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Abstract

Conflict-free colorings are known as vertex-colorings of hypergraphs. In such a color-
ing each hyperedge contains a vertex whose color is not assigned to any other vertex
within this edge. In this thesis the notion of conflict-free colorings is translated to
edge-colorings of graphs. For graphs G and H a conflict-free coloring of G ensures
an edge of unique color in each copy of H in G. The minimum number of colors
in such a coloring is denoted by f(G,H) and is called conflict-free chromatic index
of G. Since total multicolorings are conflict-free, f(G,H) is well defined. In accor-
dance with the chromatic-index of a graph it is NP-hard to determine f(G,H) in
general. Most results of the thesis are concerned with the asymptotic behavior of the
function f(G,H) for fixed H and large G. The cases of arbitrary graphs G and H,
of paths in trees and of subcliques of complete graphs are studied in detail. Several
constructive as well as probabilistic upper bounds are established in these settings,
some of which are tight for certain graphs. Some lower bounds are determined, as
well. Moreover, tight relations between the two notions of conflict-free colorings and
between conflict-free colorings and (inverse) Ramsey numbers are encountered.
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1. Introduction

Graphs have an immanent power to model various sorts of problems and applications
in a simple and easily understandable way. Assigning colors, or other labels, to the
edges or vertices improves this ability even more. Therefore coloring problems are
among the most famous problems in graph theory. Especially the four color theorem
is referred to as one of the results from graph theory which is best known outside of
this field of research [9]. One of the first formulations of the corresponding problem
is the question whether four colors are sufficient to color all countries on a map, such
that neighbors are of different color. It was already stated in 1852 by Guthrie [32].
Colorings of this kind, with two elements of the same color not being adjacent, are
called proper colorings and attracted lots of attention. Particularly the chromatic
number of graphs is studied a lot, which denotes the minimum number of colors
sufficient for a proper vertex-coloring of a graph. Compared to the first conjectures
on proper colorings the concept of conflict-free colorings is fairly new.

Conflict-Free Colorings: In 2003 Even, Lotker, Ron and Smorodinsky set up the
following constraints on a coloring [13]. Given a vertex-coloring of a hypergraph,
a vertex is of unique color within a hyperedge, if its color is not assigned to any
other vertex in this edge. The whole vertex-coloring is called conflict-free, if every
hyperedge contains a uniquely colored vertex. It is easy to see that the problem of
constructing such colorings gets easier the more colors are available. So conflict-free
colorings with few colors are of particular interest. In accordance with the notion of
the (ordinary) chromatic number the conflict-free chromatic number of a hypergraph
denotes the minimum number of colors used by a conflict-free coloring. The left part
of Figure 1.1 shows an example of a conflict-free coloring of a hypergraph. There
are two different main approaches for studying such chromatic numbers. One pos-
sibility is to determine or approximate the explicit (conflict-free) chromatic number
of a fixed hypergraph. The other possibility is to consider some parameters of the
hypergraph as variables and analyze the asymptotic behavior of the (conflict-free)
chromatic number. Possible parameters are the number of vertices, the number of
edges or the maximum edge degree, for example. This thesis is mainly concerned
with the extremal questions in the second approach.

In their introductionary work Even et. al. had a concrete application in mind [13].
Frequencies of a wireless network shall be assigned to base stations, such that the
existence of a base station of unique frequency is guaranteed within the reach of
a mobile client. Then, conflict-free communication is possible. For this reason
they studied hypergraphs arising from geometric settings, particularly from points
and discs in the plane. Following studies concentrated on conflict-free colorings of
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Figure 1.1.: The left hand side shows a conflict-free (vertex) coloring of a hypergraph
(on nine vertices and nine hyperedges) in three colors (black disk, square
red, cross blue). The right hand side shows a conflict-free (edge) coloring
of the Petersen graph with respect to cycles on five edges using three
colors (solid black, dashed red, dotted blue).

differently but still geometrically induced hypergraphs, as well. First studies on
conflict-free colorings of general hypergraphs were presented in 2009 by Pach and
Tardos [23]. A detailed review of the results on conflict-free colorings is presented
in Section 2.2. Therefore concrete results are omitted here. The extensive review is
due to tight relations of the conflict-free colorings of hypergraphs to the colorings
studied in this thesis. These relations are established in the beginning of Section 2.2.

This thesis is concerned with a certain kind of edge-colorings of graphs. They were
introduced by Radoš Radoičić and Veselin Jungić (personal communication) and are
very similar to conflict-free colorings of hypergraphs. Given an edge-coloring an edge
is uniquely colored within a set of edges, if there is no other edge of the same color
in this set. Originally, the edges of a complete graph should be colored, such that
all complete subgraphs of fixed order contain an edge of unique color. Since a total
multicoloring always satisfies this condition, the minimum number of sufficient colors
is studied. In particular, the extremal behavior of this number is of interest in case
of increasing order of the complete graph whose edges get colored. Of course, the
problem is not restricted to colorings of complete graphs with respect to complete
subgraphs. Edge-colorings of arbitrary graphs G are studied that ensure a uniquely
colored edge in each copy of another arbitrary but fixed graph H in G. Such an edge-
coloring is called conflict-free with respect to H. An exemplary conflict-free coloring
of the Petersen graph with respect to cycles on five edges is shown in the right part
of Figure 1.1. Like for conflict-free colorings of hypergraphs the minimum number
of sufficient colors is of particular interest here, as well. The function f(G,H)
denotes this number and is called conflict-free chromatic index of G with respect
to H. Studying the behavior of f in various settings is the main topic of this
thesis. Colorings of arbitrary graphs with respect to arbitrary (but fixed) subgraphs
are studied in Chapter 2, first. Several basic results are presented together with a
general upper bound on f . Afterwards, edge-colorings of trees with respect to paths
of given length are considered in Chapter 3. Here, an interesting dependence of

2
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the behavior of f on the parity of the given length is discovered. Furthermore, it is
shown that the height of the tree is not essential. Several constructive upper bounds
are presented which do not need more colors on trees with larger height than on
smaller trees. Some of the bounds are tight for certain classes of trees. The original
setting of complete graphs Kn and their complete subgraphs is studied in Chapter 4.
The main concern of that chapter is to analyze the extremal behavior of f(Kn, Kp)
in case of increasing n ∈ N and fixed p ∈ N. Finally, Chapter 5 contains a summary
of results and concluding remarks.

Extremal Graph Theory: With the questions formulated above these studies are
part of extremal graph theory and combinatorics, an area of discrete mathematics.
Extremal graph theory covers various problems and theories, most of which are inter-
ested in global conditions of graphs forcing certain properties. A very fundamental
example is to study the largest or smallest number of edges of a graph on a fixed
number of vertices, which admits a partition of the edges into a given number of
classes of certain kind. Colorings naturally correspond to partitions by considering
all elements of the same color as so called color classes (or the other way round).
With this notion a proper coloring induces a partition into independent sets, i.e. a
partition with no part containing two adjacent elements. Other structural condi-
tions on the color classes lead to different variants of coloring, respectively partition
problems. Among these, especially Ramsey type problems have tight relations and
interconnections to conflict-free colorings. The following part gives a brief outline
of the related topics.

A first extremal result in this field of research is due to Mantel who proved an upper
bound on the number of edges in a triangle free graph [32]. This idea is extended
by Turán to Kp-free graphs for p ∈ N. Turán’s theorem presents graphs of this kind
with maximum number of edges (extremal graphs), the so called Turán graphs [29].

A slightly different line of extremal graph theory is due to Ramsey, who studied
the following relaxed condition on the color classes. Given a positive integer p ∈ N,
no color class of an edge-coloring of a complete graph should contain a complete
graph Kp on p vertices. Due to Ramsey’s theorem this is not possible, if only few
colors are available. In his original theorem Ramsey considered a more general vari-
ant of this. For an r ∈ N the hyperedges of a complete r-uniform hypergraph H
are colored (i.e. partitioned). Note that a graph is just a 2-uniform hypergraph.
Ramsey proved, that for a fixed number of colors and given size p ∈ N, one of the
color classes contains a complete r-uniform sub-hypergraph of H on p vertices, if H
is sufficiently large [26]. Hence, the larger the complete graph is the larger is the
number of colors necessary to avoid a monochromatic complete subgraph. This gives
reason for the notion of Ramsey numbers. Depending on the number of available
colors and the size p, they denote the smallest order of a complete graph which does
not admit an edge-coloring without monochromatic copy of Kp. Lots of general-
izations of Ramsey theory were established since then. Consider an arbitrary but
fixed graph H and a given number of colors k ∈ N. The so called graph Ramsey
number denotes the smallest order of a complete graph which does not admit an
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edge-coloring without monochromatic copy of H. The existence (i.e. finiteness)
of this number follows from the existence of the (classical) Ramsey number. A
monochromatic complete subgraph of sufficient size contains the graph H. Further-
more, distinct graphs can be associated with the different colors. For example, an
edge-coloring of a sufficiently large complete graph in two colors cannot avoid an
entirely red cycle and an entirely blue star (of fixed size) at the same time. Again,
finiteness in this (non-symmetric) case follows from Ramsey’s theorem. For all these
variants of Ramsey numbers one may ask the other way round. Given a graph and
a subgraph (or several subgraphs), how many colors does an edge-coloring without
monochromatic copy of the subgraph need? This number of colors is usually denoted
as inverse Ramsey number.

Like for chromatic numbers there are two different main approaches for studying
Ramsey numbers. Either fixed values for the parameters and explicit Ramsey num-
bers are considered or the asymptotic behavior for some varying parameters is ana-
lyzed. For the first case large tables exist with exact values or best known bounds
respectively. For example the survey of Radziszowski [25] lists lots of results and
several asymptotic bounds, and is updated from time to time. Only few exact re-
sults are known for Ramsey numbers. In case of more than two colors the following
value of a Ramsey number is the only exact value known, yet. The smallest com-
plete graph which does not admit a coloring in three colors without monochromatic
triangles has 17 vertices [25]. More exact values are known for two colors or certain
graph Ramsey numbers. In the asymptotic case only few exact results are known,
as well. In case of two colors let p ∈ N denote the order of the clique that should not
occur monochromatically. With a constant c ∈ R an initial lower bound on the clas-
sic Ramsey number of c · p · 2 p

2 was proved by Erdős [10]. This bound was improved

later, but not significantly. An upper bound of
(

2p
p

)
·p
−c̄ log(p)
log log(p) , with a constant c̄ ∈ R,

is due to Conlon [8].

In the theory presented above certain unavoidable, monochromatic substructures
of colorings are considered. One of several generalizations of this theory is due to
Erdős [11] who considers the following stronger fact. For each q ∈ N there are
graphs, such that certain substructures on less than q colors are unavoidable in any
edge-coloring, if the number of available colors is to small. This reduces to the
notion introduced above for q = 2. One of the results in this field of research due to
Erdős and Gyárfás [12] is used in this thesis.

Next, notations and definitions are given. Afterwards, the main results of the thesis
are summarized in Section 1.3 together with an outline of the following parts.

1.1. Definitions

All definitions and notions are consistent with those in West’s introduction to graph
theory [32]. The only exception is the notion of Pm denoting a path on m ∈ N edges
(instead of vertices). Furthermore, some additional definitions are introduced.

4
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For this whole work let G and H denote finite, simple and undirected graphs. For a
graph G let V (G) denote its vertex set and E(G) ⊆

(
V (G)

2

)
its edge set, where

(
V (G)

2

)

denotes the set of all subsets of V (G) of size 2. Both G and H are assumed to
contain at least one edge. The maximum degree of G is denoted by ∆(G). If H is
a subgraph of G, the term H ⊆ G is used. For a subset V ′ ⊂ V (G) the subgraph
induced by V ′ is defined as G[V ′] := (V ′, E ∩

(
V ′

2

)
). In words, the subgraph induced

by V ′ is obtained from G by removing all vertices in V \ V ′ and all edges incident
to these vertices. Similarly to this, define G − V̄ := G[V (G) \ V̄ ] for V̄ ⊂ V (G).
The same notion is used for edges. No vertices are removed here, so for E ′ ⊆ E(G)
define the subgraph G − E ′ := (V (G), E ′). A subgraph of G which is isomorphic
to H is called copy of H in G. The maximum H-degree ∆H(G) of a graph G is the
maximum number of copies of H in G sharing an edge with a fixed copy of H in G.
Formally, ∆H(G) := max{d ∈ N | ∃H0, H1, . . . , Hd ⊆ G,Hi copy of H for all i ≤ d :
E(H0)∩E(Hi) 6= ∅}. An H-blocking set of a graph G is a set B ⊆ E(G), such that
each copy of H in G contains at least one edge from B.

Some parts of the thesis work with hypergraphs. For a hypergraph H let V (H)
denote its vertex set and E(H) ⊆ 2V (H) its edge set. Furthermore the dependence
or the degree of an edge E ∈ E(H) is the number of edges in E(H) intersecting E.
The maximum edge degree of H is denoted by D(H). A blocking set (also known
as hitting set) of a hypergraph H is a set B ⊆ V (H), such that E ∩ B 6= ∅ for
all E ∈ E(H). A blocking set (or an H-blocking set of graph G) is called almost
simple, if each edge in E(H) (respectively each copy of H in G) either contains
exactly one element from B or exactly one of its elements is not contained in B. A
blocking set is called simple, if each edge in E(H) (respectively no copy of H in G)
contains exactly one element from B.

Colorings: The thesis deals with certain colorings of G. An edge-coloring of G
is map c : E(G) → N (vertex-colorings are defined analogously). The notion of a
coloring assigning a color to an edge is used in contrast to this definition but with
the same meaning. A coloring is called proper, if adjacent elements do not have the
same color. The minimum number of colors that is used by a proper edge-coloring
of G is called chromatic index and denoted by χ′(G). It is known from Vizing’s
theorem [30], that χ′(G) ∈ {∆(G),∆(G) + 1}.This divides graphs into two classes.
Class I contains all graphs with chromatic index equal to their maximum degree
and Class II all other graphs. If G′ is a subgraph of G and c is an edge-coloring of G,
the induced edge-coloring c′ on G′ is just the restriction of c from E(G) to E(G′),
i.e. c′(e) := c(e) for e ∈ E(G′) ⊆ E(G). A multicoloring of a graph (respectively
its edges), is an edge-coloring that assigns no color to more than one edge. In other
words, each edge receives its own color. If all edges are colored with the same color,
the coloring is called monochromatic.

The definitions are used for vertex-colorings of hypergraphs. A vertex-coloring of a
hypergraph is called conflict-free, if each hyperedge contains a vertex whose color
is not assigned to any other vertex in this hyperedge. The conflict-free chromatic
number χcf(H) is the minimum number of colors used by a conflict-free coloring ofH.
Formally, χcf(H) := min{k ∈ N | there is a conflict-free coloring of H in k colors}.

5
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Extremal Graph Theory: Two notions from extremal graph theory are used in the
thesis: extremal functions and Ramsey numbers as well as several generalizations.
For a graph H the extremal number ex(n,H) denotes the largest number of edges
of a graph G on n vertices and without a subgraph isomorphic to H.
Classical Ramsey theory deals with edge-colorings of complete graphs. Given two
graphs H1 and H2 the Ramsey number n := R(H1, H2) denote the smallest integer,
such that every edge-coloring of Kn with colors 1 and 2 induces a monochromatic
copy of H1 in Kn in color 1 or of H2 in color 2. This definition is extended to
an arbitrary number k of colors and graphs Hi. Then R(H1, H2, . . . , Hk) is called
multicolor Ramsey number. An edge-coloring without monochromatic copy of all Hi

is called Ramsey coloring. Since distinct graphs Hi won’t be considered in this
work, define for k ∈ N colors and one fixed graph H the shorthand Rk(H) :=
R(H,H, . . . , H) (where H is repeated k times). Instead of a fixed number of colors,
one may fix the size n of the complete graph, whose edges get colored. Then the
question is, how many colors are necessary for a Ramsey coloring of this graph. This
number is called inverse (multicolor) Ramsey number and is denoted by Rinv

H (n) =
min{k ∈ N | Rk(H) > n}. If H is a complete graph Kp these terms are rewritten
as Rk(p) and Rinv

p (n). For an arbitrary graph G the inverse multicolor Ramsey
number Rinv

H (G) is analogously defined as the minimum number of colors used by
an edge-coloring of G without monochromatic copy of H. Note that it is not an
actual inverse of another function.
In classic Ramsey theory it is looked for colorings without monochromatic subgraphs
of certain kind. In particular, at least two colors should be assigned to the edges
of each copy of H. This is generalized as follows. For an integer q ≤ |E(H)| an
edge-coloring of G is called q-good (with respect to H), if there are at least q distinct
colors assigned to the edges of each copy of H in G. Within this thesis the size of the
smallest complete graph which does not admit a q-good coloring is called generalized
multicolor Ramsey number (with respect to H) and denoted by R̃k(H; q). Again,

the inverse R̃inv
H (n; q) := min{k ∈ N | R̃k(H; q) > n} is of interest as well. In case

of H = Kp, the same notation like above is used. Like above, this inverse number
can be studied for arbitrary graphs G.

Trees and Other Graph Classes: Several well known special graphs are considered.
Most frequently used are complete graphs on n ∈ N vertices, denoted by Kn, and
(simple) paths on m ∈ N edges, denoted by Pm. For a path Pm, the number of
edges m is called its length. The (two) vertices of degree 1 in P are called endpoints
and all other vertices are called internal vertices of P . Two vertices are connected
by a path P , if they are endpoints of P . The distance between two vertices in G is
the length of a shortest path connecting the two vertices. The diameter diam(G) of
a graph G is the largest distance between two vertices in G. For a vertex v ∈ V (G)
and an integer a ∈ N the maximum number da(v) of edge-disjoint copies of Pa in G
with v as an endpoint is called a-degree of v. The maximum a-degree of G is denoted
by ∆a(G) := max

v∈V (G)
(da(v)).

In Chapter 3, trees are considered. A tree T is called rooted, if a fixed vertex is
marked as its root. Then the height h(T ) of a rooted tree T is defined as the length

6
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of a longest path connecting the root to some leaf. Most of the time, rooted trees
are considered leveled. All vertices of the same distance i from the root form the
vertex level of index i. All edges connecting vertices in levels i − 1 and i form the
edge level of index i. The root of a tree is considered to be its topmost vertex.
All other levels occur below, ordered according to their index. A level is said to
be above (respectively below) each level of larger index (respectively smaller index).
A vertex u ∈ V (T ), which is adjacent (incident) to another vertex v ∈ V (T ) (an
edge e ∈ E(T )) from above is called parent vertex of v (of e). The vertex v is called
child of u. The down degree of a vertex v in rooted tree is defined as its number
of children. A downward subtree of T is a rooted subtree of T whose root is its
topmost vertex in T . Any vertex in T which is contained in a downward path in T
connecting a vertex v (or an edge e) and the root of T is an ancestor of v (of e).
Three classes of trees of special structure are of particular interest. A spider is a tree
with at most one vertex of degree larger than 2. If it exists, this particular vertex
is called the head of the spider. Otherwise the head may be any of the vertices
of degree 2. The paths connecting the head of a spider to its leafs are called legs.
If every leg of a spider contains exactly one edge, the graph is called star and its
head is called its center. In contrast to these trees with few vertices of degree larger
than 2, (rooted) complete d-ary trees are considered. For d ∈ N each vertex in such
a tree which is not the root and not a leaf has degree d+ 1. The root has degree d
and all paths connecting the root to a leaf have the same length.

1.2. Problem Formulation

We are looking for the following colorings.

Definition 1.1. Let G and H be graphs. An edge-coloring c : E(G) → N is called
conflict-free (with respect to H) or UCE-H coloring ( Uniquely Colored Edge-H),
if in each subgraph of G isomorphic to H there is a color class consisting of a single
edge. The conflict-free chromatic index of G (with respect to H) is defined as follows.

f(G,H) := min{k ∈ N | there is a UCE-H coloring of G in k colors}.
A UCE-H coloring c is called minimum, if it uses f(G,H) colors.

The map f is well defined as it is shown in Lemma 2.1. According to this definition,
an edge-coloring of G is called good (with respect to H), if it is a UCE-H coloring.
Otherwise it is called bad. Given an arbitrary edge-coloring of G, a copy of H in G
is called good (respectively bad), if it contains a uniquely colored edge (or not).
According to this definition, the following decision problem is defined.

