
Weighted Disk Contact Graphs

Diplomarbeit von

Boris Klemz

An der Fakultät für Informatik
Institut für theoretische Informatik

Lehrstuhl Algorithmik I

Gutachter: Dr. Martin Nöllenburg
Zweitgutachter: Prof. Dr. Peter Sanders

Betreuende Mitarbeiter: Dr. Martin Nöllenburg
Dipl.-Inform. Roman Prutkin

Bearbeitungszeit: 1. Mai 2014 – 31. Oktober 2014

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu

Acknowledgements

I want to thank my advisors Dr. Martin Nöllenburg and Dipl.-Inform. Roman Prutkin for
the many hours of interesting discussions and great support in the form of helpful advises
and feedback during the writing process.

I declare that I have developed and written the enclosed thesis by myself, and have not
used sources or means without declaration in the text.

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, 31. Oktober 2014

. .
(Boris Klemz)

Abstract

Disk touching graphs realize graphs by representing each vertex as a disk in the plane such
that disks touch each other if and only if the corresponding vertices are adjacent. Appli-
cation areas for disk graphs include modeling physical problems and visualizing statistical
data. Deciding whether a graph can be realized such that the disks’ radii coincide with
some predefined values or such that the disks cover some specified points in the plane has
been proven to be NP-hard [BK98, AdCC+12].

In this thesis we take a close look at several variations of these two scenarios and analyze
what can be guaranteed for special graph classes. We show that many of the considered
problems remainNP-hard even for very basic graph classes. We thereby strengthen several
previousNP-hardness results and provideNP-hardness proofs for new problem variations.
In particular, we show that it is NP-hard to decide whether a realization with uniform
radii exists even if the input graph is outerplanar and even if a combinatorial embedding
is provided. If not necessarily uniform radii are assigned, the problem becomes NP-hard
even for stars (but can be solved in linear time in a Real RAM model if a combinatorial
embedding is provided). If to-be-covered points are assigned, the recognition problem
remains NP-hard even for trees and if cover points as well as (unit) radii are assigned,
the problem becomes NP-hard, even for paths and, therefore, even if a combinatorial
embedding is provided. On the other hand, we present some linear-time algorithms for
graph class/problem combinations for which we do not prove NP-hardness. For example,
we show that deciding whether a caterpillar can be realized as a disk touching graph with
uniform radii can be decided in linear time.

Deutsche Zusammenfassung

In einer Kreis-Kontaktdarstellung wird ein Graph realisiert, indem jeder Knoten als ein
Kreis dargestellt wird und sich zwei der Kreise genau dann berühren, wenn die entsprechen-
den Knoten benachbart sind. Derartige Darstellungen finden unter anderem Anwen-
dung beim Modellieren physikalischer Prozesse und in der Datenvisualisierung. Es ist
bekannt [BK98, AdCC+12], dass wenn im Vorfeld die Kreisradien spezifiziert oder bes-
timmte Punkte festlegt werden, die von den Kreise abgedeckt werden sollen, es NP-schwer
zu entscheiden ist, ob ein eine Realisierung existiert, die diesen Spezifikationen genügt.

In dieser Diplomarbeit untersuchen wir diverse Variationen dieser zwei Szenarien und
zeigen, dass viele der entsprechenden Entscheidungsprobleme selbst dann noch NP-schwer
sind, wenn die Eingabe auf sehr einfache Graphklassen eingeschränkt wird. Hierdurch
bekräftigen wir einige bisherige Resultate, die sich auf allgemeinere Graphklassen beziehen
und zeigen NP-schwere für neue Problemvarianten. Speziell zeigen wir, dass wenn ein Ein-
heitsradius gefordert wird, das Entscheidungsproblem selbst für außenplanare Graphen
und selbst wenn eine kombinatorische Einbettung gestellt wird NP-schwer bleibt. Für
nicht zwangsläufigerweise einheitliche Radienzuweisungen ist das Problem selbst für Sterne
NP-schwer (kann jedoch in einem Real RAM Modell in Linearzeit gelöst werden, wenn
eine kombinatorische Einbettung zur Verfügung steht). Sind zu überdeckende Punkte
spezifiziert, so ist das Problem selbst für Bäume noch NP-schwer und wenn zusätzlich
(Einheits-) Radien spezifiziert werden, ist es selbst für Pfade (und damit selbst dann,
wenn eine Einbettung gestellt wird) noch NP-schwer zu entscheiden, ob eine Realisierung
existiert. Für einige Graphklassen/Problem Kombinationen, für die nicht NP-schwere
gezeigt wurde, werden außerdem Linearzeit-Algorithmen vorgestellt, zum Beispiel kann in
Linearzeit entschieden werden, ob für einen Caterpillar eine Realisierung mit Einheitsra-
dius existiert.

i

Contents

1. Introduction 1
1.1. Preliminaries . 2

1.1.1. Graph theory . 2
1.1.2. NP-hard problems and the Real RAM model 4
1.1.3. Disk graphs and problem definitions 5

1.2. Related work . 6
1.3. Contribution and section overview . 7

2. Recognition problems with unit radii 9
2.1. Unit Disk Touching Graph Recognition . 9
2.2. Unit Disk Touching Graph Recognition with fixed Embedding 28

3. Recognition problems with fixed radii 31
3.1. Disk Touching Graph Recognition with fixed Radii 31
3.2. Disk Touching Graph Recognition with fixed Radii and Embedding 47

4. Recognition problems with fixed seeds 51
4.1. Disk Touching Graph Recognition with fixed Seeds 51
4.2. Unit Disk Touching Graph Recognition with fixed Seeds (and Embedding) . 55

5. Conclusion 61

Bibliography 63

Appendix 65
A. Theorem 7 . 65

A.1. Calculations for Condition 3.3 and Condition 3.5 65
A.2. Calculations for Condition 3.2 . 66
A.3. Calculations for Condition 3.4 . 66
A.4. Upper bounds for Condition 3.2 and Condition 3.4 67

iii

1. Introduction

A disk intersection graph consists of a set of disks in the plane and it can be interpreted
as a graph that contains a vertex for each of its disks and and an edge for each pair of
intersecting disks. Disk intersection graphs generalize disk touching graphs, in which any
two disks that intersect each other do so in exactly one point. Koebe’s Theorem [Koe36]
is a classic result in graph theory, that states that any planar graph can be represented
by a disk touching graph. On the other hand, for any disk touching graph we can obtain
a planar drawing of the realized graph by connecting the centers of each pair of touching
disks with a straight-line segment. The set of planar graphs therefore coincides with the
set of graphs that can be represented by disk touching graphs, which, therefore, can be
recognized in linear time [HT74].

Application areas for disk intersection/touching graphs include modeling physical prob-
lems like wireless communication networks [Hal80], covering problems like geometric fa-
cility location [RT90, Wel91], visual representation problems like the generation of area
cartograms [Dor96] and many more (various examples are given by Clark et al. [CCJ90]).
In this context, one is often interested in recognizing or generating disk graphs that do not
only realize the input graph, but also satisfy additional requirements. It might be desirable
to generate a disk graph the realizes a vertex-weighted graph such that the disks’ radii or
areas reflect the corresponding vertices’ weights. For example, Figure 1.1 depicts a disk
touching graph that acts as an area cartogram that visualizes the relative sizes of the pop-
ulations of Germany and its neighboring countries. Clearly, there exist vertex-weighted
planar graphs that can not be realized as disk touching graphs and the corresponding
recognition problem is NP-hard even if all vertices are weighted uniformly [BK98]. In
another scenario, one could designate a point in the plane to each vertex and be interested
in recognizing or generating a disk touching graph such that each vertex’s corresponding
disk covers the vertex’s assigned point. The corresponding decision problem is also NP-
hard [AdCC+12].

In this thesis, we examine the two aforementioned scenarios, as well as variations and
combinations of them, more closely and explore what can be guaranteed for special graph
classes. We strengthen several known NP-hardness results by showing that they hold true
even for very basic graph classes like paths, stars and trees and prove NP-hardness for new
problem variations. For some of the variations for which we do not prove NP-hardness,
we present linear-time construction algorithms or existence statements. A detailed contri-
bution and section overview is presented in Section 1.3. Prior, we introduce some basic

1

1.1. Preliminaries

DE

DK

FR

AT

CH

LU

BE

NL

PL

CZ

Figure 1.1.: A disk touching graph that realizes a vertex-weighted star and that acts as
an area cartogram which visualizes the relative sizes of the populations of
Germany and its neighboring countries.

concepts and provide formal problem definitions in Section 1.1 and review some related
work in Section 1.2.

1.1. Preliminaries

In this section we recall some basic concepts and introduce elementary definitions that
will be used throughout this thesis. Section 1.1.1 focuses on graph-theoretic concepts.
In Section 1.1.2 we specify the NP-hard problems that are utilized in the polynomial-
time reductions in this thesis. We also specify a Real RAM model used for some of our
positive results. Finally, in Section 1.1.3 we formally introduce disk graphs and the related
recognition problems.

1.1.1. Graph theory

A graph G is an ordered pair (V,E), where V is a set of vertices and E is a set of edges,
which are subsets of V with cardinality 2. If there exists an edge {u, v} ∈ E for every
pair of distinct vertices v, u ∈ V , then G is called complete graph. A vertex v ∈ V and an
edge e ∈ E are said to be incident if v ∈ e. In general, in a (simple) graph there exists at
most one edge per vertex pair. A multigraph, however, is a graph in which we explicitly
allow the existence of multiple edges incident to the same pair of vertices. The degree
deg(v) = |{e ∈ E | v ∈ e}| of a vertex v ∈ V is the number of edges incident to v. Two
vertices u, v ∈ V are neighbors (or adjacent) in G if there exists an edge that is incident
to both u and v. A subgraph of G is a graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ E.
The graph G′ is said to be induced by vertex set V ′ if E′ = {{v, u} ∈ E | v, u ∈ V ′}
and it is said to be induced by edge set E′ if V ′ = {v ∈ V | ∃e′ ∈ E′ : v ∈ e′}. In

general graphs edges are unordered vertex pairs. In a directed (multi-) graph
−→
G = (V,

−→
E),

however, each edge is an ordered pair from V 2. We say that an edge (u, v) ∈ −→E is directed

from u to v. The outdegree of a vertex v ∈ V is |{(v1, v2) ∈
−→
E | v1 = v}| and its indegree

is |{(v1, v2) ∈
−→
E | v2 = v}|.

Let G = (V,E) be a graph and p = (v1, . . . , vk) ∈ V k be a sequence of vertices. If
a corresponding sequence of edges p = (e1, . . . , ek−1) ∈ Ek−1 with ei = {vi, vi+1} for
1 ≤ i ≤ k − 1 exists, we refer to p as a path in G between v1 and vk. We also refer to the
graph P = ({v1, . . . , vk}, {e1, . . . , ek−1}) as a path. In this thesis, we exclusively consider
simple paths (and therefore omit this term), meaning that the vertices v1, . . . , vk except
for maybe v1 and vk are pairwise distinct. If v1 = vk, we refer to the path as a cycle.

2

1. Introduction

(a) A tree. (b) A spider. (c) A star. (d) A caterpillar.

(e) An outerplanar graph. (f) Internally triangulated drawing of a 2-outerplanar graph.

Figure 1.2.: Planar drawings visualizing the different graph classes and properties.

Two vertices of V are said to be connected in G if there exists a path with edges of E
between them. A connected component C = (VC , EC) of the graph G is a subgraph of G
such that the vertices in VC are pairwise connected and there exists no path between a
vertex of VC and a vertex of V \ VC . A graph is connected if it has a single connected
component. Let s, t ∈ V be two non-adjacent vertices. The vertices s and t are said to
be k-connected if k ∈ N0 is the smallest number of vertices that needs to be removed
from V such that in the induced subgraph, s and t are no longer connected. Menger’s
Theorem [Men27] states that in this case, there exist k internally vertex-disjoint paths
between s and t, which means that there exist k paths that connect s and t but that do
not share any common vertices except for s and t. Two adjacent vertices from V are said
to be (|V | − 1)-connected. The graph G is said to be k-connected if any pair of distinct
vertices is at least k-connected.

