.

3.4.3. A Flexible Model for Flight Networks

The basis of our flight model is a flight timetable (C,A,F , ζ, Π). Furthermore, we
introduce three different time functions to model the various procedures in an airport.

• Check-in time T check-in : A → R+
0 .

This accounts for the whole process from arriving at the airport until the depar-
ture of the plane composed of checking-in, passing security checks (additionally
maybe customs) and also the accounted waiting time at the gate plus the board-
ing time of the plane.

• Check-out time T check-out : A → R+
0 .

This accounts for the reverse process: Leaving the plane, passing customs while
leaving the gate area and finally the time required to claim baggage.

• Transfer time T transfer : A → R+
0 .

This time accounts for the time transferring between two planes. Usually, this
only involves leaving the plane, walking to another gate and boarding the new
plane.

Note that we assume that all three time functions do not depend on flights. In favor
of more realism, this assumption is weakened in the second and third versions of our
model.

Model I: Constant-Time Model. The constant-time model uses the time functions
exactly as defined above. For each airport A ∈ Awe insert a super-node into the graph
called terminal node. Since all flights either begin or end at our airport (Remember,
there are no routes), we insert two more nodes per airport: First, a departure node
which resembles flight departures at A and second, an arrival node to model arrivals.

Edges are created as follows. There are three edges within each airport. A check-
in edge is inserted from the terminal node to the departure node and its weight is
set to T check-in(A). A check-out edge from the arrival node to the terminal node with
weight T check-out(A) is inserted and finally a transfer edge from the arrival node to the
departure node with weight T transfer(A) is created.

The actual flights are modeled as flight edges from the departure node of airport
A1 to the arrival node of airport A2 if and only if there is at least one elementary
connection from A1 to A2 in the timetable. The edge weight is time-dependent and
interpolation points are created in the same fashion as for the time-dependent railway

29

Chapter 3. Models

Airport 1 Airport 2

Airport 3

Figure 3.8.: An example of the constant-time flight model with 3 airports. Terminal nodes are

purple, departure nodes green and arrival nodes yellow. Bold edges are time-dependent

and model flights between the specific airports while the thin time-independent edges

allow for check-in, check-out and transfers within the airports.

models. Remember that we have to use τ∗1 and τ∗2 for calculating the length of the
flight to account for the different timezones of A1 and A2.

An example of the constant-time model is shown in Figure 3.8. While this model
yields very small graph sizes its drawback is the assumption that check-in and transfer
times are constant for all flights. This is addressed by the flight-class model.

Model II: Flight-Class Model. At first glance, assuming constant times for check-
in, check-out and transfers seems reasonable. However, this might not be general
enough. Imagine at an airport A having domestic flights and flights abroad. Probably
the check-in time is much smaller if we plan on boarding a domestic flight because of
heavier security measures and additional customs for flights abroad. This difference
also applies to transfers from a domestic flight to a flight abroad and vice versa. For
that reason, we augment the definition of T check-in, T check-out and T transfer to cope with
different flight classes. These augmentations are then incorporated into the flight-class
model.

Similarly to the concept of routes in the realistic time-dependent railway model, we
partition the set of flights F into different flight classes. The set of flight classes is
denoted by C. The equivalence relation ∼ on the set of flights according to which two
flights are put into the same class is not predefined. An example might be F1 ∼ F2 ⇔ F1

and F2 are domestic flights, i.e., their source and target airports are both in the same
country. With flight classes defined, the time functions are extended as follows. The
check-in time function is extended to T check-in : A × C → R+

0 , the check-out time

30

3.4. The Flight Network

Airport 1 (EU) Airport 2 (EU)

Airport 3 (US)

d

d

a

a

a

d

d

a

d a ad

Figure 3.9.: The flight-class model with 3 airports (2 in the European Union and 1 in the United

States) and 2 classes, domestic flights (nodes tagged with a ‘d’) and flights abroad

(nodes tagged with an ‘a’). The nodes are colored the same way as in Figure 3.8

(departure nodes are green, arrival nodes yellow). The flight edges are always incident

to departure and arrival nodes belonging to the same flight class as the flights on the

respective edges. Since the US airport has no incoming or outgoing domestic flights,

the dashed nodes together with the gray edges would not be created in the real graph.

function is extended to T check-out : A× C→ R+
0 as well and the transfer-time function

is extended to operate on pairs of classes T transfer : A× C× C → R+
0 to account for

transfers between flights of arbitrary pairs of flight-classes.

To integrate the augmentations of the time-functions into the flight model, the cons-
tant-time model is modified as follows. Let A ∈ A be an airport. Instead of one
departure and arrival node we insert k = |C| departure resp. arrival nodes—one for
each flight class ci ∈ C. The departure and arrival nodes are connected to the termi-
nal node by check-in and check-out edges like in the constant-time model. As edge
weights we use T check-in(A, ci) and T check-out(A, ci) for each of the classes. To model
transfers between arbitrary flight-classes, for each pair ci, cj of flight-classes we in-
sert a transfer edge from the arrival node of class ci to the departure node of class
cj weighted with T transfer(A, ci, cj). Note that this generates Θ(k2) edges. Finally, the
time-dependent flight edges between two airports A1 and A2 are inserted with respect
to the correct classes, i.e., if the flight is of class c, the departure node belonging to
c at A1 is used as tail while the arrival node of the same class at A2 is used as head
of the edge. Interpolation points on the functions of the flight edges are created the
same way as in the constant-time model while only elementary connections belonging

31

Chapter 3. Models

to the proper flight class are considered.
In order to avoid the creation of unnecessary nodes, at each airport A we can omit

the creation of departure and arrival nodes (and their incident edges) which belong
to flight classes that do not contain any outgoing resp. incoming connections from/to
the airport A.

Figure 3.9 shows a small example of a flight-class model involving two classes: do-
mestic flights and flights abroad. While this version of the flight model is the one we
finally choose for our experiments, we provide a further augmentation that supports
variable transfer times between arbitrary flights. However, as we work out, the dis-
advantage regarding graph size, which was an argument against using the railway
models in the first place, reoccurs in this approach.

Model III: Variable-Time Model. We introduce the variable-time model by general-
izing the flight-class model. Assume that each flight F ∈ F is not equivalent to any
other flight. Then, the set of flight classes consists of singleton sets containing exactly
one flight and it holds that |C| = |F |. This already allows us to describe specific check-
in, check-out and transfer times for each flight separately by using T check-in, T check-out

and T transfer due to the definitions from the flight-class model. Therefore, the con-
struction rules of the graph do not need to be modified and can be directly adapted
from the flight-class model.

It shall be noted that using this model, the graph may grow fairly large. For each
airport A having n neighbors the number of nodes increases to Θ(n) while the number
of edges is even in the magnitude of Θ(n2). This is comparable to the realistic time-
dependent railway model with variable transfer times.

Discussion. We showed that the realistic time-dependent railway approach is not
well suited for designing an efficient flight model. Hence, we introduced a family
of three flight models beginning with a simple constant-time model where check-in,
check-out and transfer times do not depend on flights at all, to a model incorporating
fully variable transfer times for arbitrary flights. While the constant-time approach is
too simplistic and the variable-time approach too general, a good trade-off between
realism and graph size is the flight-class model. Hence, we use this model in our
thesis. However, as flight classes we do not choose domestic flights and flights abroad,
but rather different airline alliances (See Appendix B.3). This has two reasons: First,
our timetable data is not equipped with the information of flights being domestic or
not and, second, our raw timetable data is a combination of timetables of various
airline alliances. Furthermore, it is a reasonable assumption to have different transfer
times between flights of the same alliance and for flights between different alliances.

32

3.5. Combining the Networks

3.5. Combining the Networks

In the previous sections we introduced models for each of the networks we use in our
multi-modal routing algorithms. However, computing a multi-modal query involves
all networks at the same time. Hence, we have to combine the networks into one multi-
modal network. In this section we assume that we already created the road, railway and
flight graphs. To clear things up, we summarize which model we use for each of the
network types:

• Road Network.
We use the time-independent model as introduced in Section 3.2 which is the
canonical way to build a road graph. The road graph is denoted by Groad.

• Railway Network.
The realistic time-dependent model with constant transfer times is used as intro-
duced in Section 3.3.4. The graph is denoted by Grail.

• Flight Network.
For the flight network we use the flight-class model as presented in Section 3.4.3
and it is denoted by Gflight.

• Multi-Modal Network.
After combining the graphs, the resulting network is a multi-modal network.
To make multi-modal graphs better distinguishable from uni-modal graphs we
typeset multi-modal graphs with bold letters: G = (V , E).

The section is made up as follows. Since combining the graphs requires us to insert
links between pairs of nodes of different networks that are geographically next to
each other, we introduce the Nearest Neighbor Problem in a theoretical fashion
and present an efficient algorithm for solving it on huge datasets. In the subsequent
section we then show how to combine the different networks. The combination process
can be described by two graph operations: Merge and link (not to be confused with
the merge- and link-operations on functions as presented in Section 2.1) where the
merge-operation basically unites two graphs and the link-operation inserts link edges
to connect them. For the determination for which pairs of nodes link edges should be
created, the Nearest Neighbor Problem is used. Finally, we end this chapter with a
summary of the main results.

3.5.1. The Nearest Neighbor Problem

In this section we give a formal definition of the Nearest Neighbor Problem and
present an algorithm for solving it efficiently on huge instances.

33

Chapter 3. Models

Let Rn be the n-dimensional vector space over R and P ⊂ Rn a finite set of vectors.
The set P is called candidate points. Furthermore, let d : R×R→ R be a metric on Rn.
The Nearest Neighbor Problem is then defined as follows.

Definition 2 (Nearest Neighbor Problem). Given a metric space (Rn, d), a set of candi-
date points P on Rn and a set Q of query points on Rn we ask for a map f : Q→ P with the
property

f (q) := p ⇐⇒ ∀p′ ∈ P : p 6= p′ ⇒ d(p′, q) ≥ d(p, q). (3.6)

In other words, for each query point q ∈ Q we try to find the nearest candidate point
p ∈ P wrt. the metric d.

We now present two algorithms for solving the Nearest Neighbor Problem. First,
we present a linear search algorithm having time complexity O(|P|) per query. This is
the naive approach for solving the problem. However, with respect to our application
this turns out to be too slow, since both P and Q are too large. Therefore, we present
a clever data structure, called k-d-trees (k dimensional trees) introduced in [Ben75].
k-d-trees are basically an augmentation of binary search trees to k dimensions. Using
a k-d-tree on P, the algorithm can be accelerated to answer queries from Q in average
time complexity O(log |P|).

Linear Search. The naive approach to solve the Nearest Neighbor Problem is to
take each query point q ∈ Q and to scan the list of candidate points P for the the
point having minimum distance to q. Basically, this requires the distance computation
between each pair (q, p) ∈ Q× P of points. This method is called linear searching and
is illustrated in Algorithm 1.

While the implementation of this algorithm is straightforward, its running time of
O(|Q| · |P|) is not feasible for large sets of P and Q. Our biggest networks yield
candidate sets P of up to 50 million points and query sets Q of more than 30 thousand
points. This would result in over 150 · 109 distance computations which is too many
to be solved in reasonable time.

Using k-d-Trees. k-d-trees, which is an abbreviation for k-dimensional trees, are a
data structure introduced by Bentley in [Ben75] specifically designed for geometric
search algorithms. We do not give a detailed description of the data structure at this
point. The idea is to generalize a binary search tree to k dimensions, which is then
able to contain k-dimensional vectors. Queries of k-dimensional points can thus be
answered in average logarithmic time. How this data structure can be used to solve
the Nearest Neighbor Problem is briefly mentioned in [Ben75]. A more extensive

34

3.5. Combining the Networks

Algorithm 1: Linear Search
Data: Finite sets of candidate points P and query points Q. A metric d.
Result: A map f : Q→ P assigning each query point its nearest neighbor.

forall q ∈ Q do1

mindist← ∞2

minpoint← NULL3

forall p ∈ P do4

if d(q, p) ≤ mindist then5

mindist← d(q, p)6

minpoint← p7

f (q)← minpoint8

tutorial on k-d-trees in conjunction with the Nearest Neighbor Problem is given
in [Moo91], while our implementation is based on [Ken04] which is not only able to
compute the single nearest neighbor of a query point q, but also the m closest points
to q. Our method for solving the Nearest Neighbor Problem is thus reduced to
Algorithm 2.

Algorithm 2: k-d-Tree Search
Data: Finite sets of candidate points P and query points Q. A metric d.
Result: A map f : Q→ P assigning each query point its nearest neighbor.

T← new k-d-tree1

T.Build (P)2

forall q ∈ Q do3

f (q)← T.Query (p)4

The algorithm operates in two phases. First, a k-d-tree is created with all candidate
points P. Second, for each query point q ∈ Q a query on the data structure is stated
which yields the nearest neighbor of q. Since each query can be answered in average
time O(log |P|), the running time of the algorithm reduces to O(|Q| log |P|) which
takes only a few seconds even on the largest instances of our real world data.

With the theoretical foundations for solving the Nearest Neighbor Problem laid
out, we now present our approach on combining each of the networks Groad, Grail and
Gflight into a multi-modal network G.

35

Chapter 3. Models

3.5.2. Merging and Linking

In this section we assume that each of the source networks is equipped with functions
coordx : V → R and coordy : V → R which map every node to its geographical
location given in x and y coordinates represented as latitude and longitude values.
For our experiment this data was available for every network type.

The process of combining the networks can be described as an application of two op-
erations: The merge-operation and the link-operation, whereas the link-operation might
be applied multiple times. While the merge-operation basically unifies the node and
edge sets of multiple graphs, the link-operation takes care of inserting appropriate link
edges to connect the networks together.

The Merge-Operation. Given a number of uni-modal graphs G1, . . . , Gn, each with
node and edge sets Gi = (Vi, Ei), the merge-operation yields a multi-modal graph G =
(V , E) where the node and edge sets are simply the union of the node and edge sets
of the input graphs, thus V := V1 ∪ · · · ∪ Vn and E := E1 ∪ · · · ∪ En. To still be able
to distinguish between different node types in the resulting graph we introduce a
function label : V ∪ E→ Lnode ∪ Ledge which assigns each node/edge a label.

The set of node labels consists of ROAD NODE, RAIL NODE and FLIGHT NODE. The set of
edge labels contains ROAD EDGE, RAIL EDGE, FLIGHT EDGE, a new edge type LINK EDGE

(we will address later) and additionally the labels CAR EDGE and FOOT EDGE. The rea-
son for having both ROAD EDGE and CAR EDGE/FOOT EDGE as edge labels is the way we
store edges in the road graph. In Section 3.2 we worked out that to reduce space con-
sumption, we only store one edge in the road graph for each road segment. To be able
to have different car and foot weights, we assign two separate weights to the edges.
Therefore, an edge e from the road network results in label(e) = ROAD EDGE, how-
ever, CAR EDGE and FOOT EDGE are still required by our multi-modal query algorithms
(cf. Section 4.3.2).

Additionally, we introduce another flag dij, which indicates whether a certain node
v ∈ V can be used as a source resp. target node for Dijkstra’s algorithm (or any
other shortest path algorithm). While in the road network every node is a legitimate
source or target node, in both the railway and flight graphs only station and terminal
nodes are used as nodes to instantiate shortest path queries. Hence the dij flag is set to
false for all other nodes in the rail and flight networks. Besides, the dij flag will play
an important role for the link-operation because link edges are only inserted between
nodes having the dij flag set to true.

When combining multiple uni-modal graphs, at first the merge-operation is applied
on all input graphs. This results in a multi-modal graph G. The next step is to

36

3.5. Combining the Networks

ROAD NODE

RAIL NODE FLIGHT NODE

link

link

link

Figure 3.10.: Our approach for linking the different network types together when creating a multi-

modal network. Each arrow represents a link-operation between its respective nodes.

repeatedly apply the link-operation which links two subgraphs of different type in G
together by inserting link edges.

The Link-Operation. The link-operation involves the process of inserting links be-
tween the different networks contained in G. This is done through inserting link
edges. These links indicate where we are able to switch between networks. One execu-
tion of the link-operation only links two networks together. Hence, for a multi-modal
network consisting of more than two networks, the link-operation has to be applied
multiple times. While in general this can be done in arbitrary ways, the procedure for
our specific types of networks is illustrated in Figure 3.10. So, a multi-modal graph
consisting of a road, a railway and flight network would require three link-operations:
Linking the railway network to the road network, linking the flight network to the
railway network and also linking the flight network directly to the road network. We
describe the link process using the example of linking a railway network to the road
network.

When we link the railway network to the road network, for each station in the
railway network our goal is to find a node in the road network that is as close to the
station as possible. Then we can insert a link between the two nodes. Finding the
nearest road node for a station node is exactly an instance of the Nearest Neighbor
Problem derived in Section 3.5.1. The set of candidate nodes P consists of all nodes
v ∈ V with Lnode(v) = ROAD NODE, whereas the set Q of query points is the set of all
station nodes, thus v ∈ V with Lnode(v) = RAIL NODE and dij(v) = true.

More generally, if we want to link a network of type T1 to a network of type T2,
we define Q := {v ∈ V | Lnode(v) = T1 and dij(v) = true} and equivalently P :=
{v ∈ V | Lnode(v) = T2 and dij(v) = true}. Solving the two dimensional Nearest
Neighbor Problem on (P, Q, d) with an appropriate metric d (we explain what we
mean by “appropriate” right after this paragraph) yields for each node q ∈ Q of type
T1 the closest node p of type T2 from P. Because it is possible that there might be no
connection between two nodes in the real world (e.g., not every airport has a railway

37

Chapter 3. Models

station close by), we drop the pair (q, p) if d(q, p) > dmax, where dmax is a threshold
parameter indicating the maximum distance for which links should still be inserted.
Finally, we insert two edges e1 = (p, q) and e2 = (q, p) into the graph with both having
weight d(p, q)/s where s denotes the average walking speed of a pedestrian.

Please note that the link-operation is not symmetric. Linking the railway network
to the road network implies that for each station one link to the nearest road node
is inserted. If we linked the road network to the railway network, we would end up
inserting links for each node in the road network (each intersection, for that matter) to
the nearest railway station—which is most probably not what we wanted to do. For
that reason the direction of the arrows in Figure 3.10 is important.

Distance Metrics. When describing the link-operation we did not commit ourselves
to a specific metric d for the nearest neighbor search. Because our x and y coordinates
are in geographical form (latitude and longitude), using the Euclidean metric leads
to bad results when computing d(p1, p2). Hereby, the error in distance increases the
more p1 and p2 lie apart. The solution to this problem is to use geodetic distances on
a solid resembling the form of earth, e.g., the GRS80-ellipsoid [Mor92] which is also
used by the Global Positioning System (GPS).

While using the GRS80-ellipsoid directly as metric in the nearest neighbor search
would yield the most accurate results, the implementation of the k-d-tree [Ken04]
available to us only supports the Euclidean metric. However, as mentioned in Sec-
tion 3.5.1, we are able to retrieve the m nearest neighbors for a query point q. Because
for small distances the error using the Euclidean metric is relatively small, we use a
cascaded approach. For each query point q we compute all m nearest neighbors Pq

according to the Euclidean metric using a k-d-tree and select the best one from Pq by
applying the linear search algorithm (cf. Algorithm 1) on Q′ := {q} and Pq using the
GRS80-metric. For small values of m (we set m = 100) this produces results of high
quality while still being reasonably fast.

3.6. Summary

In this section we introduced our multi-modal model. First, for each component of the
multi-modal network (road network, railway network and flight network), we gave an
overview over established models (as far as they existed) and chose the model best
suited for our scenario. Furthermore, we showed how these models can be combined
in order to obtain a multi-modal network. These are the main results.

• Our road network consists of time-independent car and foot edges, whereby

38

3.6. Summary

we decided against using multi-edges for roads that are utilized by both cars
and pedestrians. Instead, we use only one edge per road segment but with two
distinct weights (car and foot). This allows us saving some space.

• Our railway network is made up of the realistic time-dependent approach with
constant transfer times. The reason for deciding against the time-expanded ap-
proach is our requirement for bidirectional routing. Not using variable transfer
times is mainly due to the fact that the variable transfer times model contains
no designated station nodes we can use to link the graph to other networks.
Furthermore, our raw timetable data only contains constant transfer times.

• The railway models are not suited for usage as flight model. This is due to
the fact that flight timetables differ from railway timetables in the sense that all
routes have length 1. Furthermore, procedures at airports differ significantly
from procedures at railway stations, which requires us to incorporate different
types of transfer times into the flight model. Hence, we developed a new family
of time-dependent flight models, from which the flight-class model is used as
our model of choice.

• Combining each of the different networks into a huge multi-modal graph in-
volves two operations: Merge and link, while the latter may need repeated ex-
ecution. In short, the nodes and edges of the graphs are united and link edges
are inserted to connect the networks. Furthermore, linking requires an efficient
way of solving the Nearest Neighbor Problem. We use a cascaded approach
therefor: We compute the m nearest neighbors using the imprecise Euclidean
distance metric with a fast algorithm on k-d-trees. For refinement, we then use
a linear search algorithm on the result set using the GRS80-ellipsoid for a more
precise metric.

39

Chapter 4
Routing

In this chapter we introduce routing algorithms. We start by giving a formal definition
of the Earliest Arrival Problem and show that it is equivalent to the Shortest
Path Problem on our graphs. Next, we tend to the simplest case for solving the
Shortest Path Problem: Uni-modal time-independent networks. Here, Dijkstra’s
algorithm [Dij59] yields optimal solutions. This algorithm can be augmented to cope
with time-dependent networks [CH66]. We discuss two types of queries on time-
dependent networks: Time queries, where we are interested in the best route for a
fixed departure time τ and profile queries where we demand best paths for all possible
departure times τ within the time period Π. Profile queries can be computed by a
label correcting algorithm that is very similar to Dijkstra’s algorithm [Dea99].

We then turn toward multi-modal routing, which is the main part of this chapter.
First, we lay some theoretical foundations. We show that using an uni-modal route
planning algorithm without modifications on a multi-modal graph can lead to very
undesirable paths. For example, a computed shortest path may ask us to take a car
between two train connections. For that reason we augment the Shortest Path Prob-
lem itself which leads us to the definition of the Label Constrained Shortest Path
Problem. A proper definition of the Label Constrained Shortest Path Problem
involves the concept of languages introduced in Section 2.2. We summarize some
theoretical results about the complexity of the Label Constrained Shortest Path
Problem and derive that the Label Constrained Shortest Path Problem can be
solved in polynomial time when we restrict ourselves to regular languages and prove
this by introducing a further generalization of Dijkstra’s algorithm. Its basic idea
is to use the product network of the multi-modal graph together with the transition
graph of a finite automaton. However, this yields graph sizes which are too large to
fit into memory. Hence, in the last part of this chapter, we modify the multi-modal

41

Chapter 4. Routing

algorithm in a way that the product network is not required explicitly. Thus, we are
able to reduce the amount of required memory significantly.

4.1. The Earliest Arrival Problem and Shortest Paths

When we are planning a journey from s to t, there might be diverse criteria as to
which we choose the ‘best’ route. The first goal coming to mind, is minimizing the
travel time, i.e., arriving as early as possible at the target. But there might be many
other strategies which are reasonable. For example in a scenario where we plan a
trip by car, we could be interested in minimizing the mileage in order to save gas.
But the amount of required fuel does not necessarily depend on the mileage alone,
but on other things like speed profiles. In a railway scenario we could be interested
in different criteria as well: A fast journey, a cheap journey, a journey having as few
transfers as possible, a journey involving scenic routes, etc. The options are endless.

To make it even more complicated, we could be interested in a combination of
several criteria. For example, when planning a journey by railway, on one hand, we
would like to be fast, but on the other hand, we do not want to spend too much
money. So besides a fast route we are also asking for a cheap solution (maybe involving
special price offers for certain routes). In a multi-modal scenario where we have a car
available, we could be interested in a fast route that requires us to use the car as shortly
as possible; Or maybe we rather prefer flying than using the train, so we are interested
in a fast journey using railways as few times as possible. Hence, the variety is even
higher when combining different optimization goals.

Using multiple criteria for optimization in route planning is called multi-criteria
search [MW01, MS07, DMS08] and is not covered in our work. We restrict ourselves to
single-criteria search algorithms. Beyond that, we restrict ourselves to optimizing travel
time alone.

4.1.1. The Earliest Arrival Problem

We now give an informal definition of the Earliest Arrival Problem. The problem
definition is deliberately brief in order to be applicable to all network types that were
introduced in Chapter 3.

Definition 3 (Earliest Arrival Problem). Given a time-independent or time-dependent
network, source and target points s and t in the network, as well as a departure time τ < Π,
we ask for a route in the network with the following properties.

(i) The route must start at s,

42

4.1. The Earliest Arrival Problem and Shortest Paths

(ii) the departure time at s is τ,

(iii) the route ends at t and

(iv) the length (travel time) of all other routes satisfying the properties (i)–(iii) must be bigger
or at least equal.

The demand (ii) can be dropped, if the underlying network is time-independent.

In other words, from all possible routes in the network from source s to target t
(starting at time τ), we seek the route that arrives at t first. The term route in the
above definition depends on the network type. For example, in road networks a route
is simply a sequence of road segments, whereas in rail or flight networks a route is
an itinerary that tells us which trains or flights to use and where to transfer between
trains/flights. In a multi-modal network, street routes and itineraries are combined.

Itineraries. An itinerary is a sequence I of elementary connections from the railway
or flight timetable, such that, for consecutive elementary connections ci, ci+1 ∈ I it
holds that the arrival station or airport of ci matches the departure station or airport
of ci+1. This yields a chain of elementary connections we can use to travel through
the network. A more extensive and formal definition of a railway itinerary is given
in [PSWZ07]. The same definition also applies to flight itineraries.

4.1.2. Shortest Paths

Shortest paths are of fundamental interest because of their many applications to real
world problems. In our case, the Earliest Arrival Problem can be reduced to the
Shortest Path Problem, as we show later in this section. But before we get into that,
we give a formal definition of the Shortest Path Problem.

Definition 4 (Shortest Path Problem). Given a weighted, directed time-independent,
time-dependent or mixed graph G = (V, E), a source node s ∈ V, a target node t ∈ V
and a departure time τ < Π, we ask for a path P = [v1, . . . , vk] with the following properties.

(i) The path begins at s, thus v1 = s,

(ii) the path ends at t, thus vk = t and

(iii) for all paths P′ having the properties (i) and (ii) it has to hold that len(P′, τ) ≥ len(P, τ).

If G is time-independent, τ is ignored and the length of a path P is obtained by len P.

There are a few closely related problems which are variations of the Shortest Path
Problem. We briefly mention the versions that are relevant for our work.

43

Chapter 4. Routing

• Many-To-Many-Shortest Path Problem.
This is a generalization of the Shortest Path Problem. Instead of one node s
and t we are given a set of source nodes S ⊆ V and a set of target nodes T ⊆ V.
We now ask for a shortest path Ps,v for each pair (s, t) ∈ S× T. In multi-modal
routing the Earliest Arrival Problem will actually transform to this version of
the problem.

• One-To-All-Shortest Path Problem.
This is a special case of the Many-To-Many-Shortest Path Problem where S is
a singleton set consisting of one source node s and T = V is the set of all nodes.
Hence, we are asking for shortest paths Pv to every node v ∈ V. Because the
edge set of all resulting paths T =

⋃
v∈V Pv forms a tree, we might also say that

we compute a shortest path tree.

• All-Pairs-Shortest Path Problem.
This is a version of the Many-To-Many-Shortest Path Problem where both S
and T are the complete node set V of the graph. Having the All-Pairs-Shortest
Path Problem solved automatically includes solutions for all instances of the
Shortest Path Problem in the graph. However, (pre-)computing shortest paths
for all pairs of nodes tends to be very expensive both regarding memory con-
sumption and execution time. Hence, this is not a viable approach.

Each of these versions of the Shortest Path Problem can be solved by Dijkstra’s
algorithm [Dij59]—possibly requiring repeated execution. Furthermore, as we work
out in Sections 4.2.2 and 4.3.2, the algorithm can be augmented to work with time-
dependent networks and even further to multi-modal networks.

We wind up this section by reducing the Earliest Arrival Problem to the Short-
est Path Problem. We do this for each of our networks by applying the Shortest
Path Problem to the graph obtained by the model we chose for the respective net-
work (cf. Chapter 3). However, to keep things brief, we do not give extensive formal
correctness proofs for the established models.

Road Networks. The road network is modeled in a straightforward way. A shortest
s-t-path in the graph maps directly to a route between two intersections. Note that
due to the two weights in our graphs (car and foot travel times), we need to decide
beforehand which of the weights to evaluate. Using car weights for some and foot
weights for other edges would correspond to mixing both modes of transportation.

Railway Networks. In the time-dependent railway network (with or without realistic
transfer times), a (time-dependent) shortest path leads to an itinerary as follows. Each

44

4.2. Uni-Modal Routing

time a connection edge is used in the network the interpolation point that was used
for evaluating the edge yields a connection from the timetable that was used on the
respective edge. Since the only way to get from one station to another is by using a
connection edge (in each version of the model this is true), the sequence of obtained
connections from the timetable forms a valid itinerary. Furthermore, if the path in
the graph is a shortest path with some departure time τ from the source station, this
itinerary is a solution to the Earliest Arrival Problem with departure time τ. More
extensive proofs can be found in [BJ04] and [PSWZ07].

Flight Networks. Although the flight network is new, we can use the same correct-
ness proof as for the realistic time-dependent railway model for large parts. Hence,
we restrict ourselves to giving some informal notes.

Since two airports A1 and A2 are connected by a time-dependent flight edge in the
graph if and only if there is a flight in the timetable from A1 to A2, a path in the flight
graph always yields a valid itinerary. Like in railway graphs, the actual flight taken
on that edge can be obtained from the interpolation point that was evaluated on the
respective flight edge. Furthermore, the edges and nodes within the airport are exactly
modeled to conform with the check-in, check-out and transfer time restrictions of each
airport (depending on the flight model they are of miscellaneous complexity). Since
these restrictions also apply to any itinerary wrt. the Earliest Arrival Problem,
we eventually obtain that shortest paths in the flight graph correspond to itineraries
solving the Earliest Arrival Problem and vice versa.

Mutli-Modal Networks. We have not made entirely clear how a best route on a multi-
modal network looks like. If we allowed arbitrary (shortest) paths in the multi-modal
network this could lead to undesirable results because not every mode of transporta-
tion may be available at any point in a real world scenario (for example a car between
two trains). We will address this issue in Section 4.3.

4.2. Uni-Modal Routing

This section covers the classic case, where we have an uni-modal graph G = (V, E).
There have been extensive studies regarding routing in uni-modal networks, hence we
only give a brief introduction of Dijkstra’s algorithm and then turn toward multi-
modal shortest paths.

45

Chapter 4. Routing

Algorithm 3: Dijkstra’s algorithm
Data: A weighted graph G = (V, E), s ∈ V and T ⊆ V.
Result: Shortest paths from s to all t ∈ T.

Q← a priority queue of nodes1

Q.insert(s, 0)2

settled-targets← ∅3

while not Q.isEmpty() do4

v← Q.dequeue()5

if v ∈ T then6

settled-targets← settled-targets ∪ {v}7

if settled-targets = T then8

stop ; // shortest paths found9

forall outgoing edges e = (v, w) do10

if w is a new node then11

Q.insert(w, dists(v) + w(e))12

pre(w)← v13

else14

if dists(v) + w(e) < dists(w) then15

Q.decreaseKey(w, dists(v) + w(e))16

pre(w)← v17

stop ; // no shortest path found18

4.2.1. Time-Independent Routing

Here we are given an uni-modal graph G with time-independent edge weights w(e)
on all edges e ∈ E. We present Dijkstra’s algorithm first introduced in [Dij59]. See
Algorithm 3 for pseudo code.

Terminology. We call a node v ∈ V settled by the algorithm, if it has been extracted
from the priority queue in Line 5. Note that a settled node never gets reinserted
into the queue. Thus, each node is settled at most once. The set of all settled nodes
during one run of the algorithm is called search space. An edge which is touched by
the algorithm in Line 11 is called a relaxed edge. The label dists(v) assigns each node
its distance from the source s during computation and pre(v) sets the preceding note

46

4.2. Uni-Modal Routing

of v along the path. At the beginning, these two labels have to be initialized for all
nodes v ∈ V with dists(v) = ∞ and pre(v) = null, respectively. After the algorithm
terminates, dists(t) contains the length of the shortest s-t-path and the path can be
constructed by walking along the pre-labels beginning at t until s is reached.

Solving Variants of the Shortest Path Problem. Dijkstra’s algorithm solves each
of the Shortest Path Problem variants introduced in Section 4.1.2. For single-source
version of the problem, we stop as soon as all target nodes t ∈ T have been settled
(depending on T, this is either a single target, a set of targets or the whole graph).
For the variant of the problem where we have a set S of source nodes, we repeatedly
execute Dijkstra’s algorithm for each of the source nodes s ∈ S yielding shortest
paths from s to all targets T per run.