Problem 1 (UCE-H Problem). For k ∈ N and two graphs G and H the following
decision problem is called the k-UCE-H problem for G.

Is there a UCE-H coloring of G using exactly k colors?

A big part of this work considers complete graphs and its complete subgraphs. Hence
the notation f(n, p) := f(Kn, Kp) is used for n, p ∈ N with n, p ≥ 2.

7
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1.3. Results

In the following the main theorems and results of this thesis are presented. The
proofs are contained in the referenced sections together with minor results and con-
nections in between. The general setting of arbitrary graphs G and H is studied
in Chapter 2. First of all, several basic results are presented in Section 2.1. For
example, there are marginal results for very large and very small subgraphs H.
Afterwards, known results on conflict-free colorings are reviewed in Section 2.2.
Moreover, a tight relation between good vertex-colorings of hypergraphs and good
edge-colorings of ordinary graphs is established. This relation allows to translate
some of the known results on hypergraphs to the setting of edge-colorings of graphs.
Then, connections to Ramsey numbers are studied in Section 2.3. Using a general-
ized version of Ramsey theory, the following theorem is obtained with probabilistic
methods.

Theorem 1. Let G,H be graphs and m := |E(H)|. Then

f(G,H) ≤ (e · (∆H(G) + 1))
2
m · m

2

4
.

The proof of this Theorem is used to obtain following corollary on the conflict-free
chromatic number of uniform hypergraphs. It improves upon the best result known
so far.

Corollary 2.18. Let r ∈ N and H be an r-uniform hypergraph. Then

χcf (H) ≤ (e · (D(H) + 1))
2
r · r

2

4
.

Finally, the complexity of determining the conflict-free chromatic index is analyzed
in Section 2.4. Besides two algorithms, the following NP-hardness result is obtained.

Theorem 2. The decision problem k-UCE-H is NP-hard.

Chapter 3 considers paths of fixed length in trees. In the beginning, an easy con-
struction shows that minimum good colorings of path (i.e. trees on two leaves)
with respect to another path use at most two colors. For general trees the parity
of the length of the path is essential for the behavior of the conflict-free chromatic
index f(T, Pm). On account of this fundamental difference these two cases are han-
dled in two distinct sections. Paths on an odd number of edges are considered in
Section 3.2. For spiders there are good colorings (with respect to a path on an
odd number of edges) using only two colors as well. They are presented in Subsec-
tion 3.2.1. The conflict-free chromatic index with respect to a path is bounded for a
general tree in terms of the length of the path only. In particular, there is an upper
bound which is independent of the given tree. It is stated in the following theorem.

8
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Theorem 3. Let m ∈ N be odd and T be a tree with diameter ρ := diam(T ) ≥ m.
Then

f(T, Pm) ≤ min
{⌈ρ

2

⌉
−
⌊m

2

⌋
+ 1,

⌈m
2

⌉}
.

If T is a complete d-ary tree of height at least dm
2
e and if d ≥ 2 and d > (dm

2
e)m,

then the upper bound is attained.

Afterwards, paths on an even number m ∈ N of edges are studied in Section 3.3.
Again, spiders are considered first in Subsection 3.3.1. The following theorem is
proven there. Recall the definition of the maximum a-degree ∆a(T ) of a tree T .
For a ∈ N it is defined to be the maximum number of edge-disjoint copies of Pa in T
with a common endpoint.

Theorem 4. Let m ∈ N, with m ≥ 4 even, and S be a spider. Further let IS := 1
indicate the existence of legs on less than m

2
edges in S and IS := 0 the opposite.

Then

dlog2(∆m
2

(S))e ≤ min{k ∈ N |
m/2∑
i=2

(
k
i

)
+ 1 ≥ ∆m

2
(S)}

≤ f(S, Pm)

≤ min{k ∈ N |
m/2∑
i=0

(
k
i

)
≥ ∆m

2
(S) + IS}+ 1.

In particular if log2(∆m
2

(S) + IS) ≤ m
2

, then

dlog2(∆m
2

(S))e ≤ f(S, Pm) ≤ dlog2(∆m
2

(S) + IS))e+ 1.

For each even m ∈ N and every integer k ∈ N there is a tree T , such that all UCE-Pm
colorings of T use more than k colors. Furthermore, the maximum m

2
-degree of any

graph G equals the maximum number of legs of a spider contained in G whose legs
have at least m

2
edges each. Hence, the theorem provides a lower bound for arbitrary

graphs in terms of their maximum m
2

-degree, too. An upper bound on f for general
trees is established in Subsection 3.3.2. It is tight for complete (∆ − 1)-ary trees
and m = 4.

Theorem 5. Let m ∈ N even and let T be a tree of maximum degree ∆. Then

f(T, Pm) ≤ m

2
+ ∆− 1.

Two constructions that are independent from the parity of m are presented in Sec-
tion 3.4. Finally, all results are summarized in the last Section 3.5. Questions
for maximum and minimum values of f(T, Pm) are answered there for the case of
fixed m ∈ N for all T with fixed maximum degree or fixed number of vertices (when
applicable).

Chapter 4 is concerned with complete graphs. For n, p ∈ N good edge-colorings
of Kn with respect to Kp are studied. The general results from Chapter 2 give a first

9
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insight into the behavior of the conflict-free chromatic index f(Kn, Kp). Section 4.1
and Section 4.3 contain these information together with some specific results. In
Section 4.2 constructive upper bounds on f(Kn, Kp) are presented. They are linear
in n and tight for a certain range of n.

Theorem 7. Let n, p ∈ N with 3 ≤ p ≤ n. If n ≤ 5
4
p− 2, then f(n, p) = n− p+ 2.

The best general upper bound is obtained in Section 4.3 as a corollary to Theorem 1.
For fixed p ∈ N with p > 4 it improves the linear upper bounds given before
asymptotically, but is not constructive. In case p ≤ 4 specific constructions yield
sublinear bounds as well.

Theorem 8. Let n, p ∈ N with 2 ≤ p ≤ n. There is a constant cp ∈ R depending
on p but not on n, such that

f(n, p) ≤ cp · n
4
p .

A general lower bound is established in Section 4.4. It is obtained from large
monochromatic stars.

Theorem 9. For p ∈ N exist constants cp ∈ R and np ∈ N, such that for all n ≥ np

f(n, p) ≥ cp ·
ln(n)

ln ln(n)
.

Finally, the results are summarized in the Conclusion 5 again. They are stated
together with several open questions. Moreover, a comparison between the setting
of paths in trees and complete subgraphs of complete graphs is given.

10
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2. Colorings of Arbitrary Graphs

This chapter deals with UCE-H colorings of arbitrary graphs G and H. First of all,
the next lemma states that the conflict-free chromatic index f(G,H) is well defined,
i.e. that a good coloring always exists. Afterwards, some basic results are presented
in Section 2.1. A connection between conflict-free vertex-colorings of hypergraphs
and conflict-free edge-colorings of graphs is established in Section 2.2. Known re-
sults on conflict-free colorings of hypergraphs are analyzed there and translated to
conflict-free edge-colorings of graphs, if possible. The subsequent Section 2.3 con-
siders relations to (generalized) inverse Ramsey numbers. Finally, Section 2.4 deals
with complexity results and algorithms.

Lemma 2.1. Let G and H be graphs. A total multicoloring of G is a UCE-H
coloring of G. In particular

f(G,H) ≤ |E(G)| < |V (G)|2
2

.

Proof. Consider a total multicoloring c of the edges of G, i.e. an edge-coloring with
no two edges of the same color. Since all color classes of G consist of a single edge
only, every subgraph of G has a uniquely colored edge. Hence, the coloring c is
a UCE-H coloring of G for all graphs H. Because only simple graphs are con-
sidered, the complete graph Kn has most edges for a fixed number n of vertices.

Hence, f(G,H) ≤ |c(E(G))| = |E(G)| ≤ |E(K|V (G)|)| < |V (G)|2
2

.

2.1. Basic Results

This section contains some basic facts about the behavior of the conflict-free chro-
matic index f in general. Mostly, it deals with marginal results like the following
lemma, which states exact values for the smallest and largest subgraphs possible.

Lemma 2.2. Let G be a graph.

1. f(G,K2) = 1.

2. If |E(G)| > 1, then f(G,G) = 2.

Proof. A coloring c that assigns the same color to all edges of G is a UCE-K2 coloring
of G, since K2 consists of one single edge. This proves the first equality.

However, the coloring c is not a UCE-G coloring of G, if G has more than one edge.
But changing the color of one edge e ∈ E(G) yields a UCE-G coloring of G, because
every copy of G in G contains this edge e. Hence, f(G,G) = 2.

11
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Furthermore, it is easy to see that one color is sufficient in two special cases only.

Lemma 2.3. Let G,H be graphs. A UCE-H coloring of G in one color exists, if
and only if H has at most one edge or H is not contained in G.

Proof. In case of H having at most one edge the existence of the coloring follows
from Lemma 2.2. If H is not contained in G, every edge-coloring of G is a UCE-H
coloring and hence one color is sufficient.
The other way round, suppose there is a UCE-H coloring of G in one color. In this
coloring each copy of H in G has only one color class containing all the edges of H.
Hence, by definition of UCE-H colorings, this color class has to contain at most one
edge, or there is no copy of H in G at all.

There is no equivalent statement to Lemma 2.3 for two colors in general. There
are families of arbitrarily large graphs Gn, such that for a certain graph H each Gn

admits a UCE-H coloring in two colors. Figure 2.1 shows such an example. The
family Gn consists of two stars which are joined by an edge e at their centers u,
respectively v. Coloring e in a different color than all other edges yields an edge-
coloring c of Gn in two colors. Let H be a graph that contains two adjacent vertices
of degree 3. Then every copy of H in Gn has to contain e and hence c is a UCE-H
coloring.

e
u v

...

...
...

...

Gn

Figure 2.1.: A family of graphs together with a UCE-H coloring in two colors for all
subgraphs H containing two vertices of degree 3.

But the case of two colors being necessary and sufficient can be characterized as
follows. Recall the definition of an almost simple H-blocking set. It is a set B of
edges of a graph G, such that every copy of a graph H in G either contains exactly
one edge from B or exactly one edge of this copy is not contained in B. Furthermore,
every edge in B must be contained in a copy of H in G.

Lemma 2.4. Let G and H be graphs with |E(H)| ≥ 2. A non-empty and almost
simple H-blocking set of G exists, if and only if f(G,H) = 2.

Proof. Let B be a non-empty, almost simple H-blocking set of G. Define an edge-
coloring c of G by c(e) := 1, if e ∈ B, and c(e) := 0 otherwise. Then c is a UCE-H
coloring, since each copy of H in G has exactly one edge from B or exactly one
edge is not contained in B. Hence, f(G,H) ≤ 2. Since B is non-empty, there
is at least one edge in B. Since B is almost simple, this edge must be contained

12
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in a copy of H in G. Then f(G,H) ≥ 2 due to Lemma 2.3, since |E(H)| ≥ 2.
Altogether, f(G,H) = 2 holds.

The other way round let c be a UCE-H coloring of G using two colors. Let B denote
the set of all those edges of one of the color classes, that are contained in a copy
of H in G. Since |E(H)| ≥ 2 and f(G,H) = 2, there is at least one copy of H in G
and it contains edges of both colors. Hence, B is non-empty. Since each copy of H
contains an edge of unique color, either exactly one, or all but one edge of each copy
of H in G are contained in B. Hence, B is almost simple.

Because every simple H-blocking set is almost simple as well, the existence of a
simple and non-empty H-blocking set guarantees f(T,H) = 2, if |E(H)| ≥ 2. But
the question, whether the existence of a simple blocking set is necessary as well,
remains open.

Last but not least there is a very useful tool for analysis of the behavior of the
conflict-free chromatic index. Moreover, it confirms the intuition that one does not
need more colors to color small graphs than are sufficient for larger graphs. If a
graph arises from another graph by deleting vertices and edges, i.e. it is a subgraph,
one needs at most the same number of colors for the smaller graph as are necessary
for a UCE-H coloring of the larger graph.

Lemma 2.5. Let G,H be graphs, v ∈ V (G), e ∈ E(G) and c a UCE-H coloring
of G. The induced colorings of G− v and of G− e are UCE-H colorings.

Proof. Every copy of H in G− v is contained in G too. Hence, there is a color that
is assigned by c to a single edge of this copy in G. The induced coloring does the
same in G − v. Hence, it is good as well. Exactly the same argument holds for an
edge e ∈ E(G).

Note that the lemma above does apply for deletion of vertices and edges only. An-
other common manipulation of graphs, the contraction of edges, does not have this
property. For example consider a path P5 and a subpath P3. The path P5 has
five edges. Coloring the middle one different from all other edges yields a UCE-P3

coloring of P5 in two colors. By contracting this edge one obtains a monochromatic
path P4. Hence, the induced coloring is not a UCE-P3 coloring of P4. Note that the
conflict-free chromatic index does not change in this case.
Another example is the following. Consider a graph G with large girth and a smaller
cycle C. One color is sufficient for UCE-C colorings of G. The same holds when
edges are contracted as long as the smaller cycle does not fit. If it fits after a
contraction was made, at least two colors are necessary. Further contractions lead
to a graph that does contain C again and one color is sufficient. In this example the
conflict-free chromatic index is changed by the contraction.
The question whether contraction changes the conflict-free chromatic index of a
graph G, if and only if the contraction removes the last or adds the first occurence
of H in G remains open.

13
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2.2. Conflict-Free Colorings of Hypergraphs

For vertex-colorings of hypergraphs the notion of conflict-free colorings was estab-
lished in the introduction. A vertex-coloring is called conflict-free, if there is a vertex
of unique color within each edge. So this sort of coloring is very similar in definition
to the colorings studied in this thesis. The minimum number of colors used by a
conflict-free coloring of a hypergraph H is called conflict-free chromatic number and
denoted by χcf (H). If the unique color should be the maximum color in an edge,
too, then the coloring is called unique-maximum coloring A tight relation of conflict-
free colorings and UCE-H colorings is established next. Afterwards, a summary of
known results on conflict-free colorings of hypergraphs is given. Some of the results
are presented in detail, if they apply to UCE-H colorings for certain G and H.

Since conflict-free colorings of hypergraphs are vertex-colorings, there is no direct
application of the known results to the colorings studied in this thesis. Nevertheless,
a class of hypergraphs is established in the following, such that each UCE-H coloring
of a graph G corresponds to a conflict-free (vertex) coloring of a hypergraph.

Definition 2.1. Let G and H be graphs.

With the set of hyperedges EH(G) := {E ⊆ E(G) | E = E(K), K ⊆ G copy of H}
the hypergraph FG,H := (E(G), EH(G)) is called H-line graph of G.

The H-line graph of G is constructed as follows. The vertices in FG,H correspond to
the edges in G. Each copy of H in G induces a hyperedge, consisting of all edges of
this copy (respectively vertices in FG,H). It is easy to see that the different notions
of colorings are equivalent using this construction.

Lemma 2.6. Let G and H be graphs and let F be the H-line graph of G. Then

f(G,H) = χcf (F).

Proof. Let c be a minimum UCE-H coloring of G. Construct a vertex-coloring c′

of F by assigning the same color to a vertex, that is assigned to its corresponding
edge in G by c. The edges in G corresponding to the vertices of any hyperedge e
in F form a copy of H in G. There is an edge of unique color in this copy and
hence the color of the corresponding vertex is unique in e. Thus c′ is conflict-free
and χcf (F) ≤ f(G,H). The proof of χcf (F) ≥ f(G,H) is analogous.

For graphs G and H the H-line graph of G has some nice properties. Clearly, the
number of vertices is |V (FG,H)| = |E(G)| and the number of hyperedges |E(FG,H)|
is the number of copies of H in G. Furthermore, FG,H is |E(H)|-uniform and its
maximum edge degree is D(FG,H) = ∆H(G). The maximum degree ∆(FG,H) is the
maximum number of copies of H in G with a common edge.

The following interesting question remains open. Are there graphs G and H for
each uniform hypergraph H, such that H is isomorphic to the H-line graph of G?
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Known Results on Conflict-Free Colorings

Even, Lotker, Ron and Smorodinsky started the research on conflict-free color-
ings [13]. They came up with this combinatorial problem from an assignment prob-
lem in wireless networks. As few frequencies as possible should be assigned to some
base stations distributed on a map, such that within the reach of a mobile network
client there is always a base station of unique frequency. This is necessary to avoid
interference when communicating. The setting is modeled as a hypergraph by taking
a vertex for each base station and an edge for each maximum set of base stations
that are jointly reached by the mobile device from a location on the map. Then, a
conflict-free coloring of the resulting hypergraph yields a useful assignment of fre-
quencies by interpreting the colors as distinct frequencies. Since ranges of wireless
networks are typically modeled as discs, this hypergraph is induced by intersections
of certain discs in the plane. In case of n base stations (respectively discs) Even et
al. showed an upper bound on the conflict-free chromatic number χcf of O(log(n))
colors for this setting [13]. Pach and Toth proved that this bound is tight for all
possible distributions of n points in the plane, i.e. there is always a configuration
of discs in the plane such that Θ(log(n)) colors are necessary [24]. In a survey on
conflict-free colorings [28] Smorodinsky mentions further results where the hyper-
graph under consideration is induced by some geometric setting, for example by
rectangles in the plane [27] and pseudodiscs [15].

Besides these geometrically induced hypergraphs other classes of hypergraphs were
considered. Pach and Tardos consider in [23] the so called conflict-free chromatic
parameter of a graph G. This is defined as the conflict-free chromatic number
of the hypergraph which has the same vertex set as G and a hyperedge for each
vertex together with its neighborhood in G (its closed neighborhood). There is also
a version with hyperedges consisting of the neighborhoods of vertices but not the
vertices themselves (i.e. their open neighborhood). In this case the conflict-free
chromatic number is called pointed conflict-free chromatic parameter of G. Initially
this and lots of related questions were studied by Cheilaris [5]. A (poly-)logarithmic
upper bound is proven on the conflict-free chromatic parameter as well as on the
pointed version. Similar to this, hypergraphs are considered whose hyperedges are
induced by all simple paths (of any lengths) of a graph [6, 7]. Unique-Maximum
colorings of these hypergraphs are called vertex rankings.

These path induced hypergraphs are studied for edge-colorings as well. An edge-
coloring is called edge ranking, if the largest color in every path connecting two edges
of the same color is unique. Originally, these colorings were introduced by Iyer et
al. [17]. Of course, such a coloring of a graph G corresponds to a unique-maximum
coloring of a hypergraph whose vertices are the edges of G and whose hyperedges
are induced by all paths in G. Edge rankings were considered for several classes of
graphs. For complete graphs a lower bound quadratic in the number of vertices is
known [2]. For trees a linear time algorithm is known to compute a minimum edge
ranking [21].

There are several generalizations of conflict-free colorings. For example one might
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require more than one vertex of unique color in each edge. The conflict-free condi-
tion also be weakened by only bounding the size of the smallest color class in each
edge by some integer. These generalization are considered by Smorodinsky [28].
Furthermore, there are other types of edge-colorings with certain structural condi-
tions. For example so called parity colorings ensure that no color appears on any
path an even number of times [4].

General Hypergraphs: So far, only results for certain classes of hypergraphs were
presented. For some graphs G and H the H-line graph of G might fit into such
a category and good colorings can be obtained, though a general approach (e.g.
for a geometric interpreting) is not known. But there are some results for general
hypergraphs. Since these are directly related to UCE-H colorings due to Lemma 2.6,
they are stated in detail. Pach and Tardos prove several bounds on the conflict-free
chromatic number depending on different parameters of the hypergraph [23]. Two
theorems are restated in the following lemmas. They are translated to the setting of
conflict-free edge-colorings of graphs with respect to other graphs using Lemma 2.6.
The first one yields good results for hypergraphs with few edges or small maximum
degree.

Lemma 2.7 (Theorem 1, [23]). Let s ∈ N and H be a hypergraph with |E(H)| <
(
s
2

)
.

Then the following upper bounds hold and are tight for certain hypergraphs

χcf (H) ≤ ∆(H) + 1,
χcf (H) < s,

χcf (H) ≤ 1
2

+
√

2 · |E(H)|+ 1
4
.

By plugging in the corresponding parameters of the H-line graph, the following
corollary holds.