A connected graph whose edge set does not contain a subset that induces a cycle is called
a tree. In a tree vertices with degree 1 are called leafs. A spider is a tree that contains at
most one vertex with a degree 3 or higher. A star is a spider that contains at most one non-
leaf vertex. If such a vertex exists, we refer to it as the star’s central vertex. A caterpillar
is a tree C = (V,E) such that there exists a path p = (v1, . . . , vk) ∈ V k and any vertex
in V \ {v1, . . . , vk} is a leaf. Such a path p is called inner path of C. Figure 1.2 visualizes
several examples as planar drawings, which are defined in the following paragraph. The
star’s central vertex and the caterpillar’s inner path are highlighted in gray in Figure 1.2.

A curve in the plane is a continuous function c : [a, b]→ R2 that maps elements of a real
interval to points in the plane. The points c(a) and c(b) are called endpoints of c. The
image of c is the set of points image(c) = {p ∈ R2 | ∃d ∈ [a, b] : c(d) = p}. Let d, e ∈ (a, b)
be real numbers. The curve c is called simple if c(d) = c(e) implies that d = e. A drawing
of graph G = (V,E) can be obtained by mapping the vertices of V to distinct points in
the plane and representing the edges of E with simple curves in the plane such that the
endpoints of the curve associated with an edge {v, u} ∈ E are the points associated with
u and v. A drawing of G is called planar if the images of the curves associated with
the edges of E only intersect at their respective endpoints and therefore only at points
associated with vertices. The graph G is called planar if there exists a planar drawing
of G. A planar drawing of G uniquely defines a cyclic order of edges incident to a vertex v
for each vertex v ∈ V . The set of all these cyclic orders for a planar drawing is called its
combinatorial embedding Γ (for G). Note that there exists an infinite amount of planar
drawings for G whose combinatorial embedding is also Γ. The regions bounded by the
images of the curves in a planar drawing of a graph are called faces. The outer, infinitely
large face is called outer face and all other faces are called inner faces. Let f be a face of a
planar drawing of G, let Ef be the set of edges that correspond to the curves whose images

3

1.1. Preliminaries

bound f in the drawing and let Gf = (Vf , Ef) be the subgraph of G induced by Ef . The
vertices in Vf are said to be adjacent to f . If all inner faces of the drawing are adjacent
to exactly three vertices, the drawing is called internally triangulated. If there exists a
planar drawing of the graph G = (V,E) such that all vertices in V are adjacent to the
outer face of the drawing, then both the graph G and its drawing are called outerplanar
or 1-outerplanar. It is known that in each outerplanar graph there exists at least one
vertex with degree at most 2 [LW70]. The graph G is called k-outerplanar, with k ≥ 2,
if there exists a planar drawing of G such that if all vertices adjacent to the outer face of
the drawing are removed from V , all of the connected components of the subgraph of G
induced by the remaining vertices are (k− 1)-outerplanar. Figure 1.2 depicts some planar
drawings that visualize these properties.

1.1.2. NP-hard problems and the Real RAM model

For the purpose of this thesis, we assume that the reader is familiar with the theory of NP-
hardness. We refer to [CLRS09, Chapter 34] for an excellent introduction to this topic and
to [GJ79] for an in-depth view. The latter reference also inspired most of the definitions for
the recognition problems presented in this section. These logic and partitioning problems
are used for the polynomial-time reductions in this thesis.

Let U be a set of variables and let u ∈ U be a variable. We say that u is true or false
with respect to truth assignment t : U → {true, false} for U if t(u) = true or t(u) = false
respectively. For variable u ∈ U we say that u and u are literals over U and that u (u)
is the positive (negative) literal of variable u. Literal u is true (false) with respect to t
if and only if variable u is true (false) and literal u is true (false) with respect to t if
and only if variable u is false (true). A clause over U is a sequence of (not necessarily
pairwise distinct) literals over U . Intuitively, a clause represents the disjunction of its
literals and a collection of clauses represents the conjunction of its clauses. For example,
the clause (u1, u1, u2, u4) represents Boolean formula (u1 ∨ u1 ∨ u2 ∨ u4). We therefore say
that a clause over U is satisfied by t if and only if at least one of its literals is true with
respect to t; we say that a collection of clauses over U is satisfied by t if and only if all
of its clauses are satisfied by t; we say that a collection of clauses C over U is satisfiable
if there exists a truth assignment for U which satisfies C. With these definitions, we are
now prepared to define the (Boolean) Satisfiability problem as well as three variants of it:

Satisfiability (SAT): A SAT instance consists of a set U of variables and a collection C
of clauses over U and the question is whether C satisfiable.

• 3-Satisfiability (3SAT): The cardinality of any clause c ∈ C is |c| = 3.

• (≤,3,3)-Satisfiability (≤33SAT): The cardinality of any clause c ∈ C is |c| ≤ 3.
For any u ∈ U there exist at most three clauses in C that contain either u or u.

• Planar 3-Satisfiability (P3SAT): The cardinality of any clause c ∈ C is |c| = 3.
There exists a planar (multi-) graph H = (VU ∪VC , E) where VU contains a variable
vertex for each variable of U , VC contains a clause vertex for each clause of C and for
each clause of C, E contains three edges connecting the corresponding clause vertex
and the corresponding variable vertices.

SAT and all three variants are NP-hard [Coo71, GJ79, Lic82]. The (multi-) graph H in
the P3SAT definition can be drawn on a rectangular grid of polynomial size such that all
variable vertices are placed on a horizontal line and the clause vertices are connected in a
comb-shaped manner from above and below that line [KR92], see Figure 1.3a. This drawing
can furthermore be slanted such that all angles are multiples of 60 degrees [CDR07], see
Figure 1.3b. These Satisfiability problems are used for the reductions in Chapter 2 and 4.
In Chapter 3 we utilize the following partition problem:

4

1. Introduction

u1 u2 u3 u4 un

c1 c2

c3

c4

c5

c6

(a) Rectangular drawing of H.

u1 u2 u3 u4 un

c1 c2

c3

c4

c5

c6

(b) Slanted drawing of H.

Figure 1.3.: Planar 3-Satisfiability instances can be drawn on grids of polynomial size.

3-Partition (3P): A 3P instance consists of a set A ⊂ N of positive integers with |A| = 3n
with n ∈ N and a bound B ∈ N such that B/4 < a < B/2, ∀a ∈ A and such that∑

a∈A a = nB. The question is whether it is possible to partition A into n disjoint
sets A1, . . . , An with

⋃
1≤i≤nAi = A such that

∑
a∈Ai

a = B for any 1 ≤ i ≤ n.

The 3-Partition problem is NP-complete in the strong sense [GJ75], which means that it
remainsNP-complete even if its numerical parameters (the bound B and the integers in A)
are bounded by a polynomial in the size of the input (the number of integers |A| = 3n). As
noted by the authors, the bounds of B/4 and B/2 for the integer values imply that |Ai| = 3
for every 1 ≤ i ≤ n [GJ79]. Observe that by multiplying all integers as well as the bound
by some natural number, we obtain a problem instance that is a yes-instance if and only if
the original problem instance is a yes-instance. We can and will therefore without loss of
generality assume that B > 12 and that B = 0 mod 4 in any problem instance considered
in this thesis. We call an integer triple from A feasible if the sum of its integers is B and
infeasible if the sum is larger than B.

Dealing with geometric objects like line segments or circles often gives rise to compli-
cated R2-coordinates and the precise computation of such coordinates can technically take
an infinite amount of time. In a Real RAM (random access machine) model, however,
one assumes that a designated set of arithmetic operations (in our case +, –, ·, /, square
roots, sin, cos, arcsin) can be performed in constant time [PS85]. This model is a tool for
nevertheless providing positive results. This can be useful since, in practice, depending on
the application, heuristical approaches might suffice to calculate the coordinates. Several
of the constructive algorithms presented in this thesis are shown to have linear runtime in
this Real RAM model. Note, however, that we can not use this model in any of the reduc-
tions used to prove NP-hardness. Instead we have to argue why the required coordinates
can be computed in polynomial time.

1.1.3. Disk graphs and problem definitions

A disk D is a region in the plane bounded by a circle. A disk can be uniquely described by
its bounding circle’s radius r ∈ R+ and center c ∈ R2. A disk is called closed if it contains
the points of its bounding circle and open otherwise. A disk intersection graph G = (G,V)
consists of a graph G = (V,E), a set of closed disks V and a bijection from the set
of vertices V to V such that two vertices of V are adjacent in G if and only if their
corresponding disks in V intersect. A disk touching graph G = (G,V) is a disk intersection
graph such that the interiors of the disks in V are pairwise disjoint. The centers of the disks
in V together with straight-line segments that connect the centers of all pairs of touching
disks induce a planar drawing of G. In a unit disk intersection (touching) graph all disks
share one uniform radius. In a ρ-bounded disk intersection (touching) graph the radius of
all disks is taken from the interval [1, ρ] for a value ρ ≥ 1. Note, that a 1-bounded disk
intersection (touching) graph is a unit disk intersection (touching) graph.

5

1.2. Related work

For the sake of simplicity, throughout this thesis we often refer to disks and their corre-
sponding vertices synonymously. For example, we might simply say ’we create a disk D2

with radius r2 that touches disk D1’ instead of saying ’we create a vertex v2, a correspond-
ing disk D2 with radius r2 and an edge between v2 and vertex v1 whose corresponding disk
is D1’.

LetG = (V,E) be a graph. We say thatG has a realization as a disk intersection (touching)
graph, if there exist a set of disks V and a bijection from V to V such that G = (G,V)
is a disk intersection (touching) graph. In this case, we say G realizes G. Let Dv ∈ V
be the disk of G corresponding to vertex v for any v ∈ V . A radius assignment for G is
a function r : V → R+ that assigns a positive real number to each vertex of G. If the
radius of disk Dv ∈ V is equal to r(v) for every v ∈ V , then G is said to respect r. A seed
assignment for G is a function σ : V → R2 that assigns a point in the plane to each vertex
of G. If σ(v) ∈ Dv for every v ∈ V , then G is said to respect σ. Let Γ be a combinatorial
embedding for G. If G is a disk touching graph and if the cyclic order of disks touched
by Dv corresponds to the cyclic order of edges incident to the vertex v for any v ∈ V ,
then G is said to respect Γ.

We consider the following family of decision problems, in which the dots (...) are a place-
holder for one, multiple or none of the enlisted variants.

(Unit/ρ-bounded) Disk Intersection/Touching Graph Recognition (with ...):
The problem instance is a graph G = (V,E) and the question is whether it is possible to
realize G as a (unit/ρ-bounded) disk intersection/touching graph (which respects ...).

• ... fixed Radii: ... a given radius assignment r for G.

• ... fixed Embedding: ... a given combinatorial embedding Γ for G.

• ... fixed Seeds: ... a given seed assignment σ for G.

In particular, we consider the following problems:

• Unit Disk Touching Graph Recognition (UDT)

• Unit Disk Touching Graph Recognition with fixed Embedding (UDTE)

• ρ-bounded Disk Touching Graph Recognition (ρ-BDT)

• Disk Touching Graph Recognition with fixed Radii (DTR)

• Disk Touching Graph Recognition with fixed Radii and Embedding (DTRE)

• Disk Touching Graph Recognition with fixed Seeds (DTS)

• Unit Disk Touching Graph Recognition with fixed Seeds (UDTS)

• Unit Disk Touching Graph Recognition with fixed Seeds and Embedding (UDTSE)

1.2. Related work

As mentioned in the beginning of this chapter, Koebe’s Theorem [Koe36] implies that
the Disk Touching Graph Recognition problem can be solved in linear time. On the
other hand, Hliněný and Kratochv́ıl showed that the Disk Intersection Graph Recognition
problem is NP-hard [HK01].