However, regarding the multi-source multi-target version of the problem, we are
often only interested in one path of minimal length from S to T. Hence, a single run
of Dijkstra’s algorithm is sufficient. Line 2 is substituted by inserting all nodes from
S into the priority queue with key 0 and stop as soon as all target nodes from T have
been settled. Selecting the path of minimal distance from all target nodes then yields
the desired solution.

Negative Edge Weights. It shall be noted that for the correctness of Dijkstra’s al-
gorithm we requires the edge weights to be all positive or 0. Having negative edge
weights may, in general, lead to cycles of negative length in the graph. There are other
algorithms like the Bellmann & Ford algorithm [Jr.56, Bel58] that can handle nega-
tive weights. However, in all of our graphs negative weights do not occur, hence, we
do not look into this issue further.

4.2.2. Time-Dependent Routing

We now augment Dijkstra’s algorithm to cope with time-dependency. We present
two variants: Time queries to compute a shortest path for fixed departure time τ and
profile queries, where we are interested in shortest paths for all times of day.

Time Queries. The time-dependent version of Dijkstra’s algorithm is almost iden-
tical to the time-independent version as illustrated in Algorithm 3 when computing
time queries. However, it is important that all edge functions on the input graph fulfill
the FIFO-property (cf. Section 3.3.4, page 25). The only changes to the algorithm that
need to be made are the following two.

• We need to supply a departure time τ as additional input.

47

Chapter 4. Routing

• To evaluate the edge weights, we have to consider the current time at which we
encounter the respective edge. Let e = (v, w) be an edge of which the weight has
to be evaluated (cf. Lines 12, 15 and 16). Then the time at which we evaluate the
function fe of the edge e is the departure time τ plus the distance along the path
to v (available to our algorithm by dists(v)). Hence w(e) has to be replaced by
fe(τ + dists(v)) at all occurrences in Algorithm 3.

Profile Queries. Using the previously described version of the time-dependent query
algorithm yields only shortest paths for one particular departure time τ. While this
seems to be a canonical generalization of the time-independent case, there is another
type of query in time-dependent graphs, where we are not only interested in the
shortest path at one time point, but at all times of day.

For example in a railway network we state 8 o’clock as departure time τ for a query.
Let’s say there is a train departing at 8:00 to our destination takes 2 hours. But maybe
there is another train departing at 9 o’clock that takes only 1 hour and 10 minutes.
Taking the second train would be a suboptimal solution to the Earliest Arrival
Problem (since the arrival time is 10 minutes later), but its sheer travel time is 50
minutes shorter. So, maybe it would be nice to present the user with the travel time
for each possible departure time τ < Π. In other words, the result of the query should
be a piecewise linear function f itself, where each interpolation point represents a
shortest path for that particular time. Besides generating user friendly output, profile
queries are necessary for some of our speed-up techniques where the distance of a
node at all times of day is required.

Augmenting Dijkstra’s Algorithm. Algorithms for solving profile queries in time-de-
pendent networks have been introduced in [Dea99]. According to [Dea99], a profile s-
t-query can be computed as follows. Let dist∗s (v) denote the profile function containing
the distance of v from s at all times of day. Then we modify Dijkstra’s algorithm by
using dist∗s (v) as distance labels on the nodes. As key of the priority queue we use
the lower bound dist∗s (v) of the respective distance label f . In the beginning, the source
node s is inserted with the (constant) zero-function f0 as label, while all other nodes are
initialized with f∞. Then for each extracted node v with distance label fv := dist∗s (v)
we iterate over all outgoing edges e = (v, w) and compute the temporary function
f new
w := fv ⊕ fe (link-operation) where fe denotes the function assigned to the edge e.

Now, this is the crucial difference to the classic variant of Dijkstra’s algorithm: If
f new
w ≥ fw does not hold, then f new

w is an improvement at least for one departure time
over the day. Hence, we insert w into the priority queue with the label min(fw, f new

w)
(merge-operation). There are two things to be noted: First, an untouched node is

48

4.2. Uni-Modal Routing

τ

f (τ)

Πp3p2p1

w

(a) Before the merge.

τ

f (τ)

Πp3p2p1

w

(b) After the merge.

Figure 4.1.: This figure illustrates the problem when merging a piecewise linear function (black) with

a time-independent weight w (blue). The left side shows both functions in their original

form, while the right side shows the resulting function after computing min(f , w). The

outcome is no longer homogeneous, as not all segments of the functions have the same

gradient γ.

always inserted since f new
w ≥ fw never holds for fw = ∞. Second, it is possible that a

node is inserted into the queue multiple times during one run of the algorithm. Thus,
the stop criterion must be modified. We can only stop as soon as the lowest key in the
priority queue is larger than the upper bound of the function ft assigned to the target
node t. Then we can guarantee that there is no undiscovered, yet improving path to t.

Problems. The above algorithm makes use of both the link- and merge-operations. A
problem arises when our graphs contain time-dependent edges using piecewise linear
functions with different gradients. While the time-dependent edges modeling rail or
flight connections have a gradient of −1, our graphs also contain ‘constant’ edges that
are in fact represented as constant functions having gradient 0 (e.g., in the railway
model the edges from station to route nodes). While linking edges of different types
is unproblematic, merging them yields an inhomogeneous piecewise linear function,
where not all segments are of the same gradient. See Figure 4.1 for an illustration on
this matter.

Solution. Fortunately, the merge-operation is not compulsory. Algorithm 4 illustrates
a modification of the previously described profile search algorithm. Algorithm 4 is
called a multi label correcting algorithm. Instead of one label per node, we assign each
node a set of labels. These labels are assigned to the queue items (When dequeue

is called, the queue item is popped off but not deleted, hence, the labels are still
available afterward. See also Appendix A.4). For each settled node we, thus, compare

49

Chapter 4. Routing

Algorithm 4: Multi Label Correcting Algorithm
Data: A weighted time-dependent graph G = (V, E), s ∈ V and T ⊆ V.
Result: Profiles from s to all t ∈ T.

Q← a priority queue of nodes1

Q.insert((s, f0), 0); // Insert source with 0-function as label2

while not Q.isEmpty() or not isFinished() do3

(v, f)← Q.dequeue()4

forall outgoing edges e = (v, w) do5

f new
w ← f ⊕ fe; // compute temporary new label at w6

ins← true7

forall labels fw on w do8

if fw ≤ f new
w then9

ins← false10

else if fw ≥ f new
w then11

removeLabel(w, fw)12

if ins is true then13

Q.insert((w, f new
w), f new

w
); // Use lower bound of f neww as key14

stop15

the temporary function f new
w to all labels assigned to the target node w (cf. Line 8) and

(re-)insert the node if there is no label assigned to w that dominates f new
w completely

(cf. Line 9). On the other hand, if the new label f new
w dominates an existing label fw

completely, fw can be deleted (cf. Line 11). The stop criterion (we omit it in the figure
for clarity) has to be modified, as we now need to use the maximum of all upper
bounds assigned to the target nodes t. Likewise, the profile function at target t can be
computed by merging all labels of the respective target node.

Outputting Paths. It shall be noted that the output of each of the algorithms is a
profile function ft that yields the travel time ft(τ) from s to t for all τ < Π. We did not
mention how the actual shortest path can be obtained for a certain time point τ. The
first option is to use the time-dependent version of Algorithm 3 on τ. Alternatively,
path information can be integrated into the link-operation of two functions. When two
functions are linked, we assign the path information to the interpolation points, which
can then be used to unpack the path for a given interpolation point p. We omit going

50

4.3. Multi-Modal Routing

s
t

car

(a) Bad path.

s
t

(b) Good path.

Figure 4.2.: Comparison between two routes. Black edges are car-edges, red edges railway-edges

and blue edges foot-edges. The bold path to the left is the shortest path from s to t.
While this path may be the fastest, it is undesirable since we are required to use a car

in the middle of our journey. So the path to the right should be chosen.

into further details since for those cases where we have to compute profile queries in
this work, the path information is irrelevant.

Running Time. Regarding time-complexity, we anticipate an increase compared to
time queries since nodes are inserted multiple times. Additionally, the link-operation
is expensive and the stop criterion (which has to be checked each iteration) reasonably
more complex. In [Dea99] it has been shown that the number of (re-)insertions heavily
depends on the nature of the edge-functions. We observed ourselves that for rather
small networks which have only a few thousand nodes, the number of dequeue opera-
tions is in the magnitude of millions per s-t profile query. Together with the increased
time complexity when using operations on functions instead of scalars, this makes our
multi label correcting algorithm only feasible for very small networks.

4.3. Multi-Modal Routing

In the previous section we developed the basic ingredients for solving the Short-
est Path Problem on both time-independent and time-dependent networks. In this
section we proceed by adapting these techniques to the multi-modal case. However,
it turns out that ‘classic’ shortest paths may correspond to very undesirable routes.
Hence, we augment the Shortest Path Problem by introducing constraints on the
sequence of labels that shortest paths must comply to and model these constraints by
(regular) languages.

In all subsequent sections of this chapter we are given a multi-modal graph G =
(V , E) having mixed time-dependent and time-independent edge weights. Further-
more, the label function assigns each node and edge its type (for example ROAD NODE

or RAIL EDGE). The sets of node and edge labels are denoted by Lnode and Ledge,
respectively.

51

Chapter 4. Routing

Undesirable Paths. Solving the Shortest Path Problem yields nice routes (resp.
itineraries) on uni-modal graphs. However, when these graphs are combined, a short-
est path can lead to an unwanted route. Imagine the following. Let’s assume, we have
a multi-modal graph consisting of a road and a railway network. If we are planning a
far journey and do not want to use the car all the way, we probably think of going to
the nearest railway station (by car or foot), then take a train to the destination city and
take the last part of the journey by foot or taxi. So what just happened here, is that we
had some rather strict opinion in mind as to how a ‘good’ path should look like. If we
computed our request by a uni-modal shortest path algorithm, the outcome could be
very different, however. For example in the middle of the railway line there is a new
highway which runs parallel to the tracks. So, regarding pure travel time, it would be
beneficial to get off the train, use the new highway (by car) and re-board another train
at the end of the highway. In general, this can happen arbitrarily often. Such a path,
while being the fastest, is useless since we probably do not have a car available in the
middle of the journey.

Figure 4.2 illustrates the issue with an example where we have the transportation
modes car, railway and foot. In general, arbitrary modes of transportation at arbitrary
points of the network should be avoided.

4.3.1. The Label Constrained Shortest Path Problem

The Label Constrained Shortest Path Problem has been studied in [BJM00] and is
an augmentation of the classic Shortest Path Problem. Before explaining how it can
be used for multi-modal routing, we give its abstract definition and cite some results
regarding the theoretical complexity of the problem.

Definition 5 (Label Constrained Shortest Path Problem). Given an alphabet Σ, a
language L ⊂ Σ∗, a weighted, directed graph G = (V, E) with Σ-labeled edges and source and
target nodes s, t ∈ Σ, we ask for a shortest path P from s to t, where the sequence of labels
along the edges of the path forms a word of L. Thus given P = [v1, . . . , vk] it has to hold that

label
(
(v1, v2)

)
label

(
(v2, v3)

)
· · · label

(
(vk−1, vk)

)
∈ L. (4.1)

The general problem formulation demands no restriction on the language L. An
extensive theoretical study has been conducted on the complexity of the problem re-
garding different types of languages [BJM00]. For our application of the problem,
however, regular languages (cf. Section 2.2) are sufficient to model reasonable path
restrictions. In [BJM00] the following theorem has been proven.

Theorem 1. The RegL-CSPP (Label Constrained Shortest Path Problem restricted
to regular languages) can be solved in deterministic polynomial time.

52

4.3. Multi-Modal Routing

This lays the basic foundation for an efficient algorithm, which is introduced in the
next section.

4.3.2. Algorithms

A polynomial time algorithm for the RegL-CSPP has been first introduced in [BJM00].
It operates on a product network of the input graph G and a (non-deterministic) finite
automaton describing the language L. In [Hol08] and [BBH+08] this algorithm has
been optimized, so the product network does not need to be computed explicitly. This
reduces the space consumption significantly. We adapt this algorithm to our time-
dependent multi-modal scenario in this section. Furthermore, from this point on we
identify the set of edge labels Ledge with Σ.

Product Network. Since our algorithm operates on a product network of G and a
finite automaton describing the language constraint, we give a formal definition of
product networks between these two structures.

Definition 6 (Product Network). Given a Σ-labeled graph G = (V , E) and a non-determi-
nistic finite automaton A = (Q, Σ, δ, S, F), the product network G× = (V×, E×) is defined
as follows.

• The node set consists of product-nodes (v, q) ∈ V× where v ∈ V and q ∈ Q.

• An edge e× =
(
(v1, q1), (v2, q2)

)
between two product-nodes is included in E× if and

only if e = (v1, v2) ∈ E and there is a label σ ∈ Σ for which exists a transition
q2 ∈ δ(q1, σ) in the automaton. The weight of e× is set to the weight of e and label(e×)
is set to σ.

The resulting graph G× is uni-modal.

In [BJM00] the following theorem has been proven which automatically leads to an
algorithm.

Theorem 2. The RegL-CSPP for a Σ-labeled graph G = (V , E) from source s ∈ V to target
t ∈ E and a regular language L ⊆ Σ∗ can be reduced to the Shortest Path Problem as
follows.

1. Construct a (non-deterministic) finite automaton A = (Q, Σ, δ, S, F) describing L.

2. Construct the product network G× = G×A.

53

Chapter 4. Routing

3. Solve the Many-To-Many-Shortest Path Problem on G× with source node and
target node sets

S :=
⋃

qs∈S

(s, qs) and T :=
⋃

q f∈F

(s, q f). (4.2)

4. From all resulting paths pick the one having minimal length.

Let P = [(v1, q1), . . . , (vk, qk)] be the shortest path obtained by the algorithm induced
from Theorem 2. Then the length of the path in G is the same as the length len(P)
in G×. The actual path in G can be obtained by omitting the ‘automaton part’ of the
product-nodes, thus, yielding [v1, . . . , vk]. On the other hand, the word conforming to
L along the path can be obtained by concatenating the edge labels

word(P) := label
(
(v1, q1), (v1, q2)

)
· · · label

(
(vk−1, qk−1), (vk, qk)

)
. (4.3)

Complexity. Step 1 can be computed in polynomial time. The product network in
step 2 can be computed in time O(|G| · |A|) which is also polynomial. Hence, the al-
gorithm induced by Theorem 2 runs in polynomial time. However, regarding memory
complexity, the space required to store the product graph G× is also in O(|G| · |A|)
which is too much to fit into memory for our largest instances of our multi-modal
networks.

Implicit Computation of the Product Network. Fortunately, the algorithm from The-
orem 2 can be augmented in such a way that G× does not need to be computed explic-
itly in advance. Instead, we use G and the transition graph of A separately as input,
thus, reducing the input space complexity to O(|G|+ |A|). The product network is
then computed implicitly only for the nodes and edges that are touched by Dijkstra’s
algorithm. In the worst case Dijkstra’s algorithm still visits the whole graph, thus,
not improving on the theoretical complexity bound. However, these cases are rare and
were not observed during our experiments.

Algorithm 5 shows the final method. For the sake of simplicity, we illustrate the
algorithm using solely time-independent weights (Note, our multi-modal graphs are
in fact partially time-dependent). Furthermore, we omitted the assignments of pre(·, ·)
and dists(·, ·) in the figure. Note that in contrast to the previous illustrations of shortest
path algorithms, we denote the priority queue with PQ in order to avoid confusion
with the set Q of states of the finite automaton.

The algorithm matches Algorithm 3 except for the following differences. The prior-
ity queue contains product-nodes instead of regular nodes and is initialized with all
product-nodes composed of the source node s and any of the initial states of the finite

54

4.3. Multi-Modal Routing

Algorithm 5: Time-Independent Multi-Modal Dijkstra
Data: A multi-modal graph G = (V , E), s ∈ V and T ⊆ V . Further, a finite

automaton A = (Q, Σ, δ, S, F) representing a regular language L ⊂ Σ∗.
Result: A shortest path from s to t wrt. to L.

PQ← a priority queue of product-nodes1

forall qs ∈ S do2

PQ.insert((s, qs), 0)3

settled-targets← ∅4

while not PQ.isEmpty() do5

(v, q)← PQ.dequeue()6

if v ∈ T and q ∈ F then7

settled-targets← settled-targets ∪ {v}8

if settled-targets = T then9

stop ; // all shortest paths found10

forall outgoing edges e = (v, w) do11

forall states q′ ∈ δ(q, label(e)) do12

if (w, q′) is a new product-node then13

PQ.insert((w, q′), dists
(
(v, q)

)
+ w(e))14

else15

if dists
(
(v, q)

)
+ w(e) < dists

(
(w, q′)

)
then16

PQ.decreaseKey((w, q′), dists
(
(v, q)

)
+ w(e))17

stop ; // not all shortest paths found18

automaton (cf. Line 2). Accordingly, in Line 7 it is not sufficient to settle a target node.
Moreover, the automaton has to be in a final state.

The ‘implicit computation’ of the product graph G× occurs in Lines 11 and 12: For
the currently considered product-node (v, q), we simultaneously iterate over both the
outgoing edges of v in G and the outgoing transitions in A from state q labeled by the
edge label label(e), hence ‘simulating’ walking along the edge e× =

(
(v, q), (w,′ q)

)
of

the product network. Note that the ‘virtual’ edge e× would also exist in G× and that
every edge that exists in G× is also considered by this method, thus, the algorithm
processes exactly the edges of G×.

Regarding the stop criterion in Line 7, we obtain a shortest path to t, as soon as

55

Chapter 4. Routing

FOOT,CAR,RAIL,FLIGHT,LINK

(a) Everything mixed.

LINK LINK

FOOT RAIL FOOT

(b) Foot & Railways.

LINK LINK

CAR FLIGHT CAR

(c) Car & Flights.

Figure 4.3.: Several automata.

the first product-node (t, q f) has been settled (There could exist further final product-
nodes (t, q′f) with q f 6= q′f). This is due to the fact that according to step 4 of Theorem 2,
we only require the shortest path of minimal length between all pairs of source and
target nodes in the product network G×.

Complexity. Regarding time complexity we anticipate an increase of a factor of ap-
proximately |A| when compared to the uni-modal version of Dijkstra’s algorithm on
G. This is due to the fact that the search space increases by approx. |A| as there are
approx. |A| times more nodes in the (implicit) product network. Furthermore, the
whole search space needs to be kept in memory in order to have dist and pre available
for all product-nodes.

Finite Automata and Examples. We kept the description of both the problem formu-
lation and the algorithms rather brief. For example, we did not restrict ourselves to
a specific automaton or a class of automata. This is intentional. However, because of
their relevance, there are a few interesting automata we would like to point out. Have
a look at the Figures 4.3 and 4.4.

Accepting Everything. The automaton in Figure 4.3a is very simple. It has only one
state and accepts Σ∗. Using this automaton with Algorithm 5 yields virtually a classic
Dijkstra run. This can be used to examine the performance loss of the multi-modal
Dijkstra variant compared to the classic version due to the more complex data struc-
tures (see Section 6.3 on this).

56

4.3. Multi-Modal Routing

FOOT

CAR

FOOT

CAR

RAIL RAILFLIGHT

Figure 4.4.: Reasonably incorporating every mode of transportation in a hierarchical approach. For

clarity, LINK EDGEs are not labeled, but colored in light red.

Foot and Rail. This automaton shown in Figure 4.3b accepts the language f ∗lr∗l f ∗,
where f is short for FOOT EDGE, l is short for LINK EDGE and r is short for RAIL EDGE.
This models a common scenario when we plan a journey of medium length (for ex-
ample from south to north Germany) and we do not have a car available.

Car and Flight. See also Figure 4.3c. This automaton is almost equivalent to the foot
and rail automaton, except we use car and flight, instead. The accepted language is
c∗lg∗lc∗ (c being CAR EDGE and g being FLIGHT EDGE).

Hierarchical Automata. While in principle we could use any arbitrary language L
for our multi-modal queries, not every language makes sense. For example, allow-
ing only a finite number of (non-link) edges at some point is absurd, as this would
mean demanding to use a fixed predefined number of edges. So, a ‘meaningful’ au-
tomaton probably consists of states having a loop labeled by one of the edge labels
l ∈ Σ \ {LINK EDGE}. Since we linked the different networks together by LINK EDGEs
(cf. Section 3.5.2), the states should be connected by a LINK EDGE labeled transition.
Meanwhile, the arrangement of the particular states, can be done in many reasonable
ways.

If we take a look at the different network types, they contain an inherent hierarchy,
when ordered as follows:

Road network ≺ railway network ≺ flight network. (4.4)

When planning a typical multi-modal voyage we observe that in most cases we prob-
ably start at the lowest point in the hierarchy (by car or foot), step up by switching
modes of transportation several times and finally step down in the hierarchy at the
end of the journey. This is characterized by the following definition on languages.

57

Chapter 4. Routing

Definition 7. Let L ⊂ Σ∗ be a language. Then L is called a hierarchical language if it holds
that for every word w ∈ L containing two symbols σi, σj ∈ w with i > j where σj ≺ σi wrt.
the hierarchy (4.4), there must not be a third symbol σk ∈ w with k > j and σk � σj. An
automaton which accepts a hierarchical language is called a hierarchical automaton.

In short, after once descending in the hierarchy we may not ascend again. An
automaton that covers this aspect is presented in Figure 4.4. Note that we allow either
foot or car as the first and last mode of transportation. Furthermore, we allow skipping
modes in the hierarchy as well as using any mode of transportation in the beginning
and the end. Hence, we also allow routes that only involve a sub-hierarchy.

4.4. Summary

In this section we presented basic routing algorithms for both uni-modal and multi-
modal networks. We did this by starting with the classic time-independent uni-modal
scenario, augmenting the problem via uni-modal time-dependent routing to multi-
modal routing. These are the main results.

• We use the Earliest Arrival Problem to model (timetable information) queries
on all networks. For some source s, target t and departure time τ we are inter-
ested in a route from s to t that arrives as early as possible. This problem is
equivalent to the (time-dependent) Shortest Path Problem on each of the net-
works.

• The uni-modal time-independent Shortest Path Problem can be solved by Di-
jkstra’s algorithm. Variants of the Shortest Path Problem, where we have
multiple source or target nodes, can be solved by (possibly multiple runs of)
Dijkstra’s algorithm as well.

• In the time-dependent case, there are two interesting types of queries. Time
queries where we ask for a shortest s-t-path for a specific departure time τ and
profile queries where we are interested in a travel time function that yields the
travel time from s to t for any given time of day. While the first can be solved
by a straight-forward augmentation of Dijkstra’s algorithm, the latter requires a
label correcting algorithm that propagates piecewise linear functions through the
network. Furthermore, nodes may be inserted into the priority queue multiple
times, which results in a significantly worse time complexity of the algorithm.

Because the merge-operation on functions between time-independent (constant)
and time-dependent functions is not supported in our implementation, we pre-

58

4.4. Summary

sented a multi label correcting algorithm which manages without the need for
the merge-operation at the price of storing multiple labels on each node.

• Applying an uni-modal routing algorithm on a multi-modal network can result
in unrealistic paths (cf. Figure 4.2). For that reason, we introduced the Label
Constrained Shortest Path Problem where the edges in the network are la-
beled according to their transportation mode and the concatenated labels of a
shortest s-t-path must constitute a word to some predefined language L over Σ.

When only allowing regular languages for L, the problem is solvable in polyno-
mial time by using Dijkstra’s algorithm on the product network of the multi-
modal input graph G and the transition graph of the finite automaton accepting
L. The (rather theoretical) algorithm on the product network can be refined to
compute the product-nodes implicitly. This saves a lot of space which makes the
problem manageable for large networks regarding memory consumption.

• The running time of the multi-modal routing algorithm depends on the complex-
ity on the finite automaton (see also Section 6.3). Furthermore, we introduced
hierarchical languages which resemble a common way to combine transportation
modes.

59

Chapter 5
Speed-Up Techniques

In the previous chapter we introduced basic routing algorithms to solve the Earliest
Arrival Problem on our models. These algorithms are all based on Dijkstra’s algo-
rithm which was already introduced in 1959 [Dij59]. However, only over the last years
computer hardware evolved far enough to allow the handling of large scale networks
like those encountered in route planning. Through experiments it turns out that even
on todays hardware query times are too high. For example, a random query between
two nodes in the German road network takes several seconds on contemporary server
hardware. This fact gets even worse when we think of route planning on mobile
devices such as sat-nav systems for cars.

To encounter this problem, research in the past years focused on developing speed-
up techniques (mostly optimized on road networks) for Dijkstra’s algorithm which all
have the same goal of reducing the search space while still yielding provably optimal
results. A brief overview over recent development is given in [DSSW09a]. It turns
out that there are a few basic ingredients on which most speed-up techniques are
based [Del09a]. These can be abstracted by bi-directional search, goal-directed search
and contraction.

In this chapter we first present each of the basic ingredients: Bi-directional search,
contraction and goal-directed search by introducing their algorithmic concepts in the
context of uni-modal time-independent routing. Moreover, we either describe how
these concepts can be adapted to multi-modal routing, or present why this is difficult.

While bi-directional routing only requires a modification to the query algorithm,
both contraction and goal-directed search are requiring a two-phased process. First
a preprocessing routine computes additional data on the input. Second, this data is
then used by the query algorithm to reduce the search space. Regarding goal-directed
search, we introduce two concepts: A* with landmarks (ALT) and Arc-Flags. Both

61

Chapter 5. Speed-Up Techniques

techniques are goal-directed in the sense that they narrow the search space toward the
goal (the target t), but they are using a quite different method, from which ALT turns
out to be easily adaptable to multi-modal routing, whereas Arc-Flags is not.

As it turns out that there is a trade-off between developing a very fast speed-up
technique and the general applicability of the technique regarding arbitrary automata,
we focus on both sides of the coin. First, we introduce multi-modal Core-Based Routing,
which is a method belonging to the category of contraction techniques. Basically, we
compute a core graph through bypassing nodes and inserting shortcuts. The size of
the core graph is only a small portion of the original graph. The query algorithm
briefly works as follows. From the source and target we search for entry points into
the core. Those are found very fast. The main search is then performed on the much
smaller core graph by applying a standard Dijkstra algorithm from the entry- to the
exit-points of the core.

The advantage of Core-Based Routing is the possibility to combine it easily with
a goal-directed approach. Instead of using simple Dijkstra on the core, we replace
it by a goal-directed technique. As Arc-Flags turns out difficult to adapt to multi-
modal networks, we combine Core-Based Routing with ALT (Core-ALT). Core-ALT.
Note that Core-ALT is not new and has been introduced in [BDS+08], however, we
present a multi-modal variant of Core-ALT.

Finally, we drop our demand of applying arbitrary automata on the query algo-
rithm, but instead focus on a reasonable subclass of automata where the road network
is only used at the beginning and the end of the journey. We present a new multi-
modal speed-up technique called Access-Node Routing which adapts some of the ideas
behind Transit-Node Routing [BFM+07, BFSS07]. As it turns out that most of the time
spent during a multi-modal query is in the large road network, the basic idea is the
following. For each node v in the road network, we precompute a set A(v) of access-
nodes that are basically entry points into the public transportation network. Hence,
the query algorithm is working in two phases. First, for the source s and target t (in
the road network) we obtain their access-nodes by performing a table look-up. In the
second part of the query we then perform a classic Dijkstra-search from the access-
nodes A(s) of s to the (backward) access-nodes

←−
A (t) of t in the public transportation

network. Th partial paths are combined in the end. Regarding local queries that do not
use the public transportation network, we fall back to computing a time-independent
uni-modal shortest path search restricted to the road network.

We like to mention, that the main contribution from Access-Node Routing is not
the speed-up gained by skipping the road network during the query (although this
fact alone yields high speed-ups enabling us to compute intercontinental queries on
large scale networks in a few milliseconds; also see Section 6.5). Rather, through

62

5.1. Basic Ingredients

Access-Node Routing we are able to isolate the public transportation network from
the road network in the sense that separate algorithms can be applied on the public
transportation and the road networks. For local queries we can use one of today’s
high-performance speed-up techniques which are able to compute local queries in mi-
croseconds time. On the public transportation network, on the other hand, we could
use any other time-dependent (multi-modal) speed-up technique or even another al-
gorithm like for example multi-criteria search.

Access-Node Routing is explained in the last section of this chapter.

5.1. Basic Ingredients

We start off with listing the basic ingredients bi-directional routing, goal-directed
search and contraction since these concepts underly our speed-up techniques. We
thereby explain the preprocessing and the query algorithm separately. For simplicity,
we describe the ingredients on the basis of time-independent networks and present the
augmentation to time-dependency afterward. Finally, we discuss for each ingredient
how it can be adapted to multi-modal queries or explain why this is difficult.

5.1.1. Bi-Directional Search

When computing a shortest s-t-path using Dijkstra’s algorithm (cf. Algorithm 3), the
search starts at s and we subsequently settle nodes v until t is settled. Note that if
a node v is settled one time, it is never settled again, hence dists(v) is the shortest
distance to v (from s) and it holds for all nodes u that were settled before v that
dists(u) ≤ dists(v). By these means, the search can be imagined as growing a ball
around s during the execution of the algorithm.

The idea behind bi-directional routing is that besides executing an s-t-query in G, we
also perform a query from t to s in the backward graph

←−
G (see also [Dan62, GH05]).

The s-t-search in G is called forward search and the t-s-search in
←−
G backward search.

The algorithm terminates as soon as either the forward or the backward search settles
a node that has already been settled by the particular other search. Let v be the
node where both search spaces meet. Then the shortest path P from s to t in G is
the composition of the (implicitly computed) shortest path from s to v by the forward
search and the shortest t-v-path computed by the backward search. Note that the edges
of the t-v-path in

←−
G have to be flipped in order to obtain the correct path. Figure 5.1

visualizes the comparison between the search space sizes of the uni-directional and
bi-directional algorithms.

63

Chapter 5. Speed-Up Techniques

s t

search space

(a) Uni-directional Dijkstra.

s t

forward

backward

(b) Bi-directional Dijkstra.

Figure 5.1.: Comparing uni-directional with bi-directional search. The search space grows like a ‘ball’

around s (resp. t). When searching from s and t simultaneously the search space can

be reduced, as the algorithm may stop as soon as a node is in the search space of both

the forward and backward searches.

Query. The query algorithm is basically a meta-algorithm composed of two Dijkstra
algorithms: One for the forward s-t-search and one for the backward t-s-search. Each
algorithm has to flag the nodes belonging to its respective search space and the other
algorithm needs to have access to it. The meta-algorithm then controls the forward
and backward search by alternately running one iteration in each algorithm. The
algorithms terminate as soon as the search spaces meet. This yields a reduction in
search space as the sum of the individual search spaces of the forward and backward
search are generally smaller than the search space of a single forward search [BDW07].

Time-Dependency. Adapting bi-directional search to time-dependent networks with
regard to time queries turns out difficult. This is due to the fact that the arrival time
at the target node t is not known in advance. Hence, we have no basis for starting
a backward search in

←−
G . Still, there is a chance where the backward search may at

least ‘assist’ the forward search. The forward search is time-dependent with departure
time τ, while the backward search from t is performed on the time-independent lower
bound graph

←−
G from t.

Let S denote the set of nodes inside the search space of the forward search and
←−S

the set of nodes discovered by the backward search. Then as soon as the two search
spaces meet, i.e., S ∩ ←−S 6= ∅, we compute a preliminary time-dependent shortest
path to t. Let v be the node where the two search spaces met. The preliminary s-
t-path Pprel is obtained by evaluating the v-t-path induced by the backward search

64

5.1. Basic Ingredients

time-dependently with respect to the arrival time at v obtained by the forward search.
Note that len Pprel is only an upper bound for the actual distance from s to t.

In the next step, the time-dependent forward and the time-independent backward
search continue. The backward search may only be stopped if there is a node v ∈ ←−S
with

←−
distt(v) ≥ len Pprel. In this case it can be guaranteed, that the shortest s-t-path

is contained in S ∪←−S . Finally, solely the forward search continues until t is settled,
however, restricted to the node induced subgraph of

←−S .
We conclude that time-dependent bi-directional search is much more complicated.

In fact, using time-dependent bi-directional search may lead to speed-downs when
compared to the simple time-dependent uni-directional Dijkstra algorithm—even
when combined with goal-directed search (ALT) [NDLS08].

Adaption to Multi-Modal Routing. Adapting bi-directional search to multi-modal
routing is straightforward. The forward and backward searches are instances of the
multi-modal query algorithm as introduced in Section 4.3.2 (cf. Algorithm 5). Let G
be a multi-modal graph, A a finite automaton and S, T ⊆ V ×Q be the sets of source,
resp. target product-nodes wrt. to Theorem 2 on page 53. Like in the uni-modal case,
the forward search performs a simple S-T-search while the backward search performs
a T-S-search. The algorithm may then stop as soon as a product-node (v, q) is settled
by both searches.