Corollary 2.8. Let s ∈ N and G,H graphs with nH(G) <
(
s
2

)
copies of H in G.

Further let D denote the maximum number of copies H in G with a common edge.
Then

f(G,H) ≤ D + 1,
f(G,H) < s,

f(G,H) ≤ 1
2

+
√

2 · nH(G) + 1
4
.

The second theorem provides an upper bound that is sublinear in the maximum
edge-degree D(H), i.e. the maximum number of hyperedges intersecting a given
hyperedge. A review of the proof is presented in the appendix in section A.1.

Lemma 2.9 (Theorem 2, [23]). Let t ∈ N and let H be a hypergraph whose edges
have at least 2t− 1 vertices each. There is a constant c ∈ R, such that

χcf (H) ≤ c · t ·D(H)
1
t · log(D(H)).

Since the H-line graph is |E(H)|-uniform, d |E(H)|
2
e is the largest integer satisfying

the condition on t in the lemma above. Hence, the following corollary holds.
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Corollary 2.10. Let G,H be graphs and m := |E(H)|. There is a constant c ∈ R,
such that

f(G,H) ≤ c · dm
2
e ·∆H(G)

2
m · log(∆H(G)).

Of course, the maximum H-degree ∆H(G) of a graph G is smaller than the total
number nH(G) of copies H in G. As a corollary, this yields f(G,H) < c · dm

2
e ·

nH(G)
2
m · log(nH(G)).

Another work dealing with general hypergraphs is due to Kostochka, Kumbhat and
Luczak [20]. They are concerned with hypergraphs on few edges. The first result is
the following.

Lemma 2.11 (Lemma 2.3, [20]). Let r ∈ N with r ≥ 3 and H an r-uniform
hypergraph with |E(H)| ≤ 6. Then

χcf (H) ≤ 3.

This means, that every graph G admits a UCE-H coloring using at most three colors,
if there are at most six copies of the graph H in G and |E(H)| ≥ 3. A somewhat
more general result is obtained next.

Lemma 2.12 (Theorem 3.2. i, [20]). Let r ∈ N and let H be an r-uniform hyper-
graph. If D(H) is sufficiently large and D(H) ≤ 2

r
2 , then

χcf (H) ≤ 120 · ln(D(H)).

Translated to edge-colorings with uniquely colored edges this yields the following
corollary.

Corollary 2.13. Let G,H be graphs and m := |E(H)|. If ∆H(G) is sufficiently
large and ∆H(G) ≤ 2

m
2 , then

f(G,H) ≤ 120 · ln(∆H(G)).

Under the corollary’s condition ∆H(G) ≤ 2
|E(H)|

2 , this implies f(G,H) ≤ 60 · |E(H)|,
if ∆H(G) is sufficiently large.

Finally, Smorodinsky’s survey states a result connecting the classical chromatic num-
ber for hypergraphs with the conflict-free chromatic number [28].

Lemma 2.14 (Theorem 1.5, [28]). Let H be a hypergraph. Further let k ∈ N, such
that χ(H′) ≤ k for all induced subhypergrpahs H′ ⊆ H. Then

χcf (H) ≤ log1+ 1
k−1

(|V (H)|).
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2.3. Ramsey Theory

The problem considered in this work is not only inspired by Ramsey theory, but there
are also direct relations like the following ones. In some extent it means that the
UCE-H property is stronger than the Ramsey property not to be monochromatic.

Lemma 2.15. Let G,H be graphs with |E(H)| ≥ 2. Then

f(G,H) ≥ Rinv
H (G).

In case |E(H)| ≤ 3 this bound is tight, i.e. f(G,H) = Rinv
H (G).

Proof. Let c be a UCE-H coloring of G. Since there is a color class in each copy
of H in G consisting of one single edge and since H has at least two edges, there
must be another color in each copy of H. Hence, there is no monochromatic copy
of H in G. Particularly f(G,H) ≥ Rinv

H (G).

Consider the case |E(H)| ≤ 3. It is not possible to color the edges of H in two
or more colors, such that each color class has at least two edges. Hence, every
coloring avoiding monochromatic copies of H in G is a UCE-H coloring as well and
hence f(G,H) = Rinv

H (G).

Using this lemma, one can obtain a lower bound on the conflict-free chromatic
index f for sufficiently large and dense graphs G. The following corollary states the
result.

Corollary 2.16. Let G and H be graphs with |E(H)| ≥ 2 and let n := |V (G)|,
m := |E(G)|, p := |V (H)|. Then

f(G,H) > max{k ∈ N | m > ex(n,Rk(p))}.

Proof. If m > ex(n,Rk(p)), then there is a copy of KRk(p) contained in G by defini-
tion of the extremal number. Due to the definition of the multicolor Ramsey num-
ber Rk(p), there is a monochromatic copy of Kp in each coloring of G in at most k
colors. Hence, Rinv

H (G) ≥ Rinv
p (G) > k. Lemma 2.15 implies f(G,H) > k.

From (classical) multicolor Ramsey theory lower bounds are obtained. Using a
generalization of Ramsey theory from Erdős [11] it is possible to obtain an upper
bound on the conflict-free chromatic index f as well. Colorings are considered which
do not only avoid monochromatic subgraphs, but for some q ∈ N avoid certain
subgraphs on less than q colors. Recall the definition of the generalized Ramsey
number R̃k(H; q), which denotes the order of the smallest complete graph that does
not admit an edge-coloring with this property with respect to H using k colors. The
following lemma establishes a relation to the minimum number of colors of such a
coloring for certain choice of q.

Lemma 2.17. Let G,H be graphs.Then

f(G,H) ≤ R̃inv
H (G;

⌊
|E(H)|

2

⌋
+ 1).
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Proof. Let c be a coloring of G that assigns at least b |E(H)|
2
c + 1 distinct colors to

each copy of H in G. Assume that every color class in such a copy of H consists
of more than one color. Let m := |E(H)|. Then there are at least 2 · bm

2
c + 2 ≥

2 · (m
2
− 1

2
) + 2 = m + 1 edges in this copy of H, contradicting the assumption.

Hence, c is a UCE-H coloring of G. In particular f(G,H) ≤ R̃inv
H (G; bm

2
c+ 1).

Using the Lovasz Local Lemma [1] one can determine an upper bound on the conflict-
free chromatic index from the lemma above. There are several versions of the Lo-
cal Lemma. The symmetric one, which is used here, has the following statement.
Let p ∈ R with 0 ≤ p ≤ 1 and d ∈ N. Further let Ω denote a set of events, such
that each event occurs with probability at most p and depends on at most d of the
other events. If e · p · (d+ 1) < 1, then the probability that none of the events in Ω
occurs is positive.
The proof of the following theorem is similar to (and inspired by) the proof of
Theorem 1 in [12] from Erdős and Gyárfás.

Theorem 1. Let G,H be graphs and m := |E(H)|. Then

f(G,H) ≤ (e · (∆H(G) + 1))
2
m · m

2

4
.

Proof. Using the Lovasz Local Lemma an upper bound on R̃inv
H (G; bm

2
c + 1) is ob-

tained. Let c be a random edge-coloring of G in k colors, assigning the colors
independently and uniformly to the edges. The probability P that a copy K of H

has less than bm
2
c+1 colors assigned to its edges is overestimated by

(
k
bm

2
c
)
·( b

m
2
c

k
)m <

k−
m
2 ·(m

2
)m. If k ≥ (e ·(∆H(G)+1))

2
m · m2

4
holds, then e ·(∆H(G)+1) ·k−m

2 ·(m
2

)m ≤ 1
holds too. Furthermore, ∆H(G) is at least as large as the number of copies of H
in G that are not independent from the coloring of K by definition. Hence, there is
a coloring of G using (e · (∆H(G) + 1))

2
m · m2

4
colors that assigns at least bm

2
c + 1

colors to each copy of H in G due to Lovasz Local Lemma. Thus R̃inv
H (G; bm

2
c+1) ≤

(e · (∆H(G) + 1))
2
m · m2

4
. Finally, this theorem follows from Lemma 2.17.

Two corollaries are derived from this theorem. The first one translates the result
into the setting of conflict-free vertex-colorings of hypergraphs. It holds, because
exactly the same proof can be applied to a vertex-coloring of a uniform hypergraph.
The result improves the best known upper bound from Lemma 2.9 in case of uniform
hypergraphs by a factor of log(D(H)).

Corollary 2.18. Let r ∈ N and H be an r-uniform hypergraph. Then

χcf (H) ≤ (e · (D(H) + 1))
2
r · r

2

4
.

The second corollary restates the upper bound of the theorem in terms of the number
of vertices in the graph. Using a very rough estimate on ∆H(G) one obtains the
following.
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Corollary 2.19. Let G,H be graphs and n := |V (H)|, p := |V (H)|, m := |E(H)|.
Then there is a constant cH ∈ R depending on H, such that

f(G,H) ≤ cH · n
2·(p−2)

m .

Proof. For each edge in G the number of copies of H in G containing this edge is at
most the number of possible mappings of the given edge and p− 2 of the remaining
vertices of G into H. The number of such mappings is at most m · (n − 2)p−2 =
m · (n−2) · (n−3) · · · (n−p+1). Since H has m edges, ∆H(G)+1 ≤ m2 · (n−2)p−2.
Due to Theorem 1,

f(G,H) ≤ (e ·m2 · (n− 2)p−2)
2
m · m2

4
≤ (e ·m2 · (n− 2)p−2)

2
m · m2

4
≤ cH · n

2·(p−2)
m .

2.4. Complexity and Algorithms

So far, some values and different bounds on the conflict-free chromatic index f were
determined. Within this section it is proven, that deciding the k-UCE-H problem
is NP-hard in general. Nevertheless, there are algorithms that calculate UCE-H
colorings for all graph G and H and yield colorings using less colors than are used
by a total multicoloring of G.

Complexity

For a special choice ofH there is an exact result for f(G,H) in terms of the chromatic
index χ′(G) of G.

Lemma 2.20. Let G be a graph. Then

f(G,P2) = χ′(G).

Proof. The path P2 consists of exactly two adjacent edges. Hence, the copies of P2

in G are exactly all pairs of adjacent edges. An edge of P2 has a unique color
within P2, if and only if both edges of P2 are of distinct colors. Hence, an edge-
coloring c is a UCE-P2 coloring of G, if and only if it is a proper coloring.

This directly leads to the following complexity result, since deciding whether a
graph is class I or class II is NP-complete [16]. The proof shows another reduction
argument to see this.

Theorem 2. The decision problem k-UCE-H is NP-hard.

Proof. Another reduction of the k-UCE-H problem is used instead of the determi-
nation of the chromatic index of G. Let n := |V (G)| and let Cn denote the simple
cycle on n vertices. Then f(G,Cn) > 1, if and only if G contains a Hamiltonian
cycle. Deciding the presence of a Hamiltonian cycle in a graph is NP-complete, as
well [19].
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Algorithms

Next, two algorithms are presented which calculate good colorings. Because the
k-UCE-H problem is NP-hard, there is no efficient algorithm calculating optimal
colorings (if P 6= NP ). So the colorings are not minimum or the running time is
not polynomial.

Greedy Algorithm: The first construction is kind of a greedy algorithm. Let c be
an edge-coloring of a graph G. For another graph H let g(c,H) denote the number
of good copies of H in G. For a color θ and an edge e ∈ E(G) define the edge-
coloring c′e by c′e(e) := θ and c′e(e

′) := c(e′) for all other edges e′ ∈ E(G) \ {e}. The
θ-weight of an edge e ∈ E(G) is defined as wH(θ, e) := g(c′e, H)− g(c,H). In words,
the weight of an edge e (with respect to a certain color θ and a given coloring c) is
the growth of the number of good copies of H in G when assigning color θ to the
edge e.
The basic greedy algorithm is described in the following. For several colors (including
a new one) the weight function is calculated for all edges. The color which induces
the largest weight on some edge is assigned to this edge. Note that the weights
change during the execution of the construction. Moreover, the weights depend on
the choices made by the algorithm before.

Construction 2.1. Let G and H be graphs.
s1) Initially, color 0 is assigned to all edges of G.
s2) Let c be the current edge-coloring of G and let T ⊂ N0 with |T \ c(E(G))| = 1.

Choose θ̂ ∈ T and ê ∈ E(G) with wH(θ̂, ê) ≥ wH(θ, e) for all θ ∈ T , e ∈ E(G).
If wH(θ̂, ê) > 0, define c′(ê) := θ̂ and c′(e) := c(e) for all e ∈ E(G) \ {ê} and
repeat this step with the coloring c′. Otherwise, the construction is finished.

The running time of this algorithm mainly depends on the calculation of the weight
function. In the worst case it is necessary to find all copies of H in G (containing
the edge which was colored last) and check if they became good or not. But this
problem itself is NP-hard. Nevertheless, the algorithm is correct as stated in the
next lemma.

Lemma 2.21. Let G,H be graphs. Construction 2.1 yields a UCE-H coloring of G.

Proof. Since the number of copies of H in G is finite and since the number of good
copies increases in each execution of the second construction step, the algorithm
stops after a finite number of steps.
It remains to shows correctness of the algorithm. If it stops, there is no color which
may be assigned to an edge of G, such that the number of good copies of H in G
is increased. In each step the set of colors T contains a color θ which is currently
not assigned to any edge. If there is a bad copy of H in G, it becomes good, if
color θ is assigned to one of its edges e. Furthermore, no currently good copy of H
in G is bad afterwards, since the edge e is uniquely colored in all copies of H in G
containing it. Hence, there is an edge e and a color θ with wH(θ, e) > 0, if there is
a bad copy of H in G. Thus, the algorithm does not stop before a UCE-H coloring
of G is obtained.
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Within the repeated second step of Construction 2.1 there are two choices to be
made. First of all, the set T of those colors whose weights are evaluated in each
step contains a new color together with an arbitrary choice of already used colors.
Restricting the number of already used colors improves the running time.
Furthermore, among all combinations of colors and edges with maximum weight
an arbitrary one is chosen. Preferring already used colors to the new color may
decrease the total number of colors used. This is of particular importance due to
the following observation. Consider the graph G together with an edge-coloring c
and let θ ∈ c(E(G)), λ ∈ N0 \ c(E(G)). Then wH(λ, e) ≥ wH(θ, e) for all e ∈ E(G),
because every copy of H in G that becomes good by assigning θ to e becomes good
by assigning λ to e, as well. Hence, the new color is always among those colors with
maximum gain of good copies of H in G. One may use the following modification
of the second construction step to avoid this. It is divided into two cases. First
of all, evaluate the weights of all edges for already used colors only. If there is a
color with positive weight on an edge, choose a color and an edge with maximum
weight. Otherwise, calculate the weights for all edges and a new color. If there is an
edge with positive weight, assign the new color to an edge with maximum weight.
Otherwise, the construction is finished and the coloring is good, due to the same
arguments as in Lemma 2.21 above.

Separator Algorithm: The second algorithm works with separating sets of edges.
It is inspired by work in [18]. Good colorings of the components of a graph induced
by a separating set can be extended to a good coloring of the whole graph as follows.
Choose colors that are not used in the partial colorings. The edges of the separating
set E are colored in such a way, that in every copy of H containing edges from E one
of these edges is of unique color. A multicoloring of E satisfies this condition in any
case. Note that the colorings of distinct components may use the same colors. The
choice of the separating set and its coloring have great impact on the total number
used. The larger the separating set, the less colors are necessary for the components.
But on the other hand more colors are needed for the edges in the separator, though
a total multicoloring is not necessary in general.
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3. Paths in Trees

In this chapter UCE-Pm colorings of trees are studied. Given a length m ∈ N and
a tree T , edge-colorings of T are considered that ensure a uniquely colored edge
in every path of length m. First of all, paths as a very special class of trees are
considered in Section 3.1. It is shown that two colors are sufficient for any good
coloring of a path with respect to a smaller path. For general trees it turns out that
the parity of m is essential. On account of this fundamental difference these two
cases are handled in two distinct sections. First of all, Section 3.2 deals with paths
on an odd number of edges. The class of spiders is studied in Subsection 3.2.1, first.
As it is true for paths, every spider has a good coloring (with respect to paths on
an odd number of edges) which uses only two colors. Afterwards, general trees are
considered. A construction is given which uses at most dm

2
e colors, independently

of T . It is shown that this upper bound on the conflict-free chromatic index is
tight for complete d-ary trees and sufficiently large d ∈ N. Afterwards, paths on an
even number m ∈ N of edges are considered in Section 3.3. As mentioned in the
beginning, there are increasing lower bounds on the function f depending on the
tree in this case. They are established on spiders, although there are good colorings
with two colors for every spider in the previous case. So spiders are considered first
in Subsection 3.3.1. Recall the definition of the a-degree of a vertex v for an a ∈ N.
It is the maximum number of edge-disjoint copies of Pa with endpoint v. A lower
bound is given which is logarithmic in the maximum m

2
-degree of a spider. Moreover,

there is a construction which almost attains this bound. One key observation of this
result is the following. For each even m ∈ N and every integer k ∈ N there is a
tree T , such that all UCE-Pm colorings of T use more than k colors. A second lower
bound is stated afterwards. Furthermore, every graph contains spiders as subgraphs.
Hence, the results provide lower bounds for all graphs in terms of their maximum
m
2

-degree, too. An upper bound on the conflict-free chromatic index f(T, Pm) for
general trees T and even m is established in Subsection 3.3.2. It depends on m and
the maximum degree of T . It is tight for complete (∆−1)-ary trees and m = 4. Two
constructions that are independent from the parity of m are presented in Section 3.4.
Finally, all results are summarized in the last Section 3.5. For all trees T with fixed
maximum degree or fixed number of vertices questions for maximum and minimum
values of f(T, Pm) are answered there for the case of fixed m ∈ N (when applicable).

3.1. Big Path and Small Path

First of all trees with only two leaves, i.e. paths, are considered. In this setting
the values of f are given exactly. For n,m ∈ N the following construction provides
a UCE-Pm coloring of the path Pn as it is proven in the subsequent lemma. This

23



Diploma-Thesis: Conflict-Free Colorings Jonathan Rollin

. . .
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 vn−3 vn−2 vn−1 vn

{ P4

v0

Figure 3.1.: A UCE-P4 coloring of a larger path Pn in two colors for δ = 0.

coloring is used later to construct UCE-Pm colorings of arbitrary trees.

Definition 3.1. Let n,m, δ ∈ N with 0 ≤ δ ≤ m − 1 and let Pn = v0v1 . . . vn
with v0, . . . , vn ∈ V (Pn). The following edge-coloring is called path-coloring of Pn.

cδ : E(Pn)→ {0, 1}, cδ({vi, vi+1}) :=

{
1 , if m|(i− δ),
0 , otherwise.

Edges of color 1 are called special edges. The color 1, which might be substituted by
another color distinct from 0, is called special color. The integer δ causes a cyclic
shift of the coloring along the path Pn and is called translation.

Figure 3.1 shows an example of the path coloring defined above in case m = 4
and δ = 0.

Lemma 3.1. For all n,m ∈ N and each δ ∈ N with 0 ≤ δ ≤ m − 1 the path
coloring cδ of Pn is a UCE-Pm coloring.

Proof. In the case m = 1, color 0 is assigned to all edges. Since any edge-coloring
is good with respect to P1, the path coloring is good in this case.

The case m ≥ 2 remains.
Here, the coloring cδ assigns color 0 to the first δ ≥ 0 edges of Pn and color 1 to the
subsequent edge. Afterwards, each m’th edge receives color 1 and all other edges
color 0. Hence, each copy of Pm (a path on m edges) contains exactly one of the
edges of color 1, since δ ≤ m− 1. Therefore cδ is a UCE-Pm coloring.

The following lemma is based on this construction.

Lemma 3.2. Let n,m ∈ N. Then

f(Pn, Pm) =

{
1 , if m = 1 or m > n,

2 , if 2 ≤ m ≤ n.