A result by Breu and Kirkpatrick states that the Unit Disk Intersection/Touching Graph
Recognition problems are NP-hard [BK98], implying that the Disk Intersection/Touching
Graph Recognition with fixed Radii problems are also NP-hard. There exists some heuris-
tics for generating disk touching graphs with fixed radii [Dor96, Ino11] for the application
of cartogram generation.

6

1. Introduction

Breu and Kirkpatrick generalized their results by showing that the ρ-bounded Disk Inter-
section/Touching Graph Recognition problems are NP-hard for any fixed ρ ≥ 1 [BK96].
Alam et al. [AEG+14] argue that for any tree, for any cactus (which is a connected graph
in which each edge is contained in at most one cycle), for any k-outerplanar graph with
bounded maximum degree and k ∈ O(log n) and for any planar graph with bounded tree-
depth there exists a realizing ρ-bounded disk touching graph where ρ is a polynomial in
the number of vertices.

Atienza et al. show that the Disk Touching Graph Recognition with fixed Seeds problem
is NP-hard [AdCC+12].

1.3. Contribution and section overview

In Chapter 2 we investigate recognition problems with uniform (and ρ-bounded) radii.
In Section 2.1 we consider the Unit Disk Touching Graph Recognition (UDT) problem
and strengthen the result of Breu and Kirkpatrick [BK98] by showing that the UDT
problem is NP-hard even for outerplanar graphs. On the positive side, we provide a
linear-time algorithm for deciding the UDT problem in caterpillars. In this section we also
briefly consider ρ-bounded Disk Touching Graph Recognition and show that for spiders
this problem can be solved in linear time in the Real RAM model. In Section 2.2 we
extend our result from the previous section by showing that the Unit Disk Touching Graph
Recognition with fixed Embedding (UDTE) problem is also NP-hard, even for outerplanar
graphs.

In Chapter 3 we explore the more general scenario with fixed but not necessarily uniform
radii. In Section 3.1 we consider the Disk Touching Graph Recognition with fixed Radii
(DTR) problem and strengthen the result by Breu and Kirkpatrick [BK98] by showing
that the DTR problem is NP-hard even for stars. We also show that for any cycle and a
corresponding radius assignment there exists a realizing disk touching graph. In contrast,
in Section 3.2 we devise a linear-time algorithm for deciding the Disk Touching Graph
Recognition with fixed Radii and Embedding (DTRE) problem for stars in the Real RAM
model.

In Chapter 4 we concern ourself with the scenario in which a seed assignment is required
to be respected. In Section 4.1 we strengthen the result of Atienza et al. [AdCC+12]
by showing that the Disk Touching Graph Recognition with fixed Seeds (DTS) prob-
lem is NP-hard even for trees. In Section 4.2 we combine this scenario with assigning
fixed radii, more specifically uniform radii. We show that the Unit Disk Touching Graph
Recognition with fixed Seeds (UDTS) problem is NP-hard, even for paths, implying that
the Unit Disk Touching Graph Recognition with fixed Seeds and Embedding (UDTSE)
problem is also NP-hard even for paths.

We conclude our work in Chapter 5.

7

2. Recognition problems with unit radii

In this chapter we consider the Unit Disk Touching Graph Recognition (with fixed Em-
bedding) (UDT and UDTE) problem and, briefly, the ρ-bounded Disk Touching Graph
Recognition (ρ-BDT) problem. Recall that in these problem we need to decide whether
a given graph can be realized as a unit/ρ-bounded disk touching graph (that respects
a given combinatorial embedding). Furthermore, recall that both UDT and ρ-BDT for
any ρ ≥ 1 are NP-hard [BK98, BK96]. In Section 2.1 we strengthen the NP-hardness
result by Breu and Kirkpatrick by showing that UDT remains NP-hard even for outer-
planar graphs. We additionally show that for caterpillars the problem can be decided in
linear time and that in the Real RAM model the ρ-BDT can be solved in linear time for
caterpillars for any ρ ≥ 1. In Section 2.2 we extend our NP-hardness result for UDT and
show that it holds true even if a combinatorial embedding is specified and, therefore, that
the UDTE is NP-hard, even for outerplanar graphs. For both problems we also provide
existence arguments for realizations of paths and cycles and simple decision approaches
for stars and spiders.

2.1. Unit Disk Touching Graph Recognition

In this section we consider the Unit Disk Touching Graph Recognition (UDT) problem and
show that it is NP-hard even for outerplanar graphs. Prior, however, we provide simple
observations concerning UDT/ρ-BDT for paths, cycles, stars and spiders and proceed by
presenting a linear-time algorithm for deciding the UDT problem for caterpillars.

Observation 1. Any path can be realized as a unit disk touching graph.

Observation 2. Any cycle can be realized as a unit disk touching graph.

Observation 3. Let G = (G,V) be a unit disk touching graph that realizes G = (V,E).
There exists no vertex v ∈ V with deg(v) > 6 and if there exists a vertex v′ ∈ V
with deg(v′) = 6, then the disks in V corresponding to the neighbours of v′ touch each
other consecutively.

Corollary 1. For spiders the Unit Disk Touching Graph Recognition problem can be de-
cided in O(n) time where n is the number of vertices of the given spider. In the Real RAM
model, a realization can be constructed in O(n) time (if one exists).

Observation 1 is trivial. Observation 2 follows from the fact that in order to realize a cycle
with n vertices, one can simply center n disks with unit radius ru at the n corners of a

9

2.1. Unit Disk Touching Graph Recognition

Figure 2.1.: An optimal packing of seven disks with unit radius.

regular n-sided polygon with side length 2 · ru. Observation 3 has been stated by several
authors, for example [BK98], and it immediately yields Corollary 1. Observation 3 can
be intuitively verified with Figure 2.1, which depicts an optimal packing of 7 disks with
unit radius. However, we additionally provide a formal proof for Observation 3 with the
following more general statement for ρ-bounded disk touching graphs.

Lemma 1. Let G = (G,V) be a ρ-bounded disk touching graph that realizes G = (V,E).
There exists no vertex v ∈ V with deg(v) > bπ/ arcsin(1/(ρ + 1)c and if there exists a
vertex v′ ∈ V with deg(v′) = π/ arcsin(1/(ρ+ 1), then the disks in V corresponding to the
neighbors of v′ touch each other consecutively.

Proof. We begin by calculating the radius r of a disk adjacent to n ∈ N disks with radius 1
such that the n disks touch each other consecutively. With basic trigonometry we obtain
that 2 = 2(r + 1) sin((2π/n)/2) and therefore r = 1/ sin(π/n)− 1. The number n of disks
can now be expressed as n = π/ arcsin(1/(r + 1)). Since G is a ρ-bounded disk touching
graph that realizes G = (V,E), the maximum degree of any vertex in V is certainly
bounded by the number n′ ∈ N of disks with the smallest possible radius 1 that can be
placed adjacent to a disk with the largest possible radius ρ. By our previous elaborations,
this number is n′ = bπ/ arcsin(1/(ρ + 1)c and furthermore, if (π/ arcsin(1/(ρ + 1)) ∈ N,
then any disk of V that corresponds to vertex of V with degree n′ has the largest possible
radius ρ and its neighbors touch each other consecutively.

Corollary 2. For spiders the ρ-bounded Disk Touching Graph Recognition (ρ-BDT) prob-
lem can be decided in O(n) time in the Real RAM model for any ρ ≥ 1, where n is the
number of vertices of the given spider. A realization can be constructed in O(n) time (if
one exists) in the Real RAM model.

We now return to the Unit Disk Touching Graph Recognition problem and show that it
can be decided efficiently if the input graph is a caterpillar.

Theorem 1. For caterpillars the Unit Disk Touching Graph Recognition (UDT) problem
can be decided in O(n) time, where n is the number of vertices of the given caterpillar. In
the Real RAM model, a realization can be constructed in O(n) time (if one exists).

Proof. Let C = (V,E) be a caterpillar and p = (v1, . . . , vk) be its inner path, where 1 <
k ≤ |V |. If C is a yes-instance, then by Observation 3, we know that deg(v) ≤ 5 for
any v ∈ V , which can be verified in O(n) time. If furthermore deg(v) ≤ 4 for any v ∈ V ,
it is easy to construct a realization of C as a unit disk touching graph, as illustrated in
Figure 2.2a. However, note that if V contains vertices of degree 5, it is not always possible
to realize C as a unit disk touching graph, for example, if deg(vi) = deg(vi+1) = 5 for
any 1 ≤ i < k.

We present very simple algorithm for deciding the UDT problem in caterpillars. Let 1 ≤
f1, . . . , fh,≤ k be the indices of vertices with degree 5 in p. Caterpillar C is a yes-instance

10

2. Recognition problems with unit radii

(a) If no vertex has degree 5, there always
exists a realization.

4 3

3 5

4

3 5

2

(b) (Degree 5)-vertices can be realized if the path
is not narrow (darkgray disks).

Figure 2.2.: Realizing caterpillars as unit disk touching graphs.

if and only if for any 1 ≤ i < h there exists an index fi < j < fi+1 such that deg(vj) ≤ 3,
which can be tested by performing a simple linear sweep through p.

The correctness of the aforementioned algorithm is implied by the following constructive
approach. We refer to the disks representing v1, . . . , vk as D1, . . . , Dk respectively. We

start by creating disk D1. We place disks D1
1, . . . , D

deg(v1)−1
1 close together and adjacent

to D1. These disks represent the leafs adjacent to v1. We place the disk D2 in the center

of the free space around D1 that is not occupied by any of the disks D1
1, . . . , D

deg(v1)−1
1 .

We add disks for the remaining inner vertices of p and their leafs iteratively. Consider

index 1 ≤ i < k. The disks D1
i , . . . D

deg(vi)−2
i , which represent the leafs adjacent to vi, are

placed iteratively touching Di and as close to Di−1 as possible. If there is enough free space
around Di to place Di+1, we place Di+1 centered in said free space. If, however, there is not
enough space remaining, we report that C is a no-instance of the UDT problem. In order
to test whether there exists enough free space around Di, we consider the line li which is
a tangent of both Di−1 and Di and which intersects Di−1 ∩Di. If none of the previously
added disks, except for Di−1 and Di, intersect li there exists enough free space around Di

for all of its neighbors even if the degree of vi is deg(vi) = 5. Note that if we handle odd
numbers of leafs in a balanced fashion, we can ensure that the disks representing p follow
some direction monotonously and therefore that only leafs of Di−1 can intersect li, see
Figure 2.2b. If this is the case, we say that p is narrow at vi. If p is narrow at vi and
if deg(vi) ≤ 4, there is still enough space to place all neighbors of Di. If, however, the
degree of vi is deg(vi) = 5, there is not enough space remaining to place Di+1 and the
three leafs of Di.

For the correctness of the decision algorithm described earlier, consider the following facts.
Path p is narrow at any vertex with degree 5. If p is narrow at some vertex vi and
if deg(vi+1) = 4, it follows that p is narrow at vi+1 as well. However, if deg(vi+1) ≤ 3,
path p is not narrow at vi+1. Note that, unlike the constructive algorithm, the decision
algorithm does no require the Real RAM model.

After these positive results, in the remainder of this section we show that UDT re-
mains NP-hard even if the input graph is outerplanar. We begin by defining the following
property, which is an essential tool for the upcoming NP-hardness proof. Let G = (V,E)
be a graph and let G = (G,V) be a realization of G as a unit disk touching graph. Graph G
is called UDT-rigid if and only if any realization of G as a unit disk touching graph is
congruent to G. Both Figure 2.3a and Figure 2.3b depict realizations of graphs that are
UDT-rigid, but only the first figure satisfies the preconditions of the following lemma,
which provides a sufficient but not necessary condition for UDT-rigidity. This condition
also applies to many of the components utilized in the proof of the upcoming Theorem 2.