Note that in order to obtain valid paths that conform to the regular language repre-
sented by A, the backward search not only needs to run on the backward graph

←−
G ,

but also on the inverse automaton
←−A . Given a finite automaton A = (Σ, Q, δ, S, F), the

inverse automaton
←−A := (Σ, Q,

←−
δ ,
←−
S ,
←−
F) is defined as follows. The start and final

states are flipped, thus,
←−
S := F and

←−
F := S and the transition function is inverted by

the law

q′ ∈ ←−δ (q, σ) ⇔ q ∈ δ(q′, σ). (5.1)

If the multi-modal graph G is completely time-independent, this yields correct solu-
tions to the multi-modal Earliest Arrival Problem with respect to the language L.
However, in our scenario G is both time-independent and also time-dependent. In
this case the same restrictions as to the uni-modal case apply: The arrival time is not
known in advance, hence, we can only use the backward search to ‘assist’ the forward
search by the means described in the previous paragraph.

Discussion. Bi-directional routing is one of the most basic ingredient, as many speed-
up techniques make use of it. In our work we use a modified bi-directional search for
the Core-Based Routing approach (cf. Section 5.2). However, we use this technique

65

Chapter 5. Speed-Up Techniques

only on time-independent parts of the multi-modal network (only in the road net-
work, to be specific). Hence, the problems occurring when time-dependency has to be
accounted for, do not apply in our case.

5.1.2. A* with Landmarks (ALT)

In this section we describe the first goal-directed search algorithm. The method is
a combination between A*-search, introduced in [HNR68] with the improvement of
using Landmarks and the Triangle inequality [GH05, GW05].

A* is goal-directed in the sense that it preferably settles nodes that are closer to
the target. This is done by altering the priority of the nodes according to a potential
function which has the effect of modifying the order in which they are settled by
Dijkstra’s algorithm, hence, ‘pushing’ the search toward the target.

Potential Functions. Consider π : V → R to be a potential function from the node set
of the graph into the reals. We alter the weights of G to reduced costs by applying π

to the edge weights by wπ(u, v) := w(u, v) + π(v)− π(u). The graph with all edges
altered is denoted by Gπ. Then the length of any path (including shortest paths) P =
[v1, . . . , vk] in G changes to lenπ(P) = len(P) + π(vk)− π(v1), because on subsequent
edges the potentials cancel out each other. Dijkstra’s algorithm only works on non-
negative edge weights, so arbitrary potential functions are not allowed. Therefore, we
call a potential function π feasible, if lenπ(u, v) ≥ 0 holds for all paths from u to v
and arbitrary u, v ∈ V. It can be shown [GH05] that finding a shortest path in G is
equivalent to finding a shortest path in Gπ.

In [GH05] it is further proven that for a shortest s-t-path query using a lower bound
from each node v to the target node t yields a feasible potential function. Note that the
potential function is not needed to be fixed for all queries, but can be, as it is in our
case, dependent on the s-t-query. In the original A* algorithm the lower bound used
is simply the direct geographic distance (beeline) distgeo(v) from any node v to t. This
works only as long as the metric in the graph is also geographical distance since then
distgeo(v) is guaranteed to be a lower bound of any path from v to t. In our case this
cannot be applied since we use travel time as metric. The A*-based ALT algorithm,
however, introduces landmarks which are a (limited) set of dedicated nodes, from
which lower bounds are computed with the aid of the triangle inequality.

Landmarks. For exact lower bounds we could precompute the distances between all
pairs of nodes. However, this is far too expensive regarding both preprocessing time
and space consumption. Thus, we only select a small subset L ⊂ V of landmarks and

66

5.1. Basic Ingredients

v

t

`
dist(v, `)

dist(v, t)

dist(t, `)

(a) Visualizing Equation (5.2)

v

t

`
dist(`, v)

dist(v, t)

dist(`, t)

(b) Visualizing Equation (5.3)

Figure 5.2.: The two pictures show the application of the triangle inequality according to the Equa-

tions (5.2) and (5.3). The ‘detour’ is drawn in light while the ‘shortcut’ is drawn in

bold.

compute an exact distance table for all nodes v to/from every landmark ` ∈ L. The
number of landmarks is usually set between 16 and 64. Because distances on G form
a metric, the following instances of the triangle inequality hold.

dist(v, t) + dist(t, `) ≥ dist(v, `) and (5.2)

dist(`, v) + dist(v, t) ≥ dist(`, t). (5.3)

Here dist(u, v) for two nodes u, v ∈ V denotes the length of the shortest path from u to
v in G. See also Figure 5.2 for a visualization of the matter. Resolving both equations
to dist(v, t) (which is the value we are trying to bound), we obtain the feasible lower
bound function

π`(v) := max
{

dist(v, `)− dist(t, `), dist(`, t)− dist(`, v)
}
≤ dist(v, t). (5.4)

The best lower bound π can be obtained by using the landmark yielding the greatest
lower bound according to

π(v) := max
`∈L

max
{

dist(v, `)− dist(t, `), dist(`, t)− dist(`, v)
}

. (5.5)

With dist(v, `) and dist(`, v) precomputed for each landmark ` ∈ L and every node
v ∈ V, the reduced cost graph Gπ is then computed implicitly by altering the key of v
in the priority queue to dist(s, v) + π(v).

Preprocessing. Preprocessing is done in two steps. First, a ‘good’ set of landmarks
L is selected from V and, second, the distance table for L is computed. While the
latter is straightforward and can be solved by running instances of Dijkstra’s algo-
rithm, the first is a non-trivial task. A ‘good’ landmark should yield a preferably high
lower bound during the query for as many s-t-queries and for as many nodes v as

67

Chapter 5. Speed-Up Techniques

possible. In [GH05, GW05, DSSW06] evaluations of different techniques for selecting
landmarks (on road networks) are presented, from which we use Avoid [GH05] and
MaxCover [GW05]. While the quality of MaxCover landmarks is better (in the sense
that they yield better lower bounds and, thus, faster query times) than that of Avoid
landmarks, the first are harder to compute and, thus, not feasible when selecting more
than 16 landmarks on large graphs as preprocessing times are getting too high. For
that reason, we use MaxCover when selecting up to 16 landmarks and Avoid other-
wise.

Query. The adaption of the query algorithm is easy. The only difference to Algo-
rithm 3 on page 46 is that instead of using dists(v) as keys in the priority queue,
we use the cost reduced distance function dists(v) + π(v). However, previous exper-
iments revealed that computing the lower bound with respect to all landmarks (cf.
Equation (5.5)) produces too much overhead during the query. For that reason, we
apply Equation (5.5) only on a subset Lactive ⊆ L of active landmarks. We usually
restrict the cardinality of Lactive to 2. The choice which landmarks are active depend
on the query and are determined in the beginning using π`(s). Furthermore, every k
iterations of the algorithm we update the set of active landmarks by rechecking which
landmarks yield the best lower bound for the currently settled nodes.

Time-Dependency. The adaption of ALT to time-dependent networks only requires
an adjustment on the preprocessing side of the algorithm. The query is left unchanged
(except of the aspect that we evaluate the edge weights according to the departure
time τ), as long as the potential function is guaranteed to be feasible for all possible
times of day τ. For that reason, the distance table for the set L of selected landmarks is
computed on the lower bound graph G. So dist(v, `) and dist(`, v) only yield the distance
from v to ` (and vice versa) for the best possible time τ over the day. However, since
for all other times of day τ′, it holds that dist(v, `, τ′) ≥ dist(v, `) and dist(`, v, τ′) ≥
dist(`, v), the computed distances can be regarded as a ‘lower bound of a lower bound’.
Depending on the difference between the lower and upper bounds of the edge weight
functions in G, the quality of the precomputed distances can become very poor, thus,
the ALT algorithm does not perform as good in time-dependent networks as in time-
independent networks [NDLS08].

Adapting to Multi-Modal Routing. The adaption to multi-modal routing turns out
easy. In a multi-modal graph G we observe that for every language L and every
shortest s-t-path P conforming to L it has to hold that

len(P) ≥ len(Puni), (5.6)

68

5.1. Basic Ingredients

where len(Puni) is the length of an uni-modal shortest s-t-path in G (i.e., we have no
restriction due to a language L, or in other words, L = Σ∗, which allows arbitrary
paths). In other words, applying constraints to shortest paths never yields shorter
paths. Hence, the ALT algorithm can be adopted without any modifications. The
preprocessing is done on G yielding valid lower bounds for the distance tables. These
lower bounds are generally worse, as for dist(v, `) (and vice versa) we do not only
use a lower bound regarding the departure time but also regarding the transportation
modes. Thus, we expect another loss in quality regarding the potential functions
which therefore decreases achievable speed-ups. On the bright side however, the query
algorithm needs almost no modifications. We continue using the reduced cost function
as priority queue keys as we did with the uni-modal versions of the algorithm.

Discussion. ALT is probably the most well-tempered speed-up technique, as it can
be adapted very easily to time-dependent and multi-modal routing. Moreover, past
experiments have shown that it is very robust to the input as it performs constantly
well under various inputs [BDW07]. However, applying ALT as an uni-directional
speed-up technique does not yield high speed-ups. Running a bi-directional setup
with two independent ALT algorithms as described in Section 5.1.1, may lead to false
results. Roughly speaking the main reason is that the forward and backward search
do not use the same reduced costs on the edges. As a consequence, the node where the
two search spaces meet is not necessarily on the shortest path. Although, in [GH05,
GW05] a method is presented that adopts bi-directional search to the ALT algorithm,
we omit further details at this point since we only use ALT as an uni-directional speed-
up technique in this work.

5.1.3. Arc-Flags

Besides ALT, the arg-flag approach is another goal-directed speed-up technique for
Dijkstra’s algorithm. However, the underlying idea is different. While ALT tries to
‘push’ the search toward the target t by altering the priority of the nodes in the queue,
Arc-Flags tries to find paths that can be pruned during the search, thus, yielding a
smaller search space. This information is stored as flags on the edges (arcs) of the
graph. The arc-flag approach is first introduced by Lauther [Lau97, Lau04]. Its key
idea is the following insight.

Let t ∈ V be a (arbitrary) node, then Et denotes the set of all edges e = (u, v) ∈ E
where a shortest path to v starting at u uses the edge e. When computing a shortest
s-t-path, Dijkstra’s algorithm can be restricted to the edge-induced subgraph G(Et)
of G. A proof of correctness can be found in [MSS+06].

69

Chapter 5. Speed-Up Techniques

Precomputing Et for all t ∈ V would require too much time. Hence, the node set V
is partitioned into a family of r cells or regions P := {R1, . . . Rr}. Each node v ∈ Ri is
assigned its region-id by region : V → {1, . . . , r}. Edge sets are now computed with
respect to regions instead of individual nodes. If R1 ⊂ V is a region, the set E1 consists
of all edges e = (u, v) ∈ E where there exists at least one node t ∈ R1 where a shortest
path to t starting at u uses the edge e. On the other hand, for an edge e we say that
the region Ri can be reached through e, if there is at least one node v ∈ R1 where e is
on a shortest path to v.

During preprocessing the sets Ei for every region have to be computed. The infor-
mation whether an edge e is on a shortest path to region i is attached to the edges. The
computation of the subgraph G(Ei) for an s-t-query (where t ∈ Ri) is done implicitly
during the query by ignoring edges that do not reach the target region Ei.

Preprocessing. Arc-Flags requires a two-step preprocessing. First, a partition P has
to be computed. Then, for each cell Ri ∈ P the set Ei according to the definitions
above has to be computed. This information is then stored as flag vectors to the edges
of the graph where, in short, the i’th bit of the vector at e indicates whether the edge
is important for at least one node in the i’th region.

Partitioning the Graph. Experiments show (see [HKMS06, MSS+06]) that the type of
the partition has a major impact on query performance of the Arc-Flags query algo-
rithm. Many of the partitioning methods tested in [MSS+06] are geometric, i.e., they
require an embedding of the graph into the plane. However, the arc-flag approach
does not necessarily require geometric information by itself. While in fact any parti-
tion works, a ‘good’ partition should have the following properties. First, the cells of
the partition should be connected. This helps the goal-direction of Arc-Flags. More-
over, the number of boundary nodes (i.e., nodes that are incident to edges connecting
different cells) should be low. The main reason is, as we see soon that a high number
of boundary nodes implies a high preprocessing effort. It should be noted that the
geometric partitioning methods in [HKMS06, MSS+06] fulfill the first claim, while the
second is not considered. Hence, in [HKMS06] multi-way arc-separator approaches
for partitioning the graph are tested (see [KK98] for an example). These do not re-
quire geographical information attached to the nodes and compute the partition solely
based on the structure of the graph. We omit further technical details at this point
and only like to point out that from the tested partitioning methods, METIS [Kar07],
PARTY [MS04] and SCOTCH [Pel07], the latter yields the most promising results for
Arc-Flags.

70

5.1. Basic Ingredients

1 1 0
ev u

Figure 5.3.: A small graph partitioned into three cells (blue, red and green). The arg-flags vector is

illustrated at the edge e. A shortest path from u targeting the green region never uses

the edge e, thus the green flag of e can be set to false. However, for reaching the red

and blue regions the edge e is important, thus, their flags are set to true.

Computing Arc-Flags. Given a partition P , the second preprocessing phase involves
the computation of the subgraphs Ei for each region Ri ∈ P . For that reason, each
edge gets a flag vector of length r assigned. For every edge e and every i ≤ r, the i’th
flag is set to true if and only if e ∈ Ei. These vectors on the edges are called arc-flags
and indicate which regions can be reached by using the respective edge. Please also
refer to Figure 5.3 for a small example illustrating the arc-flags vector.

The simplest and most naive way to compute arc-flags wrt. to region Ri is the fol-
lowing. First, we initialize the i’th flag on all edges except those edges with their tail
inside Ri with false. Now we consecutively grow a full backward shortest path tree
from every node v ∈ Ri, setting the i’th flag to true for every edge that is contained
in the tree. Arc-flags once set to true are never changed back to false. To complete
this approach for every region, we end up computing |V| full backward shortest path
trees in

←−
G which is too slow for large graphs (see also [Lau04]).

A faster method only uses boundary nodes. The key observation is that a short-
est path with target region Ri has to enter the region at some point. Hence, it is
sufficient to compute backward shortest path trees from the boundary nodes (in-
stead of the nodes in the region). This decreases the preprocessing time signifi-
cantly [Lau04]. However, preprocessing time is still rather high (several hours; even
up to days on large graphs), which is the major drawback of the Arc-Flags approach.
Thus in [HKMS06] another approach is presented using centralized shortest path trees
which decreases preprocessing time significantly.

Query. The adaption of Dijkstra’s algorithm to Arc-Flags is easy. Line 10 of Algo-
rithm 3 on page 46 is altered such that only edges e with the i’th arc-flag enabled are
considered where i is the region-id of the target node. Thus, the search is implicitly
restricted to the edge induced subgraph Ei. Since Arc-Flags (in contrast to ALT) is
goal-directed in the sense that it prunes paths instead of only ‘guiding’ the search, we

71

Chapter 5. Speed-Up Techniques

have to be careful about not losing the shortest paths by cutting it off. This turns out
as the main difficulty when adapting Arc-Flags to multi-modal routing.

Time-Dependency. Augmenting Arc-Flags to cope with time-dependency is more
difficult than one might anticipate. If we set ourselves the claim that the arc-flag
vectors should not encode time-dependency, we have to enable flags if the respective
edge is important for the target region at least once over the day. There are two
approaches we describe in brief.

Exact Arc-Flags with Profile Queries. To account for time-dependency, we use the same
preprocessing method as described in the previous paragraph. However, instead of
growing simple backward shortest path trees, we do a backward profile search in

←−
G

from all boundary nodes to every node in the graph. The labels attached to the nodes
then indicate which incident edges are important for which time of day. Enabling
every arc-flag on edges that are at least once over the day important for the respective
target region, thus, yields correct time-dependent arc-flags.

This approach has a major drawback. Since computing profile queries involves a
label correcting algorithm (cf. Algorithm 4 on page 50) which is significantly slower
than a time-independent Dijkstra, makes this approach unfeasible for large graphs.

Approximating Arc-Flags. This drawback can be remedied by approximating the arc-
flags. Note that enabling too many flags does not violate the correctness of the query
algorithm. At most, it degrades the query performance by opening unnecessary arcs.
In [Del08] two approaches for approximating the arc-flags are introduced. The first one
manages without profile queries. Instead, two time-independent backward shortest
path trees are grown from each boundary node b of region Ri. One tree on the upper

bound graph
←−
G and another on the lower bound graph

←−
G . This yields two distance

labels
←−
dist(v) and

←−
dist(v) for every node v in the graph. An arc-flag for an edge

e = (u, v) toward region i is then set to true if the inequality

f e +
←−
dist(v) >

←−
dist(v) (5.7)

does not hold. This approach is fast, however, there might be too many enabled edges
that are not essential for shortest paths toward region Ri.

Adaption to Multi-Modal Routing. While the adaption of Arc-Flags to time-depen-
dency can be done (though with the penalty of higher preprocessing times) incorporat-
ing multi-modality into this approach turns out hard. While computing the partition

72

5.1. Basic Ingredients

can be augmented easily, computing arc-flags is not straightforward. This is due to
the fact that the automaton which is used during the query is not known beforehand.

The first approach to tackle this problem might be to use a specific automaton during
preprocessing. While this yields correct shortest-path queries, the major disadvantage
of this approach is that the computed arc-flags are fixed to the respective automaton
used during preprocessing. As a consequence, the query algorithm cannot be used
on other automata. By these means we basically obtain a uni-modal shortest path
problem, which makes this approach uninteresting. An intuitive augmentation is to
compute arc-flags that work on whole classes of automata. In Section 4.3.2 on page 57
we introduced a reasonable class of hierarchical automata. However, we show with the
aid of some examples that it is not clear how to compute arc-flags that allow correct
queries on all instances of hierarchical automata.

Fixing the Automaton. Let G = (V , E) be an arbitrary multi-modal graph and A =
(Σ, Q, δ, S, F) a finite automaton. The Arc-Flags preprocessing step is modified as
follows. The partition P = (R1, . . . , Rr) is computed on G (without knowledge of the
automaton). This is important, as the exact final state is not known in advance when
stating a multi-modal query. Hence, equivalent product-nodes consisting of different
final states need to be in the same cell. By computing the partition on G, this is
achieved implicitly.

Now let Ri be an arbitrary region. Regarding the approach where we grow back-
ward shortest path trees from all nodes of the region, we alter the method as we do
not use simple nodes v ∈ Ri, but grow backward shortest path trees from all product-
nodes (v, q f) where v ∈ V and q f ∈ F. Note that we can restrict ourselves to final
states, as a multi-modal query targeting some node t ∈ Ri has to end in a final state
of the automaton. Then we set the i’th flag of an edge e = (u, v) ∈ E to true if for ar-
bitrary q1, q2 ∈ Q the product-node (v, q1) is a predecessor of (u, q2) on the backward
shortest path tree in

←−
G . It shall be noted that this has the effect of merging arc-flags

in the (implicit) product network G× to G. Thus, arc-flags on edges in the product
network that are not required to be open could still be enabled.

We deemed the approach for computing arc-flags by growing shortest path trees
from all nodes too expensive. Thus, we improved on the approach by only using the
boundary nodes of a region as source nodes for computing backward shortest path
trees. We can also adapt this improvement to multi-modal arc-flags. However, we now
have to consider all states (not only final ones) of the automaton. Thus, for computing
arc-flags for region Ri, we run backward shortest path trees for all boundary product-
nodes (v, q) of the specific region, where q ∈ Q is an arbitrary state of the automaton.

The multi-modal query algorithm is then used as shown in Algorithm 5 on page 55,

73

Chapter 5. Speed-Up Techniques

s t

(a) General hierarchical automaton: Car, rail-

way and flight network.

s t

(b) Restricted hierarchical automaton: Car

and railway network.

Figure 5.4.: This figure illustrates the challenge of computing arc-flags that work with a whole class

of automata during query.

Both figures show the same multi-modal network with car edges (black), railway edges

(red) and flight edges (blue) with arc-flags set with regard to the target node t. The

shortest s-t-path obtained during preprocessing is drawn in bold. The arc-flags to the

left are computed with the ‘general’ hierarchical automaton (all networks allowed), while

the flags to the right are computed on a restricted automaton (only car and railways).

Moreover, edge weights are defined in the way that it is always beneficial to use the

highest possible network in the hierarchy for an s-t-query.

However, the left figure shows that using the restricted (car and railways) automaton

during Arc-Flags query, we do not find a path from s to t since both the railway and

car networks are pruned (dotted edges). Using the general automaton on the right, we

will find a path, however, it is not the shortest as the flight network is pruned (which

should be used due to the automaton).

with the exception that in line 11 only those edges e = (v, w) are considered, for which
the i’th arc-flag is set to true when performing an s-t-query with t ∈ Ri. Moreover,
the automaton A is no longer part of the input. Instead, we use the same automaton
as during preprocessing for every query. For that reason, Algorithm 5 always operates
on the same (implicit) product network G×. Therefore, we believe this approach is too
restrictive for accelerating general multi-modal queries.

Classes of Automata. To remedy this disadvantage, an intuitive augmentation would
be to compute arc-flags that allow the usage of whole classes of automata (instead
of only one automaton) during the query. In Section 4.3.2 the class of hierarchical
automata was introduced which resemble a reasonable restriction on languages for
multi-modal routing (see also Figure 4.4 for an example). However, it turns out that
computing arc-flags that yield correct shortest paths for arbitrary automata during
query is non-straightforward.

If we use the same approach for computing arc-flags as in the previous paragraph
(i.e., using a multi-modal algorithm to grow the shortest path trees), it is not clear what
automaton A from the respective class should be used. Figure 5.4a shows an example
where arc-flags on a small graph are computed with the automaton of Figure 4.4.

74

5.1. Basic Ingredients

Using these flags for a s-t-query together with an automaton that only allows the car
and railway parts of the hierarchy, does not even find a path from s to t, because
both the railway and the car subnetworks are cut off. They are never beneficial if the
flight network can be used. On the other hand, as shown in Figure 5.4b, the reverse
is not correct either. Using the restricted hierarchical automaton (car and railways)
for computing the arc-flags prunes the flight-network, leads to incorrect shortest paths
when a broader automaton also allowing flights is used.

Basically, the question we ask for is if there is a hierarchical automaton that can
be used for arc-flags preprocessing such that every other automaton from the class of
hierarchical automata can be used to compute correct shortest path using the multi-
modal Arc-Flags-Dijkstra algorithm. Formally:

Problem 1. Let A be a class of automata (e.g., the class of hierarchical automata). Find a
well-founded relation � on A such that the ‘minimal’ automaton A0 ∈ A defined by

∀A ∈ A : A � A0 (5.8)

can be used for Arc-Flags preprocessing such that every automaton A ∈ A yields correct
queries with respect to the arc-flags computed with A0.

If we instantiate this problem with the class of hierarchical automata, we have seen
in Figure 5.4a that using the (intuitively) most ‘general’ automaton of that class does
not work. It is obvious that using restrictive automata like in Figure 5.4b also does not
work as we always prune paths for modes of transportation that are not allowed by
those means. Hence, we presume that for the class of hierarchical automata Problem 1
has no solution. Thus, the problem can be augmented in order to ask whether there
exists a (non-trivial) class of automata that has a solution to Problem 1:

Problem 2. Given the multi-modal arc-flags approach, is there a non-trivial (i.e., containing
more than one element) class of automata A, for which Problem 1 can be solved?

We leave this question open for further research on the topic.
As a final note regarding multi-modal Arc-Flags, we like to recall that our multi-

modal graphs are mixed of both time-independent and time-dependent edges. For
that reason, we also need to apply the augmentations discussed in the paragraph
about time-dependency when computing multi-modal arc-flags.

Discussion. Arc-Flags is a goal-directed speed-up technique in the sense that it prunes
paths that do not lead toward the target. The graph is partitioned into r cells and for
each cell Ri we compute the set of edges Ei that are on a shortest path toward a node
in cell Ri. This information is stored as r-bit flag vectors along the edges indicating

75

Chapter 5. Speed-Up Techniques

whether the resp. edge is important for the specific target cell. For uni-modal time-
independent routing, this technique is a basic ingredient for one of the fastest speed-
up techniques on road networks, SHARC-routing [BD08], CHASE and Transit-Node
Routing with Arc-Flags [BDS+08, BDS+09]. SHARC has been augmented to routing in
time-dependent road and railway networks in [Del08], still yielding very good results.
However, it turns out that generalizing Arc-Flags further on multi-modal networks is
very hard (if possible at all). While this question is an interesting topic for further
(theoretical) research, we do not use Arc-Flags for our speed-up techniques in this
thesis.

5.1.4. Contraction

The last basic ingredient we present is contraction. By contraction we mean some
sort of reduction concerning the size of the graph, either, regarding nodes or edges.
The former is called node-reduction, while the latter is referred to as edge-reduction. In
road networks it turns out that contraction is a very powerful technique. Highway
Hierarchies introduced in [SS05] and refined in [SS06a] is one of the first speed-up
technique using contraction based methods. Contraction Hierarchies [Gei08, GSSD08]
is a further development based on Highway Hierarchies, yielding a high-performance
speed-up technique solely based on the concept of contraction. Moreover, contrac-
tion can be combined well with goal directed and bi-directional search. SHARC-
routing (see [BD08]) combines contraction with Arc-Flags, while the Core-ALT algo-
rithm (see [BDS+08]) combines contraction with the goal-directed search (ALT). In fact
one of the fastest speed-up technique of today combines Contraction Hierarchies with
Arc-Flags [Sch08a, BDS+08].

It turns out that contraction is also helpful to multi-modal routing (implying only
marginal restrictions on the finite automata during queries). We describe both node-
reduction and edge-reduction in this section. When both routines are applied only once,
they yield a small graph called the core. The core-graph is significantly smaller than the
original graph. It turns out that the query can be reduced to a many-to-many shortest
path search on the core graph, where another speed-up technique can be applied
orthogonally. Both our methods, Core-ALT and Core-Based Access-Node Routing
make use of this approach. Another advantage by applying a speed-up technique only
to the much smaller core graph is that preprocessing time and additionally required
space can be reduced significantly.

Node-Reduction. The node-reduction when applied once, divides the graph into two
parts: the core and the component. In the beginning all nodes are considered to belong

76

5.1. Basic Ingredients

v

(a) Before.

v

(b) After.

v

w

(c) Edge-reduction on (v, w).

Figure 5.5.: Figures (a) and (b) illustrate the bypass operation during node-reduction. For each pair

of incoming and outgoing edges at v, a shortcut is inserted. If the shortcut e is already

contained in the graph (blue edge), the weight on the shortcut is set to the minimum

weight of e and the weight of the edge that would be inserted at that place.

Figure (c): Illustration of the edge-reduction routine. The bold path from v to w is

shorter than the edge e = (v, w), thus, e can be deleted (dashed line).

to the core. We then consecutively bypass nodes, i.e., they get extracted from the
core and eventually belong to the component of the graph, until no more nodes are
bypassable. The criterion to which nodes are selected for bypassing as well as the
criterion that indicates that no more nodes are bypassable are not discussed at this
point. We go into detail regarding this issue when we introduce Core-Based Routing
in Section 5.2. We only present the general concept of node-reduction here.

Let G = (V, E) be a graph and v ∈ V a node that belongs to the core of the graph.
Then, for every incoming edge ein = (u, v) and every outgoing edge eout = (v, w) we
insert a shortcut edge e := (u, w) from u to w. The weight of e is set to w(e) := w(ein) +
w(eout). If the insertion of e would lead to a multi-edge from u to w, we set the weight
of the already existing edge e′ = (u, w) to the minimum w(e′) := min{w(e), w(e′)}.
Finally, the node v and all its incident edges are deleted from the graph. Note that the
node-reduction routine preserves correct distances between two arbitrary core nodes.
The sub-figures (a) and (b) in Figure 5.5 illustrate the bypass operation.

The obtained core graph is denoted by Gcore = (Vcore, Ecore), while the component is
defined as Gcomp = (Vcomp, Ecomp) where Vcomp := V \Vcore and Ecomp = E \ Ecore.

Edge-Reduction. Performing the node-reduction potentially inserts many shortcuts
into the core that may turn out unnecessary for preserving correct distances. There-
fore, the edge-reduction works as follows. For each core node v ∈ Vcore and every
edge e = (v, w) we perform a shortest v-w-path query. If dist(v, w) < w(e) (which is
common for far shortcuts), the edge e is removed from the core. This can be acceler-
ated by growing a shortest path tree from the node v using Dijkstra’s algorithm and
stopping as soon as all neighbors of v have been settled. We now have the distances
dist(v, w) for all neighbors w of v computed at once and can proceed with removing

77

Chapter 5. Speed-Up Techniques

all unnecessary outgoing edges of v at once. Note that applying the edge-reduction
also preserves correct distances between core nodes in Gcore. Figure 5.5c illustrates the
edge-reduction regarding a single edge (v, w).

Preprocessing. The preprocessing of our contraction routine consists of applying
node-reduction once until no more nodes are bypassable. Afterward, performing the
edge-reduction on the core graph Gcore is performed. For the sake of simplicity, the
query algorithm uses only one graph. The graph G := Gcore ∪ Gcomp is obtained by
unifying the core graph with the component. Core nodes are thereby marked with a
flag.

Query. While the query algorithms of the previous techniques turned out easy, our
contraction routine requires a more complicated query algorithm. As input we are
given a graph G = (V, E) with designated core-nodes. For an s-t-query the algorithm
works in two phases. The first phase operates on the component part of the graph,
while the second operates only on the core.

Phase one instantiates a bi-directional search on the component of G. This is achieved
by not relaxing edges that are contained in the core (i.e., edges e = (u, v) for which
both u and v have the core flags set). Note that by these means we in fact settle core
nodes, we just abort the search as soon as they are first hit (if either s or t are core
nodes, the forward resp. backward search terminates immediately). The set S of core
nodes that are hit by the forward search is called set of core-entry-nodes, while the set T
of core nodes hit by the backward search is called the set of core-exit-nodes. Phase one
terminates if one of the following conditions holds.

1. Both, the forward and backward priority queues are empty.

2. There has been a s-t-path P found for which it holds that

len(P) ≤ dist(s, vmin
entry) + dist(vmin

exit , t), (5.9)

where vmin
entry ∈ S denotes the core-entry-node with minimal distance from s in G,

while vmin
exit ∈ T denotes the core-exit-node with minimal distance from t in

←−
G .

If phase one is aborted due to the second condition, we can stop the query and output
the computed path P as shortest s-t-path. In this case, the shortest path solely uses
nodes of the component.

So for the rest of this paragraph we assume that no path P in the component has
been found by phase one. In this case, phase two of the algorithm is instantiated with
a many-to-many S-T query only relaxing edges contained in the core. However, the

78

5.1. Basic Ingredients

s
t

S
T

(a) Phase I.

s
t

S
T

(b) Phase II.

Figure 5.6.: Illustration of the Core-Based Routing algorithm. Phase one (left) conducts a bidi-

rectional search until all core-entry resp. core-exit-nodes have been reached. In phase

two an S-T-query is performed on the core graph (right). The shortest path is then

combined by taking from all s-T-t-paths the one having minimum length.

forward (and backward) queues are re-filled such that the initial keys are set to the
distances (from s resp. t) computed in phase one. The algorithm used in phase two is
not specified. Thus, contraction yields a modular design that allows combination with
an arbitrary speed-up technique applied on the core.

The final s-t-path is then combined by determining the minimal s-T-t-path Ps,v,t for
every node v ∈ T where the length is computed by

len(Ps,v,t) := dist(s, v) + dist(v, t). (5.10)

Figure 5.6 illustrates the query algorithm.
Although the correctness of the query algorithm is not as obvious as with the other

basic ingredients, we omit an extensive proof of correctness and like to refer the reader
to [BDS+09] for further details.

Time-Dependency. The adaption of our contraction method to time-dependent rout-
ing is straightforward, however, comes with the penalty of high preprocessing times
and space consumption.

Preprocessing. Regarding node-reduction the only difference is that we have to pro-
cess travel time functions instead of constant weights. Thus, when inserting a shortcut
e = (u, w) for two edges ein = (u, v) and eout = (v, w) the function fe is computed by
fe := fein ⊕ feout . If an edge e′ = (u, w) already exists in the graph the new function on
e′ is computed by fe′ := min{ fe, fe′}. Besides being slower to process functions instead
of constant weights, both the link- and merge-operation may increase the number of

79

Chapter 5. Speed-Up Techniques

interpolation points and, thus, lead to high space consumption of the precomputed
data. This is especially true for road networks (see [Del08]).

The time-consuming part is the edge-reduction routine. It is no longer sufficient
to compute simple shortest path trees to determine for a node v which edges to its
neighbors w may be deleted. Instead, we have to compute profile queries. An edge
e = (v, w) may then only be deleted if fw < fe holds, meaning the computed path
to w is faster than using the edge directly for all times of day. As we worked out in
Section 4.2.2, computing profile queries is much slower than computing time queries.

Query. Adapting the query algorithm to time-dependency requires some careful mo-
difications. Since phase one of the query uses bi-directional search, we encounter the
same problem as we did with plain bi-directional search: The exact arrival time at the
target node t is not known in advance. Hence, the algorithm is modified as follows.