Proof. Lemma 2.2 implies the first equality f(Pn, Pm) = 1, in case m = 1 or m > n.
In case 2 ≤ m ≤ n, one concludes from Lemma 2.3 that f(Pn, Pm) > 1. For
each δ ∈ N with 0 ≤ δ ≤ m− 1 the path coloring cδ from Definition 3.1 is a UCE-
Pm coloring of Pn in two colors, due to Lemma 3.1. Hence f(Pn, Pm) = 2 in this
case.
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3.2. Paths with Odd Number of Edges

3.2.1. Spiders and Paths with Odd Number of Edges

The path coloring defined in Section 3.1 provides for all m ∈ N a UCE-Pm coloring
for trees on two leaves using two colors only. The following construction shows that
for every given ∆ ∈ N there is an arbitrarily large tree with maximum degree ∆
that admits a UCE-Pm coloring using only two colors as well.

Construction 3.1. Let m ∈ N be odd and S be a spider. On each leg L =
vu1u2 . . . uL, with v, u1, . . . , uL ∈ V (S), the path coloring from Definition 3.1 with
translation δ = bm

2
c is used.

Lemma 3.3. Let m ∈ N odd and S be a spider. Construction 3.1 yields a UCE-Pm
coloring of S.

Proof. Let c be a coloring obtained by Construction 3.3. On each leg of S, the path
coloring is used with translation bm

2
c. Hence, there are bm

2
c edges between the head

of S and the first special edge. Thus, there are exactly 2·bm
2
c = m−1 edges between

two special edges that are nearest to the head of S. So the path colorings of two
distinct legs of S fit together and are a path coloring of the path that is formed by
the two legs. Since a copy of Pm in S is contained in at most two distinct legs, the
coloring c is a UCE-Pm coloring of the spider.

Using the coloring constructed above and some basic facts, the following holds.

Lemma 3.4. Let m ∈ N odd and S be a spider with diameter ρ > 0. Then

f(S, Pm) =

{
1 , if ρ < m or m = 1,

2 otherwise.

Proof. If ρ < m or m = 1, one color is sufficient due to Lemma 2.2. Otherwise
Construction 3.1 yields a UCE-Pm coloring of S in two colors. Due to Lemma 2.3
this bound is sharp, since Pm contains more than one edge if m > 1.

3.2.2. Arbitrary Trees and Paths with Odd Number of Edges

This section deals with UCE-Pm colorings of general trees for odd m ∈ N. As
mentioned in the beginning there is a construction providing a UCE-Pm coloring
for any tree. Moreover the number of colors used is bounded from above by a term
depending on m but not on the tree. This construction is described next, followed by
a proof of its correctness. Afterwards, it is shown that this coloring uses minimum
number of colors on complete d-ary trees for sufficiently large d ∈ N.

Construction 3.2. Let m ∈ N be odd and let T be a tree rooted at (one of) the
middle vertices of a longest path in T .

s1) Color 1 is assigned to all edges in the first bm
2
c edge levels of T .
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Figure 3.2.: A UCE-P7 coloring of a tree in 4 colors. The colors written on the left
hand side are assigned to all edges in the corresponding level.

s2) In an edge level of index j ≥ dm
2
e color i ∈ N is assigned to all edges, if (j+1) ≡

(i − 1) mod dm
2
e. In words, the colors from 1 up to dm

2
e are used cyclically

one after the other, the same color assigned to all edges of a level (if color dm
2
e

is reached, it starts with color 1 again).

An example of the coloring is given in Figure 3.2.
The next lemma shows that the coloring is a UCE-Pm coloring.

Lemma 3.5. Let T be a tree and let m ∈ N be odd. Construction 3.2 yields a
UCE-Pm coloring of T .

Proof. The tree T is considered rooted at (one of) the middle vertices of one of its
longest paths. Except for the first bm

2
c levels, distinct colors are assigned to dm

2
e

consecutive levels. Consider a copy P of Pm in T . All its edges are contained in
consecutive edge levels. Furthermore, there are at most two edges from P in each
level. At least the first or the last edge of P must be contained in a level of index
larger than bm

2
c where no other edge of P is contained in, since the number of edges

in P is odd. The coloring c is a UCE-Pm coloring, if one of these edges is contained
in a level of unique color among all levels containing edges from P . All other edges
of P are contained in edge levels above. Since dm

2
e consecutive levels have distinct

colors and colors are used in fixed order, it is not possible that all the colors get
repeated in P (note that m < 2 · dm

2
e since m is odd). Hence c is a UCE-Pm coloring

of T .

Using this coloring an upper bound on the conflict-free chromatic index is proven.
Morever, the coloring is a minimum good coloring for certain trees, as well. The
following theorem states both facts.
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Theorem 3. Let m ∈ N be odd and T be a tree with diameter ρ := diam(T ) ≥ m.
Then

f(T, Pm) ≤ min
{⌈ρ

2

⌉
−
⌊m

2

⌋
+ 1,

⌈m
2

⌉}
.

If T is a complete d-ary tree of height at least dm
2
e and if d ≥ 2 and d > (dm

2
e)m,

then the upper bound is attained.

Proof. Let c denote a coloring of T obtained from Construction 3.2. It is a UCE-Pm
coloring due to Lemma 3.5. Distinct colors are assigned to dm

2
e consecutive levels,

except for the first bm
2
c levels whose edges all have the same color. The rooted tree T

has height dρ
2
e. Hence, the coloring c uses dρ

2
e − bm

2
c + 1 colors, if dρ

2
e ≤ m − 1,

and dm
2
e colors otherwise.

It remains to proof the tightness of the bound. Let d ∈ N with d ≥ 2 and d >
(dm

2
e)m, and let T a complete d-ary tree. Note that h(T ) = ddiam(T )

2
e holds for T .

Hence, the lower bound f(T, Pm) ≥ min
{
h(T )−

⌊
m
2

⌋
+ 1,

⌈
m
2

⌉}
needs to be proven

for the case h(T ) ≥ dm
2
e. If m = 1, this lower bound evaluates to f(T, Pm) ≥ 1,

which is true due to Lemma 2.2. Consider the case m ≥ 3 and an edge-coloring c
of T which uses k ≤ dm

2
e colors. A complete binary subtree T ′ ⊆ T is called

bad, if it has the same root as T , if each of the first m edge levels of T ′ is colored
monochromatically, and if each leaf of T ′ is a leaf of T (in other words h(T ) = h(T ′)).

First of all, it is proven by induction on the height h(T ) that T contains such a
bad subtree. The key observation is the following. Since d > (dm

2
e)m and dm

2
e ≥ k,

there is a monochromatic star on at least d d
k
e > (dm

2
e)m−1 > 2 edges incident to

the root of T . Let Z be the set of vertices of this star without the root of T . In
the basic case h(T ) = 1, choosing two edges of such a monochromatic star yields
a bad complete binary subtree of T . If h(T ) > 1, consider all those complete
d-ary subtrees of T whose roots are in Z and have height h(T ) − 1. By induction
hypothesis, each of these trees contains a bad complete binary subtree. Since |Z| >
(dm

2
e)m−1 ≥ km−1 and because the first m

2
edge levels of these bad subtrees are

colored monochromatically, there are two of these bad subtrees whose first m − 1
edge levels are colored identically, due to pigeonhole principle. Since these two bad
subtrees are joined by two edges of the same color within the monochromatic star
incident to the root of T , the tree T contains a bad complete binary subtree.

It remains to show the following. If h(T ) ≥ dm
2
e, then the existence of a bad

subtree T ′ forces the existence of a bad copy of Pm in T ′ ⊆ T . Let T be a complete
d-ary tree with h(T ) ≥ dm

2
e and T ′ ⊆ T a bad complete binary subtree of T . A

copy P ⊆ T of Pm is called balanced, if the (unique) topmost vertex of P is one of
the middle vertices of P . In the following let P be a balanced copy of Pm in the bad
subtree T ′. An edge incident to a leaf of P is called leaf edge. Since m is odd, exactly
one edge e of P is contained in an edge level Λ of T ′ which does not contain any other
edge from E(P ). Furthermore, e is a leaf edge of P . The level Λ is located below all
other levels in T ′ containing edges from E(P ). If P is not bad, the color of all edges
in Λ is distinct from all colors in the bm

2
c edge levels above, because T ′ is bad and
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therefore has monochromatic edge levels. Because each edge level in T ′ of index at
least dm

2
e contains such a leaf edge of a balanced copy of Pm in T ′, this is true for all

these levels. Hence, either there is a bad copy of Pm in T ′ or dm
2
e consecutive edge

levels of T ′ have distinct colors, except for the first bm
2
c levels. In case h(T ) < m this

means c is bad, if k < h(T )−
⌊
m
2

⌋
+ 1, since the last h(T )−

⌊
m
2

⌋
< dm

2
e edge levels

of T ′ cannot have distinct colors then. In case h(T ) ≥ m there are dm
2
e consecutive

edge levels in T ′ below the bm
2
c first levels. Hence c is bad in this case, if k < dm

2
e.

Altogether, c is bad, if k < min
{
h(T )−

⌊
m
2

⌋
+ 1,

⌈
m
2

⌉}
.

3.3. Paths with Even Number of Edges

UCE-Pm coloring of trees are studied in this section for even number of edges m ∈ N.
First of all, the case of a path on two edges, i.e. m = 2, is considered. Since the
chromatic index of a tree equals its maximum degree, the following corollary to
Lemma 2.20 holds.

Corollary 3.6. Let T be a tree. Then f(T, P2) = ∆(T ).

Proof. Let N = {1, . . . ,∆(T )} be a set of colors. Start with an arbitrary leaf of T
and color its adjacent edge with an arbitrary color from N . Iteratively choose an
edge e ∈ E(T ) which is incident to an already colored edge of T . There is a color
in N which is not assigned to any edge adjacent to e. Assign this color to e and
choose the next uncolored edge until all edges are colored. Since a tree is acyclic,
this greedy construction is well defined and yields a proper coloring of T using ∆(T )
colors. According to Lemma 2.20, the chromatic index of G equals the conflict-free
chromatic index of G with respect to P2.

The value of the conflict-free chromatic index is directly related to the maximum
degree of the tree, here. First of all, a similar relation is established for all paths
on a larger but even number of edges by considering a certain class of trees, the
spiders. It was shown in the previous section, that in case of odd m two colors are
sufficient. This is not true for even m. It is shown that the necessary number of
colors increases with increasing number of legs. Afterwards, colorings of arbitrary
trees are considered.

3.3.1. Spiders and Paths with Even Number of Edges

Spiders are of particular interest here, since every tree contains spiders as subtrees.
Especially there is spider on ∆ legs in a tree of maximum degree ∆. The following
construction yields a UCE-Pm coloring of a spider.

Construction 3.3. Let m ∈ N be even, S be a spider and L be the set of legs of S
on at least m

2
edges. For each leg L ∈ L let NL be a set of colors with |NL| ≤ m

2

and 0 6∈ NL, such that NL 6= NJ for all distinct legs L, J ∈ L. If there is a leg in S
on less than m

2
edges, the sets NL must not be empty. Define k := | ⋃

L∈L
NL|.
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Figure 3.3.: A UCE-P6 coloring in 4 colors of a spider with 7 legs on more than 3
edges and 2 legs on less edges.

s1) Initially, assign color 0 to all edges of S.

s2) On each leg L ∈ L assign the colors in NL to the |NL| edges closest to the head
of S.

s3) Color the remaining edges of a leg L using the path-coloring from Section 3.1
(starting from the head of S). If |NL| < k and |NL| < m

2
, the special color

in this path coloring is an arbitrary color in (
⋃
J∈L

NJ) \ NL and the transla-

tion δL := m − |NL| − 1. Otherwise, the special color is the color from NL

assigned to the edge of index |NL| and δL := |NL| − 1.

In Figure 3.3 a spider together with the coloring from Construction 3.3 is shown.
The coloring obtained by this construction is well defined. Furthermore, it is a UCE-
Pm coloring of a spider S for even m ∈ N. Both claims are proven in the following
lemma.

Lemma 3.7. Let m ∈ N be even and S be a spider. The coloring obtained by
Construction 3.3 is a UCE-Pm coloring of S.

Proof. Due to the first step of the construction, a color is assigned to every edge
in S. Hence, the coloring is well defined. Let P be a copy of Pm in S. Either P
is completely contained in some leg L or not. Consider the first case. Since P
has m edges, L has at least m edges and L ∈ L. On the first |NL| edges every
color in NL is assigned to exactly one edge. All other edges of the leg L are colored
according to a path coloring. The first special edge of this path coloring is the edge
of index δL + 1 by definition of the translation δL. The translation δL is chosen in
such a way that there are at most m−1 edges between the first special edge and the
last edge colored according to NL. Hence, P contains the special color θ used by the
path coloring or at least one color from NL. If θ 6∈ NL, there is a uniquely colored
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edge. Otherwise δL = |NL| − 1 due to the construction. In this case the first special
edge of the path coloring is the edge of index |NL|. Since the special color of the
path coloring θ is the same color assigned to this edge in the second step before, P
contains an edge of unique color.

It remains to consider the case that P is part of two distinct legs L and J . At most
one of the legs L and J has less than m

2
edges. W.l.o.g. assume L ∈ L. If J 6∈ L,

let NJ := ∅. Hence, NL 6= NJ holds (regardless of whether J ∈ L or not). Let xL > 0
denote the number of edges of P in L and xJ that in the leg J . Then xL + xJ = m.
Further let N ′L denote the set of colors assigned to these edges in L and N ′J the
corresponding colors in J , without color 0.

If xL = xJ = m
2

, then N ′L = NL and N ′J = NJ since the path-coloring of any leg L
assigns additional colors to edges of index at least m− |NL| > m

2
only. There is an

edge of unique color in P , because NL 6= NJ and each color from NL and NJ is
assigned to exactly one edge in L respective J .

If xL > xJ , then NL ⊆ N ′L and N ′J ⊆ NJ (note the contrary relations here, there are
more edges from L and less edges from J). Again, there is an edge of unique color
in P , if N ′L 6= N ′J . If |NL| ≥ |NJ |, the set N ′L contains a color which is not in N ′J
due to the relations above (N ′L contains at least all the elements from NL 6= NJ).
So consider the case |NL| < |NJ |. In particular |NL| < a and |NL| < t. The
set N ′L differs by at most one color from NL, namely the special color used by the
path coloring. Due to the choice of the translation δL, this color is assigned to the
edge of index m − |NL| in L. Hence, if xL < m − |NL|, then |N ′L| = |NL|. But
in this case xJ > |NL| (because xL + xJ = m) and therefore |N ′J | > |NL| = |N ′L|.
If xL ≥ m− |NL|, then |N ′L| > |NL| ≥ |N ′J |, since xJ ≤ |NL|. In both cases the two
sets differ. The case xL < xJ is analogous.

Due to the lemma above, Construction 3.3 yields an upper bound on the conflict-
free chtomatic index f(T, Pm) for odd m ∈ N. It is stated in the following theorem.
Moreover, the coloring from Construction 3.3 is almost a minimum UCE-Pm coloring
of a spider. This is proven by establishing a lower bound on f . It is obtained by
considering the sets of colors on distinct legs.

Theorem 4. Let m ∈ N, with m ≥ 4 even, and S be a spider. Further let IS := 1
indicate the existence of legs on less than m

2
edges in S and IS := 0 the opposite.

Then

dlog2(∆m
2

(S))e ≤ min{k ∈ N |
m/2∑
i=2

(
k
i

)
+ 1 ≥ ∆m

2
(S)}

≤ f(S, Pm)

≤ min{k ∈ N |
m/2∑
i=0

(
k
i

)
≥ ∆m

2
(S) + IS}+ 1.

In particular if log2(∆m
2

(S) + IS) ≤ m
2

, then

dlog2(∆m
2

(S))e ≤ f(S, Pm) ≤ dlog2(∆m
2

(S) + IS))e+ 1.
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Proof. An edge-coloring of S obtained by Construction 3.3 is a UCE-Pm coloring

due to Lemma 3.7. Let k ∈ N such that
m/2∑
i=0

(
k
i

)
≥ ∆m

2
(S) + IS and N := {1, . . . , k}.

The set N has at least ∆m
2

(S) + IS distinct subsets of size at most m
2

. Thus,
the sets of colors NL in Construction 3.3 can be chosen as subsets of N for all
legs L on at least m

2
edges. With this choice the construction uses k + 1 colors

in total (counting color 0). Choosing a minimum k ∈ N which satisfies the given
constraint yields the upper bound in the theorem. If log2(∆m

2
(S) + IS) ≤ m

2
, the

number dlog2(∆m
2

(S) + IS)e satisfies the constraint on k and is minimum, too.

The lower bound is proven with an idea similar to the construction by considering
distinct sets of colors on distinct legs. Let v be the head of the spider S. Consider
a UCE-Pm coloring c of S and let k denote the number of colors used by c in total.
A copy of Pm in S which has v as its middle vertex is called centered path in S.
For each pair of distinct legs L, J ∈ L there is a centered path in S, which has m

2

edges in L and the other m
2

edges in J . For each leg L ∈ L let NL be the set
of colors which are assigned to the m

2
edges closest to the head of S. Since c is a

UCE-Pm coloring, each centered path contains a uniquely colored edge. Hence, all
the sets NL are distinct. In particular, there are at least ∆m

2
(S) distinct subsets

of the set of all k colors, each of size at most m
2

. Furthermore, at most one of
the sets NL contains only one color, since in this case all m

2
edges of L closest to

the head of S are of the same color. Hence, all other legs must have at least two
colors assigned to these edges, because there is an edge of unique color among these

edges in each leg (and m ≥ 4). Altogether, ∆m
2

(S) ≤
m/2∑
i=2

(
k
i

)
+ 1 ≤ 2k. This

implies f(S, Pm) ≥ min

{
k ∈ N |

m/2∑
i=2

(
k
i

)
+ 1 ≥ ∆m

2
(S)

}
≥ dlog2(∆m

2
(S))e.

Another lower bound is given in the following lemma. If a spider has sufficiently
many legs on more than m

2
edges, it improves upon the lower bound of theorem

above.

Lemma 3.8. Let m ∈ N be even and S be a spider without legs on less than m
2

edges. Then

f(S, Pm) ≥ (∆(S))
2
m .

Proof. Let c be an edge-coloring of S, and let k denote the number of colors used
by c. Consider S rooted at its head. For i ∈ N two legs L, J of S are called
equally colored up to edge level i, if L and J have at least i edges each and for each
index j ≤ i the same color is assigned to the edges of index j in L and J . Let li
denote the maximum number of legs of S which are equally colored up to level i.
The following induction on i proves li ≥ ∆(S)

ki
, if i ≤ m

2
. Due to the pigeonhole

principle, there are at least ∆(S)
k

edges of the same color incident to the head of S.

Hence, l1 ≥ ∆(S)
k

. For i < m
2

there is a set L of li legs of S which are equally colored

up to edge level i. Since each le has at least m
2

edges by assumption, at least li
k

of
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the legs in L have the same color assigned to their edge of index i + 1. Due to the
induction hypothesis, li+1 ≥ li

k
≥ ∆(S)

ki+1 .

If two legs L and J of S are equally colored up to edge level m
2

, consider the copy
of Pm in S which has m

2
edges in L and the other m

2
edges in J . This path has no

edge of unique color, because it contains exactly the m
2

edges of L as well as of J
closest to the head of S. Hence, c is bad with respect to Pm, if lm

2
≥ 2. If c is a

minimum UCE-Pm coloring, k = f(S, Pm). Thus, ∆(S)

f(S,Pm)
m
2
≤ lm

2
≤ 1 holds in this

case. This yields f(S, Pm) ≥ (∆(S))
2
m .

This lower bound does not contradict the upper bound of dlog2(∆m
2

(S) + IS))e+ 1
from Theorem 5, since this particular upper bound in the theorem is proven for the
case ∆m

2
(S) ≤ m

2
only.

The maximum m
2

-degree ∆m
2

(G) of a graph G indicates the existence of a spider
as a subgraph of G which has ∆m

2
(G) legs on at least m

2
edges each. Hence, the

following corollary to both lower bounds holds for arbitrary graphs.

Corollary 3.9. Let m ∈ N even and G be a graph. Then

f(G,Pm) ≥ max{log2(∆m
2

(G)), (∆m
2

(G))
2
m}.

Unfortunately, there is no nice way of extending the coloring of the spider to the
whole graph known yet. So the question for which graphs this lower bound is tight
remains open.