11

2.1. Unit Disk Touching Graph Recognition

(a) UDT-rigid by Lemma 2. (b) UDT-rigid.

v1

v2

vr

DrDl

v3

p1

p2

(c) Proof for Lemma 2.

Figure 2.3.: Lemma 2 provides a sufficient but not necessary condition for UDT-rigidity.

Lemma 2. Let G = (V,E) be a graph and G be a realization of G as a unit disk touching
graph. If G is 2-connected and the planar drawing of G induced by G is outerplanar and
internally triangulated, then G is UDT-rigid.

Proof. We show by induction that our hypothesis is true for any natural number n = |V | of
vertices. For the induction base case we consider 1 ≤ n ≤ 3. If n = 1, then G is obviously
UDT-rigid. If n = 2 then G is not 2-connected. If n = 3 and G is not 2-connected, there
is nothing to show. If, however, G is 2-connected, then G is a complete graph. In this
case G is obviously UDT-rigid, which concludes the induction base case.

For the induction step, consider any n > 3 and assume that our hypothesis holds true for
all graphs with at most n−1 vertices. If G is not 2-connected or there exists no realization
of G that meets the stated preconditions, there is nothing to show. Let therefore G be a
realization of G that does meet our preconditions and assume G is 2-connected. Graph G
is outerplanar since G induces an outerplanar drawing of G. Since G is outerplanar there
exists a vertex vr ∈ V with deg(vr) ≤ 2 and since G is 2-connected and n > 3 we
specifically know that deg(vr) = 2. Let v1, v2 ∈ V be the neighbors of vr. Removing
the disk corresponding to vr from G yields a unit disk touching graph G′ that realizes the
subgraph G′ = (V ′, E′) of G that is induced by the vertex set V ′ = V \ {vr}. The induced
planar drawing of G′ is obviously still outerplanar and internally triangulated.

The following steps are illustrated in Figure 2.3c. The number of vertices of G is n > 3
and G is 2-connected. By Menger’s Theorem there exists two internally vertex-disjoint
paths p1, p2 (via v1 and v2 respectively) between vr and some vertex v3 ∈ V, V ′ with v3 6=
vr, v1, v2. The existence of p1 and p2 together with deg(vr) = 2 and with the fact the
planar drawing of G′ is internally triangulated imply that e = {v1, v2} ∈ E,E′. The
existence of e, on the other hand, implies that G′ is 2-connected since G is 2-connected
and since |V |′ ≥ 3. G′ and G′, therefore, meet all of our preconditions and by our induction
hypothesis we know that G′ is UDT-rigid since |V ′| = n− 1.

We now re-add the vertex vr and edges {vr, v1}, {vr, v2} to G′ (resulting in G) and add a
corresponding disk Dr to G′. In the following paragraphs we argue that there exists exactly
one location where we can place Dr (namely the same location used in G) implying that G
is also UDT-rigid since the obtained realization is then congruent to G, which concludes
the induction step and the proof.

Due to the existence of e, we know that the two disks D1 and D2 that correspond to v1
and v2 respectively touch each other. Hence, there exist exactly two locations for disks
that correspond to common neighbors of both v1 and v2. One of these locations is the
location of the disk corresponding to vr in G. It suffices to show that in both G and G′
there exists a disk Dl that occupies the other possible location.

The existence of p1 and p2 implies that the degree of both v1 and v2 is at least 3 and that
there exists a path p3 between v1 and v2 that contains v3 and that does not contain vr

12

2. Recognition problems with unit radii

vu
1 vu

1 vu
2 vu

2

vc
1

vc
2

Figure 2.4.: Orientable auxiliary multigraph for 3SAT formula (u1∨u2∨u2)∧(u1∨u2∨u2).

or e. Assume, without loss of generality, that in the drawing induced by G vr is the
neighbor of v1 that clockwise precedes v2 and that vr is the neighbor of v2 that clockwise
succeeds v1. Let v′1 be the neighbor of v1 that clockwise succeeds v2 and let v′2 be the
neighbor of v2 that clockwise precedes v1. By the fact that the drawing of G induced by G
is internally triangulated and that vr has to be adjacent to the outer face of the drawing,
we can conclude that v′1 = v′2, which, therefore, is another common neighbor of v1 and v2
whose corresponding disk has to be Dl.

We are now prepared to prove the final result of this section.

Theorem 2. The Unit Disk Touching Graph Recognition (UDT) problem is NP-hard
even for outerplanar graphs.

Proof. We perform a polynomial-time reduction from the 3-Satisfiability (3SAT) problem.
Let (U,C) be a 3SAT instance where U = {u1, . . . , un} with n = |U | is a set of variables
and C = {c1, . . . , cm} with m = |C| is a set of clauses over U . Recall that in a 3SAT
instance the cardinality of any clause is 3. The general outline for this proof is as follows.
We start by creating an auxiliary multigraph G′ that encodes (U,C). We construct a
huge outerplanar graph G that resembles G′ such that G can be realized as a unit disk
touching graph if and only if C is satisfiable. In order to construct G we utilize a grid
with multiple layers. This long proof is divided into multiple sections. In Section (a) we
introduce the auxiliary multigraph G′ that encodes (U,C). In Section (b) we describe the
high-level grid R on which we place different types of gadgets. In Section (c), by utilizing
a mid-level grid RW , we present a schematic view for each of the gadgets and discuss their
purposes. In Section (d) we get more technical. We use a low-level grid D to describe
how to construct a specific unit disk graph for each of the gadgets. The thereby realized
graphs will serve as subgraphs for the graph G, which is our UDT instance. Finally, in
Section (e) we conclude our proof by putting all pieces together.

(a) The auxiliary multigraph G′

Breu and Kirkpatrick were able to show that the Unit Disk Touching Graph Recogni-
tion problem is NP-hard in planar graphs [BK98] by formulating a (≤,3,3)-Satisfiability
(≤33SAT) instance as an auxiliary graph. They introduced the notion of this graph being
’orientable’, a property that is satisfied if and only if the ≤33SAT instance is a yes-instance.
This first step of our proof is heavily inspired by this concept. Our auxiliary multigraph
is defined similarly to Breu and Kirkpatrick’s auxiliary graph and we also borrow the no-
tion of this multigraph being orientable. However, in order to strengthen their result to
the outerplanar case we require a completely different strategy for constructing our UDT
instance G, which is the main part our proof explained in the remaining Sections (b) – (e).

Our auxiliary multigraph G′ = (V ′, E′) contains a clause vertex for each clause in C and
a literal vertex for each literal over U . The edge set E′ contains an edge between a clause
vertex and a literal vertex if and only if the corresponding clause contains the correspond-
ing literal. More precisely, the vertex set is V ′ = VC ∪ VU ∪ V U , where VC = {vc1, . . . , vcm}

13

2.1. Unit Disk Touching Graph Recognition

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 81
1

5

10

16

variable gadgetclause gadget

corner gadget

horizontal wire gadget

vertical wire gadget

crossing gadget

c1

c2

u1 u1 u2 u2

stopper gadget

Figure 2.5.: High-level grid for 3SAT formula (u1 ∨ u2 ∨ u2) ∧ (u1 ∨ u2 ∨ u2).

contains a clause vertex for each clause in C and the vertex sets VU = {vu1 , . . . , vun}
and V U = {vu1 , . . . , vun} contain literal vertices, one for each literal over U . The edge
set is E′ = {{vci , vuj } | uj ∈ ci, 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {{vci , vuj } | uj ∈ ci, 1 ≤ i ≤ m, 1 ≤
j ≤ n}. See Figure 2.4 for an illustration of this transformation.

We say G′ is orientable if and only if we can assign a direction to each edge such that
(1) each clause vertex has an outdegree of at least 1 and (2) at least one vertex of every
pair of literal vertices has indegree 0. More precisely, G′ is orientable if and only if there

exists a directed multigraph
−→
G ′ = (V ′,

−→
E ′) where

−→
E ′ contains either directed edge (vc, vl)

or (vl, vc) for any edge {vc, vl} ∈ E′ and (1) the outdegree of any vertex in VC is at least 1
and (2) the indegree of vui or vui is 0 for any 1 ≤ i ≤ |U |. Breu and Kirkpatrick presented
the following interpretation: An edge directed from a clause vertex vc (representing some
clause c) to a literal vertex vl (representing some literal l) means that vc suggests that l
should be true in order for c to be satisfied. With this interpretation, condition (1) means
that any clause vertex makes such a suggestion. If we could meet all these suggestions,
the corresponding truth assignment would satisfy C. Of course, this is not always possible
as distinct clause vertices may suggest opposing literals. However, if condition (2) holds,
this is not the case and C must be satisfiable. On the other hand, if C is satisfiable then
there exists a truth assignment t for U that ensures that at least one literal in each clause
is true with respect to t and since whenever a literal is true with respect t its counterpart
has to be false with respect to t, we know that G′ is orientable and therefore, (U,C) is a
yes-instance if and only if G′ is orientable.

(b) High-level construction of the UDT instance G

For the high-level construction of our UDT instance G we utilize the (6 · |C|+ 4)× ((18 ·
|C|+2)·|U |+5) high-level grid R with square cells, as illustrated in Figure 2.5. Observe the
resemblance of the high-level structure depicted in this figure to the auxiliary multigraph
displayed in Figure 2.4. We refer to the cell in the i-th row from the bottom and the j-th
column from the left as R[i][j], for example, R[6 · |C|+ 4][(18 · |C|+ 2) · |U |+ 5] refers to
the top-right cell.

On our grid, we position different kinds of gadgets that take up one or more cells each.
First we add |C| clause gadgets, each of which takes up 10 cells in a 5× 2 pattern. These
gadgets represent the clauses of our 3SAT instance. The bottom-left cell of the of the i-th
clause gadget is placed in cell R[6 · (i− 1) + 5][2]. Next we place |U | variable gadgets, each
of which takes up 18 · |C|+ 1 cells in a 1× (18 · |C|+ 1) pattern. These gadget represent
the variables in U , the left half of each gadget representing the positive and the right half
representing the negative literal of the corresponding variable. The leftmost cell of the i-th
variable gadget is placed in cell R[2][(18 · |C|+ 2) · (i− 1) + 6].

Let ci,j be the j-th literal of the i-th clause. This literal is represented by the (2·(j−1)+1)-
th row (from the bottom) of the clause gadget representing ci. We want to connect the
right cell of this row of the clause gadget with the correct half of the variable gadget
representing the variable of ci,j . To this end, we utilize a structure called wire, which is

14

2. Recognition problems with unit radii

realized by four different gadget types. First we place a 1×1 corner gadget in the row that
represents ci,j and in the column that contains the cell of the variable gadget that we want
to connect the clause gadget to. More precisely, for any 1 ≤ i ≤ |C| and any 1 ≤ j ≤ 3 we
place a corner gadget in cell R[6i+2j−3][(18|C|+2)(k−1)+9(i−1)+3(j−1)+7] if ci,j is
the positve literal of uk and in cell R[6i+2j−3][(18|C|+2)(k−1)+9(i−1)+3(j−1)+26]
if it is the negative literal, where k is the index of the variable of U that belongs to ci,j .