Phase one, again, consists of a bi-directional search on the component graph (i.e.,
edges that belong to the core are not relaxed). Like drawn out in Section 5.1.1 the
forward search is conducting a time query with departure time τ at s, while the back-
ward search is time-independent on the backward lower bound graph

←−
G . However,

the stop criteria differ from the time-independent algorithm. Phase one is now halted
if one of the following criteria holds.

1. Both, the forward and backward priority queues are empty.

2. If S is the set of core-entry- and T the set of core-exit-nodes, the search is halted if
S∩ T 6= ∅, i.e., there is at least one core node that is discovered by both searches.
In this case, a standard uni-directional s-t-time query with departure time τ (on
whole G) is started and the shortest path outputted.

In the case that phase one is stopped by the first criterion, the core algorithm is
initialized—in the same manner as the time-independent version—with the sets S and
T. However, the forward search is allowed to ‘break out’ of the core at the core-exit
nodes T. Formally, as soon as the forward search settles a node v ∈ T, the algorithm
is also allowed to relax edges outside the core. Thus, the shortest s-t-path is found
directly by the forward search, rendering the step of finding the minimal path over
all exit-nodes T due to Equation (5.10) unnecessary for this case. Again, we omit a
detailed proof of correctness and refer the reader to [DN08].

Adaption to Multi-Modal Routing. Adapting contraction to multi-modal routing en-
tails some hurdles one should be aware of. For the sake of clarity, we discuss the
adaption to multi-modal routing for every step during contraction separately.

80

5.1. Basic Ingredients

Node-Reduction. When we insert a shortcut e = (u, w) due to bypassing a node v,
the edges (u, v) and (v, w) are linked into one edge. When we look at this from the
perspective of the automaton, walking along one edge of the network implies exactly
one transition in the automaton. So, when two edges are linked into one edge, an
automaton during query is only able to perform one transition where it would have
performed two in the original graph. Thus, in general, bypassing a node destroys the
paradigm of being able to use any automaton for the query.

However, we can counteract that problem by restricting the contraction routine to
nodes v satisfying the following property. For all incoming edges ein to v and all out-
going edges eout from v it must hold that they have the same edge labels. In that case,
we only ‘unify’ transitions having the same label (symbol in the automaton). While
we theoretically still lose the ability to use any automaton for the query algorithm, we
retain the possibility to use every automaton where a transition with respect to some
label σ can be repeated arbitrarily often. In Section 4.3.2 on page 57 we worked out that
every reasonable automaton fulfills this property. Thus, we conclude node-reduction
can be reasonably augmented to multi-modal routing.

Edge-Reduction. The edge-reduction routine has to be altered for the same reasons
node-reduction had to be restricted. If v is a node belonging to a certain network
type T, then the shortest path tree grown from v has to be restricted to that particular
network T, i.e., the shortest path algorithm is only allowed to settle nodes labeled by T.
In this case, it is guaranteed that a shortest path from v to one of its neighbors w (not
using the edge (v, w) =: e directly) is only composed of edges with the same label as e.
Thus, it is safe to remove the edge e from the graph. Note that if label(v) 6= label(w),
then w is never settled by the shortest path algorithm and, thus, e is never removed.
If performed with this constraint, the edge-reduction routine has the exact opposite
effect of node-contraction. Removing an edge e from v to w keeps the distance from v
to w correct but expands the number of subsequent label(e)-labeled transitions in the
automaton regarding the segment from v to w on the path.

Query. Concerning the query algorithm we are set with the standard augmentation
of replacing nodes by product-nodes which are computed implicitly. Thus, phase one
yields two sets S and T of product-nodes, which are then re-inserted into the forward
and backward queues with their proper distances. The phase two algorithm on the
core can be chosen to be any many-to-many multi-modal routing algorithm. The
augmentations of bi-directional routing to multi-modal networks (cf. Section 5.1.1), of
course, also apply here for the phase one part of the query.

81

Chapter 5. Speed-Up Techniques

Discussion. Contraction is a basic ingredient for the best known speed-up techniques
on uni-modal graphs as of today. The result after preprocessing is a graph that contains
a contracted subgraph called the core. The query algorithm is more complex than
with the other basic ingredients. It consists of two phases: The first phase runs a
bi-directional search on the component until all entry- and exit-points to the core are
found. The second phase then uses an arbitrary algorithm operating solely on the core
graph. The main strength of contraction is that in practice the first phase terminates
very quickly and because of the very small size of the core, phase two is restricted
to a small node subset of the original graph, thus, accelerating the query [Sch08a].
Furthermore, our core-based approach of contraction allows for an arbitrary speed-up
technique on the core.

Contraction can be augmented to time-dependency, though, with the penalty of
higher preprocessing space and time. Furthermore, on road networks, contraction in-
creases the complexity of the travel time functions on the edges [Del09a], thus, inflict-
ing a penalty on the query side of the algorithm. The generalization to multi-modal
networks is possible but we have to be careful as to which nodes and edges are al-
lowed for bypassing and deletion. Roughly speaking, if we prohibit the application of
the contraction routines over ‘borders’ of the different network types, we are still able
to use all reasonable automata during the query

In the next section we refine our contraction routine on multi-modal networks yield-
ing a robust technique we call Core-Based Routing. The main idea is to restrict contrac-
tion to the time-independent road network which makes up most part of our multi-
modal graphs. Thus, the railway and the flight networks are completely contained in
the core.

5.2. Core-Based Routing

In this section we present Core-Based Routing which is a pure multi-modal speed-up
technique based on contraction. While in the previous section we already mentioned
how contraction can be augmented to both time-dependency and multi-modality in
general, Core-Based Routing as we present it here uses a slightly different approach.

We like to remind that our multi-modal networks are composed of a time-inde-
pendent road network containing both foot and car edges as well as time-dependent
railway and flight networks (cf. Section 3). When we introduced contraction in Sec-
tion 5.1.4 we worked out that the adaption to time-dependent scenarios comes with
the drawback of high preprocessing times (linking and merging of functions instead
of processing constants and using profile queries instead of shortest path trees for
computing the edge-reduction) and a more complicated query algorithm.

82

5.2. Core-Based Routing

However, the largest portions of our multi-modal graphs are made up of the time-
independent road network. For example a graph of Europe containing road, railway
and flight networks contains 30 722 060 nodes from which 30 203 343 belong to the road
network (cf. Section 6.1). Thus, we remedy the disadvantages of time-dependent con-
traction by restricting preprocessing to the road network. Therefore, the core contains
the non-contracted public transportation networks as well as (contracted) parts of the
road network, while the component consists only of nodes from the road network.
Hence, we are able to use the time-independent version of the query algorithm (see
previous section). Although the arrival time of the target is not known in advance, we
are able to apply bi-directional routing on the component since the distances in the
road network are independent from the arrival time of the target. The time-dependent
part of the graph is fully contained in the core. Our basic core-based router uses a sim-
ple uni-directional time-dependent multi-modal Dijkstra algorithm during the core
part of the query (cf. Algorithm 5).

In the subsequent sections we are always given a multi-model graph G = (V , E)
with labeled edges and nodes. Furthermore, we assume that our multi-modal graphs
contain a road network.

5.2.1. Preprocessing

Preprocessing of Core-Based Routing is based on the application of the node-reduction
and edge-reduction routines as introduced in Section 5.1.4. At first, node-reduction is
applied once and afterward the edge-reduction kicks in (also once) to remove unneces-
sary edges. Instead of extracting the core Gcore and merging it with the original graph
G in the end, we only operate on G the whole time. Thereby, nodes that belong to
the core are marked by a flag core : V → {true, false}. Although, we do not extract
the core explicitly, we refer to the set of nodes v ∈ V having core(v) = true as Vcore.
Furthermore, edges that are inserted during the node-reduction are also marked with
a flag so they can be identified as shortcuts.

Node-Reduction. We would like to remind that the node-reduction is made up of
consecutive bypass operations. Let v ∈ Vcore be a node that is not yet bypassed. Then
applying the bypass operation on v yields shortcuts e = (u, w) being inserted for every
incoming edge ein = (u, v) and outgoing edge eout = (v, w). Since we want to restrict
ourselves to the road network, the bypass operation is only applied if the following
conditions hold.

1. The node v must be part of the road network, thus label(v) = ROAD NODE must
hold.

83

Chapter 5. Speed-Up Techniques

2. All neighbors of v must belong to the road network, thus label(w) = ROAD NODE

must hold for all neighbors of v. Note that this implies that all edges incident to
v are labeled as ROAD EDGE.

3. All incident (road) edges to v must be open for the same modes of transportation
(car/foot). These are either car and foot, only cars or only foot.

4. For all pairs of edges (u, v), (v, w) and (u, w) in the graph, the edge (u, w) must
also be open for the same modes of transportation (car/foot) as (u, v) and (v, w).

All newly inserted edges get their shortcut-flag enabled. We do not set this flag for
edges e ∈ E, even though we might change the weight of e. Since our preprocessing is
done in-place on G, we do not delete bypassed nodes. Instead, for a node v ∈ Vcore we
set core(v) = false. Furthermore, all incident edges e to v that have their shortcut flag
set are not contained in E originally. Thus, they can be removed when v is bypassed.

Order of Processing. In Section 5.1.4 we mentioned that we stop the node-reduction
routine as soon as no more nodes are bypassable. Furthermore, experiments have
shown (see [GSSD08]) that the order in which nodes are bypassed influences the qual-
ity of the contracted core graph regarding the number of edges. For that reason, we
use a priority queue to maintain the order in which nodes are bypassed. Nodes with
a low priority are bypassed first.

To determine if a node is bypassable, we examine the number of shortcuts (#shortcuts)
that would be inserted if v would be bypassed. Note again that we only count the
number of newly inserted edges. (Shortcut-) edges that would only be updated do not
contribute to #shortcuts. The node v is bypassable if the following equation holds:

#shortcuts ≤ c ·
(

degin(v) + degout(v)
)
. (5.11)

Hereby, degin(v) and degout(v) denote the number of incoming resp. outgoing incident
edges at v. Moreover, c can be specified as a tunable contraction parameter (higher
values allow more aggressive contraction) and is usually chosen between 0.5 and 5.0.

Furthermore, it has to hold that

h(v) ≤ H (5.12)

where h(v) denotes the number of hops on the hop-maximal shortcut that would be
inserted. The number of hops on a shortcut is defined as the number of nodes that are
bypassed by the shortcut. Note that when inserting shortcuts for two edges ein and
eout, one of them may already be a shortcut inserted previously, thus the hop number

84

5.2. Core-Based Routing

can grow arbitrarily big. The choice of H yields another parameter that controls con-
traction (higher valuies, again, allow for more aggresive contraction). The parameter
H is usually chosen between 10 and 70.

If v is bypassable, i.e., both bypass criteria hold, the priority of a node v ∈ Vcore is
determined by the equation

key(v) := h(v) · #shortcuts(
degin(v) + degout(v)

) . (5.13)

So with regard to this equation we prefer the insertion of ‘short’ shortcuts. More-
over, nodes that would yield less shortcuts (relative to the number of neighbors) are
preferred as well.

In the beginning the priority queue is filled with all nodes v ∈ Vcore which are
bypassable according to their priorities key(v). Then, we extract the minimal element
from the queue, bypassing the respective node. Since bypassing a node v can influence
the key of its neighbors, we recompute their keys afterward and update the priority
queue accordingly. Note that this may induce the removal of nodes from the queue
prematurely. Our node-reduction routine finally terminates when the queue is empty,
i.e., no more nodes are bypassable.

Edge-Reduction. The edge-reduction is applied as described in Section 5.1.4 with
almost no modifications. Since we have to restrict ourselves to the subgraph only
containing edges labeled by the same label as label(e) when processing an edge e =
(v, w), we have to take some extra considerations. In Section 5.1.4 we optimized the
edge-reduction by growing a shortest path tree from v to handle all outgoing edges
e = (v, w) at once. We like to retain this improvement, hence, we apply the edge-
reduction to a node v ∈ Vcore if the following conditions hold.

1. The node v is part of the road network, i.e., label(v) = ROAD NODE,

2. all outgoing edges e = (v, w) ∈ Ecore are labeled by ROAD EDGE and

3. they allow the exact same modes of transportation (foot or car). These are car
and foot, car alone and foot alone.

Now let v be a node on which the edge-reduction can be applied. Then we grow a
time-independent shortest path tree from v restricted on the time-independent road
network, i.e., we do not relax edges that are not labeled as ROAD EDGE. Furthermore,
we restrict the computation to edges in the road network that are open for the exact
same modes of transportation as the outgoing edges of v. If the edges e are open for
either cars or pedestrians alone, we remove e = (v, w) if w(e) > dist(v, w). If, however,

85

Chapter 5. Speed-Up Techniques

the edges e are open for both modes of transportation, we have to grow two distinct
shortest path trees: One using car weights, the other using foot weights.

We then only remove the edge e = (v, w) from the graph if both inequalities

wcar(e) > distcar(v, w) and wfoot(e) > distfoot(v, w) (5.14)

hold at the same time. By these means we ensure that the removal of the respec-
tive edges does not violate the distances between nodes in the graph. Furthermore,
we ensure that the alternate path only contains edges labeled by the same modes of
transportation as the deleted edge.

5.2.2. Query

Our query algorithm for Core-Based Routing is applied on a contracted multi-modal
graph G = (V , E) with labeled nodes and edges. Furthermore, nodes belonging to the
core are designated by the core flag. Our query algorithm performs multi-modal time
queries (cf. Section 4.2.2), i.e., we are given source and target nodes s, t ∈ V , a depar-
ture time τ at s and a regular language L ⊂ Σ∗. Furthermore let A = (Σ, Q, δ, S, F) be
the finite automaton accepting L.

As presented in the previous section, preprocessing on G is restricted to the road
network, therefore the component consists of time-independent edges alone. For that
reason, applying a bi-directional search algorithm restricted to the component of G
yields correct shortest paths (see also Section 5.1.1 for a description of a bi-directional
time-independent Dijkstra). Hence, the time-independent version of the query algo-
rithm as described in Section 5.1.4 can be adopted with only a few modifications to
account for multi-modality. The algorithm is made up of two phases. We recapitulate
the query algorithm in the following and tailor it to our version of the contraction
routine.

Phase I. Phase one consists of a bi-directional multi-modal time-independent search
algorithm restricted to the component. The forward search starts at s in G, while the
backward search starts at t in

←−
G . Note that the priority queues are initialized with

product-nodes (s, qs) for all qs ∈ S and (t, q f) forall q f ∈ F (see also the augmentation
to multi-modal routing of bi-directional search in Section 5.1.1).

Both searches only relax edges which are not in the core, i.e., an edge e = (u, v)
where core(u) = true and core(v) = true is not relaxed. By these means we discover
sets S and T of core-entry- and core-exit-product-nodes, respectively. Phase one termi-
nates, as soon as either both priority queues are empty or we discover a shortest path
which solely uses the component. Such a shortest path is found if the bi-directional

86

5.2. Core-Based Routing

search on the component found and s-t-path P for which it holds that

len(P) ≤ dists
(
(v, q)min

entry
)
+
←−
distt

(
(v, q)min

exit
)
, (5.15)

where (v, q)min
entry denotes the core-entry-product-node with minimal distance from s

and (v, q)min
exit the core-exit-product-node with minimal distance from t.

←−
dist denotes

distances on
←−
G . In this case P is outputted as shortest path and the algorithm termi-

nates. Otherwise, we continue with phase two.

Phase II. For phase two, we are given sets S and T of core-entry- resp. core-exit-
product-nodes together with the distances of every node in S and T from the source s
resp. target t. Phase two then consists of a many-to-many multi-modal time-dependent
shortest path algorithm from S to T restricted to Gcore, i.e., edges e = (u, v) with
core(v) = false are not relaxed by the algorithm. While in theory, any algorithm can
be used, we use the standard multi-modal uni-directional Dijkstra algorithm for the
basic version of Core-Based Routing (cf. Algorithm 5 on page 55). The forward queue
from phase one can be re-used and the product-nodes (v, q) ∈ S get re-inserted into
the queue with key dists

(
(v, q)

)
. Phase two terminates as soon as either the priority

queue is empty, or all product-nodes from T have been settled.

Combining The Shortest Path. Phase two of the algorithm terminates with forward
and backward distance labels for each of the core-exit-product-nodes (v, q) ∈ T. The
final shortest path is then obtained through combining the paths from s to (v, q) ∈ T
with the path from (v, q) to t (which is resulting from the backward search of phase
one). The node (v, q) ∈ T is the node for which dists

(
(v, q)

)
+
←−
distt

(
(v, q)

)
is minimal.

5.2.3. Proof of Correctness

In this section we give a formal proof of correctness for our Multi-Modal Core-Based
Routing algorithm.

Our proof is split into two parts. First, we prove that the contraction routine pre-
serves distances on the core, i.e., for two nodes u, v ∈ Gcore, it holds that dist(u, v)
(wrt. to L) are not changed by contraction. In the second part we prove that the query
algorithm then yields correct paths.

To prove that distances on the core are correct we first give a formal definition of a
language L having the variabl length property.

Definition 8. Let L ⊂ Σ∗ be a regular language where the alphabet Σ∗ is the set of edge labels.
Then L fulfills the variable length property if for every word w ∈ L it holds that for every

87

Chapter 5. Speed-Up Techniques

LINK LINK

FOOTRAILCAR

(a)

CAR CAR

CAR

(b)

Figure 5.7.: Two automata. The one to the left fulfills the variable length property, the one to the

right does not.

decomposition of w in w = xyz where x, z ∈ Σ∗ and y = σi for σ ∈ Σ \ {LINK EDGE} and
maximal i ∈N the words

w′ := xσky ∀k ∈N0 (5.16)

are also contained in L.
If A is an automaton accepting L, we also say that A has the variable length property.

Figure 5.7 gives two examples of automata from which one has the variable length
property and the other does not. Our contraction routine first applies node-reduction
once and the edge-reduction routine afterward. During node-reduction we extract
nodes from the core of G. The remaining core subgraph is denoted by Gcore. Further-
more, let L be an arbitrary language fulfilling the variable length property.

Lemma 1 (Node-Reduction). Node-reduction preserves distances on Gcore wrt. L.

Proof. The lemma is proven by induction over the number of bypass operations. In
the beginning, all nodes belong to the core and yet no changes have been made to the
graph, thus, distances on the core are correct.

Now assume that distance are correct after a finite number of node bypass oper-
ations. We consider bypassing a node v ∈ Gcore, thus, we have to show that for all
x, y ∈ Vcore \ {v} distances wrt. to L are correct after v has been bypassed. For that
matter, let P be the shortest path from any x to y. We distinguish the following cases.

Case I: The path P is not going through either v or any of the neighbors of v. Since
the bypass operation only inserts resp. removes edges involving v and its neighbors,
the path P is still contained in the graph after the bypass operation.

Case II: The path P is using v. Since v is extracted from the core, the path P no longer
exists in the core. Thus, let [u, v, w] ⊂ P denote the (not necessarily only) occurrence
of v in P with its adjacent nodes along the path.

88

5.2. Core-Based Routing

For that reason, time-independent road edges e1 := (u, v) and e2 := (v, w) have
to exist in the graph before bypassing v. An edge e3 := (u, w) might exists, how-
ever, it has to hold that w(e3) ≥ w(e1) + w(e2), otherwise the shortest path would
go from u to w directly. Furthermore, these edges have to support the same modes
of transportation (regarding car and foot), otherwise v would not be bypassable.
Thus, the labels in the word in L corresponding to P can be described by σ2 where
σ ∈ {CAR EDGE, FOOT EDGE}.

Due to the construction rules of the bypass operation, either a new edge enew =
(u, w) is inserted with weight w(enew) = w(e1) + w(e2). In this case a path P′ in Gcore

having the same length as P can be constructed from P by substituting the subpath
[u, v, w] through [u, w]. The corresponding labels in P′ are reduced from σ2 to σ, thus,
the resulting word corresponding to P′ is still a member of L due to the variable length
property.

If, on the other hand, no new edge enew is inserted, there was already an edge e3

in the graph. In this case, the weights of e3 are set to the minimum of w(e3) and
w(e1) + w(e2) for each mode of transportation (car and foot). Because for the mode
of transportation σ which is used along the respective segment of the path P, it holds
that w(e1) + w(e2) ≤ w(e3), the new weight of e3 is set to w(e1) + w(e2). Hence, we
immediately obtain that the path P′ constructed by the same rules as in the first case
yields a path having correct distance and word wrt. to the language L.

Case III: The path P is not using v but an edge e3 := (u, w) where both u, w are
neighbors of v in the sense that there are edges e1 := (u, v) and e2 := (v, w) contained
in Ecore. Then it has to hold that w(e3) ≤ w(e1) + w(e2). In this case the weight of e3 is
retained after the bypass operation and P is still a valid path in Gcore after v has been
bypassed.

Altogether, we obtain by induction that the distances with respect to L are preserved
by our node-reduction routine.

Lemma 2 (Edge-Reduction). Edge-Reduction preserves distances on Gcore wrt. L.

Proof. Again, we prove the lemma by induction. Assume that after n deleted edges the
distances are still correct. Consider the edge-reduction applied to a node v where the
edge e := (v, w) ∈ Ecore is removed from the graph. Furthermore, assume that for two
arbitrary nodes x, y ∈ Vcore the path P uses the edge e by the mode of transportation
σ ∈ {CAR EDGE, FOOT EDGE} (otherwise nothing happens and we are set). By the defini-
tion of edge-reduction, there exists a path P′ from v to w not using the edge e that has
a shorter length than e. Furthermore, the word along P′ is exactly σk whereas k = |P′|.
Thus, we can substitute the edge e in P by P′ yielding a new path Pnew. This path still

89

Chapter 5. Speed-Up Techniques

forms a valid word wrt. to L since substituting σ through σk in the word conforms to
the variable length property of L. However, it now holds that len Pnew < len P which
is a contradiction to P being a shortest path in Gcore.

Thus, there is no shortest path P using the edge e and removing the edge e preserves
distances wrt. to L in Gcore.

Because distances were correct before the edge-reduction routine is applied, we
obtain that edge-reduction preserves all distances on Gcore wrt. a variable length lan-
guage L.

Theorem 3 (Correctness of Core-Based Routing). Multi-modal Core-Based Routing is cor-
rect. Given a multi-modal graph GC = (V , E) after preprocessing G, source and target nodes
s, t ∈ V , a departure time τ and a regular language L having the variable length property,
applying the multi-modal Core-Based Routing algorithm on the contracted version GC of G
yields correct shortest paths from s to t at time τ wrt. the language L.

Proof. Since during preprocessing of Core-Based Routing no nodes are deleted or in-
serted, we can identify the node sets V and VC. Now let

P = [(s, q1), . . . , (vi, qi), . . . , (vj, qj), . . . , (t, qk)] (5.17)

be a shortest path of length k− 1 in G. If all nodes in P belong to the component, then
P is also found by our query algorithm in GC by the correctness of time-independent
bi-directional search. This also holds if only one product-node (v, q) ∈ P belongs to
the component since in that case no edge contained in the core is used along P.

Now let (vi, qi) and (vj, qj) for i < j denote the first resp. last product-node in P that
belong to the core. Let the sub-path of P between these product-nodes be denoted by
P′. Then by Lemmas 1 and 2 we obtain that there is a path Pcore of equivalent length
solely using core-nodes. Moreover, the path Pnew obtained by substituting P′ through
Pcore conforms to the language L.

The paths [(s, q1), . . . , (vi, qi)] and [(vj, qj), . . . , (t, qk)] are found by phase one of the
query algorithm. In this case it holds that (vi, qi) is a core-entry-product-node and
(vj, qj) a core-exit-product-node. The path Pcore is, thus, found by phase two of the
query algorithm by the correctness of the multi-modal Dijkstra algorithm.

Altogether, we conclude that Multi-Modal Core-Based Routing yields correct short-
est paths due to languages L fulfilling the variable length property.

5.2.4. Discussion

In this section, we introduced our first tailored multi-modal speed-up technique. More
precisely, we augmented the basic ingredient of contraction to multi-modal networks

90

5.3. Core-ALT

in a way that preprocessing is fast and feasible. Moreover, the only loss of generality
is that we are no longer able to use languages L that do not fulfill the variable length
property during queries. However, this is only a small disadvantage, since we worked
out that every ‘reasonable’ language L for multi-modal routing has this property any-
way.

Regarding the query, we can use the time-independent uni-modal query algorithm
of core-based routing as a template and only need to augment it with the necessary
modifications required for multi-modality (product-nodes instead of simple nodes).
Because the time-dependent parts of our graphs are fully contained in the core, the al-
gorithm used for the ‘inner’ part of the query (phase two), can be chosen orthogonally.
In this section we choose a simple multi-modal Dijkstra algorithm.

While on road-networks contraction can lead to extremely small core graphs of 1%
size [Sch08a], these ratios are hard to achieve in our multi-modal scenario. This is due
to two facts: First, the whole public transportation part of the core is not bypassed and
therefore contained in the core. Furthermore, in our road networks, a lot of nodes are
not bypassable as their incident edges are not homogenous regarding the open modes
of transportation (foot and car). We observe that our graphs can be contracted down
to approximately 15% of the original size. Also refer to Section 6.4 for experiments
and figures on this matter.

Core-Based Routing by itself only yields mild speed-ups. However, in the next
section we introduce uni-directional ALT on the core, resulting in a robust multi-modal
speed-up technique with good performance.

5.3. Core-ALT

In this section we introduce Core-ALT (short: CALT) for time-dependent multi-modal
networks. This speed-up technique is based on Core-Based Routing introduced in the
previous section. We extend the Core-Based Routing approach by applying the uni-
directional time-dependent multi-modal ALT algorithm as introduced in Section 5.1.2
on the core graph.

The idea to combine contraction with ALT is not new and has been done in [Sch08a].
This approach has then been adapted to time-dependency in [DN08] called TDCALT.
In this section we augment Core-ALT further to multi-modal networks. In contrast
to [DN08] our networks are not purely time-dependent. As worked out in the previous
section, only our core has time-dependent parts, thus, we can continue to use the time-
independent query algorithm on the ‘outer’ part of Core-Based Routing and only need
to exchange the ‘inner’ algorithm by time-dependent ALT. Moreover, we use the uni-
directional variant of ALT. This spares us the rather complicated query algorithm for

91

Chapter 5. Speed-Up Techniques

bi-directional TDCALT [DN08].

5.3.1. Preprocessing

Preprocessing for multi-modal Core-ALT is straightforward. Given a multi-modal
graph G = (V , E), we first compute the contracted graph GC in the same way as for
pure Core-Based Routing introduced in Section 5.2. Next, the core Gcore = (Vcore, Ecore)
is extracted from GC. Finally, we perform ALT preprocessing on Gcore like presented
in Section 5.1.2 without any modifications.

Landmarks and distances are computed on the lower-bound graph Gcore. As worked
out in Section 5.1.2, we use the MaxCover method when selecting up to 16 landmarks
and Avoid if more then 16 landmarks shall be computed.

Node-Reordering. In order to improve spatial locality in our graph data structure,
the nodes in GC are reordered such that core nodes are at the beginning followed
by component nodes. Please also refer to Appendix A.1.1 for a description of our
graph data structure. As most of the query is performed on the core nodes, this
improves cache efficiency yielding lower query times (see also [GKW07] and [Del09a]).
Furthermore, this allows us to use arrays of size |Vcore| instead of |VC| for storing the
distances to/from each core node from/to each landmark, resulting in a significantly
less amount of required space for the preprocessed data.

5.3.2. Query

The query algorithm for Core-ALT is basically the Core-Based Routing algorithm as
described in Section 5.2.2. Phase one of the algorithm can be adopted without any
modifications. The Dijkstra algorithm used during phase two on the core is ex-
changed by a multi-modal time-dependent ALT. However, the ALT algorithm requires
distances from the landmarks to the target node t for computing a feasible potential
function π. But the target node t might not be contained in the core. Thus, we require
proxy nodes that assist by bounding the distance from v to t on the core.

Proxy Nodes. In [DSSW06] and [GKW07] the concept of proxy nodes has been in-
troduced. Let p ∈ Vcore be a core node with minimal distance dist(t, p) from the target
node t in G. We call the node p proxy node for t. It can be virtually regarded as our
‘target node’ for the lower bound computations on the core regarding the triangle in-
equalities involving the landmarks. By the triangle inequality the following equation
holds for the proxy and traget nodes

dist(v, p) ≤ dist(v, t) + dist(t, p). (5.18)

92

5.3. Core-ALT

v
p

`
dist(v, `)

dist(v, p)

dist(p, `)

t

dist(v, t)

dist(t, p)

(a)

v
p

`
dist(v, `)

dist(p, `)

t

dist(v, t)

dist(t, p)

(b)

Figure 5.8.: Illustration of the triangle inequalities for core based ALT using proxy nodes p. In

the left figure, the blue arrows show Equation 5.18 while the black arrows illustrate

Equation 5.20 (the ‘shortcut’ is drawn bold in each case). When these two inequalities

are combined, we obtain the right figure. For an s-t-query the distance of the red edge

is unknown beforehand, thus, it has to be computed for each query separately.

Furthermore, for a landmark ` ∈ Vcore the following inequalities hold by the standard
ALT approach.

dist(v, `) ≤ dist(v, p) + dist(p, `) and (5.19)

dist(`, p) ≤ dist(`, v) + dist(v, p). (5.20)

Through substituting dist(v, p) in Equations 5.19 and 5.20 by Equation 5.18, we derive
the two inequalities

dist(v, `) ≤ dist(v, t) + dist(t, p) + dist(p, `) and (5.21)

dist(`, p) ≤ dist(`, v) + dist(v, t) + dist(t, p). (5.22)

Since we are interested in a lower bound for dist(v, t), we resolve these equations to
dist(v, t) yielding the feasible potential function

π(v) := max
{

dist(v, `)− dist(t, p)− dist(p, `),

dist(`, p)− dist(`, v)− dist(t, p)
}

.
(5.23)

Note that if dist(t, p) is given in advance, all remaining distance values are available
on the core since all three nodes, v, p and the landmark ` belong to the core.

To obtain the distance dist(t, p), we modify phase two of the core-based query algo-
rithm as follows. In the beginning we grow a shortest path tree from t on the forward
graph G. As soon as we settle a node v ∈ Vcore we stop and choose v as proxy node p.
If the target is contained in the core itself, we stop immediately. However, even if the

93

Chapter 5. Speed-Up Techniques

target is not part of the core, the first core node is reached very quickly (cf. [Sch08a,
p. 73]), making the runtime overhead of the additional preprocessing step required for
each query almost negligible. Figure 5.8 illustrates the usage of landmarks in Equa-
tion 5.18 and 5.19.

The only further modification to the ALT algorithm is that we now require our lower
bounds computed with regard to Equation 5.23. Apart from this, the multi-modal
time-dependent ALT algorithm from Section 5.1.2 can be used directly.

5.3.3. Proof of Correctness

The formal proof of correctness for Core-ALT turns out relatively short, as we can
simply relate to the correctness of Core-Based Routing and uni-directional ALT. Since
Core-ALT makes use of Core-Based Routing the same restrictions that apply for Core-
Based Routing also apply here. Hence, our proof is laid out for shortest path queries
with respect to regular languages fulfilling the variable length property.

Theorem 4 (Correctness of Core-ALT). Multi-Modal Core-ALT is correct. Given a multi-
modal graph GC = (V , E) after preprocessing G, source and target nodes s, t ∈ V , a departure
time τ and a regular language L having the variable length property, applying the Multi-Modal
Core-ALT algorithm on the contracted version GC of G yields correct shortest paths from s to
t at time τ wrt. the language L.

Proof. By Theorem 3 the core-based query algorithm is correct. The only changes ap-
plied to the algorithm are the additional preprocessing step for determining the proxy
node p of t and the replacement of the inner Dijkstra algorithm by uni-directional
multi-modal ALT. The first has no influence on the correctness and the latter only
influences paths that use the core. Hence, Core-ALT is correct for shortest paths not
utilizing edges in the core.

In Section 5.3.2 we derived that the applied potential function through the proxy
node is feasible. Hence, ALT restricted to the core is correct by the correctness of
the ALT algorithm. This implies the correctness for shortest paths using the core by
Theorem 3.

Altogether, we conclude that Core-ALT is correct.

5.3.4. Discussion

In this section we presented Core-ALT. The main strengths of Core-ALT are, first of
all, the very easy query algorithm. We can use the query algorithm for Core-Based
Routing and only need to exchange the ‘inner’ part of it. The only significant mod-
ification is the computation of the proxy node p that is required for each s-t-query.

94

5.4. Access-Node Routing

Second, preprocessing is straightforward, as we simply apply the standard ALT pre-
processing algorithm to the lower bound core graph Gcore. Moreover, if the nodes of
GC are ordered such that all core nodes are at the beginning of our core data structure,
we are able to reduce the required space to O(|L| · |Vcore|+ |L|) as we can use arrays
of length |Vcore| for storing landmark distances.

Hence, Core-ALT unifies the advantages of Core-Based Routing (the main part of
the query is reduced to a small part of the original graph) with those of ALT (goal-
directed searching) by eliminating the main disadvantage of ALT at the same time
namely its high amount of preprocessed data, as we only need to compute landmark
distances on the much smaller core graph.