3.3.2. Arbitrary Trees and Paths with Even Number of Edges

In the previous subsection lower bounds on the conflict-free chromatic index were
revealed, which depend on the maximum m

2
-degree ∆m

2
(T ) of a tree T . Recall

that ∆m
2

(T ) is the maximum number of edge-disjoint copies of Pm
2

in T with a
common endpoint. In this section, a constructive upper bound on f(T, Pm) is estab-
lished, which depends on the maximum degree but not on the height of T . This is
done by the following construction of a UCE-Pm coloring that uses at most m

2
+∆−1

colors. The construction is minimum on complete d-ary trees in case m = 4 for suf-
ficiently large d ∈ N.

Construction 3.4. Let m ∈ N, with m ≥ 4 even, and let T be a rooted tree.

s1) Color 1 is assigned to all edges in the first m
2
− 1 edge levels of T .

s2) The vertex levels in T are considered one after the other starting with the root
and going down in the tree. In each vertex level all vertices are considered
independently of each other.

s2.1) If a vertex v is considered, let u1, . . . , ud denote all children of v in T .
Further let θ1, . . . , θd be distinct colors, such that no color θi is already
assigned to an edge in the first m

2
−1 edge levels in the maximum downward

subtree of T with root v. In addition, if there is an edge incident to v
from above, the colors θi must be distinct from the color of this edge.
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Figure 3.4.: A UCE-P4 coloring in 4 colors of a complete binary tree of height 5.

s2.2) For each child ui, consider the maximum downward subtree of T with
root ui. Color θi is assigned to all edges in the edge level of index m

2
− 1

in this tree.

An example of this construction on a complete binary tree is shown in Figure 3.4.
The next lemma states that the coloring obtained by this construction is well defined.
Moreover, it is a good coloring with respect to Pm for even m ∈ N.

Lemma 3.10. Let m ∈ N, with m ≥ 4 even, and let T be a tree. Construction 3.4
yields a UCE-Pm coloring of T .

Proof. First of all, it is shown that all edges in T get colored exactly once, i.e. that
the coloring is well defined. Let e ∈ E(T ) and distinguish two cases. If e is in one
of the first m

2
− 1 edge levels of T , it is colored in the first step of the construction.

Moreover, there is no vertex u ∈ V (T ), such that e is in the edge level of index m
2
−1

in a maximum downward subtree of T whose root is a child of u. Hence, no other
color is assigned to e. If e is not in one of the first m

2
− 1 edge levels of T , there

is a unique vertex u ∈ V (T ), such that e is in the edge level of index m
2
− 1 in a

maximum downward subtree of T whose root is a child of u. In this case, a color
is assigned to e, if and only if u is considered in the Step s2.1) of the construction.
Since each vertex of T is considered there, a color is assigned to e exactly once.

It remains to prove that the coloring is good with respect to Pm. Consider a color θ
that is assigned to an edge e in a level of index larger than m

2
− 1. Then it was

assigned in Step s2.2). Due to the constraints on the colors in Step s2.1), the
following holds. Let u be the unique vertex in T , such that e is contained in an
edge level of index m

2
− 1 in a maximum downward subtree T ′ of T whose root is

a child of u. All edges above e are colored in an execution of Step s2.2) before e.
Hence, θ is not assigned to any other edge of smaller index in T ′ than e, not to the
edge connecting the root of T ′ to u and not to an edge which is incident to u from
above. Let y be the lower endpoint of e. Because all edges below e are colored in
a later execution of Step s2.2) than e, color θ is not assigned to any edge in any of
the first m

2
edge levels of the maximum downward subtree with root y.

33



Diploma-Thesis: Conflict-Free Colorings Jonathan Rollin

Let P = v1v2 . . . vm+1 be a copy of Pm in T with v1, . . . , vm+1 ∈ V (T ) and v be the
(unique) topmost vertex of P . Two cases are distinguished.
If v is an endpoint of P , the path contains edges from m consecutive levels, exactly
one edge per level. W.l.o.g. assume v = v1 and consider the edge e := {vm

2
+1, vm

2
+2}.

It is contained in the edge level of index m
2
− 1 in the maximum downward subtree

of T with root v3. Since v3 is a child of v2, the color assigned to e is distinct from
all colors assigned to the m

2
edges in P above e, due to the arguments above. All

edges below e in P are contained in one of the first m
2

edge levels of the maximum
downward subtree with root vm

2
+2. As argued above, all colors assigned to these

edges are distinct from the color assigned to e.
If v is not an endpoint of P , consider the maximum downward subtree D of T
with root v. Exactly one or two edges of P are contained in the edge level E of
index m

2
in D. These edges are colored in Step s2.2) of the construction, when v

(respective one of its children) is considered. If there is exactly one edge e of P in
this level E , the color of e differs from all other colors assigned to the edges above e
in D. Furthermore, there are at most m

2
− 1 edges of P below e in T . Hence, the

color of e is not assigned to any of these edges, since they are contained in the
maximum downward subtree with the lower endpoint of e as its root. Thus, the
color of e is unique in P . If there are two edges e1 and e2 of P contained in the
edge level E of D, the whole path P is contained in the first m

2
edge levels of D.

In this case, both edges e1 and e2 are incident to an endpoint of P . Moreover, the
edges e1 and e2 have distinct children of v as its ancestors. Hence, distinct colors are
assigned to e1 and e2 by construction. Furthermore, these colors are distinct from
all other colors assigned to edges in edge levels above E in D. Hence, both colors
are unique in P .

So Construction 3.4 yields a good coloring with respect to Pm for even m ≥ 4. With
an appropriate choice of colors the coloring yields the following upper bound on the
conflict-free chromatic index f(T, Pm) for every tree T .

Theorem 5. Let m ∈ N even and let T be a tree of maximum degree ∆. Then

f(T, Pm) ≤ m

2
+ ∆− 1.

Proof. In case m = 2 Corollary 3.6 yields an even better upper bound. If ∆ = 1,
there is exactly one edge in T and one color is sufficient. For the remaining proof
let m ≥ 4, ∆ ≥ 2 and T rooted, such that its maximum down degree is ∆ − 1. It
is shown that all colors in Construction 3.4 applied to T can be chosen from the
set {1, . . . , m

2
+ ∆ − 1}. In the first step of the construction only color 1 is used.

All other colors are chosen according to the constraints given in Step s2.1). If
vertex v ∈ V (T ) is considered, the colors differ from all colors assigned to the edges
in the first m

2
−1 edge levels in the maximum downward subtree T ′ of T with root v.

In addition, if there is an edge incident to v from above, the colors are distinct from
the color of this edge.

The following induction on the index of the vertex level which contains v proves
that each of the first m

2
− 1 edge levels of T ′ is monochromatic. If v is the root
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of T , color 1 is assigned to all edges in these levels of the tree T ′. In particular, all
levels are monochromatic. If v is not the root, let x be its parent vertex in T . The
tree T ′ is one of the maximum downward subtrees of T whose roots are children of x.
Hence, the same color is assigned to all edges in the edge level of index m

2
−1 in T ′ in

Step s2.2) of the construction. In particular, this level is colored monochromatically.
Each edge level of smaller index in T ′ is part of the edge level of index m

2
− 1 of a

maximum downward subtree whose root is a child vertex of a vertex above v in T .
By induction hypothesis, the same color is assigned to all edges in this level. Thus,
each of the first m

2
− 1 edge levels of T ′ is monochromatic.

In particular, there are at most m
2
− 1 different colors assigned to these edges.

Together with the color of the edge incident to v from above (if it exists) at most m
2

colors are not available in Step s2.1). Since v has at most ∆− 1 children, at most
that many further colors are necessary. Hence, the colors can be chosen from the
set {1, . . . m

2
+ ∆− 1} in each execution of Step s2.1).

So Construction 3.4 establishes an upper bound on f(T, Pm) for any tree T and
even m ∈ N. Due to the constructions for spiders and paths from the previous
sections, it is known that the resulting coloring is not minimum for every tree . But
it is minimum for complete d-ary trees in case m = 4.

Theorem 6. Let d ∈ N with d ≥ 2. Then there is hd ∈ N, such that for all complete
d-ary trees T of height at least hd

f(T, P4) = d+ 2.

Proof. Let T be a complete d-ary tree. Theorem 5 yields f(T, P4) ≤ d + 2 as an
upper bound. Assume c is a UCE-P4 coloring of T using only d+ 1 colors.
Recall the definition of a downward star in T which is a star whose center is located
above all other vertices of the star. A contradiction is established in three steps by
considering such monochromatic downward stars. The existence of a monochromatic
downward star on at least two edges within the first three edge levels of T is proven
first. Afterwards it is shown, that the existence of a monochromatic downward star
on s edges in T forces the existence of an even larger star below. This leads to a
contradiction, since a monochromatic downward star on d+ 1 edges is encountered.
In each step of the proof it is assumed that the height of T is at least as large as
necessary for the argument to hold.

For the first step it is proven that there are two adjacent edges of the same color
within the first two edge levels of T . Let a and a′ denote two edges in T incident
to the root of T . If one of the lower endpoints of a or a′ is incident to two edges of
the same color, these are the desired edges. Otherwise, each of these endpoints is
incident to an edge of every color used by c (because they have degree d + 1). So
either c(a) = c(a′) (and they are the desired edges), or there is an edge of color c(a′)
incident to a from below and an edge of color c(a) incident to a′ from below. But
these four edges form a bad copy of P4. Hence, there are two adjacent edges e and e′

of the same color λ within the first two edge levels of T . Let u denote the endpoint
of e not incident to e′ and v the endpoint of e′ not incident to e.
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Figure 3.5.: The picture shows the first two edge levels of a binary tree, together
with a UCE-P4 coloring using three distinct colors λ (dashed, red), φ
(dotted, blue) and µ (solid, green). The first case, yields a contradiction.
In the other cases the same color is assigned to the two edges adjacent
to e′′ from below. Hence, they form a monochromatic downward star.

These two edges force the existence of a monochromatic downward star on two edges
as follows. Either the two edges e and e′ already form such a star, or not. In the
latter case, one of the edges is in the first edge level (and incident to the root of T )
and the other one in the second level. W.l.o.g. suppose e is the upper edge and
hence u is the root of T . Each of the edges incident to u must not be of the same
color as an edge incident to v from below, because they form a bad P4 together
with e and e′ otherwise. There are d edges incident to v from below and d−1 edges,
distinct from e, incident to u. Hence, there are 2 · d+ 1 edges in total.

If d ≥ 3, then 2d − 1 > d + 1 holds. Hence, there is a monochromatic downward
star on at least two edges incident to u or v due to pigeonhole principle.

If d = 2, this argument does not hold. But the following case distinction proves
the existence of the desired star in this case. If color λ is assigned to the second
edge incident to the root as well, this edge together with e forms the monochromatic
downward star. Otherwise, one of the edges incident to v from below is of color λ
(or there is the desired star, because only one color is available). Either the other
edge incident to v from below is of color λ as well (and the desired star is there),
or a different color φ is assigned. Then, a third color µ 6= φ is assigned to the edge
incident to u distinct from e. The situation is shown in Figure 3.5 for the following
three cases Let e′′ denote the (unique) edge which is incident to e and e′ (in the
middle). If color λ is assigned to e′′, there is a bad copy of P4 regardless of which
color is assigned to an edge adjacent to e′′ from below. If color φ is assigned to e′′,
both edges adjacent to e′′ from below must be of color µ (and form the desired star),
because there is a bad copy of P4 otherwise. If color µ is assigned to e′′, both edges
adjacent to e′′ from below must be of color φ (and form the desired star), because
there is a bad copy of P4 otherwise. Altogether, there is a monochromatic downward
star on at least two edges in T .

Finally it is proven, that the existence of monochromatic downward star S forces
the existence of an even larger star within the four levels below S in T . Let S
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denote a monochromatic downward star with 2 ≤ s ≤ d edges. As above, distinct
colors are assigned to edges which are incident from below to distinct leafs in S,
since there is a bad copy of P4 otherwise. Hence, there is a leaf in S which has
at most

⌊
d+1
s

⌋
distinct colors assigned to its edges incident from below, due to the

pigeonhole principle. Let S ′ denote a monochromatic downward star with a leaf
of S as root and maximum number s′ of edges. Another application of pigeonhole
principle yields

s′ ≥
⌈

d

bd+1
s
c

⌉
≥ d

d+ 1
· s ≥ s

s+ 1
· s > s2 − 1

s+ 1
= s− 1.

Note the strict inequality which proves s′ ≥ s. If s′ > s, S ′ is the desired star.
If s′ = s, let θ denote the color assigned to the edges in S and θ′ denote the color
assigned to the edges in S ′. The situation is shown in Figure 3.6. A copy of P4 which
contains two edges from S, one edge from S ′ and an edge incident to S ′ from below
of color θ′ is bad. Hence, color θ′ is not assigned to any edge incident to S ′ from
below. As above, distinct colors are assigned to edges incident to S ′ from below, if
they are incident to distinct parent vertices. Let s′′ denote the maximum number
of edges of a monochromatic downward star with root in S ′. The same calculation
as above yields s′′ ≥ s′. Again, there is the desired star, if s′′ > s′ = s. The
case s′′ = s′ = s remains. Since θ′ is not assigned to any edge incident to S ′ from
below, there are at most d colors assigned to these edges. If there are less than d
colors, there are at most (d− 1) · s edges, since each monochromatic downward star
has at most s edges. But S ′ has s edges and each of these edges is incident to d
edges from below. Hence, there are d · s edges in total. In consequence, each of the
remaining colors is assigned to at least one edge. A similar argument shows that
each of the monochromatic downward stars incident to S ′ has exactly s edges. Two
cases are distinguished to finish the proof.
The case θ 6= θ′ is called final case for S ′. In this case, color θ is assigned to the
edges of one of the monochromatic downward stars S ′′ incident to S ′ from below
(because there is such a star for every remaining color). Then, neither color θ nor
color θ′ is assigned to edges incident to S ′′ from below. Because only d − 1 colors
are available, the same arguments as above prove the existence of a monochromatic
downward star on more than s edges.
If θ = θ′, let S ′′ denote an arbitrary monochromatic downward star incident to S ′

from below. A color θ′′ 6= θ′ is assigned to its edges. All arguments which are applied
to S ′ above are applied to S ′′ (and are true). But the final case is reached for S ′′

always, because θ′′ 6= θ′. Hence, the desired star exists two levels below S ′′.

Altogether, this yields a contradiction, since the size of the monochromatic down-
ward stars is at most d. Hence, a UCE-P4 coloring of T using only d+ 1 colors does
not exist.

Unfortunately, the proof of the previous theorem could not be extended to larger,
even m ∈ N yet.

37



Diploma-Thesis: Conflict-Free Colorings Jonathan Rollin

s′
. . .

θ

θ′

E θ′

θ

E

S

S′

{
{ s′

. . .

θ

θ′

E θ

θ

θ′

θ

s′′ E

S

S′

{
{
{S′′

Figure 3.6.: A UCE-P4 coloring of a complete d-ary tree in d+1 colors is studied. The
monochromatic downward stars S and S ′ forbid certain configurations of
colors on the edges below S ′′. The left hand side shows, that no incident
edge has color θ′, and edges with distinct parent vertices have distinct
colors. So there are at most d colors available. The right hand side
shows that color θ must not occur in the next level, as well. If θ 6= θ′,
there are only d− 1 colors available for the edges below S ′′. This forces
a star on more than s′′ edges below. The dotted paths indicate copies
of P4 without uniquely colored edge.

3.4. General Constructions

In this section two constructions are presented that are independent of the parity
of the number of edges in the paths. The first one replaces certain structures in
the tree by smaller pieces without any impact on the value of f . The second one
recursively uses the path-coloring to obtain a good coloring of the whole tree.

3.4.1. Reduction to Smaller Trees

First of all a reduction is described that contracts certain small subtrees to single
paths. It applies not only to trees but also to arbitrary graphs. It is inspired by
Construction 3.3 for spiders where all legs on few edges (less edges than half of the
edges of the path) were colored identically.

Definition 3.2. Let m ∈ N. An induced subtree T ′ of a graph G is called Pm-
reducible, if the following conditions hold.

c1) The tree T ′ has diameter at most m− 1.

c2) Exactly one vertex v0 ∈ V (T ′) has smaller degree in T ′ than in G.

c3) The tree T ′ has at least 2 leaves distinct from v0.

The vertex v0 defined in c2) is considered to be the root of T ′.
A Pm-reducible subtree T ′ of G is called maximum, if there is no other Pm-reducible
subtree of G containing T ′.
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The following lemma describes an equivalent characterization of Pm-reducible sub-
trees.

Lemma 3.11. Let m ∈ N and T ′ be an induced subtree of a graph G. Then T ′

is Pm-reducible, if and only if the following conditions hold.

c1)’ No copy of Pm is contained in T ′.

c2)’ Every path containing an edge from E(T ′) has at least one endpoint in T ′.

c3)’ The tree T ′ is not a path having its root as an endpoint.

c4)’ There is at least one edge in T ′.

Proof. The Conditions c1) and c1)’ are equivalent by definition.

The same holds for the next conditions c2) and c2)’ as is shown next. Suppose there
are two vertices u, v ∈ V (T ′) that have smaller degree in T ′ than in G. Let P be a
path connecting these two vertices within T ′. Since T ′ is a tree, such a path exists
and contains at least one edge. Then P can be extended by two edges in E(G)\E(T ′),
one incident to u and the other incident to v. Since T ′ is an induced tree, both
endpoints of the extended path are not in V (T ′).
The other way round, let P be a path which has both endpoints not in T ′ and
contains an edge from E(T ′). Then there are two distinct vertices in P , each incident
to an edge in E(G) \E(T ′) as well as to an edge in E(T ′). Hence, these vertices are
of smaller degree in T ′ than in G.

It remains to show that condition c3) in Definition 3.2 is equivalent to the last two
conditions c3)’ and c4)’ in this lemma. If the tree T ′ has at least two leaves distinct
from a vertex v0, the set of edges E(T ′) is non-empty. Since the two endpoints of a
paths are exactly its leaves, the tree T ′ is either not a path or v0 is not an endpoint.

If E(T ′) is non-empty, there are at least two leaves. If the number of leaves is at
least 3, two of them are distinct from a fixed vertex v0. If there are exactly two, the
tree T ′ is a path. Hence, its endpoints and therefore its leaves are distinct from its
given root v0.

The next lemma states that Pm-reducible subtrees can be considered as paths, when
UCE-Pm colorings are studied. The corresponding reduction is described in the
following construction.

Construction 3.5. For a graph G its Pm-reduced graph redm(G) is obtained by
replacing each maximum Pm-reducible subtree T ′ in G by a path on h(T ′) edges
starting at v.

Lemma 3.12. The Pm-reduced graph of a graph G is unique (up to isomorphism)
and does not contain any Pm-reducible subtree.
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Proof. Since paths are not Pm-reducible due to the leaf constraint c3), there is
no Pm-reducible subtree contained in redm(G).

As long as there are no Pm-reducible subtrees with more than one vertex in common,
it is easy to see that the Pm-reduced graph of G is unique (if such a subtree is
substituted by a path, there is no Pm-reducible subtree containing an edge of this
path).
Consider two distinct maximum Pm-reducible trees T1 and T2 in G that have more
than one vertex in common. One of these vertices v is not the root of T2. Due to
the degree constraint c2), all its neighbors in G are contained T2 as well. Either v
is the root of T1 or not. In the latter case all its neighbors in G are contained T1

as well. Since the same argument applies iteratively to all vertices in T2, but T1 is
not completely contained in T2, the root of T1 is contained in T2. Symmetrically,
the root of T2 is contained in T1. Since only the roots of the subtrees have smaller
degree within their trees than in G, the roots are distinct, because the trees have at
least two vertices in common. Thus, there are at most two such Pm-reducible trees
(and no other Pm-reducible tree) in G. Then redm(G) is a (unique) path (on less
than 2 · (m− 1) edges).

Lemma 3.13. Let m ∈ N and let G be a graph. Then

f(G,Pm) = f(redm(G), Pm).