In each of the cells between a corner and its corresponding clause gadget we place a 1× 1
horizontal wire gadget and in each of the cells between a corner and its corresponding
variable gadget we place a 1 × 1 vertical wire gadget. More precisely, let R[i][j] be a cell
that contains a corner gadget. We place a horizontal wire gadget in each of the cells R[i][4],
R[i][5], R[i][6],. . . ,R[i][j − 1] and we place a vertical wire gadget in each of the cells R[i−
1][j], R[i−2][j], R[i−3][j],. . . ,R[3][j]. We repeat this process for any corner. In any cell in
which we added a horizontal, as well as a vertical wire gadget, we remove these two gadgets
and insert a 1×1 crossing gadget instead. Finally, for any 1 ≤ k, i ≤ |C| and any 1 ≤ j ≤ 3
we place a 1× 1 stopper gadget at cells R[3][(18|C|+ 2)(k − 1) + 9(i− 1) + 3(j − 1) + 7]
and R[3][(18|C|+ 2)(k− 1) + 9(i− 1) + 3(j − 1) + 26] if these do not contain vertical wire
gadgets.

(c) Mid-level gadget construction

Each of our gadgets ultimately corresponds to a subgraph of our UDT instance G and in
Section (d) we will construct these subgraphs as unit disk graphs on a low-level grid D.
As a preparation for this section, sneak a peek at Figure 2.9 from Section (d). This figure
represents a horizontal wire gadget realized as a unit disk graph on the low-level grid D
which is composed of unit disks. Note how the black disks assume a rectangular shape
and observe that the graph realized by these disks is (UDT-) rigid by Lemma 2. In a
similar fashion, we can construct rigid subgraphs whose realizations assume any kind of
rectangular shape. In this section we present a schematic view for each of our gadgets in
which we represent the different components by simple rectangular shapes that resemble
the actual disk graphs that are constructed in more detail in Section (d).

As seen in Section (b), each gadget consists of one or multiple cells of the high-level
grid R. For our schematics, we subdivide each of these cells further into W 2 square
regions by utilizing a W ×W mid-level grid RW , where W ∈ N is an odd natural number
with W −2 ≡ 0 mod 3. We shall later specify W = 47, however, for improved readability,
our illustrative figures are often created using smaller values for W . We refer to the region
in the i’s row from the bottom and the j’s column of RW from the left as RW [i][j].

(c.1) The horizontal wire, vertical wire and corner gadgets

Figure 2.6b depicts the schematic of a horizontal wire gadget. It consists of two rigid,
parallel line segments and a rigid rectangle. The line segments are parallel to the bottom
of the cell, encompass its entire width and are located a the center of its height. More
precisely, the two line segments are the borders between the bW/2c-th and (bW/2c+ 1)-th
and the dW/2e-th and the (dW/2e + 1)-th row of RW . The distance between the two
line segments is just barely larger than the height of the rectangle that is ’anchored’ in
the middle of the lower line segment, meaning that this anchor point is the only point
where the rectangle actually touches the line segments. The width of the rectangle is
almost W/2 + (W − 2)/3 regions long so that it sticks out of the cell by (W − 2)/3 = 15
regions for W = 47.

In the low-level unit disk graph version of this gadget, the anchor point is realized as a
single ’anchor’ disk of the bottom line segment (the gray disk in Figure 2.9) that touches
a so called ’chain’ disk of the rectangle, which itself touches two of the disks realizings the
rectangle. We do not consider a fixed combinatorial embedding, therefore, the rectangle

15

2.1. Unit Disk Touching Graph Recognition

(a) Clause.

(b) Horizontal wire.

(c) Vertical wire.

(d) Corner.

Figure 2.6.: Mid-level schematics for the different gadgets with W = 11.

can be embedded such that it sticks out to the right, as depicted in Figure 2.6b, or,
alternatively, it can be embedded such that it sticks out to the left. Accordingly, we say
that the gadget is oriented to the right or left. Imagine two of these gadgets being placed
next to each other such that the two line segments of both gadgets align and thereby form
two longer line segments whose length is two times the length of a cell. If the right gadget
is oriented to the left, then the left gadget has to be oriented to the left as well since the
space needed to embed its rectangle to the right is already taken up by the rectangle of
the right gadget. Now imagine three horizontal wire gadgets being placed next to each
other. If the right gadget is oriented to the left and the left gadget is oriented to the right
it is impossible to embed the rectangle of the middle gadget, which, on disk graph level,
means that the subgraph of G that corresponds to these three gadgets can not be realized
as a unit disk touching graph.

The overarching idea is now to define such an orientation concept for the vertical wire,
corner and crossing gadgets as well and to design the clause and variable gadgets such
that G can be realized as a unit disk touching graph if and only if the multigraph G′ is
orientable and therefore if and only if C is satisfiable.

(c.2) The vertical wire and corner gadgets

The idea for the vertical wire and the corner gadgets, illustrated in Figure 2.6c and Fig-
ure 2.6d, and their corresponding orientation concepts is very similar to the idea for the
horizontal wire gadget. The vertical wire gadget is identical to a horizontal wire gad-
get, except that it is rotated clockwise by 90◦. A vertical wire can be oriented to the
top or to the bottom. The corner gadget enables us to connect a horizontal wire to a
vertical wire. It consists of two rigid polylines and another rectangle. The two poly-
lines describe the border of the union of the regions RW [bW/2c + 1][1], . . . , RW [bW/2c +
1][bW/2c + 1], . . . , RW [1][bW/2c + 1]. A rectangle is anchored in the bottom-left of re-
gion RW [bW/2c + 1][bW/2c + 1] such the cell can be oriented to the left or to the bot-
tom. The length of the rectangle is once again chosen such that it sticks out of the cell
by (W −2)/3 regions. Now imagine some horizontal wires being placed next to each other

16

2. Recognition problems with unit radii

followed by a corner and some vertical wires. If the orientation of the leftmost horizontal
wire is ’right’, than this orientation propagates to the lowest vertical wire, which then has
to be oriented to the bottom. The same holds true for the opposite direction, so that it
is not possible to embed the rectangle of a cell of which both adjacent cells are oriented
towards it.

(c.3) The clause gadget

Recall that each clause in C has three literals and that if auxiliary multigraph G′ is ori-
entable, each clause vertex has outdegree at least 1 in any corresponding directed multi-

graph
−→
G ′. In order to emulate this concept, our clause gadget should be designed such

that at least one of the three connected horizontal wires has to be oriented to the right.
An illustration of the schematic for the clause gadget is depicted in Figure 2.6a. Recall
that the clause gadget occupies 5× 2 cells of the high level grid. The core of this gadget is
a ’T-type’ crossing in which a rectangle is anchored such that it can be embedded in three
possible ways: To the top, to the right or to the bottom. This ’T-type’ crossing is located in
the middle-left cell. It consists of a rigid line segment and two rigid polylines that together
describe the border of the union of the regions RW [1][bW/2c+ 1], . . . , RW [W][bW/2c+ 1]
and RW [bW/2c + 1][bW/2c + 2], . . . , RW [bW/2c + 1][W]. The cell above (below) the ’T-
type’ cell is simply a vertical wire gadget. Above (below) this vertical wire gadget we
place a rotated corner gadget that leads to the right cell, where we place a horizontal wire
gadget. Another horizontal wire gadget is also placed to the right of the ’T-type’ cell. The
remaining two cells stay empty. The rectangle is anchored at the top-left corner of the
central region of the ’T-type’ cell. On disk graph level, the rectangle can, once again, be
embedded to the bottom as well as to the top since we do not consider a fixed embedding.
However, this time the ’anchor’ and ’chain’ disks are chosen such that the rectangle can
also be rotated around its ’chain’ disk and therefore be embedded to the right. The rect-
angle has the same height as the previous rectangles and its length is chosen such that it
sticks out of the ’T-type’ cell by (W − 2)/3 regions if it is embedded to the right or the
bottom and (W − 2)/3 + 1 regions if it is embedded so the top, so for W = 47 it sticks out
of its cell by 15 or 16 regions. Recalling the functionality of the the previously introduced
gadgets, one of the three horizontal wire gadgets in the clause gadget and therefore one of
the three horizontal wire gadgets next to the clause gadget has to be oriented to the right.

(c.4) The variable and stopper gadgets

Recall that if auxiliary multigraph G′ is orientable, then at least one of the literal vertices

of any variable has indegree 0 in any corresponding directed multigraph
−→
G ′. Also recall

that each variable gadget consists of 1×(18·|C|+1) cells and that the left half of a variable
gadget represents the positive and the right half of the gadget represents the negative literal
of the corresponding variable. We need to ensure that for either the left or the right side
of each variable gadget, all connected vertical wire gadgets have to be oriented to the top,
away from the variable gadget. Figure 2.7 depicts a variable gadget as well as the cells
directly above it. The central cell of the variable gadget is basically a modified version of
the horizontal wire gadget. The main difference is that the two line segments as well as the
anchor point are moved up into the second row from the top of the mid-level grid RW and
that the distance between the two line segments is much smaller. They now enclose only
the upper part of the second row of regions from the top. To the right (left) of this central
cell we place another such modified horizontal wire gadget but without a rectangle. Next
to this horizontal wire we place 3·(|C|−1) times the following triple of cells. The first of the
triple’s cells is a ’t-type’ crossing which consists of four rigid polylines that together describe
the border of the union of the regions RW [bW/2c+ 1][W/2c+ 1], . . . , RW [W][bW/2c+ 1]
and the upper parts of the regions RW [W − 1][1], . . . , RW [W − 1][bW/2c] and RW [W −
1][bW/2c + 2], . . . , RW [W − 1][W], see the bottom cell in the middle of Figure 2.7. The

17

2.1. Unit Disk Touching Graph Recognition

Figure 2.7.: Mid-level schematics for parts of the left side of a variable gadget together
with stopper and vertical wire gadgets for W = 11 and |C| = 1.

other two triple cells are once again copies of the modified version of the horizontal wire
gadget without a rectangle. After all the cell triples we place one more ’t-type’ cell and
the last cell consists of just one polyline that describes the border of the union of the
upper parts of the regions RW [W − 1][1], . . . , RW [W − 1][bW/2c+ 1] on the right side and
mirrored accordingly on the left side as seen in the bottom-left cell in Figure 2.7. The
height of the rectangle anchored in the center of the central cell is chosen barely smaller
than the distance between the two line segments (which now are very close together) and
its length is chosen such that it sticks out by (3 · (|C| − 1) + 2) ·W + (W − 2)/3 regions. It
has to be embedded either to the right or the left and since it is located in the second row
from the top of any of the ’t-type’ cells that it is embedded in and since rectangles of wire
gadgets stick out by (W −2)/3, vertical wire gadgets connected to these ’t-type’ cells have
to be oriented to the top. Stopper gadgets simply consist of a rigid polyline describing the
border of the bottom-middle region and their purpose is to hold the different parts of the
variable gadget together, see the upper cell in the middle of Figure 2.7.

(c.5) The crossing gadget

In the crossing gadget we need to propagate the orientation of the horizontal wires from
left to right and vice versa and the orientation of the vertical wires from top to bottom and
vice versa. Figure 2.8a, Figure 2.8b, Figure 2.8c and Figure 2.8d illustrate the schematic
for this complicated gadget. The crucial components of this gadget are two identical huge,
rigid squares with some notches in them. We assign W = 47. The side length of such a
’notched square’ is barely smaller than 9 regions. The notches are created by cutting out
the eighth region from the left of the five lowest rows and the five rightmost regions of
the eighth row from the bottom of the square, see Figure 2.8a. The bottom-left point of
the two ’notched squares’ is anchored at the bottom of a huge cavity in the center of the
cell. The cavity is described by four polylines and its exact dimension as well as the exact
coordinates for the two anchor points can be taken from Figure 2.8a. Like the rectangle in
the horizontal wire gadget, the ’notched squares’ can be embedded to the left or the right
since we do not consider a fixed embedding. Like the rectangle in the clause gadget, the
’notched squares’ can be rotated, but in this case the cavity is chosen large enough that
they can be rotated from both sides. We can therefore obtain essentially four embeddings
per ’notched square’.

18

2. Recognition problems with unit radii

(a) Oriented to the top and the right.

(b) Oriented to the bottom and the left.