We decided on using the uni-directional variant of the time-dependent ALT algo-
rithm on the core. This is mainly due to the fact that bi-directional ALT requires
a complicated query algorithm (see [NDLS08]). While in theory, bi-directional ALT
could be augmented to multi-modality as well, it could be shown that query per-
formance in fact drops when switching from uni-directional to bi-directional ALT in
public transportation networks (see [Del09a]) due to the complicated query algorithm
and bad lower bounds. Bi-directional ALT only improves over uni-directional ALT
when shortest paths are approximated. As we believe that this decrease in query per-
formance also applies to our multi-modal scenario, we decided against bi-directional
ALT on the core.

In Section 6.4 we conduct experiments on various multi-modal networks using our
Core-ALT algorithm which result in speed-ups up to 8.1.

5.4. Access-Node Routing

The previous speed-up techniques introduced in this work all had one goal in com-
mon. The query algorithm should work with automata as general as possible. Though,
we already weakened this claim a little (our core-based techniques only allow au-
tomata that fulfill the variable length property), we now go one step further. In this
section we introduce a speed-up technique called Access-Node Routing that yields very
high speed-ups with the penalty of inflicting slightly more restrictions on the usage of
valid automata during query.

Access-Node Routing is based on the assumption that the road network is only
used at the beginning and the end of a journey. If this assumption holds, we ob-
serve that the number of ‘relevant’ entry points into the public transportation net-
works (rail and flight) is relatively small. Thus, in brief, the main idea of Access-Node
Routing is to precompute for each node in the road network their ‘relevant’ entry
points into the public transportation networks. These entry points are called access-

95

Chapter 5. Speed-Up Techniques

nodes. Furthermore, we also store their distances to and from each node in the road
network. Hence, the query algorithm, when applied to nodes s and t in the road
network, directly ‘jumps’ into the public transportation network through the access-
nodes of s resp. t. This can be done extremely fast by table-lookups. The actual
query is then restricted to the public transportation network, where we simply apply
a multi-modal many-to-many query algorithm to route from the entry-access-nodes
to the exit-access-nodes. If the shortest path does not use the public transportation
network, we run an uni-modal time-independent shortest path query on the road net-
work using one of today’s speed-up techniques. This can be done in microseconds
time [SS06b, BFM+07, Sch08a, Gei08, GSSD08, BD08, BD09] and does not become a
burden. Altogether, with Access-Node Routing we are able to perform exact queries
on intercontinental networks in a matter of milliseconds (see experimental Section 6.5).

Our Access-Node Routing technique adapts some of the ideas behind Transit-Node
Routing (see [SS06b, BFM+07, BFSS07]). Transit-Node Routing is a time-independent
speed-up techniques for road networks based on the observation that in road networks
there are only a few number of important nodes (transit nodes), where all ‘far’ shortest
paths go through. Thus, the basic idea is to compute distance tables for each road in
the road network to their relevant transit nodes. Furthermore, a distance table is
computed between all pairs of transit nodes (which can be done since the number of
transit nodes is low). A query algorithm then determines the relevant transit nodes
for the source s and target t, looks up the distances between them in the distance table
and selects the minimum ‘path’ from all combinations. In order to determine whether
the shortest path does not use transit nodes, a locality filter is used. These local queries
are computed using a classic shortest path algorithm without using the transit nodes.

This section is made up as follows. First, we motivate our Access-Node Routing
approach by showing the restrictions concerning automata and arguing that there are
use cases where these restrictions are not harmful. We then give a formal introduction
explaining the technique in more detail, especially the term access-node. After that,
we examine preprocessing, where we describe how we compute relevant access-nodes
in detail. It turns out that computing exact access-nodes involves profile searches on
the whole graph. This is unfeasible as preprocessing times are too high. Thus, we
present a fast preprocessing technique that computes approximate access-nodes, i.e.,
there might be too many access-nodes obtained for a given road network node.

Next, the query algorithm is presented which is basically a multi-modal time-
dependent Dijkstra on the public transportation network where the source and target
nodes S and T are the access-nodes of s and t, respectively. For very large networks
storing access-nodes for every node of the road network is not feasible, as the required
space consumption is too high. Thus, we show how Access-Node Routing can be com-

96

5.4. Access-Node Routing

USA Europe

s

t

Figure 5.9.: An intercontinental query from USA to Europe. With a ‘classic’ (bi-directional) routing

approach big parts of the road network in Europe and the US would be explored (black).

Access-Node Routing only looks at the flights (blue). The distances to the relevant

airports in the road network from s and t are precomputed.

bined with our Core-Based Routing approach from Section 5.2 yielding a technique we
call Core-Based Access-Node Routing. By these means access-nodes have to be computed
on the much smaller core graph alone. While the space consumption can be reduced
radically, the slowdown in query performance is negligible (see Section 6.5). Finally,
we provide a proof of correctness for Access-Node Routing, winding up this section
with a small discussion.

5.4.1. Motivation

When planning a far voyage (e.g., across Europe, or even from Europe into the United
States), it is reasonable to assume that we do not want to use our car the whole trip.
Instead, what we like to do is to use means of public transportation for the most part
of the journey. For example, we use our car to get to the airport, take a flight that
covers most of the distance and at the end reach our final destination by train. The
only parts where we might not be able to use means of public transportation (and
therefore require the road network) are the first part and the last part of the journey.

Although there are instances where we are required to use the road network in
between of the voyage (for example if we transfered in Paris from Gare du Nord to
Gare de l’Est), this can be generally assumed as undesirable. Actually, we expect that
the public transportation network is gapless, i.e., we can travel between two points
in the public transportation network without reverting to the road network (car or
foot). Thus, it is reasonable to assume that the road network shall be used only at
the beginning and the end of the journey in order to reach resp. leave the public
transportation network.

97

Chapter 5. Speed-Up Techniques

Access-Node Routing is tailored for these applications, as we ‘skip’ the road network
and reduce the task of finding a route to the public transportation network. A main
application is intercontinental queries. If we want to travel from America to Europe,
we have to use the flight network, as there are no other connections between these two
continents in our graphs. Furthermore, the flight network covers very far distances by
only very few edges. A standard Dijkstra search involving the road network would
therefore settle all nodes with smaller distance, which results in a very large search
space of unnecessarily explored nodes. Our access-node based approach does not
settle any nodes in the road network, thus, the query is reduced to the very small
flight network, which results in very small query times. Figure 5.9 illustrates this
issue.

5.4.2. Formal Introduction

In this section we describe Access-Node Routing more formally. Especially, we develop
some notion and give a definition of the term access-node. In the following, we are given
multi-modal graphs G = (V , E) with labeled edges. The graphs consists of both a road
network and at least one public transportation network.

The main idea of the speed-up technique is to access relevant nodes of the public
transportation network directly from the road network in order to avoid the expensive
search in the road network. However, not every node in the public transportation
network is suited as ‘access-node’. For example, in the flight network the departure
and arrival nodes are used to model internal procedures at airports and should not be
accessed directly from the road network. Therefore, we give a formal definition which
nodes of the public transportation network are access-node candidates.

Definition 9 (Access-Node Candidate). Let G = (V , E) be a multi-modal graph. A node
v ∈ V is called access-node candidate if the following properties hold.

(i) The node v is not part of the road network, thus, label(v) 6= ROAD NODE,

(ii) The node v is linked to the road network, i.e., there is a neighbor w of v for which
label(w) = ROAD NODE holds.

The set of all access-node candidates is denoted by A.

Note that the condition (ii) implies LINK EDGE labeled edges between v and w and
vice versa. According to the linking rules (cf. Section 3.5), in our case access-node
candidates of the railway network are exactly the station nodes and access-node can-
didates of the flight network are the airport nodes. These are the respective nodes
linked to the road network. Nodes v ∈ A can be interpreted as entry (or exit) points

98

5.4. Access-Node Routing

v

a

b

Figure 5.10.: Illustration of Definition 10 (access-nodes). The node a in the railway network (red) is

an access-node for the road network (black) node v, as the shortest path (bold) to the

access-node candidate b uses a to enter the public transportation network (for some

departure time τ at v). The black path using solely the road network is longer.

to/from the public transportation network. Computing distances from every road
network node to every access-node would require too much space. Moreover, not ev-
ery entry point to the public transportation network is mandatory for correct shortest
paths. Thus, we now give an exact definition of a node being an access-node for some
road network node v.

Definition 10 (Access-Node). Let G = (V , E) be a multi modal graph with access-node
candidate set A. Furthermore, let v ∈ V be a node belonging to the road network, i.e.,
label(v) = ROAD NODE.

Then a node a ∈ A is called access-node for v, if there exists another access-node candidate
b ∈ A and a departure time τ for which the shortest path from v to b at time τ uses the node
a to enter the public transportation network. Once entered, the shortest path is restricted to
solely using edges of the transportation network.

The set of access-nodes for a certain road node v is denoted by A(v).

Please also refer to Figure 5.10 for a visualization of this definition. When we used
the term ‘shortest path’ in our definition, we deliberately omitted to specify the form of
shortest path in more detail. The only restriction mentioned is that the shortest path
may not leave the public transportation network once entered. Apart from that we
are free to use any regular language L according to which the shortest paths should
conform to. However, the set of access-nodes depends on the language L. For that
reason, we fix the automaton during access-node computation. See also Figure 5.11
for an illustration.

The set A(v) of access-nodes belonging to a certain road network node v can be
imagined as those entry points to the public transportation network that are at least
once relevant over the day in the sense that for that specific time it pays off going
through one of the access-nodes to reach one point in the public transportation net-

99

Chapter 5. Speed-Up Techniques

v

b

a

(a) Allowing Rail and Flight.

v

b

a

(b) Only allowing Rail.

Figure 5.11.: Comparison on the effect of access-nodes when different automata are used during

preprocessing. To the left, a is an access-node for v since the shortest path (black)

uses the very fast flight network (blue) to reach b. On the right, b is reached through

the road network (black) the most quickly (for every τ). Thus, a might not be an

access-node for v.

work.
If for a real shortest s-t-path query, we enter the public transportation network

through an access-node a, we eventually need to leave the public transportation net-
work if the target is contained in the road network. For that reason, we need to
compute backward access-nodes that are the relevant exit points from the public trans-
portation network. A backward access-node for v is basically an access-node of v in
the backward graph

←−
G .

Definition 11 (Backward-Access-Node). Let G = (V , E) be a multi modal graph with
access-node candidate set A. Furthermore, let v ∈ V be a node belonging to the road network,
i.e., label(v) = ROAD NODE.

Then
←−
A (v) ⊂ V denotes the set of backward access-nodes. A node a is contained in←−

A (v) if a is an access-node for v in the backward graph
←−
G .

So, if for some nodes s, t ∈ V a shortest s-t-path through the public transportation
network at some time τ should be computed, we know the points that are relevant
for entering the public transportation network by the forward access-nodes A(s). The
relevant points for exiting the public transportation network are given by

←−
A (t). Thus,

we can restrict ourselves to finding a shortest path from the set A(s) to
←−
A (t) in the

public transportation network by any multi-modal shortest path algorithm. The final
path is then combined from the distances of the respective access-nodes plus the length
of the path in the public transportation network.

5.4.3. Preprocessing

Preprocessing of Access-Node Routing involves the computation of the sets A(v) and←−
A (v) for all v ∈ V with label(v) = ROAD NODE. As we need to check whether an

100

5.4. Access-Node Routing

access-node candidate is relevant at least once over the day, we need to compute pro-
file searches at some point during preprocessing. In this section we present two alter-
natives for computing the access-nodes. The first alternative is a more or less direct
application of Definition 10 and involves the computation of the access-node sets A(v)
directly by running a one-to-all profile search from v collecting the relevant access-
nodes along the way.

The second method computes the inverse relation A−1, i.e., for each access-node
candidate a ∈ A we obtain those nodes v in the road network for which a is an
access-node. Moreover, we allow approximations of the sets A−1 in the sense that
they may contain too many nodes. While this leads to slightly more access-nodes per
road node, it only requires us to compute a backward profile search restricted to the
public transportation network. Preprocessing times are thus reduced drastically by
this approach, as the public transportation network is only a small fraction of the size
of the whole multi-modal network G.

We describe our preprocessing algorithms only using the computation of the for-
ward access-nodes sets A(v). The backward access-nodes are computed analogously
by switching G with

←−
G .

Alternative I: Exact Access-Nodes. Regarding the first alternative for computing
access-nodes, the preprocessing algorithm consists of a time-dependent multi-modal
profile search algorithm executed for each node v ∈ V that is a member of the road
network. Refer to Section 4.2.2 for an introduction to profile queries. Recall that our
piecewise linear functions only support homogeneous gradients. Thus, we cannot use
the ‘simple’ label correcting algorithm from [Dea99] but have to evade to the multi
label correcting variant as shown in Algorithm 4 on page 50. Additionally, for each
label we introduce a flag, covered that denotes whether a path toward the resp. label
has already entered the public transportation network once.

For each road node v the algorithm is then executed as follows. In the beginning we
set A(v) = ∅. Moreover, we use an automaton that does not allow the usage of the
road network between two subsequent parts in the public transportation network (e.g.,
a hierarchical automaton). Furthermore, we insert all source labels with the covered
flag set to false. The covered flag is then propagated through the graph, i.e., during
edge relaxation of an edge e = (v, w) its function is linked into the current label (cf.
Algorithm 4, line 6) with the covered flag of fv being passed to the new function.

Then, each time we are about to enter the public transportation network, i.e., we
insert a node a ∈ A with label f new

a , we check f new
a against all labels already as-

signed to a. If there is at least one label fa for which fa < f new
a does not hold, we set

covered(f new
a) = true and insert a into the set A(v) of access-nodes for v.

101

Chapter 5. Speed-Up Techniques

If on the other hand, we use an edge in the public transportation network toward
an access-node, i.e., we insert a node a ∈ A(v) whereas the current label already has
its covered flag set, we can remove a from A(v) if the following holds. For all labels
fa assigned at a we determine those labels for which the inequality fa < f new

a does
not hold. If of all of these labels their predecessors have their covered flag set, i.e.,
all paths toward a go through the public transportation network, a can be removed
from A(v), as the shortest path to a is now reached through the public transportation
network during all times of day.

The procedure stops as soon as the priority queue is empty, or it holds that all
remaining labels in the priority queue have their covered flag set. In the latter case,
every path contained in the search space entered the public transportation network
already at some point. Thus, every undiscovered access-node candidate can be reached
through the public transportation network.

Issues. While this alternative of computing access-nodes seems straightforward as it
implements Definition 10 more or less directly, it has some major drawbacks. First
of all, we need to compute one-to-all profile queries on G. As our largest graphs
have about 50 million nodes, computing a one-to-all profile query takes much too
long. Moreover, the largest parts of the multi-modal networks are made up of the
road network. This implies two aspects. First, there are a lot of nodes v ∈ V for
which access-nodes have to be computed (every computation yielding in a full one-
to-all profile query). Second, the fact that the largest portions of the graph are time-
independent is not accounted for as the profile search is conducted on these edges as
well.

Altogether, an early experimental test of this algorithm, exposed it as unpractical as
the computation simply took too long (one profile query taking several hours). Hence,
we present an alternative which remedies some of the above issues.

Alternative II: Approximating Access-Nodes. Instead of computing for every road
note v ∈ V the set of access-nodes A(v), the idea of the second alternative is to com-
pute for every access-node candidate a ∈ A the inverse relation A−1(a). Thereby, A−1

is defined as follows.

∀v ∈ V , ∀a ∈ A : v ∈ A−1(a) :⇔ a ∈ A(v). (5.24)

Roughly speaking, the set A−1(a) for a given access-node candidate a contains all road
nodes v ∈ V for which a is an access-node for them. Thus, our approach is to compute
the relation A−1(a) for all access-node candidates and invert A−1(a) to obtain A(v)
afterward.

102

5.4. Access-Node Routing

v

search space

(a) Alternative I.

a

(b) Alternative II.

Figure 5.12.: Visualization of both Alternatives to compute access-nodes.

Figure (a) illustrates the search space of the multi label correcting algorithm. Uncov-

ered paths are dotted. The red edges belong to the railway network. The red nodes

belong to A(v), as they are reached by uncovered paths. Moreover, the search cannot

be aborted yet, as there are uncovered paths active in the queue (at the border of the

search space).

Figure (b) illustrates computation of approximate access-nodes. From all access-node

candidates in the transportation network backward searches are conducted in the road

network with upper bounds toward a as initial keys. The road nodes in the undotted

search space may use a as access-node, as for the other nodes it always pays off to

reach a through the public transportation network.

This approach is not exact in the sense that it computes the minimal relation A−1

that is required for correct shortest path queries. Instead, the set A−1(a) might contain
too many nodes. However, this is not a problem to correctness of our query algorithm
(see later).

Our algorithm works in two phases. Given an access-node candidate a, we first com-
pute a full multi-modal backward profile search on the public transportation network
of
←−
G originating from a. This results in travel time functions fb at each access-node

candidate b ∈ A that represents the time to get from b to a in the public transportation
network for any given time of day.

Now, what we are are looking for are all road nodes v ∈ V for which a ∈ A(v) holds,
i.e., there is at least one time of day during which another access-node candidate b ∈ A
is reached by entering the public transportation network through a. These road nodes
are then contained in A−1(a). Thus, the second phase consists of a uni-modal time-
independent many-to-all backward Dijkstra search restricted to the road network.
The priority queue is initialized with all access-node candidates b ∈ A and their upper
bounds f b as keys. Furthermore, the access-node a is inserted with key 0 and a special
covered flag is set to true. Again, the covered flag is propagated through the backward
graph

←−
G . Finally, each time a node v ∈ V is settled, we insert v into A−1(a) if and

only if covered(v) evaluates to true.

103

Chapter 5. Speed-Up Techniques

0–12: 60 min
12–0: 10 min

0–12: 10 min
12–0: 60 min

10 min

10 min

30 min

v

a

b c

Figure 5.13.: Approximating access-nodes. The node v is contained in A−1(a) since when using

upper bounds at b and c, both indirect paths through b resp. c are longer than the

direct path to a. In fact, for every time of day one of the indirect paths is shorter:

The v-c-a-path in the morning and the v-b-a-path in the afternoon. Hence, a would

not required to be an access-node for v.

This can be interpreted as follows (cf. Figure 5.12b). For nodes v that do not have
their covered flag enabled, it always pays off using a node other than a to enter the
public transportation network since the shortest v-a-path always goes through another
access-node candidate b (we use the upper bounds for fb to account for the ‘worst’
connection during the day). On the other hand, for those nodes v having their covered
flag enabled, it pays off using the road network to get to a, thus, a might be an access-
node. Note that a does not necessarily has to be an access-node for every v ∈ V with
covered(v) = true since using upper bounds instead of exact profile functions might
turn out too conservative. See also Figure 5.13 for an example on this issue.

Performance. The main drawback of the exact approach is performance as worked out
above. This is due to the fact that we are required to perform full profile searches on
the entire graph. Our approximate approach, however, only requires (backward) pro-
file searches from each access-node candidate a ∈ A. Moreover, these profile searches
are restricted to the public transportation network, which make up only small parts of
our graphs. However, with an increasing size of the public transportation network the
performance degrades badly as well, as the profile search becomes the main bottleneck
during preprocessing.

Automata. When describing the preprocessing algorithms, we omitted to talk about
automata or multi-modality. In fact, this topic requires some attention. Regarding
exact access-nodes, we have to use an automaton that only allows the road network in
the beginning or the end of a shortest path. This is covered by the following definition.

Definition 12 (Enclose Property). Let L be a regular language over the alphabet Σ of edge-

104

5.4. Access-Node Routing

labels. If L is of the form

L = σ∗r1︸︷︷︸
Lr1

l σ∗t︸︷︷︸
Lt

l σ∗r2︸︷︷︸
Lr2

, (5.25)

where σr1 , σr2 ∈ {CAR EDGE, FOOT EDGE} and σt ∈ Σ \ {CAR EDGE, FOOT EDGE} and l =
LINK EDGE, we say that L has the enclose property (the public-transportation part of L is
enclosed by the road network part).

Regarding approximate access-nodes, we only use a multi-modal query on the pub-
lic transportation network for computing the backward profile search. Thus, to com-
pute access-nodes wrt. a language L (having the enclose property), we use the (inverse)
automaton representing only the Lt part of L. The rest is incorporated into the uni-
modal search on the road network as follows. When computing forward access-nodes,
we restrict ourselves to the foot/car edges in the road network depending on the value
of σr1 . Analogously, for computing backward access-nodes, we restrict the road net-
work query to the foot/car edges depending on the value of σr2 .

5.4.4. Query

In this section we present our query algorithm for Access-Node Routing. In the fol-
lowing we are given a multi-modal graph G = (V , E) with Σ-labeled edges and sets of
forward access-nodes A(v) and backward access-nodes

←−
A (v), as well as source and

target nodes s, t ∈ V and a departure time τ. Distances to and from all access-nodes
a ∈ A(v) resp. a ∈ ←−A (v) from and to every road network node v are available. More-
over, we are given a finite automaton A = (Σ, Q, δ, S, F) (also used for preprocessing)
that represents a regular language L having the enclose property.

Note, if either s or t are not part of the road network, we set A(s) := {s} and←−
A (t) := {t}, respectively. Now we basically use an uni-directional time-dependent
multi-modal query algorithm to compute shortest paths from A(s) to

←−
A (t). This can

be done by Algorithm 5 with a few minor modifications.

Query between Access-Nodes. Let Qentry denote the set of states that can be reached
through a link into another network from any initial state of the automaton, i.e.,

Qentry :=
⋃

qs∈S

δ(qs, LINK EDGE). (5.26)

Note that we defined access-node candidates as nodes in the public transportation
network which have an incident LINK EDGE labeled edge. Moreover, the form of the

105

Chapter 5. Speed-Up Techniques

language L implies that the automaton supports transitions into the public transporta-
tion network by LINK EDGE emerging from the initial states. Thus, the priority queue
of the multi-modal shortest path algorithm is initialized by all product-nodes (a, q)
where a ∈ A(s) and q ∈ Qentry. The key of (a, q) is set to dist(s, a) which is determined
by a table-lookup from the precomputed data.

Analogously, let Qexit denote the set of states in Q that have a LINK EDGE labeled
transition to a final state, i.e.,

Qexit := {q ∈ Q | ∃q f ∈ F and q f ∈ δ(q, LINK EDGE)}. (5.27)

Then the target set T for the query algorithm contains all product-nodes (a, q) where
a ∈ ←−A (t) and q ∈ Qexit.

The multi-modal query is restricted to the public-transportation network (which is
enforced by the automaton anyway) and can be stopped as soon as all product-nodes
from the target node set T have been settled. Note that the edge weights along the
time-dependent edges in the public transportation network have to be evaluated with
respect to τ.

Selecting the Path. After the query algorithm finished, we obtain for each product-
node (a, q) ∈ T a distance label dists

(
(a, q)

)
from the source node s (since we initial-

ized the priority queue with the correct distances from the source node s). Further-
more, the distance to the target node t from a product-node (a, q) can be obtained by
dist(a, t) through a table-lookup. The final product-node (a, q) inducing the shortest
s-t-path is, thus, obtained by selecting (a, q) according to

(a, q) := argmin
(a,q)∈T

{
dists

(
(a, q)

)
+ dist(a, t)︸ ︷︷ ︸

dist(s,t)

}
. (5.28)

Local Paths. While the algorithm described above yields correct shortest s-t-paths if
they truly require the public transportation network, i.e., a standard multi-modal al-
gorithm would also use the public transportation network, shortest paths using solely
the road network are not found. More precisely, our Access-Node Routing approach
forces the usage of the public transportation network, thus, an incorrect (i.e., not short-
est) s-t-path through the public transportation network is computed. See Figure 5.14
for an example. The same problem arises with Transit Node Routing (see [SS06b]).
The solution is to introduce a locality filter L : V × V → {true, false}, which decides
for two arbitrary nodes s, t ∈ V if a local search solely on the road network is required.
In our case, this local search can be performed by any time-independent uni-modal
shortest path algorithm.

106

5.4. Access-Node Routing

s
tshortest path

a ←−a

Figure 5.14.: If the source and target nodes are too close to each other, the shortest path (bold)

may not use the public transportation network. In this case, using the access-nodes

(dashed lines) would yield a false result. Thus, a separate time-independent uni-modal

shortest path computation needs to be computed restricted to the road network.

Note that L(s, t) = true should always imply a local search. However, although
L(s, t) = false does not require a local search, computing the local search addition-
ally does not harm correctness of the algorithm if we select the path of minimum
length between the local and the public transportation path in the end. Today’s time-
independent speed-up techniques for road networks are fast enough to handle queries
in continental-sized graphs in a matter of microseconds [Del09a]. This effort is almost
negligible, thus, we are able to use a very conservative locality filter defined by

∀s, t ∈ V : L(s, t) = true ⇔ s and t are in different strongly connected

components in the road network.
(5.29)

This always induces a local search in the road network (even for far queries, e.g., across
Europe) if there exists a path from s to t in the road network. Only for intercontinental
queries we omit the search.

5.4.5. Core-Based Access-Node Routing

One of the main drawbacks of pure Access-Node Routing is the high space consump-
tion concerning the precomputed data. For each node v of the road network we have
to store sets A(v) of forward and

←−
A (v) of backward access-nodes. Moreover, for each

of the forward resp. backward access-nodes we have to store the distances to/from the
access-nodes. Although the number of access-nodes per road node is relatively small,
the space consumption is quite high for our largest networks as the number of road
nodes is high.

For that reason, Access-Node Routing can be combined with Core-Based Routing
(cf. Section 5.2) in a straightforward manner. The resulting speed-up technique is
called Core-Based Access-Node Routing and remedies the disadvantage of the high space
consumption by computing access-nodes only on the much smaller core graph Gcore.

107

Chapter 5. Speed-Up Techniques

Preprocessing. Preprocessing for Core-Based Access-Node Routing is done in two
steps. First, we contract the graph G to GC like described in Section 5.2.1 and ex-
tract the core yielding a graph Gcore = (Vcore, Ecore). In a second step we apply one
of the preprocessing routines for Access-Node Routing as presented in Section 5.4.3.
Although the core graph is much smaller, in our experiments we continue using the
approximate approach for computing access-nodes, as preprocessing times for com-
puting exact access-nodes are still too high.

Node-Reordering. Similar to Core-ALT (cf. Section 5.3.1), we reorder the nodes of GC

such that nodes belonging to Gcore are in front of the component nodes. Again, this has
the effect of improving spatial locality and, thus, yielding higher cache-hit-rates which
improves query performance. Moreover, with regard to our static graph data structure
(cf. Appendix A.1.1), it allows us to use smaller arrays for storing the access-nodes.

Query. The query algorithm is basically the core-based query algorithm introduced
in Section 5.2.2 where the ‘inner’ algorithm during phase two is exchanged by our
access-node query algorithm from Section 5.4.4. Phase one of the core-based query
algorithm is performed without any modification. Assume that the shortest path is
not completely contained in the component and we are given a set S of core-entry-
product-nodes as well as a set T of core-exit-product-nodes. Then phase two (which
is now our access-node based approach) must find shortest paths from all nodes S to
all nodes T. This requires some extra consideration.

The Access-Node Routing algorithm is modified as follows. Basically, we need to
consider all access-nodes for every core-entry-product-node from S as well as ev-
ery backward access-node for every core-exit-product-node from T. However, the
same node a ∈ A may be an access-node for two different core-entry-product-nodes
(v1, q1), (v2, q2) ∈ S. Thus, we insert all product-nodes (a, q′) into the forward queue
where there exists at least one product-node (v, q) ∈ S with a ∈ A(v) and q′ ∈
δ(q, LINK EDGE). The key of (a, q′) is set to

key(a, q′) := min
{

dists
(
(v, q)

)
+ dist

(
(v, q), (a, q′)

)
|

(v, q) ∈ S and a ∈ A(v) and q′ ∈ δ(q, LINK EDGE)
}

. (5.30)

In other words, we obtain the key by taking the minimum length of all paths from the
source s over a core-entry-product-node (v, q) toward one of its access-nodes (a, q′).

The same is true for the backward-access-product-nodes that are used as target
nodes for the multi-modal search on the public transportation network. Hence, the set

108

5.4. Access-Node Routing

s
t

core graph

co
re

-en
try

-n
odes

S

fo
rw

ar
d

ac
ce

ss-
nodes

S
′

bac
kwar

d
ac

ce
ss-

nodes
T
′

co
re

-ex
it-

nodes
T

Figure 5.15.: Visualization of a query of the Core-Based Access-Node Routing algorithm. The (bi-

directional) component query is drawn in black, the shortcuts to the access-nodes are

blue and the shortest paths between the forward and backward access-nodes in the

core are drawn in red.

T′ of backward access-product-nodes contains all product-nodes (a, q′) where there is
at least one product-node (v, q) ∈ T with a ∈ ←−A (v) and q′ ∈ δ−1(q, LINK EDGE).

After the multi-modal query algorithm on the public transportation network has fin-
ished (i.e., the priority queue runs empty or all backward access-product-nodes from
T′ have been settled), we need to set the distance labels at the core-exit-nodes prop-
erly. For every core-exit-product-node (v, q) we have a distance label

←−
distt

(
(v, q)

)
to its

respective target product-node in the component. This label is computed in phase one
of the core-based query algorithm by the time-independent backward-search on the
component. Thus, for every core-exit-product-node (v, q) ∈ T we set its predecessor
along the shortest path to the backward access-product-node (a, q′) defined by

(a, q′) := argmin
(a,q′)∈T′,

a∈←−A (v) and
q′∈δ−1(q,LINK)

{
dists

(
(a, q′)

)
+ dist

(
(a, q′), (v, q)

)
+
←−
distt

(
(v, q)

)}
. (5.31)

By these means we ensure correct forward and backward distance labels at the core-
exit-product-nodes, thus, the path selection routine from the Core-Based Routing ap-
proach can be adopted without modifications (See the paragraph about combining
the shortest path in Section 5.2.2 on page 87). Please also refer to Figure 5.15 which
illustrates the steps behind the Core-Based Access-Node Routing algorithm.

109

Chapter 5. Speed-Up Techniques

5.4.6. Proof of Correctness

In this section we give formal proofs of correctness. At first, we prove that the basic
Access-Node Routing algorithm is correct. On top of that, we show that Core-Based
Access-Node Routing is also correct.

We first show through a series of lemmas that our preprocessing routine discovers
all forward and backward access-nodes for every node in the road network. Moreover,
we show that every shortest s-t-path that does not solely use the road network has
to go through the forward and backward access-nodes A(s) resp.

←−
A (t). With these

assumption proven, we then show the correctness of our query algorithms.
In the following we are given a multi-modal and Σ-labeled graph G = (V , E) that

contains both a road network and at least one public transportation network. Fur-
thermore, we are given a finite automaton A = (Σ, Q, δ, S, F) that represents a regular
language L that conforms to the enclose property (see Definition 12).

Lemma 3 (Exact Access-Node Preprocessing). For each node v ∈ G where label(v) =
ROAD NODE, the algorithm for exact access-node preprocessing (cf. Section 5.4.3 on page 101)
discovers all access-nodes conforming to Definition 10.

Proof. We prove this lemma by contradiction. Assume there is a node a ∈ A(v) that is
not discovered by the preprocessing algorithm. Then, according to Defintion 10 there
exists an access-node-candidate b ∈ A, a 6= b and a departure time τ such that the
shortest v-b-path P at departure time τ at v uses a to enter the public transportation
network, i.e.,

P =
[
(v, q1), . . . , (a, qi), . . . , (b, qk)

]
, (5.32)

where qi ∈ Q.
According to the preprocessing algorithm, each time we insert an access-node can-

didate a ∈ A into the priority queue by a label that is still uncovered, we insert the
node a into the set V(a). In P for all product-nodes (vj, qj) before (a, qi) it holds
that label(vj) = ROAD NODE, thus, the labels in our preprocessing algorithm along this
subpath are all uncovered. Consequently, either one of the following cases must hold.

1. The subpath P′ =
[
(v, q1), . . . , (a, qi)

]
in the road network is not found by our

preprocessing algorithm. This is a contradiction to the correctness of the multi
label correcting algorithm.

2. The node a was removed from A(v) at a later time during the run of the al-
gorithm. In that case, we insert the node a into the priority queue by a label
f new
a = f current ⊕ fe through an edge e ∈ E with covered(f current) = true, i.e.,

110

5.4. Access-Node Routing

we are coming through the transportation network toward a. Moreover, for all
labels fa assigned to a it has to hold that fa < f new

a and covered(fa) = true. As
a consequence, every shortest v-a-path for every departure time τ is reaching a
through the transportation network. This is a contradiction to P′ being a shortest
path.

Altogether, we conclude that every access-node a ∈ A(v) is found by our preprocess-
ing algorithm for exact access-nodes.

Lemma 4 (Approximate Access-Node Preprocessing). For each node v ∈ G having
label(v) = ROAD NODE, the algorithm for approximate access-node preprocessing (cf. Sec-
tion 5.4.3 on page 102) discovers all access-nodes conforming to Definition 10.