Proof. Let c be a UCE-Pm coloring of G and T ′ be a Pm-reducible subtree of G. The
tree T ′ contains a path P on h(T ′) edges connecting the root of T ′ to one of its leaves.
The substitution of T ′ described in Construction 3.5 can be realized by deleting all
vertices in T ′ that are not contained in P . Hence, the coloring c induces a UCE-Pm
coloring of redm(G) ⊆ G due to Lemma 2.5. In particular f(redm(G), Pm) ≤
f(G,Pm).
The other way round, let c be a UCE-Pm coloring of redm(G) ⊆ G. A UCE-Pm
coloring of G is constructed as follows. All edges in E(G)∩E(redm(G)) receive the
same color assigned by c. For the other edges consider each path P which substitutes
a subtree T ′ of G. It connects the root of T ′ to one of its leaves in G. The color
assigned by c to an edge in P is assigned to all edges in the same edge level of the
rooted tree T ′.
This construction yields a UCE-Pm coloring of G due to the properties of Pm-
reducible trees as follows. It is easy to see that copies of Pm that do not contain an
edge of any Pm-reducible subtree are good because c is a good coloring. Moreover,
a Pm-reducible subtree does not contain any copy of Pm entirely due to Condi-
tion c1). Hence, every copy of Pm containing edges of a Pm-reducible subtree T ′

corresponds to a copy of Pm in redm(G), because it needs to contain the root of T ′

due to Condition c2). Thus, it has an edge of unique color, since c is a UCE-Pm
coloring of redm(G). Altogether f(G,Pm) ≤ f(redm(G), Pm).

3.4.2. Leaf Construction

Another construction of a UCE-Pm coloring is described next which works for all
paths and all trees. It uses the known path coloring from Definition 3.1 on iteratively
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chosen paths in the tree. Each of these paths ends in a leaf. Hence, the total number
of colors is equal to the number of leaves in the tree.

Construction 3.6. Let m ∈ N and T be a tree. Further let τ be a labeling of the
leafs of T , such that τ(v) 6= τ(u) 6= 0 for distinct leaves u, v ∈ V (T ).

s1) Let u be a leaf of T . Let P be a path in T connecting u to another vertex v ∈
V (T ), such that a vertex w ∈ V (P ) has degree 2 in T , if and only if w 6∈ {u, v}.

s2) Apply the path coloring of Definition 3.1 to P with special color τ(u), such
that v is incident to an edge of color τ(u).

s3) Let e denote the unique edge in P which is incident to v and T ′ denote the
connected component of T − e containing v.

s4) If E(T ′) 6= ∅, apply the construction recursively to T ′ with the restriction of
the labeling τ to the remaining leaves in T ′.

The following lemma states that a coloring obtained by construction is well-defined
and good with respect to Pm for all m ∈ N.

Lemma 3.14. Let m ∈ N and T be a tree. Then Construction 3.6 yields a UCE-Pm
coloring of T .

Proof. The lemma is proven by induction on the number t of leaves of T . Consider
a tree T with 2 leaves. This is the basic step, because in case t ≤ 1 there is no edge
in T . Since every vertex which is not a leaf in T has degree 2, the path chosen in
Step s1) is the whole tree. Thus, the path-coloring is applied to the whole tree T in
the next step. This coloring is a UCE-Pm coloring due to Lemma 3.1. Since there
is only one edge e incident to v in T , the vertex v is of degree 0 in T − e. Thus,
there is no edge in the connected component T ′ in Step s3). Hence, the construction
finishes and yields a good coloring for trees on two leaves.

Consider a tree T with more than 2 leaves. Let c be the coloring of T obtained by
Construction 3.6 for an arbitrary labeling τ of the leafs of T with distinct values.
Since there are vertices of degree larger than 2 in T , the path P chosen in Step s1)
connects a leaf u to a vertex v of degree at least 3 in T . Let e denote the unique
edge in P incident to v. In particular, v is of degree at least 2 in T − e. Because all
other inner vertices of P are of degree 2 in T , the connected component T ′ chosen
in Step s3) has exactly one leaf less than T . It is a tree, since it is connected and T
is a tree. It has at least two edges, because v has degree at least 2 in T ′. Moreover,
the labeling τ assigns a label to every leaf in T ′. Hence, it can be restricted to a
labeling of all remaining leaves in T ′,

Each edge in T is either contained in T ′ or in P . Due to the induction hypothesis,
the construction applied to T ′ terminates and yields a UCE-Pm coloring of T ′. All
edges in P are colored with the path-coloring. Hence, exactly one color is assigned
to every edge in T . Moreover, each copy of Pm in T which is entirely contained

41



Diploma-Thesis: Conflict-Free Colorings Jonathan Rollin

in P or in T ′ is good. Every copy P ′ of Pm which does contain edges from P as
well as from T ′ contains the edge e. The construction assigns the color τ(u) to this
edge. This color is assigned to no edge in T ′, because τ(u) 6= 0 and the other colors
used by the labeling τ are distinct from τ(u). Furthermore, there are m − 1 edges
between e and the next special edge in P by definition of the path coloring. Hence,
the edge e is of unique color in P ′. Altogether, the construction finishes and yields
a good coloring of T with respect to Pm.

Since the construction uses color 0 (in the path coloring) and all but one color from
the labeling τ (in the last recursion step only the color associated with one of the
two leafs is used) the following corollary holds.

Corollary 3.15. Let m, t ∈ N and T be tree on t leaves. Then

f(T, Pm) ≤ t.

So this construction yields an upper bound on f(T, Pm) in terms of the number of
leaves of T . Compared to the constructions given in previous sections, this is worse
on the considered classes of trees (spiders and complete d-ary trees). For example
Theorem 3 and Theorem 5 yield upper bounds on f(T, Pm) that do not depend on
the size of the tree T . In particular, there are much better construction for spiders,
since this construction yields a total multicoloring of all edges incident to the head.
But its advantage is its independence from the number of edges in long subpaths.
For trees with long paths and few branching edges this construction yields better
results. Furthermore, it can be improved by using the ideas from above as follows.
First of all, the reduction described in Construction 3.5 decreases the number of
leaves. Furthermore, instead of paths, spiders which are joined to the tree at one
vertex only can be colored using Construction 3.3 or 3.1 (depending on the parity
of m). One needs to ensure here, that the edge connecting the spider and the rest
of the tree has a special color distinct from other special colors used in the spider
and the tree. Another improvement is due to the following observation. In the given
description of the construction, distinct special colors are used for all leaves. This
may not be necessary for leaves that are far apart, if there are special edges of other
color in between.

3.5. Conclusion

Several different lower and upper bounds on the conflict-free chromatic index f(T, Pm)
were established in the previous sections. The aim of this part is to summarize all
those results in a compact form. Therefore, two certain classes of trees are con-
sidered and the maximum and minimum value of f for all those trees is studied.
On the one hand all trees with fixed maximum degree are considered and on the
other hand all trees on a fixed number of vertices. Since the behavior of f depends
essentially on the parity of m, these two cases are considered independently. In the
following let n,m,∆ ∈ N denote fixed positive integers.
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Case m is odd: There are upper bounds not depending on the parameters of the
trees in case of paths on an odd number of edges. The following upper bound holds
due to Theorem 3 for all trees. In particular it holds for all trees with fixed maximum
degree or given number of vertices. For very large ∆ or n the same theorem states
tightness of the upper bound. In case ∆ ≤ 2 it is not tight due to the path coloring
from Section 3.1. Similarly one color is sufficient, if n ≤ m.

?? ≤ max
T :∆(T )=∆

f(T, Pm) ≤ dm
2
e.

?? ≤ max
T : |V (T )|=n

f(T, Pm) ≤ dm
2
e.

As above, minimum values of f are known exactly and are attained by a star on ∆
respectively n− 1 edges.

min
T :∆(T )=∆

f(T, Pm) = 1.

min
T : |V (T )|=n

f(T, Pm) =

{
0 , if n = 1,

1 , otherwise.

Case m is even: For all trees with maximum degree ∆ the following holds.

max{log2(∆),∆
2
m} ≤ max

T :∆(T )=∆
f(T, Pm) ≤ m

2
+ ∆− 1.

The logarithmic lower bound follows from Theorem 4 and the other one from
Lemma 3.8. The upper bound is stated in Theorem 5. In case ∆ = 2, a better
upper bound of 2 is known due to the path coloring and the case ∆ = 1 is trivial.
Furthermore, the upper bound is attained in case m = 4 for complete (∆ − 1)-ary
trees, see Theorem 6.
The following equations state the corresponding minimum values of f .

min
T :∆(T )=∆

f(T, Pm) =

{
∆ , if m = 2,

1 , if m 6= 2.

The first equality corresponds to Corollary 3.6. The second equality is realized by
a star on ∆ edges. One color is sufficient there, because a star does not contain a
path on more than two edges.

Considering all trees on a fixed number of vertices, the following holds.

log2

(⌊
2 · (n− 1)

m

⌋)
≤ max

T : |V (T )|=n
f(T, Pm) ≤

{
1 , if n < m+ 1,

n−m+ 1 , otherwise.

Again, the lower bound is deduced from Corollary 3.9. The bound given there is
maximized by a spider on as many legs of length m

2
as possible. Since one vertex

is needed for the head of the spider, there are at most
⌊

2·(n−1)
m

⌋
such legs. Right

now it is not known how a worst case tree for a given number of vertices looks like.
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The upper bound given above is deduced from Corollary 3.15, since the maximum
number of leaves of a tree on n vertices and diameter at least m is n−m+ 1 (and
in case n < m+ 1 one color is sufficient anyway).
Similar to the case of fixed maximum degree, minimum values are known exactly.

min
T : |V (T )|=n

f(T, Pm) =





0 , if n = 1,

2 , if m = 2 and n ≥ 3,

1 , otherwise.

If there is no edge, no color is needed. In case m = 2 the equalities are attained
by a path on n vertices (and the values follow from Lemma 3.2). If m > 2, a star
on n− 1 edges does not contain a copy of Pm and hence one color is sufficient.
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4. Cliques and Subcliques

One of the most studied kind of graphs in Ramsey theory are complete graphs
with complete subgraphs. Especially the original theorem by Ramsey is stated for
complete graphs [26] (precisely not for graphs, but for r-uniform set systems). So
this chapter deals with complete graphs Kn on n ∈ N vertices where all complete
subgraphs Kp of fixed order p ∈ N should have an edge of unique color. First of
all, the general results from Chapter 2 may be used to get some insight on the
behavior of the conflict-free chromatic index f(n, p) = f(Kn, Kp). Together with
several easy but specific results this is presented in the first Section 4.1. Since all
general upper bounds on the function f in Chapter 2 were obtained by probabilistic
arguments, there are no explicit constructions (though the probabilistic ones might
be derandomized). Section 4.2 provides several constructions whose number of colors
used is at most linear in n and logarithmic in the case p = 3. The best known
probabilistic upper bound from Section 2.3 is studied for this specific setting of
complete graphs in Section 4.3. The same section contains an explicit and better
construction for the case p = 4. Finally, a lower bound is established in Section 4.4
by considering large monochromatic stars. Some of the results are summarized in
the following table. Additionally, a Brute-Force algorithm, that tested all possible
colorings, provided some more values. The minimum colorings calculated by the
algorithm are shown in Figure 4.2. If no exact value is known yet, all possible values
are shown in brackets. Therefore, the upper bounds from Section 4.2 are used.

f(n, p) p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8
n = 2 1 - - - - - -
n = 3 1 2 - - - - -
n = 4 1 2 2 - - - -
n = 5 1 2 3 2 - - -
n = 6 1 3 3 3 2 - -
n = 7 1 3 {3, 4} {3, 4} 3 2 -
n = 8 1 3 {3, 4, 5} {3, 4, 5} {3, 4} 3 2

Table 4.1.: Values of f(n, p)

4.1. Basic Results

First of all, the following corollary summarizes some results that are obtained by
using the results from Chapter 2. Afterwards more specific results are shown.
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n = 4, p = 3 n = 5, p = 3 n = 5, p = 4

n = 6, p = 3 n = 6, p = 4 n = 6, p = 5

Figure 4.2.: Examples of minimum UCE-Kp colorings

Corollary 4.1. Let n, p ∈ N, with p ≥ 2. Then the following statements hold.

C1) f(1, p) = 0.

C2) f(n, 2) = 1.

C3) If n ≥ 3, then f(n, n) = 2.

C4) f(n, p) = 1⇔ p = 2 or p > n.

C5) f(n+ 1, p) ≥ f(n, p).

C6) If p ≥ 3, then f(n, p) ≥ Rinv
p (n).

C7) ∀p ∈ N, p ≥ 3, ∀k ∈ N ∃n ∈ N : f(n, p) > k.

This means for fixed p the function f(n, p) exceeds each given number of colors
for large enough n.

Proof. The first three equations C1), C2) and C3) follow from Lemma 2.2 and
Lemma 2.3 implies the equivalence C4).

The relation C5), f(n+ 1, p) ≥ f(n, p), is an application of Lemma 2.5. Deleting a
vertex in Kn+1 yields a Kn. Hence, f(n+ 1, p) ≥ f(n, p).

The lower bound C6) follows directly from Lemma 2.15. Ramsey’s theorem states
that for every p, k ∈ N there is an n ∈ N, such that there is a monochromatic copy
of Kp in every k-coloring of Kn [26]. Furthermore, if k colors are sufficient to avoid
monochromatic copies of Kp in Kn, then it is easy to see that one can achieve the
same with more than k colors. Just assign new colors to some edges. In other
words it is not possible to avoid monochromatic copies by less than k colors, if it
is not possible with k colors. Using these facts one obtains statement C7) in terms
of Rinv

p (n) and by C6) the same for f(n, p).
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The first fact handles the pathological case of a graph without any edge. The next
three facts characterize the conflict-free chromatic index f for the smallest and the
largest possible value of p. The relation C5) shows that fp(n) := f(n, p) is not
decreasing (for some fixed value p). Furthermore it won’t converge, since it exceeds
any given integer for large enough n due to C7).

Few possibilities for two colors: All UCE-H colorings of G which use only one
color, or no color at all are easily characterized for general graphs in the beginning of
this thesis. There are only very few possibilities where such colorings exist. Either
there is no edge in G or H has at most one edge. In the setting of this chapter, the
case of conflict-free chromatic index of 2 can be characterized as well. The few cases
of n, p ∈ N with minimum UCE-Kp colorings of Kn using two colors only are stated
in the following lemmas. In particular, if n ≥ 6, the only possibility is p = n.

Lemma 4.2. Let n, p ∈ N with f(n, p) = 2. A UCE-Kp coloring of Kn in two colors
with one colors class consisting of a single edge exists, if and only if n = p.

Proof. If n = p, color a single edge different from all other edges. Obviously this
coloring is a UCE-Kp coloring in two colors.
Let n, p ∈ N with f(n, p) = 2. Consider a minimum UCE-Kp coloring of Kn with an
edge e whose color is assigned to no other edge. If n < p or p = 2, then f(n, p) = 1
holds due to Corollary 4.1. Hence, p, n ≥ 3. Each Kp contains at least three edges,
then. Hence, each Kp must contain e, because all other edges have the same color.
This is only possible, if n = p.

Lemma 4.3. Let n, p ∈ N with p < n and f(n, p) = 2. Then n ≤ 5.

Proof. Let c be UCE-Kp coloring of Kn in two colors. Due to Lemma 4.2, each
color class contains at least two edges. Furthermore p ≥ 3, because f(n, 2) = 1, and
hence n ≥ 4. Consider a copy A of Kp with uniquely colored edge e0. Let e1 ∈ E(Kn)
be an edge with c(e1) = c(e0). In particular, the edge e1 is not in A.

Consider the case p ≥ 4 first. There is another copy B ⊆ Kn of Kp which contains e0

and e1. Since c is a UCE-Kp coloring with two colors, B contains exactly one edge ẽ0

with c(ẽ0) 6= c(e0). All other edges have the same color as e0. Replacing one vertex
from B by any vertex from A (except the endpoints of e0) yields another copy of Kp.
But this one contains at least two edges from each color. There are two edges from A
(incident to the endpoints of e0) with color different to the color of e0. Furthermore
there is the edge e0 together with at least one edge from B of the same color. This
is a contradiction because c is a UCE-Kp coloring.

In case p = 3, the conflict-free chromatic index equals the inverse multicolor Ramsey
number, due to Lemma 2.15. It is a very common example in classical Ramsey
theory to show f(6, 3) = Rinv

3 (6) ≥ 3. Consider an arbitrary vertex v of K6 and the
coloring c. By pigeonhole principle there are three edges of the same color incident
to v. Either one of the edges connecting their endpoints has the same color or all
of these have the other color. In both cases there is a monochromatic copy of K3.
Hence, f(n, 3) ≥ 3 for all n ≥ 6.
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Further values of f : The following lemma states another case, where the exact
value of f(n, p) is known.

Lemma 4.4. Let n ∈ N with n ≥ 5. Then f(n, n− 1) = 3 holds.

Proof. Since n ≥ 5, there are two non adjacent edges e1 and e2. Coloring e1 and e2

in distinct colors and all other edges in another color yields a coloring in three colors.
It is a UCE-Kn−1 coloring, since each copy of Kn−1 in Kn contains at least one of
the two uniquely colored edges. Hence, f(n, n− 1) ≤ 3.

Lemma 4.3 states, that f(n, n − 1) ≥ 3, if n ≥ 6. Thus it remains to show
that f(5, 4) ≥ 3. Let c be a minimum UCE-K4 coloring of K5. Consider a copy K
of K4 in K5. It contains an edge e0 of unique color. Let x := c(e0). Either there are
two other colors on the edges of K (and f(5, 4) ≥ 3) or all other edges in this K4 are
of color y 6= x. Consider the latter case. There is another copy of K4 in K5 which
does not contain e0 but three other edges of K. Furthermore, it has an edge e1 of
unique color z 6= y, because there are three edges of color y. But e0 and e1 are
contained in a common K4. It is easy to see that x = z is not possible, because
there are at least two edges of color y as well. Hence, f(5, 4) ≥ 3.

4.2. Constructive Bounds

In this section some explicit constructions of UCE-Kp colorings of Kn, for arbi-
trary p, n ∈ N with p ≥ 2, are presented. They use a number of colors linear in n,
except in case p = 3, where a logarithmic upper bound is obtained. For small n, the
linear upper bound is tight. Furthermore, colorings are considered which are good
not only with respect to Kp for fixed p but for several values of p at the same time.

At Most One New Color for a New Vertex

A common question to ask is the following. Consider fixed p, n ∈ N and a UCE-Kp

coloring c of Kn. How many new colors are necessary and sufficient to extend c to
a UCE-Kp coloring of Kn+1? If the answer to this question is known, it is possible
to deduce either lower bounds or constructive upper bounds on the conflict-free
chromatic index f(n, p) inductively. One can show that at most one new color is
necessary for a good coloring of Kn+1 using the following construction.

Construction 4.1. Let n, p ∈ N with p ≥ 2, let V (Kn) = {v1, . . . , vn}, let c be a
UCE-Kp coloring of Kn and let θ denote a color. Choose a vertex vi ∈ V (Kn) and
define an edge-coloring cvi,θ of Kn+1 with V (Kn+1) = {v1, . . . , vn, vn+1} as follows.
For s, t ∈ N with s, t ≤ n+ 1 define

cvi,θ({vs, vt}) :=





c({vs, vt}) , if s, t ≤ n,

c({vi, vt}) , if s = n+ 1 and t 6= i,

θ , if s = n+ 1 and t = i.
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Lemma 4.5. Let n, p ∈ N and c be a UCE-Kp coloring of Kn. If θ 6∈ c(E(Kn)),
then the coloring cvi,θ of Kn+1 obtained from c by Construction 4.1 is a UCE-Kp

coloring for all vi ∈ V (Kn). In particular,

f(n+ 1, p) ≤ f(n, p) + 1.

Proof. Let V (Kn) = {v1, . . . , vn} and V (Kn+1) = {v1, . . . , vn, vn+1}. Further let c
be a UCE-Kp coloring of Kn and c′ := cvi,θ an edge-coloring of Kn+1 obtained by
Construction 4.1 from c. Then c′ equals the coloring c on all edges connecting
vertices from {v1, . . . , vn}. All edges connecting vn+1 to some vertex vj 6= vi are
colored like the corresponding edge connecting vi and vj. Hence, the edges incident
to vn+1 look like a copy of the edges incident to vi. Thus, c′ equals the coloring c
on all edges connecting vertices from {v1, . . . , vi−1, vi+1, . . . , vn+1}. Finally, a new
color θ 6∈ c(E(Kn)) is assigned to the edge connecting vn+1 and vi. Altogether,
the coloring cvi,θ is a UCE-Kp coloring of Kn+1, which uses exactly one more color
than c. Hence, f(n + 1, p) ≤ f(n, p) + 1, by choosing a minimum good coloring c
of Kn.