(c) Oriented to the bottom and the right.

(d) Oriented to the top and the left.

Figure 2.8.: Mid-level schematics for the crossing gadget with W = 47.

19

2.1. Unit Disk Touching Graph Recognition

Recall that the rectangles of the wires stick into the crossing’s cell by (W − 2)/3 = 15
regions. For the horizontal orientation propagation, note how both ’notched squares’
have to be embedded to the right (left) if the horizontal wire gadget to the left (right) is
oriented to the right (left). For the vertical orientation propagation, we adjust all vertical
wire gadgets that are located above or below a crossing gadget such that their rectangles
stick into the crossing’s cell by 24 regions. This can be done as follows. If the cell above
as well as the cell below a vertical wire contain a crossing, simply increase the rectangle’s
length by 9 regions. If only the cell below (above) the vertical wire contains a crossing,
increase the length of the rectangle by 4 + 1/2 regions and move the anchor point down
(up) by 4 + 1/2 regions, so that if the rectangle is oriented to the top (bottom) it sticks
out into the cell above (below) as usual. Note how in Figure 2.8a the rectangle of the
vertical wire on the bottom fits into the notch at the bottom of the ’notched square’. It
is not possible to simultaneously embed a rectangle from a vertical wire above oriented
to the bottom since on top of the ’notched square’ there is no notch. However, the notch
on the right side of the square is chosen such that the rectangle from the vertical wire
above can be embedded, if the ’notched square’ is first embedded to the left and then
rotated back to the right as depicted in Figure 2.8c in which case there is no notch located
at the ’notched square’s bottom. The same holds true if the right ’notched squares’ is
embedded to the middle. We say that the crossing gadget is oriented to the right (left)
if the right (left) ’notched square’ is embedded to the right (left) and we say that is is
oriented to the top (bottom) if there is no notch on the top (bottom) side of the ’notched
square’ embedded in the middle of the cavity. Obviously we can not orient both adjacent
horizontal wires towards the crossing since then both ’notched squares’ would have to be
embedded in the middle. It is also not possible to orient both adjacent vertical wires
towards the crossing since both would stick into the crossing by 24 and therefore overlap
in the central region RW [24][24] of the crossing gadget.

(d) Constructing the gadgets in detail

In this section we construct a unit disk graph for each of our gadgets that realizes the
corresponding mid-level schematic presented in Section (b). Each of the graphs realized
by these unit disk touching graphs will serve as a subgraph of G. Recall that we want to
be able to construct rigid, rectangular shapes. We therefore design each of the high-level
cells on a low-level grid D, composed of unit disks in a hexagonal pattern as illustrated in
Figure 2.9. To make sure that two high-level cells designed on such low-level grids can be
properly aligned we need to specify the exact dimensions for D. We define that D consists
of an even number Y of horizontal rows each of which consists of X unit disks. Without
loss of generality, we define the unit size to be 1, therefore, each of our disks has radius 1.
Our low-level grid is hexagonal in the sense that each (inner) disk is surrounded by six
other disks and the centers of these disks form a regular hexagon. Due to this hexagonal
nature, the rows, in turn, are horizontally offset by 1/2 and the vertical distance between
the centers of two consecutive rows is 2 · sin(π/3) =

√
3, while the horizontal distance

between the centers of two consecutive disks in a row is simply 2. The horizontal length
of one row can therefore be described as 2X, while the height of the entire grid cell
is (Y − 1)

√
3 + 2. We therefore define X = d(Y − 1)

√
3/2 + 1e in order to obtain grid cells

that are approximately square shaped. Recall that our mid-level grid RW divided each
cell into W 2 square regions in a W ×W pattern, where W ∈ N is an odd natural number
with W − 2 ≡ 0 mod 3. We choose Y = 4 ·W · S(|C|, |U |), where S is a scaling function
in |C| and |U | that will be specified later. For now, assume that S(|C|, |U |) � 1 is a
natural number. We refer to the j-th disk from the left in the i-th row from the bottom
as D[i][j]. Note that Y/2 is an even natural number and that Y/W is a natural number.
We use the (kY/W)-th and the (kY/W + 1)-th row of disks of D from the bottom to
describe the border between the k-th and the (k + 1)-th row of regions of RW from the

20

2. Recognition problems with unit radii

anchor

chain

Figure 2.9.: Low-level construction of the horizontal wire gadget with W = 5 and
S(|C|, |U |) = 3.

bottom as suggested in Figure 2.9. Since X/W is not necessarily a natural number there
is not such a straight forward way to evenly split the low-level grid D horizontally. In
Figure 2.9 we nevertheless included some vertical lines in order to make the resemblance
to the mid-level grid RW more obvious. Note, however, that the vertical slabs in this figure
are not evenly sized. For our construction this does not cause any issues.

(d.1) The horizontal wire gadget in detail

Recall that the horizontal wire gadget consists of two rigid, parallel line segments and a
rectangle anchored in the middle of the lower line segment that can be embedded to either
the left or the right. The two line segments are realized by the disks of the rows bW/2cY/W
and bW/2cY/W + 1 as well as dW/2eY/W and dW/2eY/W + 1, counted from the bottom,
see Figure 2.9. The adjacencies are chosen according to the grid contacts such that we
indeed obtain two rigid components. We define disk D[bW/2cY/W + 1][dX/2e], which is
the middle disk of upper row of the bottom line segment, to be the anchor of the rectangle.
The anchor is the only disk of the line segments touched by any of the rectangle’s disks.
We define disk D[bW/2cY/W +2][dX/2e] to be the one and only disk of the rectangle that
does touch the anchor and we call this vertex the chain.

Note that since the chain is only allowed to touch the anchor but not its right neighbor the
rectangle can not actually be be embedded as depicted in Figure 2.9. Instead the chain has
to be placed infinitesimally higher in any realization of the horizontal wire gadget subgraph.
In Figure 2.9 the chain is simply depicted as is, since it allows the reader to easily follow
the remainder of rectangle’s construction, which also takes place on the low-level grid.
It works as follows. Starting with the row above the chain we add two disks per row
until we reach the row located three rows below the upper line segment. More precisely,
we add disks D[i][dX/2e] and D[i][dX/2e + 1], where i is odd and bW/2cY/W + 3 ≤
i ≤ dW/2eY/W − 5, and we add disks D[i][dX/2e − 1] and D[i][dX/2e], where i is even
and bW/2cY/W + 4 ≤ i ≤ dW/2eY/W − 4, to the rectangle.

21

2.1. Unit Disk Touching Graph Recognition

So far we have constructed the right side of the rectangle. In order to construct the
top side, we actually have to leave our current cell grid. This is to be expected, as the
rectangle is supposed to stick into the grid cell to the left or right in any embedding. We
align the grid of another cell to the left of our current cell as suggested in Figure 2.9.
We extend our notation and refer to the j-th disk in the i-th row of the left cell’s grid
as D[i][j − X − 1]. We add disks of the rows located two and three rows below the
upper line segment such that they are connected to the previously created right side of
the rectangle and such that the upper side sticks into the other cell by almost (W − 2)/3
regions. More precisely, we add the disks D[dW/2eY/W −3][j] and D[dW/2eY/W −2][j′],
where 3−b((W −2)/3)X/W c ≤ j ≤ dX/2e and 3−b((W −2)/3)X/W c ≤ j′ ≤ dX/2e−1.

Constructing the left side of the rectangle works similar to the right side. We add the
disks D[i][2−b((W −2)/3)X/W c] and D[i][3−b((W −2)/3)X/W c], for any bW/2cY/W +
5 ≤ i ≤ dW/2eY/W − 4. For the bottom part of the rectangle we add the disks
D[bW/2cY/W + 4][j] and D[bW/2cY/W + 3][j′] to our rectangle, where 2 − b((W −
2)/3)X/W c ≤ j ≤ dX/2e − 3 and 3− b((W − 2)/3)X/W c ≤ j′ ≤ dX/2e − 2.

Note that we chose the rectangle to be as high as possible in the sense that only a single
row of disks fits between the rectangle and the bottom line segment as well as between the
rectangle and the top line segment. Of course, right now, this subgraph is not connected,
therefore, there would be no need to place the two line segments parallel and this close
to each other. Our high-level construction, however, will ensure that all the components
are indeed placed (at least approximately) as intended. Since the corridor created by the
two line segments is just barely higher than the rectangle (we will later define W and S
such that the length of the corridor and the rectangle are much larger than the the height
of 2 rows and, therefore, the corridor is much narrower than it seems in Figure 2.9) the
rectangle’s wiggle room is very small and it therefore has to be embedded either to the left
or the right in the sense that the rectangle can be only be tilted negligibly. Imagine two
of these unit disk touching graphs being placed next to each other. The disks realizing
the line segments align and we define the cells’ border disks to be touching in the obvious
manner. The values for W and S will ensure that the rectangles’ heights are close to the
corridors’ heights and, therefore, guarantee that if the right a rectangle is embedded to
the left, the rectangle to its left also has to be embedded to the left and vice versa.

(d.2) The vertical wire gadget in detail

The schematics for the horizontal and the vertical wire gadgets look very similar. However,
when constructing the vertical wire gadget as a unit disk touching graph, the hexagonal
nature of the low-level grid causes some differences to the horizontal case. Consider the
rectangle from the horizontal case and imagine rotating it by 90◦ to the right. In the
horizontal case, the chain is located in row bW/2cY/W + 2 and the rectangle’s topmost
row is dW/2eY/W−2, therefore, the rectangle encompasses dW/2eY/W−2−(bW/2cY/W+
2)+1 = (dW/2e−bW/2c)Y/W−3 = Y/W −3 rows in total, which corresponds to a height
of (Y/W−4)

√
3+2. The rotated rectangle now has a width of (Y/W−4)

√
3+2. A vertical

corridor which contains this rectangle has to be at least N = d(Y/W − 4)
√

3/2 + 1e disks
wide. We define the anchor disk for the vertical wire gadget to be D[Y/2+1][d(X−N)/2e],
see Figure 2.10a. We attach the chain of the rectangle to the anchor. The line segments
consist of the disks D[i][d(X −N)/2e − 1], D[i][d(X −N)/2e], D[i][d(X −N)/2e+N + 1]
and D[i][d(X −N)/2e + N + 2] for any odd 1 ≤ i ≤ Y and disks D[i][d(X −N)/2e − 2],
D[i][d(X −N)/2e− 1], D[i][d(X −N)/2e+N + 1] and D[i][d(X −N)/2e+N + 2] for any
even 1 ≤ i ≤ Y . The disks touch each other as dictated by the grid contacts. Note how
two vertical wires placed on top of each other align since the number of rows Y is even.

22

2. Recognition problems with unit radii

anchor

chain

(a) Vertical wire.

anchor
chain

(b) Corner.

Figure 2.10.: Low-level construction of the gadgets with W = 5 and S(|C|, |U |) = 3.

(d.3) The corner gadget in detail

When designing the corner gadget, it is, once again, important that the line segments
of horizontal wire gadgets placed to the left and vertical wire gadgets placed at the
bottom align with the polylines of the corner gadgets. We define the anchor disk to
be D[bW/2cY/W + 1][d(X − N)/2e], which is the bottom left disk of the central region,
see Figure 2.10b. The horizontal parts of the polylines have to align with the line seg-
ments of horizontal wire gadgets and are therefore composed of the disks D[bW/2cY/W][j]
and D[bW/2cY/W + 1][j′] as well as D[dW/2eY/W][j′′] and D[dW/2eY/W + 1][j′′], for
any 1 ≤ j ≤ d(X−N)/2e−1, 1 ≤ j ≤ d(X−N)/2e and 1 ≤ j′′ ≤ d(X−N)/2e+N+1. The
vertical parts of the polylines consist of the disks D[i][d(X−N)/2e−1], D[i][d(X−N)/2e],
D[i′][d(X − N)/2e + N + 1] and D[i′][d(X − N)/2e + N + 2] for any odd 1 ≤ i ≤
bW/2cY/W − 1 and any odd 1 ≤ i′ ≤ dW/2eY/W and disks D[i][d(X − N)/2e − 2],
D[i][d(X − N)/2e − 1], D[i′][d(X − N)/2e + N + 1] and D[i′][d(X − N)/2e + N + 2] for
any even 1 ≤ i ≤ bW/2cY/W − 1 and any even 1 ≤ i′ ≤ dW/2eY/W . Following the
construction for the horizontal case, we construct a a rectangle attached to the anchor and
sticking out of the cell by (W − 2)/3 regions. Note that this rectangle is approximately
half a region shorter than the previous rectangles since the anchor is located not in the
center of the central region, but in its bottom-left corner.