Proof. Again, we prove this lemma by contradiction. Let a ∈ A(v) be an access-
node of v that is not discovered by the preprocessing algorithm. There must exist
an access-node candidate b ∈ A, a 6= b and a departure time τ where the short-
est v-b-path P at time τ uses a to enter the public transportation network, i.e., P =[
(v, q1), . . . , (a, qi), . . . , (b, qk)

]
, where qi ∈ Q and for all product-nodes (vj, qj) that are

in front of (a, qi) it holds that label(vj) = ROAD NODE.
Let P′ =

[
(v, q1), . . . , (a, qi)

]
denote the subpath of P from v to a. Because every

subpath of a shortest path is again a shortest path, P′ has to be a shortest v-a-path
for the departure time τ. Our approximate preprocessing algorithm first runs a back-
ward profile search on the public transportation network originating at a. Then, from
every access-node candidate from A we start a time-independent backward search on
the road network simultaneously. Moreover, the distances of every node from A are
initialized with the upper bound of the travel time function from b to a. In order for
a 6= A(v) (according to the algorithm), the node v is on the shortest path tree originat-
ing from one of the access-node candidates b ∈ A, b 6= a. Thus, by the preprocessing
algorithm it holds that

dist(v, b) + dist∗(b, a) < dist(v, a). (5.33)

Because this is true for the upper bound of dist∗(b, a), this implies

dist(v, b, τ) + dist(b, a, τ + dist(v, b, τ)) < dist(v, a, τ) ∀τ < Π. (5.34)

Thus, the shortest path induced by the preprocessing algorithm through b toward a is
shorter for all departure times τ than the path P′. This is a contradiction to P′ being
a shortest path and we conclude that every access-node a ∈ A(v) is also found by our
approximate preprocessing algorithm.

111

Chapter 5. Speed-Up Techniques

We have proven that both preprocessing algorithms presented are correct wrt. to
Definition 10 of the term access-node. For the correctness of the whole Access-Node
Routing approach, we now turn toward proving that every shortest s-t-path in G is
also found by the Access-Node Routing query algorithm.

Lemma 5. Let P be a shortest s-t-path in G for some departure time τ at s conforming to a
language L having the enclose property. Furthermore, the shortest path is not using the road
network alone. If a ∈ V is the first node in P with label(a) 6= ROAD NODE and ←−a ∈ V the
last node in P with label(←−a) 6= ROAD NODE, then a ∈ A(s) and←−a ∈ ←−A (t) hold.

Proof. Since the public transportation network has to be entered and exited by a
LINK EDGE labeled edge, both a and ←−a are access-node candidates according to our
construction rules of the multi-modal graph (cf. Section3.5), thus, a,←−a ∈ A.

Now consider the subpath P′ ⊂ P from s to ←−a . Then the path P′ is also a shortest
path. Furthermore, all nodes in P′ after a belong to the public transportation net-
work since P is conforming to L. Hence, it follows that a ∈ A(s) by identifying b of
Definition 10 with←−a .

Regarding←−a ∈ ←−A (t), we consider the shortest t-s-path in
←−
G which corresponds to

the shortest s-t-path in G. The same argument is then applied to obtain←−a ∈ ←−A (t).

We can now deduce the main correctness theorem for Access-Node Routing.

Theorem 5 (Correctness of Access-Node Routing). Access-Node Routing is correct.
Given a Σ-labeled multi-modal graph G = (V , E), source and target nodes s, t ∈ V , a

departure time τ, a regular language L having the enclose property, as well as forward and
backward access-nodes A(v) resp.

←−
A (v) conforming to L, applying the Access-Node Routing

algorithm yields correct shortest paths from s to t wrt. the language L.

Proof. Let P be the shortest path in G. If P is solely using the road network, then s and
t are in the same connected component of the road network of G. Hence, the locality
filter L(s, t) evaluates to true and the shortest path is found by the correctness of the
applied uni-modal time-independent query algorithm for local queries.

So assume P is using the public transportation network. By Lemma 5 the shortest
path uses access-nodes a ∈ A(s) and←−a ∈ ←−A to enter resp. exit the public transporta-
tion network. Furthermore, between a and ←−a only edges of the public transportation
network are contained in P. Moreover, both a and ←−a are contained in the sets of
forward resp. backward access-nodes available to our query algorithm, which follows
from Lemmas 3 and 4. Since our query algorithm computes shortest paths from all
A(s) to all

←−
A (t) and selects the minimum path in the end, the path from s to t over

a ∈ A(s) and←−a ∈ ←−A (t) is chosen.
We conclude that Access-Node Routing is correct.

112

5.4. Access-Node Routing

Theorem 6 (Correctness of Core-Based Access-Node Routing). Core-Based Access-Node
Routing is correct.

Given a Σ-labeled multi-modal graph GC obtained by contracting G, source and target
nodes s, t ∈ V , a departure time τ, a regular language L having the enclose property, as well
as forward and backward access-nodes A(v) resp.

←−
A (v) on Gcore ⊂ GC conforming to L,

applying the Access-Node Routing algorithm yields correct shortest paths from s to t wrt. the
language L.

Proof. By Theorem 3 Core-Based Routing is correct. Furthermore, by Theorem 5
Access-Node Routing restricted to Gcore is correct. Regarding the ambiguity of the
paths toward/from the forward resp. backward access-nodes, the forward access-
nodes are initialized with their keys set to the minimum distance from the source
(see Equation 5.30). The distance labels at the core-exit-nodes are set according to the
combined path of minimum length (see Equation 5.31). Thus, the shortest s-t-path is
found and we conclude that Core-Based Access-Node Routing is correct.

5.4.7. Discussion

In this section we presented a new speed-up technique called Access-Node Routing.
Although, it only works with automata conforming to the enclose property (cf. Defi-
nition 12), i.e., the road network can be used in the beginning and the end alone, we
believe this is sufficient, as using the car in the middle of the journey is undesirable in
most cases anyway.

Access-Node Routing adopts some of the ideas of Transit Node Routing. We use
access-nodes to jump in and out of the public transportation network by performing
table-lookups. The actual query is then restricted to the public transportation network
which only forms a small portion of our graphs.

We presented two approaches for computing access-nodes, an exact approach and
an approach where we approximate the set of access-nodes. While the exact approach
yields smaller sets A(v) of access-nodes, it turns out to be too expensive to compute
as the running time is too high since it requires full profile searches on G. Thus,
for our experiments we decided to use the approximate approach which only runs a
profile search on the public transportation network. This makes it especially feasible
for multi-modal graphs having a small public transportation network (e.g., the road
network of Europe and America together with an intercontinental flight network).

Furthermore, we presented that Access-Node Routing can be combined with Core-
Based Routing which requires access-nodes only for the much smaller core graph
Gcore.

Regarding query times we gain a tremendous speed-up, as the largest parts of our

113

Chapter 5. Speed-Up Techniques

multi-modal graphs, namely the road networks, no longer have to be searched. Indeed,
our experimental evaluation in Section 6.5 shows that query times are almost constant
with respect to the size of the road networks. This is due to the fact that the search
space almost only consists of public transportation network nodes. By these means,
we are able to achieve query times of a few milliseconds on continental-sized graphs.

5.5. Summary

In this chapter we presented speed-up techniques for Dijkstra’s algorithm. First,
we presented basic ingredients which are an integral part of many of today’s high-
performance uni-modal speed-up techniques. We introduced every ingredient regard-
ing time-independent uni-modal routing and augmented each to time-dependency
and further to multi-modality.

Moreover, we presented three tailored multi-modal speed-up techniques: Core-
Based Routing, Core-ALT and Access-Node Routing. These are the main results from
this chapter.

• The basic ingredients for speeding up Dijkstra’s algorithm are bi-directional
search, goal-directed search (from which we presented ALT and Arc-Flags) and
contraction.

• The augmentation to time-dependency is possible for every technique, however,
it turns out very hard for bi-directional search and contraction. This is due to the
fact that the arrival time at the target is not known in advance for which makes
bi-directional search difficult. Since contraction uses bi-directional search during
query, the same problems apply here.

• Regarding the augmentation to multi-modality, only Arc-Flags turns out diffi-
cult. This is due to the fact that paths are pruned during the query. Thus, paths
which are unimportant during preprocessing are pruned during the query, al-
though, they might become important when we use different automata. Com-
puting non-trivial arc-flags that work with whole classes of automata remains an
open challenge.

• Based on contraction, we developed a multi-modal speed-up technique called
Core-Based Routing dividing the graph into a core and a component. We restrict
the preprocessing to nodes in the road network whose incident edges all support
the same modes of transportation (foot or car). This has two advantages. First,
we only bypass time-independent parts of the network. Second, we ensure that

114

5.5. Summary

distances with respect to languages having the variable length property are pre-
served. This allows us to develop an efficient and general query algorithm. The
problem of time-dependency during contraction does not occur here, since the
time-dependent parts of the graph are fully contained in the core and, thus, the
bi-directional search on the component is purely time-independent.

• Core-Based Routing by itself only yields mild speed-ups. Thus, we combined
Core-Based Routing with multi-modal uni-directional ALT on the core called
Core-ALT. While preprocessing is straightforward, as we simply restrict land-
mark and distance computation to the lower bound core graph Gcore, the inte-
gration of ALT into Core-Based Routing requires some extra consideration. Since
potentials for ALT are computed with respect to the target node which, however,
might not be part of the core, we have to introduce proxy-nodes to obtain a
feasible potential function.

• While both Core-Based Routing and Core-ALT are ‘general’ in the sense that their
only restriction is that they require automata having the variable length property,
we relaxed the claim for generality further and introduced a new speed-up tech-
nique called Access-Node Routing. Its premise is that the road network is only
used at the beginning and the end of the journey. Thus, for each node in the
time-independent road network, we compute the relevant access-nodes into the
public transportation network during preprocessing. The query is then restricted
to the (time-dependent) public transportation network between the access-nodes
of the source and target nodes, sparing the expensive search on the road net-
work (which makes up the biggest part of our multi modal graphs). For local
paths that do not use the public transportation network, we can use any uni-
modal time-independent speed-up technique that can solve the task in a matter
of microseconds.

• Access-Node Routing can be combined with the Core-Based Routing approach
with only a few minor modifications to the query algorithm. This reduces the
amount of precomputed data significantly, as access-nodes are only required for
road network nodes of the core.

• Our main contribution from Access-Node Routing is that we are able to ‘sep-
arate’ the road network from the public transportation network. Thus, we can
use different routing algorithms for local queries using the road network (e.g., a
high-performance uni-modal speed-up technique) and the public transportation
network. Not only is it possible to apply any multi-modal speed-up technique to
the public transportation network but in fact, a different shortest path algorithm.

115

Chapter 5. Speed-Up Techniques

For example, we could use multi-criteria optimization on the public transporta-
tion networks to account for ticket fares, transfers, etc.

116

Chapter 6
Experiments

In this chapter we give an experimental evaluation. Besides examining the impact of
the finite automaton used during query, we especially focus on the speed-up tech-
niques Core-ALT and Access-Node Routing introduced in Chapter 5.

This chapter is organized as follows. First of all, we present the input data used
throughout the experiments. In Section 6.3 we then compare the performance of the
basic multi-modal routing algorithm using different finite automata.

In Section 6.4 we evaluate Core-ALT. We study different choices of the contraction
parameters c and h affecting the amount of contraction. It turns out that speed-ups of
Core-ALT highly depend on the finite automaton.

Finally, in Section 6.5 we run some tests on our new speed-up technique Access-
Node Routing. It turns out that the query performance is almost constant with respect
to the input size, as the query is restricted to the very small public transportation
networks. We are able to perform intercontinental queries on a flight and road network
of Europe and North America within 2.3 milliseconds.

The section is wrapped up by a summary of the main results.

6.1. Input

In this section we introduce the input data we use throughout our experiments. All
networks are based on real world data and are, thus, not synthetic. However, not all
aspects that are modeled into the graphs (i.e., check-in and check-out times at airports
regarding our flight models), were available to us by the raw data. At these points we
use synthetic data which we point out explicitly at the appropriate places.

We are not going into more detail about the raw data an its processing at this point.
Please refer to Appendix B for details.

117

Chapter 6. Experiments

6.1.1. Graphs

Road Networks. As described in Appendix B.1, our raw data contains most of the
Western European countries, the whole United States of America and Canada. The
data is from 2006. Furthermore, the raw data allows us to generate subgraphs at a
resolution of states resp. countries easily. The road networks make up the biggest part
of our multi-modal graphs. Thus, we choose three different networks with increas-
ing size: The German road network having approx. 4.5 million nodes and 11 million
edges, the road network of whole Europe with approx. 30 million nodes and 72 million
edges and finally a network consisting of North America and Western Europe having
approx. 50 million nodes and 124.5 million edges. Note that this network is not con-
nected, as it contains two separate continents. It will only be connected eventually by
the overlaying flight network.

Railway Networks. Regarding the railway raw data, we had the timetables of the win-
ter period from 1996/1997 and the winter period 2001/2002 at our disposal. While the
former contains most long distance trains for Central Europe, the latter contains all
trains for Germany that are operated by the Deutsche Bahn. However, we omit lo-
cal commuter trains like the German ‘S-Bahn’. We generate graphs according to the
realistic time-dependent model with constant transfer times, i.e., the transfer time is
constant for all trains passing through the same station. Transfer times are also avail-
able through the raw data. We basically generate two graphs. One for Germany using
the timetable from the winter period 2001/2002 (without the commuter trains) and
one for whole Europe using the timetable of the winter period 1996/1997 containing
only long distance trains.

Flight Networks. Our flight networks are not based on real ‘raw’ timetable data
but, instead, are taken from publicly available timetables from the Internet (cf. Ap-
pendix B.3). We created converters for the public timetables of two major flight al-
liances containing many airlines: Star Alliance [Sta97] and Oneworld [One99]. The
data of Star Alliance is from the period September 1st to November 16th 2008 con-
taining 965 airports and 21 084 flights, while the data of Oneworld is from the period
between October 3rd and October 31st containing 621 airports and 8 796 flights. These
timetables are composed into the flight class model whereas each flight alliance im-
plies one distinct flight class. Unfortunately, real values for check-in, check-out and
transfer times were not available to us. Thus, we use the very conservative values
of 120 minutes, 90 minutes and 60 minutes, respectively. Transfers between different
airlines are set to 150 minutes.

118

6.1. Input

Table 6.1.: Size of our main input graphs broken down into their components.

Network No. of Nodes No. of Edges No. of Points
de-road-rail-flight 4 804 664 11 603 003 725 113

road network 4 692 524 11 279 784 —
railway network 108 453 296 330 693 012

flight network 3 687 13 261 32 101
europe-road-rail-flight 30 722 060 74 279 064 2 622 109

road network 30 203 343 72 799 049 —
railway network 515 024 1 411 867 2 589 989

flight network 3 693 13 274 32 120
na-eur-road-rail-flight 50 700 647 125 939 503 2 622 610

road network 50 181 903 124 458 952 —
railway network 515 024 1 411 867 2 589 989

flight network 3 720 13 398 32 621

Multi-Modal Graphs. Our multi-modal graphs are combinations of the uni-modal
graphs introduced above. We generate three main graphs with increasing size.

• de-road-rail-flight.
This graph consists of the German road network plus the German railway net-
work from the timetable of the winter period 2001/2002 as well as the flight
network of both flight alliances.

• europe-road-rail-flight.
This graph uses the road network of Europe plus the long distance railway net-
work of Europe from the winter period 1996/1997 and the flight network of both
flight alliances.

• na-eur-road-rail-flight.
This is our largest instance. It consists of the European and North American
road network plus the European railway network and the flight network of both
flight alliances.

From each of these networks we compute the strong connected component. Figures
for the resulting graph sizes are shown in Table 6.1 broken down into the sizes of the
subnetworks (road, rail and flight). Note that the number of edges from the subnet-
works may not exactly sum up to the number of edges of the resulting multi-modal
graph, as there are additional LINK EDGE labeled edges inserted when combining the
networks.

119

Chapter 6. Experiments

6.1.2. Automata

Multi-modal queries require a finite automaton as input. In Section 4.3.2 on page 56
we already introduced a number of automata that are interesting for shortest path
queries. These are also used as input for our experiment we, thus, recall them only
briefly.

• car.
This is the simplest of all automata. It consists of only one state (that is both
final and initial) and one loop composed of a CAR EDGE labeled transition. It can
be seen as the equivalent automaton for conduction road queries on uni-modal
networks. This is useful for comparing the performance of the multi-modal
routing algorithm against the performance of the classic uni-modal Dijkstra
algorithm.

• everything.
This automaton allows arbitrary shortest paths by representing the language
L = Σ∗. The transition graph is shown in Figure 4.3a on page 4.3a.

• foot-and-rail.
This automaton is a hierarchical automaton which restricts shortest paths to the
road and railway networks. The language accepted by this automaton is L =
f ∗lr∗l f ∗, where f = FOOT EDGE, l = LINK EDGE and r = RAIL EDGE. The transition
graph is shown in Figure 4.3b. We use this automaton only on the German
network.

• car-and-flight.
This is the equivalent of the foot-and-rail automaton used on the Europe and
the continental networks. Its accepted language is L = c∗lg∗lc∗, where c =
CAR EDGE and g = FLIGHT EDGE. The transition graph is shown in Figure 4.3c.

• everything-reasonable.
This is our largest automaton and implements a reasonable usage of all means
of transportation in a hierarchical approach. The transition graph is shown in
Figure 4.4 on page 57.

In Section 6.3 we compare the performance of the multi-modal query algorithm
when used with different automata. Subsequent experiments are then restricted to the
automata everything-reasonable and foot-and-rail resp. car-andflight.

120

6.2. Experimental Setup

6.2. Experimental Setup

Our implementation of all our algorithms is done in C++ solely based on the STL and
the Boost library at a few rare places. For efficiency, we do not use virtual methods
and class inheritance but rather make excessive use of templates. The way we store
graphs is done using a binary format consisting of a forward star (adjacency array)
representation which is very efficiently implemented. For that reason, we can handle
huge graphs very well with a minimum of required memory—the performance of
reading a graph from file is only limited by the hard drive speed. The setup of our
main data structures is presented in Appendix A in more detail.

As C++ compiler we use GCC version 4.3.1 on SuSe Linux 11.0 (kernel version
2.6.22.17) with the flags -O3 -ffast-math -fomit-frame-pointer -funroll-loops

-DNDEBUG.

Our experiments were conducted on a Dual-Core AMD Opteron 2218 processor
having 2.6 GHz, 1 MiB level 2 cache (each core) and 32 GiB of main memory. All of
our programs are single threaded and, thus, only one of the cores is used.

In our experiments on speed-up techniques we report two aspects. Regarding the
preprocessing, we show the number of bytes per node additionally required due to
the preprocessed data. On Core-Based speed-up techniques we charge the space con-
sumption of the preprocessed data, although only computed on the small core graph,
against the whole input graph. Regarding queries, we report the number of settled
nodes and relaxed edges which is an indication of the size of the search space. In the
case of multi-modal routing algorithms, we mean implicitly computed product-nodes
(and edges). Furthermore, we report the average query time of single queries. By
comparing the size of the search space with the query time we are able to deduce the
algorithmic overhead.

The values regarding queries are computed by running a number of random queries,
i.e., we pick two nodes s and t and a departure time τ < Π at random (For the ‘small’
graphs like Germany we use 1000 random queries, on the ‘larger’ graphs we only run
100 random queries). The number of settled nodes, relaxed edges and the query times
are then reported as the average value over all random queries. When comparing
different query algorithms on the same pairs of graph and automata, we use the same
set of queries for each algorithm. Speed-ups are in terms of running time and are
always relative to the basic multi-modal query algorithm as of Algorithm 5 on page 5.

121

Chapter 6. Experiments

Table 6.2.: Comparison of query performance of the basic multi-modal query algorithm against dif-

ferent finite automata.

de-road-rail-flight

Relaxed Settled Time
Automaton Edges Nodes [s]
car 10 896 903 2 323 641 2.43
everything 9 836 137 2 114 948 2.60
foot-and-rail 10 622 387 2 247 428 3.69
everything-reas. 29 342 126 6 240 651 10.17

europe-road-rail-flight na-eur-road-rail-flight

Relaxed Settled Time Relaxed Settled time
Automaton Edges Nodes [s] Edges Nodes [s]
car 70 488 720 15 014 721 18.06 67 741 290 14 156 302 16.74
everything 69 949 157 15 045 051 23.39 108 677 456 22 672 284 39.50
car-and-flight 123 063 212 26 184 714 36.84 169 075 629 35 155 882 45.43
everything-reas. 150 594 892 32 089 210 60.57 213 882 663 44 599 766 87.32

6.3. Multi-Modal Routing

In this section we examine the performance of our basic multi-modal query Algorithm
(see Algorithm 5 on page 5). As worked out, the algorithm computes the product
network G× between the graph G and the transition graph of the finite automaton
implicitly. Hence, we expect that the performance of the algorithm does not depend
on the input graph but also on the automaton used.

Table 6.3 reports query performance on the three multi-modal graphs de-road-

rail-flight, europe-road-rail-flight and na-eur-road-rail-flight. We observe
that query performance degrades with increasing complexity of the finite automaton.
The everything-automaton has only one state, hence, the number of settled nodes
and relaxed edges is about 50% of the original graph size. However, in all graphs the
2nd automaton (foot-and-rail and car-and-flight, each having three states), does
not deteriorate performance by a factor of three. This is explained by the fact that
not every arbitrary path is allowed (only such paths that conform to the automaton)
which limits the number of product-nodes and relaxed edges, thus, only yielding a
mild decrease in query performance compared to the everything-automaton.

Table 6.3 compares the performance of a classic uni-modal uni-directional and time-
independent Dijkstra algorithm against our multi-modal implementation on two
graphs: The German road network and the road network of Europe. We omit the con-
tinental network since when using roads alone, most of the queries would fail since

122

6.4. Core-ALT

Table 6.3.: Comparison between uni-modal and multi-modal routing on two road networks.

de-road europe-road

Relaxed Settled Time Relaxed Settled time
Algorithm Edges Nodes [s] Edges Nodes [s]
Uni-modal Dijkstra 5 527 565 2 398 863 1.31 35 551 637 15 494 159 10.17
Multi-modal algorithm 11 385 495 2 398 863 2.05 73 148 401 15 494 159 15.97

there is no connection between the two continents. Because the road network contains
both foot and car weights, we use the simple car-automaton on the multi-modal net-
work. The uni-modal Dijkstra algorithm is restricted to car weights. As we can see in
Table 6.3, our multi-modal algorithm slows down the query time by approx. 50%. This
is due to the more complex data structures (we have to use product-nodes instead of
simple nodes throughout the algorithm) and also due to the fact that for each outgoing
edge a transition in the automaton has to be performed.

Regarding the number of relaxed edges, our multi-modal query algorithm relaxes
two edges per road-edge: One CAR EDGE labeled edge and the same edge with the label
FOOT EDGE. However, the foot edges are not processed further, since the car-automaton
does not allow FOOT EDGE labeled transitions.

6.4. Core-ALT

In this section we focus on Core-Based Routing, especially with respect to Core-ALT
(see Section 5.3). Recall that we only contract the road-network, and within the road
network only nodes where all incident edges have the same modes of transportation
available (car or foot). Thus, the time-dependent parts of the network are contained
inside the core.

Preprocessing for Core-Based Routing (see Section 5.2.1) allows for two parame-
ters. The contraction rate c and the maximal number of nodes that are allowed to
be bypassed by a shortcut, h (hop-count). More aggressive contraction through c de-
mands for longer shortcuts. Thus, both values of c and h have to be adjusted together
in order to yield reasonable results. We only focus on multi-modal Core-ALT here.
Experiments on uni-modal graphs with Core-ALT (both time-independent and time-
dependent) are conducted in [Del09a] yielding speed-ups up to 3 000 and 700 in the
time-independent and time-dependent case, respectively.

Landmarks are computed on the lower bound graphs of the respective cores using
64 avoid landmarks.

We test the performance of Core-ALT on the graph of europe-road-rail-flight

123

Chapter 6. Experiments

Table 6.4.: Core-ALT on europe-road-rail-flight with varying c and h values during con-

traction and three different automata: car, car-and-flight (c.-&-f.) and

everything-reasonable (evr.-reas.). The reference values are computed by the

basic multi-modal query algorithm without any speed-up technique on the original graph

(cf. Table6.3). Landmark distances for ALT are computed using 64 avoid landmarks.

Preprocessing Query
Core |E|- Time Space Settled Time Speed-

Automaton c h Nodes incr. [min] [B/n] Nodes [s] up
car — — — — — — 15 014 721 18.0 1.0

0.5 10 35.9% 11.5% 50 180.9 3 864 000 4.90 3.68
1.0 20 18.2% 16.9% 45 93.2 1 880 653 2.66 6.78
2.0 30 15.7% 18.7% 44 80.8 1 589 217 2.24 8.06
2.5 40 15.1% 19.3% 46 77.7 1 596 875 2.31 7.81
3.0 50 14.8% 20.1% 49 76.1 1 505 732 2.35 7.68
3.5 60 14.8% 20.7% 50 75.7 1 502 848 2.21 8.17
4.0 70 14.6% 21.4% 52 75.0 1 530 528 2.30 7.85
5.0 100 14.4% 22.8% 59 74.0 1 475 097 2.29 7.88

c.-&-f. — — — — — — 26 184 714 36.8 1.0
0.5 10 35.9% 11.5% 50 180.9 13 510 833 17.2 2.14
1.0 20 18.2% 16.9% 45 93.2 5 438 549 7.56 4.87
2.0 30 15.7% 18.7% 44 80.8 4 513 729 6.57 5.6
2.5 40 15.1% 19.3% 46 77.7 4 238 075 6.41 5.74
3.0 50 14.8% 20.1% 49 76.1 4 222 589 6.44 5.72
3.5 60 14.8% 20.7% 50 75.7 4 150 769 6.36 5.79
4.0 70 14.6% 21.4% 52 75.0 4 005 002 6.27 5.87
5.0 100 14.4% 22.8% 59 74.0 4 052 246 6.52 5.65

evr.-reas. — — — — — — 32 089 210 60.5 1.0
0.5 10 35.9% 11.5% 50 180.9 38 660 857 75.8 0.79
1.0 20 18.2% 16.9% 45 93.2 18 748 596 39.0 1.55
2.0 30 15.7% 18.7% 44 80.8 16 053 889 34.9 1.73
2.5 40 15.1% 19.3% 46 77.7 15 455 441 34.2 1.76
3.0 50 14.8% 20.1% 49 76.1 15 129 244 34.2 1.76
3.5 60 14.8% 20.7% 50 75.7 15 044 912 34.4 1.76
4.0 70 14.6% 21.4% 52 75.0 14 921 469 34.7 1.74
5.0 100 14.4% 22.8% 59 74.0 14 719 448 35.6 1.68

124

6.4. Core-ALT

using the automata car, car-and-flight and everything-reasonable. We omit the
everything automaton as it is rather unrealistic since it allows arbitrary paths in the
network. Table 6.4 reports our results for varying c and h values.

Preprocessing. Regarding preprocessing, we report the size of the core in relation to
the size of the original graph regarding the number of nodes. Furthermore, we report
the increase in edges compared to the original graph which accounts for the shortcuts
that are inserted into the core.

While in pure uni-modal road networks, the core can be shrunk below 1% of the
graph size (see [Del09a]), this is not possible with our contraction routine. This is
due to our restrictions regarding bypassable nodes. Hence, from c = 3.5 and h = 50
upward, the contraction routine is satured in the sense that increasing c and h further
shows no improvement.

The additional space required by the landmarks and their distances levels off at
approximately 75 B/n and correlates directly with the size of the core since landmark
distances are only computed on the core.

Query. Regarding query performance, we observe that speed-ups heavily depend on
the complexity of the automaton. While using the basic car-automaton yields speed-
ups of 8.17, the best speed-up achievable through the slightly more complex car-

and-flight-automaton (c.-&-f.) drops down to 5.87. This is due to two reasons.
First, allowing less modes of transportation sort of prunes more parts of the core.
Note that from c = 3.0 and h = 50 upward, almost all bypassable nodes of the road
network are extracted from the core. This virtually has the effect of ‘shrinking’ the
core. Second, landmark distances are computed on the lower-bound graph Gcore of
the core. While the lower-bounds are exact for road network edges, they are very bad
on public transportation edges. For example, if there is only one flight per day on a
flight-edge taking one hour, the lower bound of that edge is one hour, though, the real
weight can be up to 23 hours. This yields a very bad potential function.

Furthermore, it should be noted that relaxing very long shortcuts (as they appear
in the core) into the ‘wrong direction’ is counterproductive, as the algorithm starts
settling many nodes in parts of the graph it would not have reached without the
shortcuts. This is reflected by the speed-up of 0.79 with the everything-reasonable

automaton when setting low values of c = 0.5 and h = 10.
We conclude that contraction parameters of c = 3.0 and h = 50 are probably suffi-

cient for our multi-modal Core-Based routing approach as the improvements regard-
ing space consumption and query performance for higher value are almost negligi-
ble. Moreover, Core-ALT performance depends on the automaton used. As soon as

125

Chapter 6. Experiments

the public transportation network is taken into account, potentials become worse as
speed-ups decrease.

6.5. Access-Node Routing

This section covers experiments regarding our newly developed speed-up technique
Access-Node Routing (cf. Section 5.4). Access-Node Routing is based on the idea that
for each node of the road network there is a limited number of relevant access-nodes
that are used to enter (forward access-nodes) resp. exit (backward access-nodes) the
public transportation network. Assuming we only want to use the road network in
the beginning and the end of the journey, we precompute for each node in the road
network their forward and backward access-nodes together with their distances and
reduce the query to the public transportation network.

We presented two approaches to compute access-nodes: An exact variant and a
variant that only computes approximate access-nodes. In the subsequent experiments
we always use the approximate version since the exact variant is far too slow to be
executed in reasonable time. The approximate approach computes for each access-
node candidate a full backward profile search on the public transportation network
and then grows backward shortest path trees simultaneously from all access-node
candidates that were reached by the backward profile search using their upper bounds
as initial keys.

Input Data. While approximate access-nodes are faster to compute, they still take too
long for our big public transportation networks in our graphs. Thus, we conduct our
experiments on the following multi-modal graphs with reduced public transportation
networks.

• de-road-rail(long).
This is the road network of Germany together with all long distance trains from
the timetable of the winter period 2001/2002. This includes InterRegio (IR),
InterCity (IC) and InterCityExpress (ICE) trains. We use this graph together
with the foot-and-rail automaton.

• ny-de-road-flight.
This is a small intercontinental network composed of the U.S. state of New York
and Germany. The German part of the graph has 4 692 524 nodes, whereas the
New York part only consists of 611 024 nodes. Both components are connected
through the flight network of both our flight alliances. We use this graph together
with the car-and-flight automaton.

126

6.5. Access-Node Routing

Table 6.5.: Preprocessing Figures for (Core-Based) Access-Node Routing. We report the number

of access-node candidates, the average number of forward and backward access-nodes

per road node and the preprocessing time for computing access-nodes as well as the

additionally required space per node.

Core- AN- Forward Backward Time Space
Network Based Cand. Access-Nodes Access-Nodes [min] [B/n]
de-road-rail(long) 473 32.4 (6.8%) 20.9 (4.4%) 143 435.2
de-road-rail(long) X 473 31.0 (6.5%) 19.7 (4.1%) 26 55.6
ny-de-road-flight X 26 14.2 (54.6%) 14.2 (54.6%) < 1 30.5
na-eur-road-flight X 359 118.7 (33.0%) 119.1 (33.1%) 161 223.5

• na-eur-road-flight.
This is our largest instance for Access-Node Routing. It consists of the road
network of both continents: Europe and North America (including Canada) (see
Table 6.1 for figures) and the flight network of both flight alliances. Again, we
use this graph together with the car-and-flight automaton.

For Core-Based Access-Node Routing these graphs are contracted with parameters
c = 2.5 and h = 40 on de-road-rail(long) and c = 4.0 and h = 70 on both ny-de-

road-flight and na-eur-road-flight.

Preprocessing. The first experiment is devoted to (approximate) preprocessing of
Access-Nodes. Table 6.5 reports figures for the graph instances from above. On
all graphs (except de-road-rail(long)), we use the Core-Based Access-Node Rout-
ing approach where we first contract the input graph and reduce the access-nodes
computation to the much smaller core graph (cf. Section 5.4.5). Regarding de-road-

rail(long), the average number of forward and backward access-nodes per road node
is 32.4 resp. 20.9. Thus, 32.4 railway stations are important (on average) to enter the
railway network. While this seems a very high number (even more if we consider
that these railway stations have to be reached by foot), there are two reasons for this.
First, the railway network is sparsely embedded into the road network, thus, for a
single road network node a lot of stations are important at least once a day. Second,
long distance trains do not operate very frequently on some parts of the network. As
a consequence, the upper bounds carry much weight during preprocessing, yielding
bad approximations which leads to many unnecessary access-nodes.