Note that cvi,θ does not need to be a minimum UCE-Kp coloring of Kn+1. Construc-
tion 4.1 may be iterated to receive a UCE-Kp coloring of an arbitrary large Kn, e.g.
starting with the known good coloring on Kp. The number of colors that is used by
the resulting coloring is stated in the following corollary.

Corollary 4.6. Let n, p ∈ N with 2 ≤ p ≤ n. Then f(n, p) ≤ n− p+ 2 holds.

Proof. In case p = 2 the bound is trivial, since f(n, 2) = 1 due to Corollary 4.1.
For fixed p ≥ 3 the upper bound is proven by induction on n. Consider the basic
case n = p. Due to Corollary 4.1, f(p, p) = 2 = p− p+ 2 is known.
Suppose f(n0, p) ≤ n0 − p+ 2 holds for a fixed n0 ≥ p. Due to Lemma 4.5

f(n0 + 1, p) ≤ f(n0, p) + 1 ≤ n0 − p+ 2 + 1 = (n0 + 1)− p+ 2.

Hence, f(n, p) ≤ n− p+ 2 for all n, p ∈ N with 2 ≤ p ≤ n.

For a special choice of the copied vertex vi in Construction 4.1, the following coloring
is obtained. It is defined explicitly here. The equivalence to Construction 4.1 is
shown in the subsequent lemma. The coloring is illustrated in Figure 4.3.

Construction 4.2. Let n, p ∈ N with 3 ≤ p ≤ n, V (Kn) = {v1, . . . , vn} and s, t ∈ N
with 1 ≤ s < t ≤ n. Define an edge-coloring of Kn by

c({vs, vt}) :=

{
0 , if 1 ≤ s ≤ p− 2,

s− p+ 2 , if p− 1 ≤ s < n.

Lemma 4.7. Let n, p ∈ N with 3 ≤ p ≤ n. The coloring obtained by Construc-
tion 4.2 is a UCE-Kp coloring of Kn and uses n− p+ 2 colors.
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v1 v2 vp−2 vp−1 vp vn−1 vn

0

1

2

}
}
}

. . . . . .
Figure 4.3.: A UCE-Kp coloring of Kn with n− p+ 2 colors.

Proof. Let V (Kn) = {v1, . . . , vn} and let c denote a coloring obtained by Construc-
tion 4.2. The coloring c has the following structure. For each vertex vs ∈ V (Kn) all
edges to vertices vt ∈ V (Kn), with t > s, are of the same color. If s ≤ p− 2, this is
color 0, otherwise it is color s− p+ 2. Hence, this color is distinct for all vertices vs
with index greater than p− 2. Thus the number of colors equals (n− 1)− (p− 3) =
n − p + 2 (note that there is no vertex with index lager than n and hence no edge
from vn to such a vertex).

In the remaining part it is shown that c is a UCE-KP coloring of Kn. If n = p, the
coloring has exactly one edge e of color 1 and all other edges are of color 0. Hence, c
is good. If n > p, the coloring c is obtained from the coloring of the case before by
iteratively applying Construction 4.1 as follows. In the first step choose one of the
endpoints of e. Afterwards, choose the vertex which was added to the graph just in
the step before. Let vi be the vertex chosen in step i. A new color is introduced in
each step. It is assigned to all edges connecting vi to all vertices, that are introduced
in the subsequent steps. Thus, both constructions are equal and c is a good coloring
due to Lemma 4.5.

Using Partitions

Another approach to construct a UCE-Kp coloring divides the vertices of Kn into
two parts. The parts are chosen in such a way that there is one part that contains
at least two vertices (and hence one edge) from each choice of p vertices of Kn. A
coloring of this part which is good with respect to Kt for all t ≤ p can be extended
to a UCE-Kp coloring for the whole Kn with only one additional color.

Lemma 4.8. Let n, p, k ∈ N. If there is an edge-coloring of Kn−p+2 which is a
UCE-Kt coloring for all t ∈ N with 2 ≤ t ≤ p using k colors, then there is a
UCE-Kp coloring of Kn using k + 1 colors.

Proof. Let c denote an edge-coloring of Kn−p+2 which is a UCE-Kt coloring for
all t ∈ N with 2 ≤ t ≤ p. Consider an arbitrary copy K ⊆ Kn of Kn−p+2 and color
the edges of K according to c. Color all other edges in E(Kn) \ E(K) with a color
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not used by c. Let c′ denote the resulting coloring of Kn. There are exactly p − 2
vertices of Kn not contained in K. Hence, at least two vertices from each copy of Kp

in Kn are contained in K. The coloring c provides a uniquely colored edge e for the
part of Kp contained in K. Since all edges in E(Kn) \ E(K) are colored differently
from the edges in K, the edge e has unique color in the whole copy of Kp. Thus c′

is a UCE-Kp coloring of Kn.

Of course, the requirement to be a UCE-Kt coloring for all t ≤ p is much more
restrictive than to be a UCE-Kp coloring for p only. As it turns out, Construction 4.1
can be used to build colorings satisfying this condition.

Lemma 4.9. Let n, λ ∈ N with 2 ≤ λ ≤ n. There is an edge-coloring of Kn using
at most n− λ+ 2 colors which is a UCE-Kt coloring of Kn for all t ∈ {λ, . . . , n}.

Proof. The lemma is proven by induction on n. In the basic case n = 2, there is only
one edge to be colored. In particular, every coloring of this K2 is a good coloring
with respect to Kt for all t ∈ {λ, . . . , n}, because 2 ≤ λ ≤ n = 2.
Consider the case n ≥ 3. Two cases are distinguished. If λ = n, it is sufficient to
color one edge of Kn differently from all other edges. This coloring uses 2 = n−λ+2
colors and is a UCE-Kt coloring for all t ∈ {λ, . . . , n} = {n}.
If λ < n, there is an edge-coloring c of Kn−1 using at most (n−1)−λ+2 colors which
is a UCE-Kt coloring of Kn−1 for all t ∈ {λ, . . . , n− 1} by the induction hypothesis.
Let v ∈ V (Kn−1) and let θ denote a color not used by c. Applying Construction 4.1
to c using the vertex v and the new color θ yields an edge-coloring c′ ofKn. According
to Lemma 4.5, the coloring c′ is good with respect to all Kt with t ∈ {λ, . . . , n− 1}.
Furthermore, color θ is assigned to exactly one edge in Kn. Hence, c′ is a UCE-Kn

coloring as well.
Since c uses at most (n − 1) − λ + 2 colors, the coloring c′ uses at most n − λ + 2
colors.

Using these results it is possible to construct a UCE-Kp coloring of Kn. As is turns
out this coloring uses n−p+2 colors and hence yields the same upper bound on the
conflict-free chromatic index f as the constructions before. With λ := 3, Lemma 4.9
provides an edge-coloring c of Kn−p+2 using n − p + 1 colors, which is a UCE-Kt

coloring for all t ∈ {3, . . . , n}. Since every edge-coloring is a UCE-K2 coloring, c
can be extended to a UCE-Kp coloring of Kn that uses n − p + 2 colors due to
Lemma 4.8.

Exact Value for Small n

So far, a constructive, linear upper bound on the conflict-free chromatic index f was
determined. As it turns out this bound is tight, if n is sufficiently small. Due to
Lemma 4.5 it is known, that f(n, p) either increases by 1 or remains at the same
value for f(n + 1, p). The next lemma characterizes the case that a new color is
necessary. Afterwards, this characterization is used to show, that the upper linear
bound f(n, p) ≤ n− p+ 2 from Corollary 4.6 is tight, if p ≤ n ≤ 5

4
p− 2.
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Lemma 4.10. Let n, p ∈ N with 2 ≤ p ≤ n. Then f(n+ 1, p) = f(n, p) + 1, if and
only if there is a minimum UCE-Kp coloring of Kn+1 that has a star color class.

Proof. Consider a minimum UCE-Kp coloring c of Kn+1 in k := f(n + 1, p) colors
with a star color class A with center v ∈ V (Kn+1). Removing v from Kn+1 induces
a UCE-Kp coloring c′ of Kn in k − 1 colors. Since c is minimum and the minimum
number of sufficient colors may drop by at most 1 due Lemma 4.5, the induced
coloring c′ is minimum as well. Hence, f(n+ 1, p) = f(n, p) + 1.

If f(n + 1, p) = f(n, p) + 1, let c denote a minimum UCE-Kp coloring of Kn.
Construction 4.1 applied to c with a new color θ 6∈ c(E(Kn)) provides a UCE-Kp

coloring c′ of Kn+1. The coloring c′ uses exactly one color more than c. Hence, it
is minimum. Furthermore, color θ is assigned exactly to one edge. This proves the
lemma, since a single edge of own color is always a star color class.

The lemma may be restated as follows. Each color class of a minimum UCE-Kp

coloring of Kn+1 needs to contain two non adjacent edges, if f(n + 1, p) = f(n, p).
In particular, there is no color class consisting of a single edge only. But if the
number of colors is small, two edges of each color may be put into a common copy
of Kp. This is the key observation for the proof of the following theorem. Note that
in case p = 2 one color is sufficient in any case.

Theorem 7. Let n, p ∈ N with 3 ≤ p ≤ n. If n ≤ 5
4
p− 2, then f(n, p) = n− p+ 2.

Proof. If n ≤ 5
4
p−2, the linear upper bound from Corollary 4.6 implies f(n, p) ≤ p

4
.

Let c be a minimum UCE-Kp coloring of Kn. Assume each color class contains at
least two edges. Then, two arbitrary edges from each color class may be put into
a common copy of Kp, since c uses at most p

4
colors. But this copy of Kp in Kn

would be bad. Hence, there is a color class consisting of a single edge only. Due to
Lemma 4.10, f(n, p) = f(n− 1, p) + 1 holds for all p ≤ n ≤ 5

4
p− 1.

This yields f(n, p) = n−p+2 for all p ≤ n ≤ 5
4
p−1 by induction on n. In the basic

case n = p, the value f(n, p) = 2 = n−p+2 is known due to Corollary 4.1, part C3)
(since p ≥ 3 by assumption). If p < n ≤ 5

4
p−1, the value f(n−1, p) = (n−1)−p+2

is known due to the induction hypothesis. Hence, f(n, p) = f(n−1, p)+1 = n−p+2
holds.

Logarithmic Upper Bound on Triangles

It was proven in Lemma 4.5 that every coloring cvi,θ obtained from a good coloring
by Construction 4.1 is good, if θ is a new color. The key observation for the following
lemma is that in case of triangles K3 a new color is not necessary in every step.

Lemma 4.11. Let n ∈ N. Then f(n, 3) ≤ dlog2(n)e.

Proof. Let c be a UCE-K3 coloring of Kn and θ ∈ c(E(Kn)) a color assigned to an
edge by c. First of all, the following claim is proven. If there is a vertex v ∈ V (Kn)
with c(e) 6= θ for all edges e ∈ E(Kn) incident to v, then the coloring cv,θ obtained
by Construction 4.1 from c is good. For the proof consider a copy ∆ of K3 in Kn+1.
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Let v′ denote the new vertex which was added to Kn in the construction. If ∆ does
not contain v and v′ together, it has a uniquely colored edge, since it corresponds to
a triangle in the original Kn. If ∆ contains both vertices, then let u denote the third
vertex in V (∆). By construction, cv,θ assigns the same color to both edges incident
to u in ∆. Furthermore, one of these two edges is incident to v and was contained
in the original Kn, already. Since the same color is assigned to this edge by c and
cv,θ, the color does not equal θ due to the choice of θ. Because θ is assigned to the
edge {v, v′} ∈ E(∆), this edge is of unique color in ∆. Altogether, cv,θ is a UCE-K3

coloring of Kn+1.

In particular, a new color is not necessary in every iteration of Construction 4.1.
Each time if there is a vertex which is not incident to edges of every color, a color
may be reused. The coloring cv,θ of Kn+1 obtained from Construction 4.1 assigns
color θ exactly to one edge incident to v and the new vertex of Kn+1. The color is not
assigned to any other edge to which it was not assigned before by c. Hence, if there
are q vertices in Kn which are not incident to an edge of color θ, Construction 4.1 can
be repeated q times using color θ. With this observation an upper bound f(2i, 3) ≤ i
for i ∈ N is proven next, by induction on i. In case i = 1, one color is sufficient for
a good coloring of K2 since there is no copy of K3 in K2. Consider the case i = 2.
A minimum UCE-K3 coloring of K3 assigns color 1 to two edges and color 2 to the
third edge. Hence, one vertex u of this K3 is not incident to an edge of color 2.
Thus, the coloring cu,2 obtained by Constrcution 4.1 from this coloring is a good
coloring of K4. In particular, f(4, 3) = f(22, 3) ≤ 2.
If i > 2, let c be a minimum good coloring of K2i−1 . By induction hypothesis, it uses
at most i− 1 colors. Let θ denote a color not used by c. Then Construction 4.1 can
be applied 2i−1 times using color θ as argued above. The resulting UCE-K3 coloring
of K2i uses one color more than c. Hence, f(2i, 3) ≤ i.

Finally, a good coloring of Kn, for n, i ∈ N with 2i < n < 2i+1, is obtained as an
induced coloring from a good coloring ofK2i+1 . In particular f(n, 3) ≤ dlog2(n)e.
The same upper bound as in the previous lemma can be obtained as follows. Con-
sider two copies of Kn, each with the same UCE-K3 coloring c. Let θ be a color
not used by c. A good coloring of K2n is created by assigning θ to every edge
connecting two vertices of the distinct copies of Kn. Then every triangle is either
entirely contained in one of the copies of Kn, or contains exactly one edge from one
of these copies. In both cases it contains a uniquely colored edge. Since the number
of vertices is doubled with only one new color, the same upper bound as above is
obtained.

4.3. Ramsey Theory

Two different relations of conflict-free colorings to Ramsey theory were established in
Section 2.3. Classical (inverse) multicolor Ramsey numbers yield a lower bound on
the conflict-free chromatic index, since every UCE-H coloring is a (graph) Ramsey
coloring with respect to H as well. This bound was already stated for complete
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graphs in Corollary 4.1, C6). Few general bounds on multicolor Ramsey numbers
are known, but in case of triangles K3 there are. Furthermore, the conflict-free
chromatic index equals the inverse multicolor Ramsey number, due to Lemma 2.15
in this case, since K3 has only three edges. Thus, also upper bounds on the conflict-
free chromatic index f(n, 3) and upper bounds on Rinv

3 (n) are related. The following
corollary states the best known results (as far as they are known to the author).

Corollary 4.12. There is an n0 ∈ N, such that for all n ≥ n0

ln(n)

ln ln(n)
< f(n, 3) ≤ dlog3.199(n)e.

Proof. Due to Corollary 4.1, C6), f(n, 3) is bounded from below by the classic inverse
multicolor Ramsey number. An upper bound on Rk(3) is λ · k!, for a constant λ
with 2 ≤ λ ≤ e [31]. Each integer k with Rk(3) ≤ n is a lower bound on the inverse
Ramsey number, i.e. k < Rinv

3 (n). Hence, the inverse of k! is needed to use this upper
bound. Bounds on this inverse are calculated in Section A.3 of the appendix. The
best result is stated in Lemma A.7. With n ∈ N sufficiently large, λ · ( ln(n)

lnln(n)
))! ≤ n

holds. Hence, f(n, 3) > ln(n)
ln ln(n)

holds for an n0 ∈ N and all n ≥ n0.

Due to Lemma 2.15, the inverse multicolor Ramsey number Rinv
3 (n) is an upper

bound on f(n, 3) as well. In the literature there are such bounds which do im-
prove the upper bound of f(n, 3) ≤ dlog2(n)e known from Lemma 4.11 above. They
are obtained as inverses of lower bounds on the classical multicolor Ramsey num-
ber Rk(3). The lower bound on the multicolor Ramsey number Rk(3) > (3.199)k

is established asymptotically in k (using Schur numbers) [33]. Hence, there is an
upper bound f(n, 3) = Rinv

3 (n) ≤ dlog3.199(n)e for sufficiently large n. This holds,
because dlog3.199(n)e is the smallest of all integers k with (3.199)k > n.

A generalized version of Ramsey theory provides upper bounds on the conflict-free
chromatic index. In Lemma 2.17 it is stated that a graph H with more than |E(H)|

2

distinct colors contains a uniquely colored edge. Hence, each coloring which sat-
isfies this condition for all copies of Kp in Kn is a UCE-Kp coloring of Kn. This
generalization of Ramsey theory was developed by Erdős in [11] and later together
with Gyárfás in [12]. First, a probabilistic result is presented for the general case.
Afterwards, an explicit construction for the case p = 4 is shown. The following
theorem is obtained from Corollary 2.19 by plugging in the number of edges of Kp.

Theorem 8. Let n, p ∈ N with 2 ≤ p ≤ n. There is a constant cp ∈ R depending
on p but not on n, such that

f(n, p) ≤ cp · n
4
p .

Explicit Construction for K4

A better upper bound is known in case of K4, due to an explicit construction. Again,
the fact from Lemma 2.17 is used that four colors on the six edges of K4 guarantee
an edge of unique color. A construction of such a coloring is given by Mubayi in [22]
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and is reviewed next. The coloring is created as a product coloring of two different
colorings. One part is called Symmetric Subset Ranking coloring (SSR coloring) and
described first. The other part is called Algebraic aoloring and presented afterwards.

Construction 4.3 (SSR coloring, [22]). Let N, r ∈ R and G be a graph with ver-
tices V (G) ⊆

(
N
r

)
, i.e. each vertex is an r-element set of integers from {1, . . . , N}.

For each set in V (G) an arbitrary linear ordering of its proper subsets is fixed. For
distinct vertices A,B ∈ V (G), let R ∈ {A,B} denote the set which contains the
minimum element of their symmetric difference A4B := (A \ B) ∪ (B \ A). Then
let S 6= R denote the other set in {A,B}. The SSR coloring c assigns a four dimen-
sional vector (c0, c1, c2, c3) to an edge {A,B} ∈ E(G) with

• c0({A,B}) := min(A4B),

• c1({A,B}) is the rank of A ∩B in the linear ordering of subsets of R,

• c2({A,B}) is an arbitrary element in S \R,

• c3({A,B}) is the rank of A ∩B in the linear ordering of subsets of S.

Mubayi proves several properties of this coloring. First of all, a coloring of Kn

uses less than e2
√

2 log(4) log(n)·(1+o(1)) colors, for appropriate choice of N, r ∈ N in the
construction. Furthermore, the coloring assigns at least three colors to every copy
of K4 in Kn. The last property is proven by discovering several configurations of
colors on the edges of K4 that do not occur in a SSR coloring.
The algebraic coloring is defined as follows.

Construction 4.4 (Algebraic coloring, [22]). Let q be an odd prime power, F the
field on q elements and G be a graph with V (G) ⊆ F ×F . For vertices A = (a1, a2)
and B = (b1, b2) let δ(A,B) := 1, if a1 = b1, and δ(A,B) := 0 otherwise. The alge-
braic coloring of an edge {A,B} ∈ E(G) is the two dimensional vector c({A,B}) :=
(a1b1 − a2 − b2, δ(A,B)).

Again several properties of this coloring are proven. Particularly, there are sev-
eral configurations of colors on K4 which do not occur. The coloring uses at
most (2 + o(1))

√
n colors on the edges of Kn. This coloring is modified to get

rid of another certain configuration of colors in K4 by dividing several color classes
into two distinct ones. The resulting coloring is called Divided Algebraic coloring.
It uses at most twice the number of colors used by the original algebraic coloring.

Finally, the product of these two colorings is considered. Let c denote a SSR coloring
of Kn and c′ a Divided Algebraic coloring of Kn. The product coloring of an edge e
is defined as c∗(e) := (c(e), c′(e)). By considering the configurations of colors which
do not occur, it is shown that this product coloring assigns at least four colors to

the edges of each K4 in Kn. Furthermore, it uses at most
√
n · ec·

√
log(n) colors for

an absolute constant c ∈ R. This yields the following corollary.

Corollary 4.13 (Theorem 1, [22]). There is a constant c ∈ R, such that for all n ∈ N

f(n, 4) ≤ √n · ec·
√

log(n).
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Ks

v

Figure 4.4.: A (red) monochromatic star on s edges with center v. If the coloring is
a UCE-Kp coloring it is a UCE-Kp−1 coloring on the complete graph Ks

induced by the leaves of the monochromatic star.