(d.4) The clause, variable and stopper gadgets in detail

Following our previous elaborations, it should, for the most part, be clear how to construct
the clause gadget. We therefore omit most of the construction and explain only two new
aspects. (1) Both the corner in the bottom-left cell as well as the ’T-type’ cell in the middle
row of the clause gadget require the construction of a subgraph that realizes top-to-right
turn. As depicted in Figure 2.11a, the obvious construction method for this kind of turn
results in a non-outerplanar subgraph due to Y being even and a multiple of W . We
therefore ’round’ the subgraphs that realizes these turns as illustrated in Figure 2.11b. As
a result, choosing an anchor disk for a top-to-right corner gadget is not as straight-forward
as for the left-to-bottom corner gadget introduced in (c.4). We will resolve this issue after
explaining the second new aspect. (2) The ’T-type’ cell in the middle row requires a
construction that allows orienting the rectangle to the top, the bottom and the right. We
therefore define the anchor disk to be D[dW/2eY/W −1][d(X−N)/2e], which is located in
the top-left of the central region, and we modify the rectangle as follows. So far, the chain

23

2.1. Unit Disk Touching Graph Recognition

(a) Not outerplanar.

anchor

chain

(b) Outerplanar.

Figure 2.11.: Low-level construction of the ’T-type’ cell of the clause gadget with W = 5
and S(|C|, |U |) = 3.

always touched two disks of the rectangle and therefore formed a rigid structure together
with the rectangle. We remove the adjacency to the inner of these two disks (which is the
left of the disks in the original construction), so that the chain is now only connected to
one disk as depicted in Figure 2.11b. As before, the chain is the only disk that touches
any of the polylines that describe the remainder of the structure and the only touched
disk is the anchor. Clearly, we can still flip the rectangle at the chain so that it can be
oriented to the bottom or the top, however, we can now also rotate the rectangle at the
chain such that it can be oriented to the right. We can use the same anchor disk and
the same modification to the rectangle’s chain in order to solve the previously mentioned
’rounding’ issue for the top-to-right corner in the bottom row of the clause gadget.

Recall that in the variable gadget the corridor in which the rectangle is embedded is
much narrower and that the rectangle’s height is reduced accordingly. This is the only
new aspect when it comes to the construction of the variable and stopper gadgets. We
therefore describe how the central cell is constructed, the remaining cells can be constructed
accordingly. The bottom row of disks of the top row of regions as well as the row of disks
below these disks constitute the upper line segment, see Figure 2.7. Independent of W
and S, the corridor in this cell is exactly 4 rows high and the rectangle, accordingly, is 2
rows high and, therefore, is just a rigid line segment itself. It is anchored in the middle of
the bottom line segment as usual.

(d.5) The crossing gadget in detail

Even though the crossing gadget is the most complex gadget, its low-level construction
should be straight-forward considering our previous elaborations. The only new aspect is
the anchoring for the four-way embeddable ’notched squares’. Figure 2.12 illustrates how
this works.

(e) Conclusion

For each cell of the high-level grid R we have created a graph. We now merge all these
graphs together by adding adjacencies between the vertices corresponding to ’border’ disks
of adjacent cells. Figure 2.13a depicts a schematic view of the obtained graph. The black
lines represent the rigid, connected components, omitting the rectangles and ’notched
squares’. Note that if there exist sets of clauses with disjoint variable sets, it is possible

24

2. Recognition problems with unit radii

rotate

rotate

flip flip

Figure 2.12.: Anchoring for the four-way embeddable ’notched squares’.

that the obtained graph actually consists of multiple such structures. However, without loss
of generality, we may assume that this is not the case. Nevertheless, we immediately notice
two problems. (1) Even though each of the gadget subgraphs itself is clearly outerplanar,
the graph obtained by merging all of the subgraphs is not outerplanar. Right now it has
an outer face (white), a ’wire’ face (lightgray) and several ’other’ faces (darkgray) enclosed
by rigid structures. (2) There is no need to embed the rigid structures that enclose the
’other’ faces where they are located in Figure 2.13a since the graph is not connected and
each of the rigid structures constitutes a separate connected component.

We solve both problem (1) and problem (2) by introducing a new gadget called mainte-
nance section, a low-level version of which is illustrated in Figure 2.13c. The maintenance
section gadget is basically a modified horizontal wire gadget. We ’cut’ the bottom line
segment by removing disks D[bW/2cY/W + 1][dX/2e− 2] and D[bW/2cY/W][dX/2e− 2].
Recall that N is the minimum number of disks that have to be placed next to each
other such that the total length of the thereby obtained path exceeds the height of the
rectangle including the chain. We connect the right part of the bottom line segment
with the upper segment by adding a path consisting of N + 2 disks connecting anchor
disk D[bW/2cY/W + 1][dX/2e− 2] and disk D[dW/2eY/W][dX/2e− 2]. We call this path
bridge. We delete the old chain disk. The rectangle excluding the chain is always an even
number N ′ of disks high and on the left and right side the disks are in turn offset by 1/2.
On the right side, the outer disk of the (N ′/2 + 1)-th row of the rectangle belongs to the
rightmost disks of the rectangle. To this disk we attach a new chain disk. We also connect
the chain disk to the d(N + 2)/2e-th (counted from the anchor) disk of the bridge. For
each of the rigid structures that enclose an ’other’ face, we remove the top-left horizontal
wire gadget and replace it with a maintenance section. The ’wire’ face and the ’other’
faces thereby collapse to one large face, see Figure 2.13b. By furthermore ’cutting’ the
rigid structure that separates this face from the outer face once at some arbitrary location,
we obtain an outerplanar graph (1).

Note that since each of the rigid structures is ’cut’ at exactly one location they remain rigid.
In fact, now they satisfy the preconditions of Lemma 2. The bridges, however, are not
rigid. It therefore is possible to move the rigid structures, which are now held together by
the bridges, around, and we need to argue why the rigid structures are nevertheless placed
at least approximately like in the ideal situation and, therefore, that it is not possible
to embed the obtained graph if this is not actually supposed to be possible. First of all,
consider only the rigid structure sw that bounds the ’wire’ face and the rigid structure s11
that bounds the top-left ’other’ face. Note that the top side of s11 points to the top in any
embedding since the length of the bridge is only a W -th of a cell’s width, which limits the
rotatability of s11. Furthermore, the combinatorial embedding of the bridge, sw and s11
(without the rectangles) has to be ideal in the sense that it is not possible to flip s11 such

25

2.1. Unit Disk Touching Graph Recognition

that the side that is ideally pointing the right is pointing to the left since the maintenance
section with the bridge has replaced the top-left horizontal wire gadget of s11 and the
width of any ’other’ face bounding rigid structure is at least 2 cells (note how the stoppers
and vertical wire gadgets connected to the variable gadgets are separated by 2 free cells).
Now consider the rectangles attached to s11, sw and the bridge connecting them. Ignoring
rotation, we can move s11 at most roughly 2 disk widths to the left or to the top since
the corridors containing the rectangles are ideally just 2 rows or columns of disks wider
than the rectangles. Next, consider the rigid structure s21 that is ideally located directly
beneath s11. Again, the combinatorial embedding of sw, s11, s21 and the bridges has to be
ideal since flipping s21 is not possible. Ignoring rotation, s21 can only be moved roughly 2
disk widths to the left. Assuming that Y and X, which are the dimensions of a cell, are
much larger than 2 disks, it furthermore is only possible to move s21 roughly 2 + 2 disk
widths to the top from its ideal position (which requires that s11 is moved 2 disks to the
top as well). Directly beneath s21 is the rigid structure sw, therefore, ignoring rotation,
the movement to the bottom for both our rigid structures is also at most roughly 2 or 4
disk widths respectively. The same holds true for all the left-most ’other’ face bounding
rigid structures. To the right of s11 we always find sw, therefore s11 can also be moved at
most 2 disks to the right.

Now consider the top-left rigid structure sij of the not yet considered ’other’ face bounding
rigid structures. The combinatorial embeddings of the rigid structures that are ideally
located above and to the left of sij are ideal, therefore, the combinatorial embedding of sij
and its bridge are ideal as well. It can only be moved a number of disk widths to the left
or the top that is linear in the number of the previously considered ’other’ faces. We can
argue that sij can only be moved a number of disks width to the bottom that is linear
in the number of not yet considered rigid structures below sij . A similar argument holds
for the movement to the right. If the cell dimensions are large enough, we can, therefore,
iteratively conclude that the position of any disk can only diverge at most a number of disk
widths linear in the number of ’other’ faces from the ideal position. This holds true even
if rotations are allowed since in the corridors above and below each of the rigid structures
each contain at least 2 rectangles and the corridors to the sides of each rigid structure
contain at least 1 rectangle. It should be noted that rigid structures whose bottom parts
are located in variable gadgets could be moved a little bit further to the bottom than just 2
disk widths because variable gadget utilize only one long rectangle. If the long rectangle is
embedded to the right (left), the rigid structures on the left (right) of the variable gadget
can be moved all the way down to the bottom of the corridor. However, this does not
cause any problems since we created the long rectangle to be only 2 disks high. Therefore,
the width of the entire corridor is only 4 disk widths.

All of our gadgets are designed such that if something is not supposed to be embeddable,
some rigid structures overlap by at least one region of the W × W mid-level grid RW .
The dimensions of a cell are Y = 4 ·W · S(|C|, |U |) and X = d(Y − 1)

√
3/2 + 1e. The

dimensions of a region of the mid-level grid RW are therefore 4 · S(|C|, |U |) and roughly
d(4 · S(|C|, |U |) − 1)

√
3/2 + 1e. We have already established that disk positions can only

diverge at most a number of disk widths linear in the number of ’other’ faces from their
ideal position in any direction (if the cells dimensions are large enough). Since the number
of ’other’ faces is clearly polynomial in |C| and |U |, we can choose S as a polynomial
in |C| and |U | in order to enlarge the dimensions of regions (and, therefore, cells) such
that unexpected embeddings are still not possible even if disk positions are allowed to
diverge from their ideal positions.

Recall that auxiliary multigraph G′ is orientable if and only if C is satisfiable. We have
constructed our UDT instance G by using gadgets that emulate the orientation concept.
Clearly, if G′ is orientable, then G is realizable as a unit disk touching graph. On the other

26

2. Recognition problems with unit radii

(a) Schematic of the constructed graph.

(b) The constructed graph after adding the
maintenance sections.

cut

chain

bridge

(c) Low-level maintenance section with
W = 5 and S(|C|, |U |) = 3.