The same effect can be observed in both the ny-de-road-flight and the na-eur-

road-flight network, as flights are even more infrequent. This makes it attractive to
cover far distances by car1, thus including many (also far away) airports into the set of

1Imagine living near Frankfurt Airport, but a flight to New York from Frankfurt Airport requires us to

127

Chapter 6. Experiments

Table 6.6.: Query performance of (Core-Based) Access-Node Routing without local queries (i.e., all

shortest paths use the transportation network) compared to plain multi-modal Dijk-

stra.

Dijkstra Access-Node Routing
Settled Time Core- Settled Time Speed-

Network Nodes [ms] Based Nodes [ms] up
de-road-rail(long) 2 483 030 3 491.7 13 779 4.7 742.9
de-road-rail(long) 2 483 030 3 491.7 X 14 017 6.1 572.4
ny-de-road-flight 9 155 893 9 253.5 X 4 074 1.9 4 870.2
na-eur-road-flight 46 244 703 72 566.3 X 4 337 2.3 31 550.5

relevant access-nodes.
Preprocessing times are in the range of several hours (between 26 minutes for the

core of the German network and almost three hours for the core of the continental
network). Note that regarding de-road-rail(long), switching to Core-Based Access-
Node Routing drastically reduces both preprocessing time and the required space
for the access-nodes, as we restrict ourselves to the core graph. Furthermore, the
preprocessing time is bounded by the size of the public transportation network. On
the core of de-road-rail(long) it takes 26 minutes to compute access-nodes, while
on the core of ny-de-road-flight with the extremely small flight network it takes
below 1 minute (although the road network is larger here).

Query. Regarding the query performance, we expect a massive speed-up, as the
biggest part of the shortest path search, namely the road network, is absent. Table 6.6
reports figures for queries using (Core-Based) Access-Node Routing. We run 1 000
random queries on the small de-road-rail(long) and ny-de-road-flight networks
whereas we run 100 random queries on the large na-eur-road-flight network. Note
that all shortest paths in this experiment utilize the public transportation network.
Thus, we solely analyze the performance of Access-Node Routing. Since the graphs
are slightly different from the ones used in Table 6.3, we also report the performance
of the simple multi-modal routing algorithm (on the original graph) to which speed-
ups are compared. The number of settled nodes only refers to the search in the public
transportation network plus the bi-directional search on the component in phase one
of the core-based query algorithm.

We observe a drastic drop in both the number of settled nodes and the query time
when using Access-Node Routing. In de-road-rail(long) we observe that the query

wait for several hours at the airport. During this time we can reach a lot of other airports in Germany
by car from which there might be a flight to New York that reaches the destination earlier.

128

6.5. Access-Node Routing

Table 6.7.: In-depth analysis of Core-Based Access-Node Routing. This table reports the distri-

bution of query time among the particular phases of the query algorithm: The bi-

directional search on the component using time-independent road network edges, the

table-lookups regarding the access-nodes of all core-entry- and core-exit-nodes and the

search on the public transportation network. Furthermore, we report the amount of

local queries (paths that do not use the transportation network) when generating 1000

(de-road-rail(long), ny-de-road-flight) and 100 (na-eur-road-flight) ran-

dom queries.

Comp.- AN- Public- Total Local
Network Query Lookup Transport. [ms] Queries
de-road-rail(long) 0.15 (2.4%) 0.08 (1.4%) 5.87 (96.2%) 6.1 2.3%
ny-de-road-flight 0.35 (18.4%) 0.01 (1.1%) 1.53 (80.5%) 1.9 80.5%
na-eur-road-flight 0.42 (18.2%) 0.18 (7.9%) 1.70 (73.9%) 2.3 24%

time increases slightly from 4.7 to 6.1 milliseconds when switching to the core-based
variant. This is due to the additional overhead of the Core-Based Routing algorithm
(The bi-directional search on the component has to be conducted and the computation
of the forward and backward access-nodes is slightly more complicated since we have
multiple core-entry- and core-exit-product-nodes). The performance of Access-Node
Routing on ny-de-road-flight beats the performance on de-road-rail(long). This
is due to the fact that the flight network is significantly smaller than the railway net-
work in de-road-rail(long). Moreover, the number of access-nodes per road node
is only 14.2 whereas in Germany it is twice that much.

The highest speed-up of 31 550.5 is achieved on the continental-sized road network
of Europe and North America. We are able to perform intercontinental queries with
an average time of 2.3 milliseconds compared to over 72 seconds when the standard
algorithm. The very similar query time compared to ny-de-road-flight is due to the
fact that the flight network in both graphs is of the same size. The additional time of
0.4 milliseconds, however, is mostly spent on looking up the many more access-nodes
on na-eur-road-flight.

The query algorithm for Core-Based Access-Node Routing is made up of three dis-
tinct phases (see Figure 5.15 on page 109). The first phase involves the bi-directional
time-independent search on the component until all core-entry- and core-exit-nodes
are discovered. Next, for each core-entry- resp. core-exit-node we look up all access-
nodes with their correct distances. The third phase finally involves the multi-modal
search on the public transportation network. Table 6.7 reports the distribution of the
running time among the particular phases of the query algorithm. It is clearly seen
that the public transportation query makes up the major part of the running time

129

Chapter 6. Experiments

(between 73.9% and 96.2% depending on the network). The time for looking up the
access-nodes is insignificant as it is less than 2% on de-road-rail(long) and ny-de-

road-flight. Only on na-eur-road-flight looking up the access-nodes takes 7.9%
of the running time. This is due to the fact that the number of average access-nodes
per road node is significantly higher than on the other two networks (cf. Table 6.5).

Furthermore, we report the relative number of local queries. These figures are ob-
tained by computing 1000 random queries (100 on na-eur-road-flight) and counting
those queries that do not use the public transportation network. We observe a great
variation depending on the network. While in de-road-rail(long) only 2.3% of the
queries do not use the railway, in ny-de-road-flight 80.5% of the queries are local.
This is due to the fact that in de-road-rail(long) it almost never pays off to go the
whole route by foot. On the other side, in ny-de-road-flight the two components
(Germany and the state of New York) are very uneven (the road graph of New York
only contains only approx. 600 000 nodes). Thus, a lot of queries are not intercontinen-
tal. Moreover within Germany and New York it rarely pays off to use an airplane as
distances covered are not far enough. While for na-eur-road-flight the two compo-
nents of the road network are more balanced, average distances within Europe resp.
North America are far enough that it often pays off to take a flight. Hence, the amount
of local queries drops to 24%.

6.6. Summary

In this section we conducted experiments on multi-modal graphs and presented their
results. All experiments were based on multi-modal networks obtained from real
world data (see also Appendix B). These are the main results.

Multi-Modal Routing.

• Query performance drops about 50% when substituting uni-modal Dijkstra
with the multi-modal routing algorithm (See experiment in Table 6.3 and Al-
gorithm 5 on page 55).

• The performance of multi-modal queries not only depends on the graph size
but also on the complexity of the finite automaton (See experiment in Table 6.3).
For example, on the na-eur-road-rail-flight graph with the simplest car au-
tomaton we achieve a query performance of 16.74 sec on average, whereas the
complex everything-reasonable automaton yields queries of 87.32 sec.

130

6.6. Summary

Core-ALT.

• Regarding Core-Based Routing and Core-ALT, the choice of the contraction pa-
rameters c and h influences the amount of contraction on the core graph. How-
ever, since we do not bypass the public transportation networks, we are not able
to achieve as high contraction ratios as it can be done with pure uni-modal con-
traction on road networks. From c = 3.5 and h = 50 upward, we observe no
further improvements as the core size levels off at approximately 15% on the
europe-road-rail-flight graph (cf. Table 6.4).

• Query performance of Core-ALT, again, depends on the complexity of the fi-
nite automaton. With the simple car automaton we achieve speed-ups of 8.17
on europe-road-rail-flight, whereas using the most complex everything-

reasonable automaton only yields very mild speed-ups of 1.76 (see Table 6.4).
Moreover, speed-ups are generally much smaller than in uni-modal road net-
works, as the quality of the potential functions of the ALT algorithm degrades
when public transportation networks are involved.

Access-Node Routing.

• The time for computing (approximate) access-nodes is dominated by the size
of the public transportation network. On the ny-de-road-flight graph with a
very small public transportation network, we need less than one minute for pre-
processing. On the other hand, on the de-road-rail(long) graph of similar size
but including a much bigger public transportation network it takes 26 minutes
for computing the access-nodes (cf. Table 6.5).

• Access-Node Routing can be restricted to the core graph obtained by the Core-
Based Routing approach which reduces both preprocessing time and the re-
quired space per node significantly. Thus, Core-Based Access-Node Routing
is the preferred approach for large scale networks (also see Table 6.5).

• Query performance mainly depends on the size of the public transportation net-
work. Both networks ny-de-road-flight and na-eur-road-flight yield sim-
ilar query times of around 2 ms, although the latter graph is almost 10 times
larger. Even the most complex public transportation network of the de-road-

rail(long) graph yields query times under 10 ms (see Table 6.6).

• We conclude that with Core-Based Access-Node Routing we are able to compute
intercontinental multi-modal queries on the biggest of our graphs in 2.3 ms time.

131

Chapter 7
Conclusion

In this work we dealt with multi-modal route planning. We set ourselves the goal to
perform realistic multi-modal queries on large scale networks involving roads, rail-
ways and flights efficiently. The main results of this thesis are summarized in the
following.

Models. We successfully combined the different realistic models for road, railway
and flight networks into multi-modal graphs. Thereby, our road networks are time-
independent and consist of car and foot edge weights. Our railway networks are
based on the realistic time-dependent model with constant transfer times. Regarding
the flight model, we worked out that the time-dependent railway model is not suited
well to model flight timetables as the resulting graphs become unnecessarily large.
Thus, we proposed a set of new efficient flight models from which we use the flight
class model for our flight networks.

Basic Routing. In this work we were interested in solving the Earliest Arrival
Problem, i.e., for some source and target nodes and a departure time find the route
that arrives at the target first. In uni-modal scenarios the Earliest Arrival Problem is
equivalent to the Shortest Path Problem on a weighted directed graph. Dijkstra’s
algorithm can be used to solve both time-independent, time-dependent and profile
queries. We worked out that the simple Shortest Path Problem is not suited for
multi-modal networks, as the shortest path may be undesirable (recall that it could
force us to use the car between two trains in the middle of the journey). Thus, we
augmented the Shortest Path Problem to involve constraints yielding the Label
Constrained Shortest Path Problem. When restricted to regular languages L, the
Label Constrained Shortest Path Problem can be solved by an augmentation of

133

Chapter 7. Conclusion

Dijkstra’s algorithm involving the product network between the multi-modal graph
G and the transition graph of a finite automaton representing L. We presented an
improved version of the algorithm where the product network is computed implicitly
during the algorithm, resulting in significantly less space consumption.

In our experiments we observe a decrease of about 50% regarding query perfor-
mance when using our multi-modal algorithm instead of plain uni-modal Dijkstra.
Furthermore, the finite automaton used during query has a direct influence on query
performance. On the world sized network average query times are between 16 and
87 seconds using the very simple car automaton and the most complex everything-

reasonable automaton, respectively.

Adapting Ingredients for Speed-Up Techniques. We performed a survey of basic
ingredients of today’s speed-up techniques deriving from road networks. These are
bi-directional routing, goal-directed search (in particular ALT and Arc-Flags) and con-
traction. We showed that all of these ingredients can be adapted to multi-modality
easily with the exception of Arc-Flags. The problem concerning Arc-Flags seems to be
the pruning of paths during preprocessing that may, however, become important for
queries using a different automaton.

Core-Based Routing and Core-ALT. Based on contraction we presented a multi-
modal variant of Core-Based Routing. We apply contraction only to the road network
and therein only to nodes where all incident edges allow the exact same modes of
transportation (foot and car). By these means the component is completely time-
independent and the public transportation networks are fully contained in the core.
This allows a relatively simple query algorithm as we can apply bi-directional search
on the component without further considerations. Furthermore, a different multi-
modal algorithm can be applied to the core graph independently. As an example we
present Core-ALT where we use uni-directional multi-modal ALT on the core yielding
a robust and general speed-up technique that works together with all ‘reasonable’
automata.

In our experiments we observe that our graphs cannot be contracted as aggressively
as in uni-modal road-networks which is due to the restrictions as to which nodes are
classified bypassable. Furthermore, speed-ups using Core-ALT are rather mild and
lie between 8.1 and 1.7 when using the simple car and the complex everything-

reasonable automata, respectively.

Access-Node Routing Our main contribution in this thesis is Access-Node Routing.
Based on some ideas of Transit-Node Routing, we are able to compute entry- and exit-

134

points to the public transportation network directly (access-nodes). With the restriction
that the road network is only used in the beginning and the end of journeys, we are
able to isolate the search in the ‘hard’ public transportation network from the ‘easy’
road network, as we directly jump into the public transportation network from the
source and target nodes of our query. Thus, the multi-modal shortest path search is
restricted to the public transportation network. Regarding local queries that do not
use the transportation network for shortest paths, we can use one of today’s high-
performance speed-up techniques for time-independent road networks which are able
to solve this task in microseconds time. Since the public transportation networks
are small compared to the road networks we already gain a dramatic improvement
regarding query time, even when no further speed-up technique is used on the public
transportation network.

Since the amount of preprocessed data for plain Access-Node Routing is quite high,
combining Access-Node Routing with Core-Based Routing reduces the computation of
the access-nodes to the much smaller core graph making this approach more feasible.

Experiments show that using Core-Based Access-Node Routing on a large scale net-
work composed of Europe and North America together with a flight network, we are
able to perform intercontinental queries in only 2.3 milliseconds time—even without
applying any speed-up technique on the transportation network. Thereby, preprocess-
ing is performed in under three hours time yielding space consumption of 223.5 bytes
per node.

Summary. When switching from time-independent to time-dependent routing one
can observe the effect that accelerating Dijkstra’s algorithm becomes a much harder
task. A similar effect is observed when switching to multi-modal routing. With an
average query time of 87 ms on our largest graphs the demand for faster algorithms is
even higher in multi-modal routing. With our main contribution Access-Node Routing
we are, however, able to somewhat counteract the effect of increasing complexity as
we separate the road network from the public transportation networks. Due to the
modular design of our technique, we are able to apply query algorithms on the public
transportation network and the road network independently. By these means local
queries in the road network are very cheap. Furthermore, because of the small size
of the public transportation networks we already gain speed-ups in the magnitude
of 30 000 by solely applying a plain multi-modal Dijkstra algorithm on the public
transportation network.

135

Chapter 7. Conclusion

7.1. Future Work

The research field of multi-modal routing is still widely unexplored. Only few stud-
ies have been conducted regarding the Label Constrained Shortest Path Problem.
In [BJM00] the problem has been theoretically examined yielding the result that when
using regular languages on the labels, the problem is solvable in polynomial time.
Regular languages seem to be sufficient for modeling shortest path constraints, thus,
using finite automata together with our augmentation of Dijkstra’s algorithm is fea-
sible. The only experimental results obtained so far besides this thesis seem to come
from [BJM00, Hol08, BBH+09].

However, we think multi-modal route planning is an important problem relevant to
practical use. Hence, it deserves further attention. In the following we list some ideas
for directing research on this topic.

Contraction Hierarchies. Contraction Hierarchies is a contraction based speed-up
technique that applies the node-reduction and edge-reduction routines subsequently
multiple times. We are truly interested in an adaption of Contraction Hierarchies to
multi-modal routing. Especially, we are interested in a combination of Contraction
Hierarchies with Access-Node Routing, as we believe that it is possible to drop the
demand for locality filters, as ‘local’ queries using solely the road network might be
computed implicitly with a small penalty concerning query time performance.

Incorporating Pedestrians. In our road network model we use a very basic approach
for modeling pedestrians. We simply assume for every road segment a constant weight
obtained from an average walking speed. We could, however, think of more realistic
models regarding foot networks that also involve aspects like traffic lights and cross-
walks. In the context of multi-modal routing this could be especially useful for urban
transport companies. Having a combined pedestrian and public transportation net-
work of a city, we could answer point-to-point queries resulting in a route that utilizes
both the public transportation network and the pedestrian network yielding a ‘conve-
nient’ path with a minimum number of street crossings or traffic light usage on the
way to the bus or metro.

Accelerating Public Transportation Queries. In this thesis we worked out how we
are able to ‘separate’ the road network from the public transportation network by using
Access-Node Routing. This allows us to apply different speed-up techniques on local
queries in the road network and long distance queries on the public transportation
network. For our feasibility study we did not really care about the performance on

136

7.1. Future Work

the public transportation and simply applied plain Dijkstra. Experiments on public
transportation networks have shown that speed-up techniques are harder to adapt
than one might expect. So we are always interested in further research on speed-
up techniques for public transportation networks, both regarding to uni-modal and
multi-modal public transportation networks.

Arc-Flags. In Section 5.1.3 we worked out that Arc-Flags is hard to adapt to multi-
modal routing. Regarding this topic we would be interested in theoretical research,
especially regarding the open Problems 1 and 2 on page 75. As Arc-Flags is an ingre-
dient to the fastest known speed-up techniques of today, being able to use Arc-Flags
for multi-modal routing may yield another approach for gaining nice speed-ups.

Profile Searches. As in our multi-modal networks the public transportation parts
are time-dependent, we are interested in efficient ways of computing profile searches.
In our scenarios using time queries, the user of the route planning system always
has to state some departure time τ in advance. However, it would be much more
convenient to be presented with all ‘optimal’ routes during the day from which the
user can choose the route suiting him best. These ‘optimal’ routes depart exactly at
those times of day where the profile function has its local minimums. Furthermore,
our preprocessing algorithm for Access-Node Routing requires profile searches. Thus,
we are interested in more efficient algorithms for computing profile queries.

Locality Filter for Access-Node Routing. Regarding Access-Node Routing we have
to compute a local search on the road network, if the shortest path does not use
the public transportation network. In our approach presented, we conduct the local
search every time the source and target node are in the same connected component of
the graph. We argued that the query on the road network is cheap as today’s time-
independent uni-modal speed-up techniques on road networks are able to answer
these queries in milliseconds time. However, most of the time (depending on the
multi-modal network) these local queries are not required. Thus, we are interested in
better heuristics for locality filters, especially filters that could be computed implicitly
during our approximate access-node preprocessing algorithm.

Multi-Criteria Search. In public transportation networks optimizing pure travel time
might be unsatisfactory. Aspects like ticket fares, transfers and train classes demand
for multi-criteria optimization. Thus, we are interested in multi-criteria shortest path
algorithms in the context of multi-modal routing. Because with Access-Node Rout-
ing we are able to perform an independent algorithm on the public transportation

137

Chapter 7. Conclusion

network, we are confident that it is possible to combine multi-criteria search on the
public transportation network with single-criteria search on the ‘outer’ road network.

138

Appendix A
Data Structures

In this chapter of the appendix, we give implementation details on relevant data struc-
tures used throughout our experiments. These include the static graph used for most
shortest path query algorithms. Since the static graph is static in the sense that it
does not allow for insertion and deletion of edges, nodes and interpolation points,
we present a further graph data structure which is dynamic and is primarily used to
create graphs from the raw data and also in many parts of our contraction routines.

Our graphs are constructed to contain both time-independent and time-dependent
edges at the same time. Hence, the travel time functions have to be stored in the graph
data structure as well. In the static graph we use, roughly speaking, a fixed size vector
to store all interpolation points (see later). The dynamic graph, however, contains
objects of travel time functions supporting the link and merge-operations. We briefly
discuss their assembly.

Multi-modal routing requires finite automata as input. We implemented a data
structure which allows the computation of both forward and backward transitions,
i.e., the computation of δ(q, σ) and δ−1(q, σ) in constant time.

Finally, we briefly discuss the priority queue implementation used in our variants
of the Dijkstra algorithm. We did not implement the priority queue by ourselves, but
used an implementation of a binary heap from Schultes [Sch08b].

A.1. Graphs

We present two graph data structures. A static variant which is used throughout
our query algorithms. It is mainly optimized regarding constant time iteration over
the outgoing edges of a node as well as low memory consumption. The dynamic
version of our graph data structure is mainly used during preprocessing. It allows

139

Appendix A. Data Structures

0 n

nodes:

edges:

0 m. . .

points:

0 p-1. . .

template<typename nodeDataT>
struct node {
EdgeID firstEdge;
nodeDataT data;

}
template<typename edgeDataT>
struct edge {
NodeID targetNode;
PointID firstPoint;
PointID lastPoint;
edgeDataT data;

}

struct point {
unsigned int time;
unsigned int weight;

}

Figure A.1.: Illustration of the basic setup of our static graph data structure.

node and edge insertions resp. deletions, whereas for edges we can create both time-
independent and time-dependent edges in one graph.

A.1.1. Static Graphs

Our static graphs are based on a space efficient forward-star representation [CLRS01,
MS08].

Nodes and Edges. When restricted to time-independent graphs, there are basically
two arrays (we also refer to arrays as vectors): One representing the nodes and another
representing the edges of the graph. Have a look at Figure A.1 and ignore the red
vector at the bottom for the time being. Nodes and edges are referred to by their
index in the respective array. We can interpret their (unique) indices as ids, hence, we
address them by their NodeID resp. EdgeID.

While the nodes are ordered in arbitrary order, the edges are grouped by their tails.
Hence, all edges (v, w) having the same tail v are next to each other. Furthermore, the
outgoing edges of nodes with subsequent NodeIDs are stored in subsequent order in
the edge array. For that reason, it is sufficient to store one pointer per node v that points
to the first outgoing edge of that node by its EdgeID. Iteration over the outgoing edges
of a node v is, thus, possible by iterating over the section of the edge-vector enclosed by
the EdgeIDs (indices) v.firstEdgeID and (v + 1).firstEdgeID− 1. The target NodeID
is stored for each edge in the edge vector. To allow iteration over the node v having
the highest NodeID, we insert a dummy-node at the end of the node vector that points
toward a dummy-edge at the end of the edge vector.

140

A.1. Graphs

To attach additional data to the nodes and edges, the entries of the node resp. edge
vectors do not only contain pointers but structs. Besides the basic information that is
necessary for every graph, the data section of the struct is defined through templates,
thus, giving control over what data should be attached. For example, a multi-modal
graph requires node and edge labels attached to the nodes and edges, while this is not
required for an uni-modal graph. This allows us to tailor the graphs specifically to our
requirements avoiding to waste memory unnecessarily.

Time-Dependency. In time-independent networks, each edge e is assigned a constant
weight w(e). While this information can be stored in the edge-structs easily, we ex-
tend the forward-star approach to edges for coping with time-dependency. Our edge
functions are piecewise linear functions defined by a finite number of interpolation
points. Thus, we introduce a third vector to store interpolation points. An interpola-
tion point p is addressed by its PointID (index in the points vector). Like edges for
nodes, the interpolation points are grouped the same way with regard to the edges
they belong to. Furthermore, they are sorted in ascending order regarding their value
in the domain of the function (timestamp).

While evaluating the constant weight of an edge e given by its EdgeID can be done in
constant time (we just need to access e’s struct and read the weight), this is no longer
true for time-dependent edges. To evaluate fe(τ) for some departure time τ, we have
to determine the nearest interpolation point pi of fe ‘in the future’. This requires some
sort of search on the interpolation points. With binary search we, thus, imply a slow
down in the size of O(log(| fe|)) for evaluating fe(τ) where | fe| denotes the number of
interpolation points for fe.

Mixing Edge Functions and Constant Weights. Most of our graphs contain both
time-dependent and time-independent edges. However, the most part of the graphs
is made up by the road network which is time-independent (see Section 3.2). On
the other hand we have two (constant) weights per edge in the road network, foot
and car. To save memory we, thus, modify the forward-star representation of the
edges and interpolation points. Instead of only having one pointer per edge, we store
two pointers: One to the first and one to the last index in the interpolation points
array containing points belonging to the respective edge). Moreover, we introduce
another flag independent which signals if the edge is time-independent. This can be
implemented sparingly by using C++ bit fields. The first and last point pointers now
have a context sensitive semantic.

• If the edge is time-dependent they contain the first and last PointID of interpo-
lation points of the respective edge.

141

Appendix A. Data Structures

• On the other hand, if the edge is time-independent, they are used to store (up to)
two constant weights. If the weight is not used, its value is set to ∞. Note that
it is possible that there are edges in the road network which are open to either
cars or pedestrians.

This ‘misuse’ of the point pointers allows us to store time-independent edges with-
out the need of a special interpolation point indicating constant weights, nor addi-
tional variables in the edge structs. Because the most part of our graphs is time-
independent (due to the huge road networks), the wasted space due to using two
point pointers instead of one (like with edge pointers on nodes) is insignificant.

On the other hand this approach also has the downside of introducing special treat-
ments to the edges at a number of places. An example is evaluating the constant
weight of a road edge. First we have to check if the edge is time-independent. Second,
if we request the car weight, we further have to check, if the value of firstPointID
is set to ∞. Note that an ∞-weighted edge is equivalent to the edge simply not be-
ing contained in the graph. So, we had to perform extra work on an edge which
should not exist in the first place. Though this problem can be solved by allowing
multi-edges in the graph (in the case of a road being open for cars and pedestrians we
would have two edges between the respective nodes), the memory overhead by that
approach would outweigh the disadvantage of more complex checks.

A.1.2. Dynamic Graphs

Our dynamic graphs are based on the concept of incidence arrays. For each node
we store its incident outgoing and incoming edges (ore more to the point: edge-tips).
They are implemented as STL-vectors and, thus, are dynamic in the sense that they can
grow and shrink during runtime. Further to the implementation of the data structure
itself, we supply conversion routines to convert from dynamic to static graphs and
vice versa. Look at Figure A.2 for an illustration of the data structure explained in the
following.

Nodes and Edges. The nodes are composed of structs which are stored in a node
vector. They are identified by their indices called NodeID. Note that deleting a node
from the graph does not remove the respective entry from the vector, but just sets a flag
indicating that the node has been removed. New nodes can be added by increasing
the size of the node vector by one, thus, creating a new node-struct at the end of the
array.

Regarding the edges, each node-struct has two dynamic edge vectors as members:
One for outgoing and one for incoming edges-tips. The edge-structs contain a pointer

142

A.1. Graphs

0 n-1

nodes:
template<typename nodeDataT>
struct node {
vector<edgeT> out;
vector<inEdgeT> in;
nodeDataT data;

}

template<typename edgeDataT>
struct edge {
NodeID targetNode;
unsigned int w1, w2;
PwLnFn f;
edgeDataT data;

}

struct in_edge {
NodeID sourceNode;

}

in
ed

ge
s:

..
.

..
.

ou
t

ed
ge

s:

..
...

.

Figure A.2.: Illustration of the basic setup of our dynamic graph data structure.

(a NodeID value) to their heads resp. tails. Let e = (u, v) be an edge in the graph, then e
is stored twice. Once in the outgoing edges vector of u and also in the incoming edges
vector of v. Our graphs grow large, so storing all information twice for every edge
can lead to a too high memory consumption. Thus, the attached data of the edges
(weights and meta-data) is only stored once on the outgoing edge. So, in order to
access for an incoming edge e = (u, v) at v its weights or other data, we have to iterate
over the outgoing edges vector of u until we find an edge with target node v. For that
reason, our dynamic graphs do not support multi-edges, since multi-edges cannot be
distinguished by their target resp. source nodes.

As with the static version of our graph data structure, meta data along nodes and
edges is tailored by templates for maximum space efficiency.

Time-Dependency. When building a graph, especially time-dependent edges of it, it
is important to have dynamic edge-weight functions (see next section). For that reason,
the forward-edge-structs contain an object of our piecewise linear function structure.
This allows the dynamic creation and removal of interpolation points. To cope with
time-independent edges, additionally, two constant weights w1 and w2 are contained
in the structs. Note that our trick sharing the memory for time-independent weights
and pointers to the interpolation points like in the static graph is no longer possible
with this data structure.

143

Appendix A. Data Structures

Vector-Compression. Our preprocessing routine for core-based routing creates and
removes tremendous amounts of edges in the node-reduction step. We observed a
constant increase in memory consumption during preprocessing, although the number
of edges all together is not increasing by that much. For our biggest instances of multi-
modal graphs this eventually led to running out of memory. This is due to the fact
that STL-vectors are being implemented as dynamic arrays with geometric progression
(see for example [CLRS01]).

Thus, the size of the reserved memory is doubled if the array reaches its capacity
limit. However, the size is only shrunk when the number of entries is below a certain
threshold (usually 25–30%). Since this is unlikely to happen in our cases, arrays almost
never shrink by themselves, leaving a lot of memory wasted. Thus, we implemented
a vector-compression on the edges which is executed from time to time to resize the
arrays exactly to fit their number of elements. While we lose guaranteed amortized
complexity of O(1) for insertion and deletion by this approach, we do not run out of
memory when performing a lot of edge insertions and deletions.

A.2. Piecewise Linear Functions

The piecewise linear functions used in our dynamic graph data structure are an im-
plementation of the public transportation version of piecewise linear functions (cf.
Section 3.1.2), thus, every segment of the function has a gradient of γ = −1. Basi-
cally a piecewise linear function consists of a dynamic vector of interpolation points
p = (τ, f (τ)). Interpolation points are sorted in ascending order wrt. to the departure
times τ in the vector and can be added and deleted by simply adding and removing
entries into/from the vector. Note that adding an interpolation point may violate the
FIFO-property on the function, thus, requiring some extra checks during insertions.

Our piecewise linear functions support both linking and merging. However, because
our implementation is restricted to public transportation functions, we are not able
to merge functions with constants (see Figure 4.1 on page 49). Note that linking a
function to a constant or vice versa is unproblematic as the result is a ‘pure’ public
transportation function with all segments having gradient −1.

Regarding profile queries on mixed networks utilizing both time-independent and
time-dependent edges, not being able to use merging tuns out as a major drawback
regarding the computation of profile queries since we cannot use the simple label
correcting algorithm from [Dea99] (see also Section 4.2.2). For that reason, we have to
evade to the multi label correcting approach (cf. Algorithm 4 on page 50) that manages
without merge-operations, but with the penalty of significantly worse performance.

144

A.3. Finite Automata

[q0] ∅ ∅ ∅

∅

∅

∅

∅

∅ ∅

∅

∅

∅∅

∅

[q2]

[q3]

[q1]

[q1, q3]

[q2, q3]

CA
R
ED
GE

FO
OT
ED
GE

RA
IL
ED
GE

FL
IG
HT
ED
GE

LI
NK
ED
GE

q1:

q2:

q3:

q0:

q 1 q 2 q 3q 0

initial states:

final states:

1 1 1

1 1 1 1

0

(a) The data structure.

q0 q1

q2

q3

LINK

LINK

LINK

LINK

CAR RAIL

CAR

FOOT

(b) Sample automaton.

Figure A.3.: This figure illustrates the NFA data structure (left) using the example of a small au-

tomaton (right).

A.3. Finite Automata

The finite automata used during our multi-modal queries are relatively small. There-
fore, we do not need to pay that much attention to memory consumption. However,
our multi-modal query algorithm (cf. Algorithm 5) requires us to determine the value
of the function δ(qi, σj) for some state qi and label σj quickly.

Hence, when storing a finite automaton A = (Σ, Q, δ, S, F) we enumerate Q from 0
to |Q| − 1 as StateIDs, Σ from 0 to |Σ| − 1 as LabelIDs and use a |Q| × |Σ| transition
matrix T for storing the values of δ(qi, σj). For the sake of comfort, the data structure of
the matrix is a multi array type from Boost (which is an STL extension library). The
element at position T[i, j] in the matrix contains a vector which contains the StateIDs
that are members of the set δ(qi, σj). Note that this vector can be empty, if δ(qi, σj) = ∅.
This allows insertion and deletion of transitions by inserting and removing elements
to/from their respective vectors. The query operation to determine the set of target
states for some qi and σj can, thus, be performed in constant time.

To mark states as initial resp. final states, there are two more bit-vectors of length
|Q| − 1 that indicate whether the i’th state is an initial or final state. Also refer to
Figure A.3 for an illustration of the data structure using a small automaton as example.

Inverse Automaton. For bi-directional routing we need the inverse automaton A−1.
However, our data structure does not allow queries on the inverse transition function

145

Appendix A. Data Structures

% Number of states

4

% Initial states

S:0,1,3

% Final states

F:0,1,2,3

% Transitions (source state, label, target state)

T:0,CAR_EDGE,0

T:0,LINK_EDGE,1

T:0,LINK_EDGE,3

T:1,RAIL_EDGE,1

T:1,LINK_EDGE,2

T:1,LINK_EDGE,3

T:2,CAR_EDGE,2

T:3,FOOT_EDGE,3

Figure A.4.: Definition file of the finite automaton from Figure A.3.

δ−1 efficiently. Thus, when an inverse transition is requested for the first time from
the automaton, we compute the inverse transition matrix T−1 from T. We do this by
iterating through all fields in T and if a state k is contained in the transition vector of
T[i, j] we insert i into the inverse transition vector at position T−1[k, j]. Note that this
procedure has time complexity O(|Q|2 · |Σ|) which, however, constitutes no problem,
since both Q and Σ are very small and the operation has to be performed only once,
as we cache T−1 in memory for further queries.