4.4. Monochromatic Stars

During the last sections mainly upper bounds were determined. This section deals
with an observation that allows derivation of lower bounds. The following is the key
observation of this approach.

Lemma 4.14. Let n, p ∈ N with p ≥ 3 and c a UCE-Kp coloring of Kn. If there is
a monochromatic star with s ≥ p− 1 leaves, then c uses at least f(s, p− 1) colors.

Proof. Let Ks be the subgraph of Kn induced by the s leaves of a monochromatic
star and v the center of this star. Further let K be a copy of Kp−1 in Ks. Such a
copy exists, since s ≥ p − 1. Then K forms a copy of Kp in Kn together with v
and the edges connecting v to vertices in K. Denote this copy by K ′ and the set
of edges connecting v to K by E(v,K). Since c is a UCE-Kp coloring of Kn, there
must be an edge e of unique color in K ′. Because p ≥ 3, there are more than two
edges in E(v,K) and all have the same color. Hence, e has to be contained in K.
Moreover, it is of unique color within K too. Thus, c is a UCE-Kp−1 coloring of Ks,
due to the arbitrary choice of K. Hence, c uses at least f(s, p− 1) colors.

Figure 4.4 shows an example of such a monochromatic star. Now, the task is to
determine the size of monochromatic stars. There are different ways to estimate
this number. Two similar ones are used in the following lemmas.

Lemma 4.15. Let p ∈ N with p ≥ 3. Then there is n0 ∈ N, such that for all n ≥ n0

f(n, p) ≥ f(

⌈
n− 1

f(n, p)

⌉
, p− 1).

Proof. Due to the pigeonhole principle, there is a monochromatic star on d n−1
f(n,p)

e
edges in each minimum UCE-Kp coloring of Kn. The upper bound f(n, 3) ≤
dlog2(n)e is known from Lemma 4.11. The upper bound f(n, 4) ≤ √n · ec·

√
log(n)

is known from Lemma 4.13 for a constant c ∈ R. Theorem 1 provides a sub-
linear upper bound on f(n, p) for fixed p ≥ 5. Altogether, there is an n0 ∈ N,
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such that n−1
f(n,p)

≥ p − 1 for all n ≥ n0 and p ≥ 3. Hence, Lemma 4.14 im-

plies f(n, p) ≥ f(d n−1
f(n,p)

e, p− 1) for all n ≥ n0.

A very similar approach of estimating the size of monochromatic stars is stated in
the following lemma. Note that the right hand side of the inequality stated there
does not contain f(n, p) any more.

Lemma 4.16. Let p ∈ N with p ≥ 3. There is n0 ∈ N, such that for all n ≥ n0

f(n, p) ≥ f(

⌈
n− 1

f(n, p− 1)

⌉
, p− 1).

Proof. Either f(n, p) > f(n, p − 1), or not. The lemma holds in the first case,
since f(n, p − 1) ≥ f(d n−1

f(n,p−1)
e, p − 1), due to Corollary 4.1 C5). In the latter

case,
⌈

n−1
f(n,p)

⌉
≥
⌈

n−1
f(n,p−1)

⌉
holds. Hence this lemma follows from Lemma 4.15.

The following lower bound on the conflict-free chromatic index f(n, p) is obtained
from Lemma 4.15.

Theorem 9. For p ∈ N exist constants cp ∈ R and np ∈ N, such that for all n ≥ np

f(n, p) ≥ cp ·
ln(n)

ln ln(n)
.

Proof. In case p = 3 the lower bound is already known from Corollary 4.12.

The case p > 3 is proven by induction on p. Theorem 8 provides the upper

bound f(n, p) ≤ cp · n
4
p for a constant cp ∈ R and all n ∈ N. The induction

hypothesis yields a lower bound f(n, p − 1) ≥ c ln(n)
ln ln(n)

for a constant c ∈ R and
all n ≥ n0. Lemma 4.15 provides the following. For sufficiently large n ∈ N there
are constants c′p, c̃p ∈ R, such that

f(n, p) ≥ f(

⌈
n− 1

f(n, p)

⌉
, p− 1) ≥ c ·

ln( n−1

cp·n
4
p

)

ln ln( n−1

cp·n
4
p

)
≥ c · ln(c′p · n1− 4

p )

ln ln(n)
≥ c̃p ·

ln(n)

ln ln(n)
.
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5. Conclusion

This diploma thesis deals with a new variant of conflict-free colorings. For a given
graph H the edges of another graph G shall be colored, such that every copy of H
in G contains an edge of unique color (i.e. no other edge in this copy of H is of
the same color). If the number of available colors is too small, this is not possible
in most cases. On the other hand, a total multicoloring of G is good in this sense
in any case. Hence, the minimum number f(G,H) of sufficient colors is of interest.
In accordance to the (classical) chromatic index of a graph it is called conflict-free
chromatic index (with respect to H).

Since the conflict-free chromatic index of a graph with respect to a path on two edges
equals the (classical) chromatic index, it is NP-hard to decide whether k colors are
sufficient in general. There is an efficient approximation of the (classical) chromatic
index which uses at most one color more than an optimal solution. The question
whether a similar result holds for the conflict-free chromatic index remains open.

Nevertheless, an upper bound of f(G,H) ≤ (∆H(G) + 1)
2

|E(H)| is established asymp-
totically in the maximum H-degree ∆H(G) (i.e. the maximum number of copies
of H in G sharing an edge with a fixed copy of H in G). It is determined using a
generalization of Ramsey theory and probabilistic arguments. The question for a
lower bound remains open in this general setting. In particular, it is not clear in
which parameters of the graphs such a lower bound may be found.

This notion of conflict-free edge-colorings of graphs can be translated to the notion
of conflict-free vertex-colorings of hypergraphs, which was introduced by Even et.
al [13]. Therefore, a hypergraph is created with the edges of the original graph G as
vertices and a hyperedge for each copy of H in G. Then, the conflict-free colorings
of G with respect to H and conflict-free colorings of the hypergraph are equivalent.
So lots of already known results for conflict-free colorings of hypergraphs apply to
conflict-free colorings for certain graphs G and H and vice versa. In particular, the
upper bound stated above improves upon the best known result for the conflict-free
chromatic number of uniform hypergraphs.

Two specific settings are studied afterwards, paths as subgraphs of trees and com-
plete graphs with complete subgraphs. These two are very different in structure.
For paths in trees there are upper bounds on the conflict-free chromatic index that
are independent from the height of the tree (and hence up to some extent from
the number of vertices). For paths on an odd number m ∈ N of edges the upper
bound f(T, Pm) ≤ dm

2
e holds for all trees T . This bound is independent from the

tree at all. Moreover, it is tight for sufficiently large d ∈ N on a complete d-ary tree
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of sufficient height. For paths on an even number of edges m ∈ N the maximum
degree is essential. In this case f(T, Pm) ≤ m

2
+∆(T )−1 holds for all trees T . There

are also lower bounds in terms of the maximum degree of the tree.
The independence from the height of the tree holds, because a path (of fixed length)
in a tree covers only nearby edges and vertices. So the problem is very local in this
case. Hence, the (local) structure of the tree is important and of more interest than
the extremal behavior in global parameters.

For complete graphs the best known upper bound is derived from the general one

given above. For n, p ∈ N and a constant cp ∈ R it yields f(Kn, Kp) ≤ cp · n
4
p . In

particular, the maximum Kp-degree ∆p(n) of Kn increases for fixed p, if n increases.
This holds, because every choice of p vertices in V (Kn) yields a copy of Kp in Kn.
Hence, the problem is inherently global in this case. With a constant cp ∈ R a lower

bound of f(Kn, Kp) ≥ c′p · ln(n)
ln ln(n)

is derived by considering large monochromatic
stars. The question how this large gap between upper and lower bound may be
closed remains open. Since tight relations between (inverse) Ramsey numbers and
the conflict-free chromatic index are established, answers to this question would
have implications in Ramsey theory as well.

Following studies might consider paths in complete graphs. A general lower bound
and an upper bound for paths on an odd number of edges are shown in the appendix
in Section A.2.
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A. Omitted Proofs

A.1. Pach and Tardos Theorem

In the following the proof of a Theorem by Pach and Tardos is reviewed. In particular
it contains several calculations which are not presented in [23].

Lemma 2.9 (Theorem 2, [23]). Let t ∈ N and let H be a hypergraph whose edges
have at least 2t− 1 vertices each. There is a constant c ∈ R, such that

χcf (H) ≤ c · t ·D(H)
1
t · log(D(H)).

Proof. In the following the proof in [23] is summarized. If t ≥ D(H), a better upper
bound is known due to Lemma2.7. Note that ∆(H) ≤ D(H). So assume t < D(H)
for the rest of the proof.

A geometric distribution is used to color the vertices and Lovasz’s Local Lemma is
used to prove the bound. When using the geometric distribution the total number
of colors is not fixed. The coloring assigns integers to the vertices and this is done
in the following way. Choose p ∈ [0, 1]. Start with color 1 and flip a coin for
each vertex, such that head comes up with probability p. If the coin shows head,
color the vertex with color one, otherwise leave it uncolored. Then take the next
color and process all yet uncolored vertices as in the step before. This is repeated
until every vertex is colored. Altogether, the probability that a vertex is of color k
is p · (1− p)k−1. Note that among all colors, color one has the highest probability.

The hypergraph H is colored in two steps. First of all the following subhyper-
graph is colored. Consider all edges in E(H) one after the other and select 2t − 1
vertices in each edge. Let V ′ ⊆ V (H) denote the set of all selected vertices
and H′ := (V ′, E(H) ∩ V ′) the hypergraph induced by V ′. A conflict-free color-
ing of H′ can be extended to a conflict-free coloring of H with one additional color.
An edge in H′ contains at most (2t− 1)(D(H) + 1) vertices.

Let T := c · t ·D(H)
1
t · log(D(H)) denote the desired bound on the number colors.

In order to proof the lemma the following two bad events need to be considered.
Let Pbad denote the probability that a given hyperedge receives no unique color. Fur-
ther let P>T the probability that a color larger than T is assigned to a given vertex.
Note that both events may occur simultaneously. In the following upper bounds in
terms of D(H) and t are derived on both probabilities. Choose p = 1

D(H)
1
t ·30t

.
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There is a constant c ∈ R, such that

P>T = (1− p)T ≤ (1− 1

(D(H))
1
t · 30t

)c·t·(D(H))
1
t ·log(D(H)) ≤ e

−c·t·(D(H))
1
t ·log(D(H))

(D(H))
1
t ·30t

= e
−c·log(D(H))

30 =
1

(D(H))
c
30

<
1

30 · (D(H))3
.

Next, an upper bound on Pbad is established. For a given hyperedge E ∈ E(H)′ two
cases are distinguished based on the number N of vertices in E .

Consider the first case N = 2t − 1. If there are more than t − 1 distinct colors
in E , there is at least one vertex of unique color. Hence, Pbad may be bounded from
above by the probability that there are at most t − 1 colors in E . Let Pk denote
the probability that a geometric coloring c of E uses exactly k colors. In order to
estimate this probability all possible partitions of N vertices into k color classes are
considered. This number is at most kN

k!
≤ ( e

k
)k · kN (”labeled vertices, unlabeled

color classes”). Let Ppart denote the probability that a given partition V1∪̇ . . . ∪̇Vk
corresponds to the color classes of the geometric coloring c. Then

Pk ≤
( e
k

)k
· kN · Ppart.

Fix a vertex vi in each partition Vi. Noter that the sum occurring in the following
calculation in finite for a given coloring.

Ppart ≤ P (∀i ∈ 1, . . . , k∀v ∈ Vi : c(v) = c(vi))

=
k∏
i=1

∏
v∈Vi

P (c(v) = c(vi))

=
k∏
i=1

∏
v∈Vi\{vi}

∞∑
x=1

P (c(v) = x | c(vi) = x) · P (c(vi) = x)

=
k∏
i=1

∏
v∈Vi\{vi}

∞∑
x=1

p(1− p)x−1 · p(1− p)x−1

=
k∏
i=1

∏
v∈Vi\{vi}

p2

1−(1−p)2

=
k∏
i=1

∏
v∈Vi\{vi}

p
2−p

≤
k∏
i=1

∏
v∈Vi\{vi}

p

= pN−k

Hence Pk ≤ ek · (kp)N−k =: Xk. In order to find an upper bound on the probability
of assigning at most t− 1 colors to N vertices the sum over these Pk is considered.
The following estimate on the upper bound is used.

t−1∑

k=1

Xk

Xt−1

≤
t−1∑

k=1

ek−t+1 · kN−k

(t− 1)N−t+1
· pt−1−k ≤

t−1∑

k=1

ek−t+1 = e2−t e
t−1 − 1

e− 1
= 1
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This calculation shows that
t−2∑
k=1

Xk ≤ Xt−1. Hence,

Pbad ≤
t−1∑

k=1

Pk ≤ 2 ·Xt−1 ≤ 2 · et−1 · ((t− 1)p)2t−1−(t−1) ≤ (etp)t.

Consider the second case N ≥ 2t. Let S denote the set of those 2t vertices in E
that receive their color last. Only one of the colors assigned to these vertices may
be assigned to vertices in E \ S, because each color is assigned in exactly one step
of the geometric coloring as it is described above. Hence, if there is more than one
vertex of unique color in S, there is a vertex of unique color in the complete edge.
Similar to the first case Pbad is bounded from above by the probability that there
are at most t colors on the vertices on S. Considering the same probabilities Pk as
above (but for 2t elements) yields Pbad ≤ 2(etp)t.

Altogether the calculations yield

Pbad ≤ 2(
e · t

(D(H))
1
t · 30t

)t ≤ (
2e

30
)t

1

D(H)
<

1

5 ·D(H)
.

If D(H) > t ≥ 1, the joint probability that an edge is bad or a color larger than T
is assigned to a vertex in this edge is bounded from above by

Pbad + (2t− 1)(D(H) + 1) · P>T =
1

5 ·D(H)
+

(2t− 1)(D(H) + 1)

30 · (D(H))3

=
1

D(H) + 1
· (1

5

D(H) + 1

D(H)
+

1

30

(2t) · (D(H) + 1)

(D(H))3
) ≤ 1

D(H) + 1
· (1

5
· 3

2
+

1

30
· 6

4
)

<
1

D(H) + 1
· 1

e
.

Thus there is a conflict-free coloring using at most T colors due to Lovasz Local
Lemma.

A.2. Paths in Complete Graphs

In this section edge-colorings of complete graphs are studied, which ensure an edge
of unique color in each copy of a fixed path. First of all, a corollary to Lemma 2.20
for paths on two edges is given. The corollary holds, because the chromatic index
of a complete graph on n vertices equals n if n is odd and n− 1 if n is even [3].

Corollary A.1. Let n ∈ N with n ≥ 2. Then

f(Kn, P2) =

{
n , if n odd

n− 1 , if n even.

63



Diploma-Thesis: Conflict-Free Colorings Jonathan Rollin

Using the extremal number for paths (each color class does not contain a path) one
can determine a linear lower bound. The following result is due to Faudree and
Schelp [14].

Lemma A.2 (second Theorem, [14]). Let n,m ∈ N. Then

ex(n, Pm) ≤ (m− 1)
n

2
.

If m|n, the extremal graphs are exactly the disjoint unions of Km.

The following result is a direct consequence of Lemma A.2.

Corollary A.3. Let n,m ∈ N. Then

f(n, Pm) ≥ n− 1

m− 1
.

Proof. Due to Lemma A.2 and the pigeonhole principle the following holds:

f(n, Pm) ≥ |E(Kn)|
ex(n, Pm)

≥ n− 1

m− 1
.

For paths on an odd number of edges a construction from Chapter 4 can be used.

Lemma A.4. Let n,m ∈ N with n ≥ 2 and m odd. Then

f(n, Pm) ≤ n− 1.

Proof. Let c denote a UCE-K3 (i.e. p := 3) coloring of Kn with V (Kn) = {v1, . . . , vn}
obtained by Construction 4.2. For each i ∈ N with 1 ≤ i < n the same color is
assigned to all edges {vi, vj} ∈ E(Kn) in case j > i. Moreover, different colors are
used for distinct indices i. It is proven next, that the coloring c is a UCE-Pm coloring
of Kn. If m ≥ n, this holds trivially, because there is no copy of Pm in Kn.

Consider the case m > n and a copy P of Pm in Kn. The path P has a uniquely
colored edge, if and only if there is a vertex vi ∈ V (Kn), such that there is exactly
one vertex vj ∈ V (Kn) with j > i and the edge connecting vi and vj is in P . The
leaves of P are of degree 1 in P , all other vertices in P are of degree 2. Assume P
is bad. Then, both leaves are adjacent in P to vertices of smaller index in V (Kn)
(otherwise the color of the connecting edge is unique). But every vertex in P which
is adjacent in P to a vertex of larger index in V (Kn) must be adjacent in P to
another vertex of larger degree in V (Kn). Since vertices are of degree at most 2
in P this is not possible since the number of edge in P is odd. Hence, P is good.

Note that this construction does not work for paths on an even number of edges.
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A.3. Lower Bounds on Inverse Factorial

To calculate Inverse Ramsey Numbers it may be necessary to find a lower bound on
the inverse of the factorial. This happens if the Ramsey Number is bounded from
above by some term including a factorial. Then the necessary number of colors is
bounded from below by lower bounds on the inverse of this term.

Lemma A.5. Let λ > 0 be a constant. For all 0 < c < 1 exists nc ∈ N, such that

λ · (ln(n)c)! ≤ n for all n ≥ nc.

Proof. Let 0 < c < 1 be fixed. If n is large enough, the following holds.

λ · (ln (n)c)! ≤ λ · e1−ln(n)c · ln (n)c·ln(n)c+ c
2

≤ λ · e1−ln(n)c · elnln(n)·(c·ln(n)c+ c
2)

= λ · exp
(
1 + c · ln (n)c · lnln (n) + c

2
· lnln (n)− ln (n)c

)

≤ λ · exp
(
1 + c · ln (n)c · ln (n)1−c + c

2
· lnln (n)− ln (n)c

)

≤ λ exp (1 + c · ln (n))
≤ n

The following calculation shows, that c ≥ 1 does not work anymore.

Lemma A.6. For all c ≥ 1 exists n0, such that (ln(n)c)! > n for all n ≥ n0.

Proof. For large enough n the following holds.

(ln(n)c)! ≥ (ln(n))! ≥
√

2π(ln(n))ln(n)+ 1
2 e−ln(n) > (e2)ln(n) 1

n
≥ n2 1

n
≥ n

There are some functions (asymptotically) between ln(n) and ln(n)c for c < 1. The
following lemma shows a function that is a valid lower bound on the inverse factorial.

Lemma A.7. Let λ > 0 be a constant. For all 0 < c ≤ 1 exists nc ∈ N, such that

λ · (c ln(n)

lnln(n)
)! ≤ n for all n ≥ nc.

Proof. Let 0 < c ≤ 1 be fixed. If n is large enough, the following holds.

λ ·
(
c ln(n)
lnln(n)

)
! ≤ λ · e1−c ln(n)

lnln(n)

(
c ln(n)
lnln(n)

) 1
2

+c
ln(n)

lnln(n)

≤ λ · e1−c ln(n)
lnln(n) (ln (n))

1
2

+c
ln(n)

lnln(n)

= λ · exp
(

1− c ln(n)
lnln(n)

+ lnln (n)
(

1 + c ln(n)
lnln(n)

))

= λ · exp
(

1 + c · ln (n) + lnln (n)− c ln(n)
lnln(n)

)

≤ λ · exp
(

1 + c · ln (n) + c
2
ln(n)
lnln(n)

− c ln(n)
lnln(n)

)

≤ λ · e · n · e
−c

2·lnln(n)

≤ n
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For larger constant factors this is not true any more, as is shown next.

Lemma A.8. For all c > 1 exists nc ∈ N, such that

(c
ln(n)

lnln(n)
)! ≥ n for all n ≥ nc.

Also the following function is too large.

Lemma A.9. For all c > 0 exists nc ∈ N, such that

(c (ln (n)− lnln (n)))! ≥ n for all n ≥ nc.
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