Definition File. While our graphs are generated from raw data, the automata need
to be defined manually. Thus, instead of using a binary file format, we use a human
readable text format. The setup of a file defining the automaton of Figure A.3b is
shown in Figure A.4. Lines starting with the % sign are comments. The first (uncom-
mented) line contains the number of states. Each subsequent line has to start with
one of the following letters: S,F or T, followed by a colon. Thereby S,F and T stand
for start (initial) states, final states and transitions, respectively. The S and T lines
then contain a comma separated list of initial resp. target state numbers (in the range
of 0 . . . |Q| − 1). Each T-line consists of one transition represented as a tuple (q, σ, q′)
with the semantic of q′ ∈ δ(q, σ). These tuples are supplied as comma separated lists of
three items, where the label σ is one of CAR EDGE, FOOT EDGE, RAIL EDGE, FLIGHT EDGE

or LINK EDGE.

146

A.4. Priority Queue

A.4. Priority Queue

Our implementation of the priority queue is an adopted implementation by Schultes
(see [Sch08b]). Elements of the priority queue are composed of structs that can be
defined by templates. Since for some of our algorithms, we require the queue elements
after they were deleted from the queue (this is especially true for our multi label
correcting algorithm, cf. Algorithm 4), the elements are stored in a separate elements-
vector and are identified by their index in the vector. The actual priority queue is
implemented as a binary heap (with bottom-up heuristic) which only operates on
the key and the index of the element in the elements-vector. This keeps the heap-
vector small while still being able to access elements that were once deleted from the
queue. However, the penalty of this approach is that we have to keep track of the
queue elements manually in our algorithms which results in some additional memory
consumption.

147

Appendix B
Raw Data Processing

In this chapter we discuss the processing of raw data from which our graphs are
created. This involves the creation of the road network, the railway network and
the flight network. The multi-modal graphs are not created from raw data directly.
Instead, they are created by merging several uni-modal graphs (see Section 3.5 for
details). While regarding both the road and railway networks, we had access to ‘real’
raw data, the data for our flight networks is based on timetables of two major flight
alliances that were publicly available on the Internet at the time of writing.

B.1. Road Data

The road data was kindly given to us by PTV AG [ptv79]. It contains two sets, Eu-
rope and North America (USA and Canada), both from the year 2006 in the Advanced
Geographic Format (AGF). Each of the sets is composed of a number of subdirectories.
Each directory contains the data of one country (Europe) resp. one state (America).
Each directory then consists of a set of text files that contain information about nodes
(.NDF), links (.LNK) and link directions (.LKD) among other files that are not relevant
for our application. We omit a detailed description of the file structures at this point.

Relevant information we extract besides the graph structure itself, includes: Geo-
graphical coordinates (x and y) on the nodes, the average speed as well as the geo-
graphical length of the links and whether the links are open for pedestrians, cars or
both. The links file refers to the nodes by their id numbers, which are defined in the re-
spective node file. Unfortunately, these id numbers are not globally unique, i.e., nodes
belonging to different countries at different geographical locations may well have the
same id numbers. For that reason, we preprocess the data by unifying the .NDF, .LNK
and .LKD files from each subdirectory. Thereby, two nodes are unified if their ge-

149

Appendix B. Raw Data Processing

*Z 27988 RD____ 01 % 27988 RD____ 01

*G DNR 8000247 5400004 % 27988 RD____ 01

*A VE 8000247 5400004 000000 % 27988 RD____ 01

*A FB 8000247 5400004 % 27988 RD____ 01

*A RD 8000247 5400004 % 27988 RD____ 01

*A GR 8005352 5400004 % 27988 RD____ 01

*GR 8005353 8005352 5400004 Cheb(Gr) % 27988 RD____ 01

8000247 Marktredwitz 2112 % 27988 RD____ 01

8000613 Arzberg(Oberfr) 2119 2120 % 27988 RD____ 01

8005352 Schirnding 2124 2126 % 27988 RD____ 01

5400004 Cheb 2140 % 27988 RD____ 01

Figure B.1.: Sample set of raw data belonging to a local train from Marktredwitz to Cheb at the

German-Czech border.

ographical coordinates match. This is required in order to have connections across
country borders. Note that by these means we might lose some detail in the network,
e.g., small roundabouts consisting of many nodes so close together that they cannot
be discriminated by their coordinates. However, these effects are rare and therefore
negligible.

The unified data is then parsed directly generating the graph representing our road
network model (cf. Section 3.2). Thereby, the average travel speed is converted into
average travel time by using the link length. Furthermore, for links that are open
for pedestrians we assume an average travel speed of 4 m/s. Note that ferry links
are included in the raw data by the means of travel time. However, these links are
time-independent, i.e., the travel time is valid for all times of day.

B.2. Railway Data

The railway data is based on different timetables from the German Railway company
and was kindly given to us by HaCon [hac84]. For our graphs we use two timetables.
The timetable of the winter period 1996/1997 containing most long range trains of
Europe and the timetable of the winter period 2000/2001 containing the German train
network together with a few local public transportation networks.

The raw data consists of a set of text files for each timetable. There is one file
defining stations together with their id numbers, names and geographical locations.
Another file contains the transfer time for each station. The train connections are
modeled as movements of trains. Figure B.1 shows a sample train as it occurs in the
raw data. The first lines (those beginning with a star) contain meta information about
the train which is not interesting to us. Next, each line consists of one station the

150

B.3. Flight Data

TO: BUDAPEST, HUNGARY (BUD)

From - To Elapsed
Validity Days Dep Arr Flight Aircraft time

- 25Oct 123456 05:20 06:20 MA231 736 02:00
27Oct - 1 5 05:20 06:25 MA231 F70 02:05

- 25Oct 2 67 15:40 16:40 MA233 73G 02:00
26Oct - 2 5 7 15:40 16:45 MA233 73G 02:05

- 24Oct 1 345 16:30 17:30 MA233 73G 02:00
27Oct - 1 34 16:30 17:35 MA233 73G 02:05

From ATHENS, GREECE (ATH)
FROM: BUDAPEST, HUNGARY (BUD)

From - To Elapsed
Validity Days Dep Arr Flight Aircraft time

- 25Oct 2 67 11:55 14:55 MA232 73G 02:00
26Oct - 2 5 7 12:00 15:00 MA232 73G 02:00

- 30Oct 1 345 12:50 15:50 MA232 73G 02:00
- 26Oct 12345 7 23:35 02:35+1 MA230 736 02:00

30Oct - 4 23:35 02:35+1 MA230 736 02:00

To ATHENS, GREECE (ATH)

Figure B.2.: Excerpt from the original pdf-timetable of the Oneworld [One99] flight alliance between

Athens (ATH), Greece and Budapest (BUD), Hungary.

train is passing through and contains the station id, its name, the arrival time and the
departure time at that station.

In a first step we convert the raw data into an intermediate format representing
the mathematical definition of a timetable as introduced in Section 3.3.1 on page 18
more closely. Hence, we create one file containing station definitions (for each station
a newly assigned and unique id number, the name, the geographical location and the
transfer time) as well as a file of elementary connections. Each line of this file consists
of the departure station id, the arrival station id, a newly created train id and the
departure resp. arrival times. Because we are interested in creating a graph wrt. the
realistic time-dependent model which involves the concept of routes (cf. Section 3.3.4),
we group the elementary connections by trains like in the raw data. This makes it
easier to create equivalent trains during the creation of the model.

In a second step we create the graph of the realistic time-dependent model with
constant transfer times from the intermediate format. To identify equivalent trains we
parse the connections file line by line creating train objects along the way. The trains
are then sorted lexicographically (regarding the station IDs), thus, allowing equivalent
trains to be merged into routes easily. These are then be used for creating the nodes
and edges of the final graph. The edge weights are set according to the definition of the
realistic time-dependent model. Along the connection edges we insert an interpolation
point for each elementary connection from the intermediate file belonging to a train
using the route the respective edge belongs to.

B.3. Flight Data

Regarding the flight networks we did not have raw timetable data at our disposal.
Thus, we decided creating the flight data from public timetables available on the Inter-
net. We used the timetables provided by two major flight alliances: StarAlliance [Sta97]
and Oneworld [One99]. The data format in which the timetables are provided by both

151

Appendix B. Raw Data Processing

alliances is the portable document format (pdf). Figure B.2 shows a sample of the
timetable of the Oneworld flight alliance.

In a first step the pdf-files are dumped into a human readable text file format. From
these text files we then create an intermediate format consisting of elementary con-
nections resembling the formal definition of timetables as introduced in Section 3.3.1
on page 18. Each elementary connection in the intermediate format consists of four
values: The source resp. target airport IATA-codes (see [Int45]) and the departure resp.
arrival times of the specific flight.

Unfortunately, this data is not sufficient to create the flight model graphs as intro-
duced in Section 3.4. First of all, the departure/arrival times are given wrt. the local
timezones where the respective airports are. Second, the timetable does not contain
geographical information which is, however, mandatory to us in order to link the flight
network to the other networks (cf. Section 3.5). For that reason, for each IATA-code
contained in the intermediate files, we query a website [Gre96] that returns a record
containing geographical coordinates, the airport’s full name and the local time zone.
This information is written into a separate text file.

Finally, the flight model graph is created on the basis of the two intermediate files
(the file containing airport information plus the file containing elementary connec-
tions). Our multi-modal graphs use the flight class model introduced in Section 3.4.3.
We thus consider two flights as equivalent if they belong to the same flight alliance.
In our case these are exactly Star Alliance and Oneworld. The different transfer times
T check-in, T check-out and T transfer are synthetic, since we were not able to acquire this
data. We set these values to 120 minutes, 60 minutes and 90 minutes, respectively for
each flight class and every airport. Transfers between different flight alliances are set
to 150 minutes.

152

Acknowledgments

First of all, I would like to thank Prof. Dr. Dorothea Wagner for giving me the oppor-
tunity to work on this highly interesting topic; Daniel Delling and Martin Holzer for
giving me support and the plenty of time we spent having discussions which were
always very inspiring. They were always available and helpful when I had a question
or problem.

I spent three months working on this thesis at the University of Patras in Greece.
I would really like to thank Prof. Dr. Christos Zaroliagis for welcoming me in his re-
search group. The very friendly and relaxed working environment made it a pleasant
stay. Furthermore, I would like to thank Georgia Nikolopoulou who arranged for my
arrival and accommodation which made my start in Greece a lot easier.

Finally, I would like to thank my parents who have supported me through my whole
studies and without whom I would not have had the chance to write this thesis.

Last but not least, I’d like to thank all the people not mentioned by name who
inspired me or distracted me when I needed a break. In particular, my closest friends
on whom I could always rely and who were supporting me throughout the whole
time. Thanks!

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig angefertigt habe
und nur die angegebenen Hilfsmittel und Quellen verwendet wurden.

Karlsruhe, den 30. März 2009

153

Bibliography

[BBH+08] Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav V.
Marathe, and Dorothea Wagner. Engineering Label-Constrained Shortest-
Path Algorithms. In Proceedings of the 4th International Conference on Algo-
rithmic Aspects in Information and Management (AAIM’08), volume 5034 of
Lecture Notes in Computer Science, pages 27–37. Springer, June 2008.
(Cited on page 53.)

[BBH+09] Chris Barrett, Keith Bisset, Martin Holzer, Goran Konjevod, Madhav V.
Marathe, and Dorothea Wagner. Engineering Label-Constrained Shortest-
Path Algorithms. In Demetrescu et al. [DGJ09]. To appear.
(Cited on pages 4 and 136.)

[BBJ+02] Chris Barrett, Keith Bisset, Riko Jacob, Goran Konjevod, and Madhav V.
Marathe. Classical and contemporary shortest path problems in road net-
works: Implementation and experimental analysis of the transims router.
In ESA ’02: Proceedings of the 10th Annual European Symposium on Algo-
rithms, pages 126–138, London, UK, 2002. Springer-Verlag.
(Cited on page 4.)

[BD08] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirec-
tional Routing. In Ian Munro and Dorothea Wagner, editors, Proceedings of
the 10th Workshop on Algorithm Engineering and Experiments (ALENEX’08),
pages 13–26. SIAM, April 2008.
(Cited on pages 76 and 96.)

[BD09] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirec-
tional Routing. ACM Journal of Experimental Algorithmics, 2009. Special
Section devoted to selected best papers presented at ALENEX’08. To ap-

155

Bibliography

pear.
(Cited on pages 3 and 96.)

[BDS+08] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Do-
minik Schultes, and Dorothea Wagner. Combining Hierarchical and Goal-
Directed Speed-Up Techniques for Dijkstra’s Algorithm. In Catherine C.
McGeoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08), volume 5038 of Lecture Notes in Computer Science, pages 303–318.
Springer, June 2008.
(Cited on pages 3, 62, and 76.)

[BDS+09] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner. Combining Hierarchical and
Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. Invited to
a special issue of the ACM Journal of Experimental Algorithmics devoted
to the best papers of WEA 2008, 2009.
(Cited on pages 3, 76, and 79.)

[BDW07] Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental
Study on Speed-Up Techniques for Timetable Information Systems. In
Christian Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, Pro-
ceedings of the 7th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS’07), pages 209–225. Inter-
nationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007.
(Cited on pages 2, 4, 64, and 69.)

[BDW09] Reinhard Bauer, Daniel Delling, and Dorothea Wagner. Experimental
Study on Speed-Up Techniques for Timetable Information Systems. Net-
works, 2009. Accepted for publication, to appear.
(Cited on page 4.)

[Bel58] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.
(Cited on pages 2 and 47.)

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associa-
tive searching. Commun. ACM, 18(9):509–517, 1975.
(Cited on page 34.)

[BFM+07] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Do-
minik Schultes. In Transit to Constant Shortest-Path Queries in Road

156

Bibliography

Networks. In Proceedings of the 9th Workshop on Algorithm Engineering and
Experiments (ALENEX’07), pages 46–59. SIAM, 2007.
(Cited on pages 3, 62, and 96.)

[BFM09] Holger Bast, Stefan Funke, and Domagoj Matijevic. TRANSIT Ultrafast
Shortest-Path Queries with Linear-Time Preprocessing. In Demetrescu
et al. [DGJ09]. Accepted for publication, to appear.
(Cited on page 3.)

[BFSS07] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast
Routing in Road Networks with Transit Nodes. Science, 316(5824):566,
2007.
(Cited on pages 3, 62, and 96.)

[BJ04] Gerth Brodal and Riko Jacob. Time-dependent Networks as Models to
Achieve Fast Exact Time-table Queries. In Proceedings of ATMOS Workshop
2003, pages 3–15, 2004.
(Cited on page 45.)

[BJM00] Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-
constrained path problems. SIAM J. Comput., 30(3):809–837, 2000.
(Cited on pages 4, 52, 53, and 136.)

[CH66] K. Cooke and E. Halsey. The Shortest Route Through a Network with
Time-Dependent Intermodal Transit Times. Journal of Mathematical Analy-
sis and Applications, (14):493–498, 1966.
(Cited on page 41.)

[CH08] Horst Czichos and Manfred Hennecke, editors. HÜTTE – Das Ingenieur-
wissen. Springer, Berlin, Heidelberg, 33 edition, 2008.
(Not cited.)

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2nd edition, 2001.
(Cited on pages 140 and 144.)

[Dan62] George B. Dantzig. Linear Programming and Extensions. Princeton Univer-
sity Press, 1962.
(Cited on pages 2, 4, and 63.)

[Dea99] Brian C. Dean. Continuous-Time Dynamic Shortest Path Algorithms.
Master’s thesis, Massachusetts Institute of Technology, 1999.
(Cited on pages 41, 48, 51, 101, and 144.)

157

Bibliography

[Del08] Daniel Delling. Time-Dependent SHARC-Routing. In Proceedings of the
16th Annual European Symposium on Algorithms (ESA’08), volume 5193
of Lecture Notes in Computer Science, pages 332–343. Springer, September
2008. Best Student Paper Award - ESA Track B.
(Cited on pages 72, 76, and 80.)

[Del09a] Daniel Delling. Engineering and Augmenting Route Planning Algorithms.
PhD thesis, Universität Karlsruhe (TH), Fakultät für Informatik, 2009.
(Cited on pages 2, 16, 61, 82, 92, 95, 107, 123, and 125.)

[Del09b] Daniel Delling. Time-Dependent SHARC-Routing. Algorithmica, 2009.
Special section devoted to selected best papers of ESA’08. to appear.
(Cited on pages 3 and 16.)

[DGJ09] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors.
Shortest Paths: Ninth DIMACS Implementation Challenge. DIMACS Book.
American Mathematical Society, 2009. To appear.
(Cited on pages 2, 155, 157, 158, 159, 160, and 165.)

[DHM+09] Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz, and Dorothea
Wagner. High-Performance Multi-Level Routing. In Demetrescu et al.
[DGJ09]. Accepted for publication, to appear.
(Cited on page 3.)

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1:269–271, 1959.
(Cited on pages 2, 4, 41, 44, 46, and 61.)

[DMS08] Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-
Criteria Shortest Paths in Time-Dependent Train Networks. In Cather-
ine C. McGeoch, editor, Proceedings of the 7th Workshop on Experimental
Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science,
pages 347–361. Springer, June 2008.
(Cited on pages 4 and 42.)

[DN08] Daniel Delling and Giacomo Nannicini. Bidirectional Core-Based Routing
in Dynamic Time-Dependent Road Networks. In Seok-Hee Hong, Hiroshi
Nagamochi, and Takuro Fukunaga, editors, Proceedings of the 19th Interna-
tional Symposium on Algorithms and Computation (ISAAC’08), volume 5369
of Lecture Notes in Computer Science, pages 813–824. Springer, December
2008.
(Cited on pages 3, 80, 91, and 92.)

158

Bibliography

[DPW08] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Engineering Time-
Expanded Graphs for Faster Timetable Information. In Proceedings of the
8th Workshop on Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems (ATMOS’08), Dagstuhl Seminar Proceedings. Inter-
nationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany, September 2008.
(Cited on pages 3, 4, 21, and 28.)

[DSSW06] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.
Highway Hierarchies Star. In Camil Demetrescu, Andrew V. Goldberg,
and David S. Johnson, editors, 9th DIMACS Implementation Challenge -
Shortest Paths, November 2006.
(Cited on pages 68 and 92.)

[DSSW09a] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.
Engineering Route Planning Algorithms. In Jürgen Lerner, Dorothea Wag-
ner, and Katharina A. Zweig, editors, Algorithmics of Large and Complex
Networks, Lecture Notes in Computer Science. Springer, 2009. To appear.
(Cited on pages 2, 14, and 61.)

[DSSW09b] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.
Highway Hierarchies Star. In Demetrescu et al. [DGJ09]. Accepted for
publication, to appear.
(Cited on page 3.)

[DW07] Daniel Delling and Dorothea Wagner. Landmark-Based Routing in Dy-
namic Graphs. In Camil Demetrescu, editor, Proceedings of the 6th Work-
shop on Experimental Algorithms (WEA’07), volume 4525 of Lecture Notes in
Computer Science, pages 52–65. Springer, June 2007.
(Cited on page 2.)

[Gei08] Robert Geisberger. Contraction Hierarchies. Master’s thesis, Universität
Karlsruhe (TH), Fakultät für Informatik, 2008.
(Cited on pages 3, 76, and 96.)

[GH05] Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path:
A* Search Meets Graph Theory. In Proceedings of the 16th Annual ACM–
SIAM Symposium on Discrete Algorithms (SODA’05), pages 156–165, 2005.
(Cited on pages 2, 4, 63, 66, 68, and 69.)

[GKW06a] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach for
A*: Efficient Point-to-Point Shortest Path Algorithms. In Proceedings of

159

Bibliography

the 8th Workshop on Algorithm Engineering and Experiments (ALENEX’06),
pages 129–143. SIAM, 2006.
(Cited on page 3.)

[GKW06b] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach for
A*: Shortest Path Algorithms with Preprocessing. In Camil Demetrescu,
Andrew V. Goldberg, and David S. Johnson, editors, 9th DIMACS Imple-
mentation Challenge - Shortest Paths, November 2006.
(Cited on page 3.)

[GKW07] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Better Land-
marks Within Reach. In Camil Demetrescu, editor, Proceedings of the 6th
Workshop on Experimental Algorithms (WEA’07), volume 4525 of Lecture
Notes in Computer Science, pages 38–51. Springer, June 2007.
(Cited on page 92.)

[GKW09] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach for
A*: Shortest Path Algorithms with Preprocessing. In Demetrescu et al.
[DGJ09]. Accepted for publication, to appear.
(Cited on page 3.)

[Gre96] Great Circle Mapper. http://gc.kls2.com, 1996.
(Cited on page 152.)

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks. In Catherine C. McGeoch, editor, Proceedings of the 7th Work-
shop on Experimental Algorithms (WEA’08), volume 5038 of Lecture Notes in
Computer Science, pages 319–333. Springer, June 2008.
(Cited on pages 3, 76, 84, and 96.)

[GW05] Andrew V. Goldberg and Renato F. Werneck. Computing Point-to-Point
Shortest Paths from External Memory. In Proceedings of the 7th Workshop on
Algorithm Engineering and Experiments (ALENEX’05), pages 26–40. SIAM,
2005.
(Cited on pages 2, 66, 68, and 69.)

[hac84] HaCon - Ingenieurgesellschaft mbH, 1984. http://www.hacon.de.
(Cited on page 150.)

[HKMS06] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling.
Fast Point-to-Point Shortest Path Computations with Arc-Flags. In Camil

160

http://gc.kls2.com
http://www.hacon.de

Bibliography

Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors, 9th DI-
MACS Implementation Challenge - Shortest Paths, November 2006.
(Cited on pages 70 and 71.)

[HNR68] Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, 4:100–107, 1968.
(Cited on pages 2, 4, and 66.)

[Hol08] Martin Holzer. Engineering Planar-Separator and Shortest-Path Algorithms.
PhD thesis, Universität Karlsruhe (TH), Fakultät für Informatik, 2008.
(Cited on pages 4, 53, and 136.)

[HSW04] Martin Holzer, Frank Schulz, and Thomas Willhalm. Combining Speed-
up Techniques for Shortest-Path Computations. In Proceedings of the 3rd
Workshop on Experimental Algorithms (WEA’04), volume 3059 of Lecture
Notes in Computer Science, pages 269–284. Springer, 2004.
(Cited on page 3.)

[HSWW06] Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm.
Combining Speed-up Techniques for Shortest-Path Computations. ACM
Journal of Experimental Algorithmics, 10, 2006.
(Cited on page 3.)

[Int45] International Air Transport Association. http://www.iata.org, 1945.
(Cited on page 152.)

[Jr.56] L.R. Ford Jr. Network flow theory. Paper P-923, The RAND Corperation,
Santa Moncia, California, August 1956.
(Cited on pages 2 and 47.)

[Kar07] George Karypis. METIS - Family of Multilevel Partitioning Algorithms,
2007.
(Cited on pages 3 and 70.)

[Ken04] Matthew B. Kennel. Kdtree 2: Fortran 95 and c++ software to efficiently
search for near neighbors in a multi-dimensional euclidean space. 2004.
(Cited on pages 35 and 38.)

[KK98] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Com-
puting, 20(1):359–392, 1998.
(Cited on page 70.)

161

http://www.iata.org

Bibliography

[Kle] S. Kleene. Representation of Events in Nerve Nets and Finite Automata, pages
3–42. Princeton University Press, Princeton, N.J.
(Cited on page 12.)

[KMS05] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Acceleration of
Shortest Path and Constrained Shortest Path Computation. In Proceedings
of the 4th Workshop on Experimental Algorithms (WEA’05), Lecture Notes in
Computer Science, pages 126–138. Springer, 2005.
(Cited on page 3.)

[Lau97] Ulrich Lauther. Slow Preprocessing of Graphs for Extremely Fast Shortest
Path Calculations, 1997. Lecture at the Workshop on Computational Inte-
ger Programming at ZIB.
(Cited on page 69.)

[Lau04] Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Short-
est Paths in Static Networks with Geographical Background. In Geoinfor-
mation und Mobilität - von der Forschung zur praktischen Anwendung, vol-
ume 22, pages 219–230. IfGI prints, 2004.
(Cited on pages 3, 69, and 71.)

[Moo91] Andrew Moore. An introductory tutorial on kd-trees. Technical Re-
port Technical Report No. 209, Computer Laboratory, University of Cam-
bridge, Pittsburgh, PA, 1991.
(Cited on page 35.)

[Mor92] H. Moritz. Geodetic reference system 1980. Journal of Geodesy, 66(2):187–
192, June 1992.
(Cited on page 38.)

[MS04] Burkhard Monien and Stefan Schamberger. Graph Partitioning with the
Party Library: Helpful-Sets in Practice. In Proceedings of the 16th Sym-
posium on Computer Architecture and High Performance Computing (SBAC-
PAD’04), pages 198–205. IEEE Computer Society, 2004.
(Cited on pages 3 and 70.)

[MS07] Matthias Müller–Hannemann and Mathias Schnee. Finding All Attractive
Train Connections by Multi-Criteria Pareto Search. In Algorithmic Methods
for Railway Optimization, volume 4359 of Lecture Notes in Computer Science,
pages 246–263. Springer, 2007.
(Cited on pages 4 and 42.)

162

Bibliography

[MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The
Basic Toolbox. Springer, 2008.
(Cited on page 140.)

[MSS+06] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and
Thomas Willhalm. Partitioning Graphs to Speedup Dijkstra’s Algorithm.
ACM Journal of Experimental Algorithmics, 11:2.8, 2006.
(Cited on pages 69 and 70.)

[MSWZ07] Matthias Müller–Hannemann, Frank Schulz, Dorothea Wagner, and
Christos Zaroliagis. Timetable Information: Models and Algorithms. In
Algorithmic Methods for Railway Optimization, volume 4359 of Lecture Notes
in Computer Science, pages 67–90. Springer, 2007.
(Cited on page 3.)

[Mül06] Kirill Müller. Design and Implementation of an Efficient Hierarchical
Speed-up Technique for Computation of Exact Shortest Paths in Graphs.
Master’s thesis, Universität Karlsruhe (TH), Fakultät für Informatik, June
2006.
(Cited on page 3.)

[MW01] Matthias Müller–Hannemann and Karsten Weihe. Pareto Shortest Paths is
Often Feasible in Practice. In Proceedings of the 5th International Workshop on
Algorithm Engineering (WAE’01), volume 2141 of Lecture Notes in Computer
Science, pages 185–197. Springer, 2001.
(Cited on pages 4 and 42.)

[NDLS08] Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes.
Bidirectional A* Search for Time-Dependent Fast Paths. In Catherine C.
McGeoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms
(WEA’08), volume 5038 of Lecture Notes in Computer Science, pages 334–346.
Springer, June 2008.
(Cited on pages 2, 65, 68, and 95.)

[One99] Oneworld Management Company Ltd. http://www.oneworld.com, 1999.
(Cited on pages 118 and 151.)

[OR90] Ariel Orda and Raphael Rom. Shortest-Path and Minimum Delay Al-
gorithms in Networks with Time-Dependent Edge-Length. Journal of the
ACM, 37(3):607–625, 1990.
(Cited on page 25.)

163

http://www.oneworld.com

Bibliography

[Pel07] Francois Pellegrini. SCOTCH: Static Mapping, Graph, Mesh and Hyper-
graph Partitioning, and Parallel and Sequential Sparse Matrix Ordering
Package, 2007.
(Cited on pages 3 and 70.)

[PSWZ04] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
Experimental Comparison of Shortest Path Approaches for Timetable In-
formation. In Proceedings of the 6th Workshop on Algorithm Engineering and
Experiments (ALENEX’04), pages 88–99. SIAM, 2004.
(Cited on page 3.)

[PSWZ07] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
Efficient Models for Timetable Information in Public Transportation Sys-
tems. ACM Journal of Experimental Algorithmics, 12:Article 2.4, 2007.
(Cited on pages 3, 4, 24, 26, 43, and 45.)

[ptv79] PTV AG - Planung Transport Verkehr, 1979. http://www.ptv.de.
(Cited on page 149.)

[RS59] M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3:114–125, 1959.
(Cited on page 12.)

[Sch05] Frank Schulz. Timetable Information and Shortest Paths. PhD thesis, Univer-
sität Karlsruhe (TH), Fakultät für Informatik, 2005.
(Cited on pages 3 and 19.)

[Sch08a] Dennis Schieferdecker. Systematic Combination of Speed-Up Techniques
for exact Shortest-Path Queries. Master’s thesis, Universität Karlsruhe
(TH), Fakultät für Informatik, January 2008.
(Cited on pages 2, 3, 76, 82, 91, 94, and 96.)

[Sch08b] Dominik Schultes. Route Planning in Road Networks. PhD thesis, Univer-
sität Karlsruhe (TH), Fakultät für Informatik, February 2008.
(Cited on pages 139 and 147.)

[SS05] Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact
Shortest Path Queries. In Proceedings of the 13th Annual European Sym-
posium on Algorithms (ESA’05), volume 3669 of Lecture Notes in Computer
Science, pages 568–579. Springer, 2005.
(Cited on pages 3 and 76.)

164

http://www.ptv.de

Bibliography

[SS06a] Peter Sanders and Dominik Schultes. Engineering Highway Hierar-
chies. In Proceedings of the 14th Annual European Symposium on Algorithms
(ESA’06), volume 4168 of Lecture Notes in Computer Science, pages 804–816.
Springer, 2006.
(Cited on pages 3 and 76.)

[SS06b] Peter Sanders and Dominik Schultes. Robust, Almost Constant Time
Shortest-Path Queries in Road Networks. In Camil Demetrescu, An-
drew V. Goldberg, and David S. Johnson, editors, 9th DIMACS Implemen-
tation Challenge - Shortest Paths, November 2006.
(Cited on pages 3, 96, and 106.)

[SS09] Peter Sanders and Dominik Schultes. Robust, Almost Constant Time
Shortest-Path Queries in Road Networks. In Demetrescu et al. [DGJ09].
Accepted for publication, to appear.
(Cited on page 3.)

[Sta97] Star Alliance. http://www.staralliance.com, 1997.
(Cited on pages 118 and 151.)

[SV86] Robert Sedgewick and Jeffrey S. Vitter. Shortest Paths in Euclidean
Graphs. Algorithmica, 1(1):31–48, 1986.
(Cited on page 4.)

[SWW99] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s Algorithm
On-Line: An Empirical Case Study from Public Railroad Transport. In Pro-
ceedings of the 3rd International Workshop on Algorithm Engineering (WAE’99),
volume 1668 of Lecture Notes in Computer Science, pages 110–123. Springer,
1999.
(Cited on pages 2 and 3.)

[WW03] Dorothea Wagner and Thomas Willhalm. Geometric Speed-Up Tech-
niques for Finding Shortest Paths in Large Sparse Graphs. In Proceedings of
the 11th Annual European Symposium on Algorithms (ESA’03), volume 2832
of Lecture Notes in Computer Science, pages 776–787. Springer, 2003.
(Cited on page 2.)

[WWZ05] Dorothea Wagner, Thomas Willhalm, and Christos Zaroliagis. Geometric
Containers for Efficient Shortest-Path Computation. ACM Journal of Ex-
perimental Algorithmics, 10:1.3, 2005.
(Cited on page 2.)

165

http://www.staralliance.com

	Introduction
	Related Work
	Our Contributions
	Overview

	Foundations
	Graph Theory
	Languages and Automata

	Models
	Time-Independent and Time-Dependent Models
	Time-Independent Models
	Time-Dependent Models

	The Road Network
	The Railway Network
	Timetables
	The Condensed Model
	Time-Expanded Models
	Time-Dependent Models

	The Flight Network
	Timetables
	Using the Railway Model
	A Flexible Model for Flight Networks

	Combining the Networks
	The Nearest Neighbor Problem
	Merging and Linking

	Summary

	Routing
	The Earliest Arrival Problem and Shortest Paths
	The Earliest Arrival Problem
	Shortest Paths

	Uni-Modal Routing
	Time-Independent Routing
	Time-Dependent Routing

	Multi-Modal Routing
	The Label Constrained Shortest Path Problem
	Algorithms

	Summary

	Speed-Up Techniques
	Basic Ingredients
	Bi-Directional Search
	A* with Landmarks (ALT)
	Arc-Flags
	Contraction

	Core-Based Routing
	Preprocessing
	Query
	Proof of Correctness
	Discussion

	Core-ALT
	Preprocessing
	Query
	Proof of Correctness
	Discussion

	Access-Node Routing
	Motivation
	Formal Introduction
	Preprocessing
	Query
	Core-Based Access-Node Routing
	Proof of Correctness
	Discussion

	Summary

	Experiments
	Input
	Graphs
	Automata

	Experimental Setup
	Multi-Modal Routing
	Core-ALT
	Access-Node Routing
	Summary

	Conclusion
	Future Work

	Data Structures
	Graphs
	Static Graphs
	Dynamic Graphs

	Piecewise Linear Functions
	Finite Automata
	Priority Queue

	Raw Data Processing
	Road Data
	Railway Data
	Flight Data