Figure 2.13.: Replacing the top-left horizontal wire of each ’other’ face makes the ’wire’
and the ’other’ faces collapse.

hand, if G is realizable as a unit disk touching graph, then each clause gadget has at least
one horizontal wire that is oriented to the right and all vertical wires of at least one side
of each variable gadget are oriented to the top. The horizontal wire (crossing) gadgets
are designed such that it is not possible that both the gadgets to the right and left are
oriented towards it. The vertical wire (crossing) gadgets are designed such that it is not
possible that both the gadgets to the top and bottom are oriented towards it. Finally, the
corner gadgets are designed such that it is not possible that both the gadgets to the left
and bottom are oriented towards it. Thus, the orientation of the gadgets is propagated as
intended, which induces an orientation for the corresponding edges in G′. Note that the
gadget orientations do not necessarily induce an orientation for all edges of G′, since there
may exist an edge e in G′ such that two consecutive gadgets of the succession of gadgets
that correspond to e are oriented away from each other. This, however, can happen only
once per edge and it does not cause a problem since we are still guaranteed to obtain at
least a partial orientation for the edges in G′ in which each clause vertex has outdegree at
least 1 and in which at least one of the vertices of each literal pair has indegree 0. The
orientation for the remaining edges can be chosen arbitrarily and, therefore, G is realizable
as a unit disk touching graph if and only if G′ is orientable, which on the other hand is
the case if and only if C is satisfiable. The number of cells of the high-level grid as well
as the number of disks used to realize each of these cells both are polynomial in the input
size, which concludes our proof.

27

2.2. Unit Disk Touching Graph Recognition with fixed Embedding

2.2. Unit Disk Touching Graph Recognition with fixed Em-
bedding

In this section we consider the Unit Disk Touching Graph Recognition with fixed Embed-
ding (UDTE) problem. Recall that in this problem we need to decide whether a given
graph can be realized as a unit disk touching graph that respects a given combinatorial
embedding. Our main result is an extension for the NP-hardness proof from the previous
section that shows that UDTE is NP-hard and remains so even if the input graph is
outerplanar. We begin the section by describing how some of the results from the UDT
problem carry over to the UDTE problem.

Corollary 3. Any path P can be realized as a unit disk touching graph with respect to any
combinatorial embedding for P .

Corollary 4. Let C = (V,E) be a cycle and Γ be a combinatorial embedding for C. There
exists a realization of C as a unit disk touching graph with respect to Γ.

Corollary 5. For spiders the Unit Disk Touching Graph Recognition with fixed Embedding
problem can be decided in O(n) time where n is the number of vertices of the given spider.
In the Real RAM model a realization can be constructed in O(n) time (if one exists).

Corollary 3 and Corollary 4 follow from Observation 1 and Observation 2 since the combi-
natorial embedding of any path or cycle is unique. Corollary 5 follows from Observation 3.
In the remainder of this section we show that UDTE is NP-hard and remains so even if
the input graph is outerplanar.

Theorem 3. The Unit Disk Touching Graph Recognition with fixed Embedding problem
is NP-hard, even for outerplanar graphs.

Proof. This proof is an adaption of the proof of Theorem 2. We, therefore, recycle the
definitions and notations and assume that the reader is familiar with said proof. Recall
that in Theorem 2 we construct a graph G that is realizable as a unit disk touching graph if
and only if the auxiliary multigraph G′ is orientable, which, on the other hand, is the case
if and only if the collection of clauses C of the 3SAT instance is satisfiable. The graph G is
constructed by placing different types of gadgets on a high-level grid R. The gadgets are
schematically designed on a mid-level W ×W square grid RW and constructed in detail
on a hexagonal circle grid D. The gadgets emulate the orientation concept of the auxiliary
multigraph G′ and the key tool for this purpose are rectangles and other rigid structures
that can only be embedded in certain ways due to our anchoring concept. Many of the
gadgets from Theorem 2 are designed such that different gadget orientations correspond
to different combinatorial embeddings. For example, in a horizontal wire gadget that is
oriented to the right, the rectangle is embedded to the right. Orienting the gadget to
the left requires flipping the rectangle to the left and thereby changing the combinatorial
embedding. The idea for this proof is to adapt the gadgets such the different orientations
require rotating certain rigid structures rather than flipping them such that all possible
realizations share one common combinatorial embedding.

We begin by adapting the horizontal wire gadget. Instead of defining one of the disks of the
bottom line segments to be the anchor disk and using one chain disk to attach the rectangle,
we use a rigid structure that extends from the bottom line segment in order to place the
anchor disk in the center of the central region of the gadget’s cell, see Figure 2.14a. Note
that we need to remove one of the disks from the bottom row of the bottom line segment
in order to maintain outerplanarity. We use two chain disks to connect the anchor to the
middle the rectangle’s side. This way, the rectangle can be rotated around the anchor

28

2. Recognition problems with unit radii

anchor

chain

removed disk

(a) Low-level construction of the horizontal wire gadget with W = 5
and S(|C|, |U |) = 3.

(b) Schematic of the cor-
ner gadget, W = 11.

Figure 2.14.: Gadget adaptations that do not require flipping the rectangles.

to either side without changing the combinatorial embedding. The same approach can
be applied to adapt the vertical wire gadget. In the adaptation for the corner gadget,
the extending rigid structure is attached to the right polyline, see Figure 2.14b. With
this information, the adaptations for the clause, stopper and variable gadgets should be
straight-forward.

The crossing gadget has to be redesigned completely since the four-way embeddable
’notched squares’ require flips as well as rotations. Figure 2.15a depicts our new crossing
gadget. The main ingredients are two ’arrow’-type rigid structures. On either side of the
gadget there are large cavities and the ’arrow’-type structures are anchored such that the
one on the right (left) can be embedded in the cavity to the right (left) if and only if the
gadget to the right (left) of the crossing is oriented away from the crossing. However, if
this is not the case, it has to be embedded in a cavity in the center of the crossing gadget.
The ’arrow’-type structures are designed such that only one of them can be embedded in
the middle cavity, therefore, it is not possible that both the gadget to the right and to the
left of the crossing are oriented towards it. An ’arrow’-type structure can be embedded in
the middle cavity in two different ways. It can be pointed to the top or the bottom. If the
gadget below (above) the crossing gadget is oriented towards it, it has to be pointed to
the top (bottom). Even if both ’arrow’-type structures are pointed to the sides, it is not
possible for both the gadgets above and below the crossing gadget to be oriented towards
it, since the rectangles would intersect in the central region of the cell. In order to realize
the rigid ’arrow’-type structure as a unit disk touching graph, the diagonal ’shaft’ of the
arrow can be approximated by a zigzagging, rigid polyline.

The last remaining gadget is the maintenance section, which has to be redesigned as well
since embedding the rectangle to different sides of the bridge corresponds to different
combinatorial embeddings. Figure 2.15b depicts the new maintenance section gadget. We
place a tall but narrow cavity in the middle of the gadget. From the top and the bottom
we extend rigid structures in order to place anchor disks in the center of both the lower

29

2.2. Unit Disk Touching Graph Recognition with fixed Embedding

(a) Crossing gadget.

cut

(b) Maintenance gadget.

Figure 2.15.: Mid-level schematics for the adapted gadgets with W = 47.

and the upper half of the gadget. We connect both anchor disks to the middle of two tall
but narrow rectangles that fit tightly in the cavity. To the other sides of these rectangles
we connect yet another rectangle using chains and two rigid structures each. Note that by
rotating a rectangle around its anchor we can place it either to the left or the right side,
however, since the cavity is so narrow and the rectangles are so tall, they always have to be
embedded perpendicularly. Because of the third rectangle, all three rectangles have to be
embedded either to the right or to the left side of the gadget. Observe that because of our
anchors and chains, both possibilities share one combinatorial embedding. On the sides
of the gadget we place two more rectangles that have to be embedded sticking out of the
gadget if the three rectangles in the middle are embedded to the corresponding side. Note
that we have to modify all clause gadgets such that their rectangles stick only 4 regions
into adjacent maintenance gadgets. This can be done by moving the rectangles’ anchoring
to the left and by decreasing the rectangles’ lengths.

We have adapted all gadgets such that they emulate the orientation concept using only
rotations instead of flipping. Thus, we can provide a combinatorial embedding Γ for the
generated graph G such that there exists a realization of G as a unit disk touching graph
that respects Γ if and only if the auxiliary multigraph G′ is orientable and therefore if and
only if C is satisfiable.

30

3. Recognition problems with fixed radii

In this chapter we consider the Disk Touching Graph Recognition with fixed Radii (DTR)
(Section 3.1) and the Disk Touching Graph Recognition with fixed Radii and Embedding
(DTRE) (Section 3.2)problems. Recall that in these problems we need to decide whether
a given graph can be realized as a disk touching graph that respects a given radius assign-
ment (and a given combinatorial embedding in case of the DTRE). Furthermore, recall
that the NP-hardness of the DTR is implied by Breu and Kirkpatricks NP-hardness
proof [BK98] for the Unit Disk Touching Graph Recognition (UDT) problem and that we
strengthened their result in Chapter 2 by showing that the UDT problem as well as the
Unit Disk Touching Graph Recognition with fixed Embedding (UDTE) problem are NP-
hard, even for outerplanar graphs. These results carry over to the DTR and the DTRE
problems. In Section 3.1 we strengthen our result for the DTR problem further by showing
that the problem remains NP-hard even for stars. In Section 3.2, however, we devise an
algorithm that solves the DTRE problem for stars in linear time in the Real RAM model.
For both problems we also provide existence arguments for realizations of paths and cycles.

3.1. Disk Touching Graph Recognition with fixed Radii

In this section we consider the Disk Touching Graph Recognition with fixed Radii (DTR)
problem and show that it remains NP-hard even for stars. First, however, we provide a
simple observation concerning paths and proceed with an existence argument for realiza-
tions of cycles.

Observation 4. Any path P can be realized as a disk touching graph with respect to any
radius assignment for P .

Theorem 4. Let C = (V,E) be a cycle and r : V → R+ be a radius assignment for C.
There exists a realization of C as a disk touching graph with respect to r.

Proof. We use a geometric construction to prove the existence of a disk touching graph
with the property that the touching points of all pairs of consecutive disks in our cycle are
located on a circle and therefore all of these touching points have a specific distance rc ∈ R+

to some center point pc ∈ R2. Let D1, D2 and D3 be three consecutive disks in this
construction, let p2 ∈ R2 and r2 ∈ R+ be the center and the radius of D2 respectively
and let p1,2, p2,3 ∈ R2 be the touching points of D1 and D2 and D2 and D3. Using the
Pythagorean Theorem we can describe the distance from pc to p2 as dc,2 =

√
r2c + r22,

31

3.1. Disk Touching Graph Recognition with fixed Radii

pc

D1

D2

D3

p2

p1,2

p2,3

r2rc h2

α2
dc,2

Figure 3.1.: Three consecutive disks in the geometric construction used in Theorem 4.

Dc

gap

Figure 3.2.: In Theorem 5, Theorem 6 and Theorem 7 n funnel-shaped gaps of equal size
are created by placing n outer disks tightly around a central disk Dc.

see Figure 3.1. The line segments pcp2, p2p2,3 and p2,3pc constitute a rectangular triangle
with height h2 = r2 · rc/dc,2. We define angle α2 = ∠(pc, p1,2, pc, p2,3). By using basic
trigonometry we obtain 2h2 = 2rc sin(α2/2) and therefore α2 = 2 arcsin(h2/rc).

The statement above is true for any three consecutive disks of our cycle. Therefore,
we know that the value rc has to satisfy the following condition, in which hi is defined
according to our example for any 1 ≤ i ≤ |V |:

∑
1≤i≤|V |

2 arcsin(hi/rc) = 2π (3.1)

For any 1 ≤ i ≤ |V | we also define ri and dc,i according to our example and obtain hi/rc =

ri/dc,i = ri/
√
r2c + r2i . Clearly limrc→0 ri/

√
r2c + r2i = 1 and limrc→+∞ ri/

√
r2c + r2i = 0.

Since arcsin is continuous at any point of the interval (0, 1) the intermediate value theorem
states that there indeed exists a value rc ∈ (0,∞) for which Condition 3.1 holds true, which
concludes our proof.

In the remainder of this section we prove that the DTR is NP-hard even for stars. To
prepare the reader, we decided to include NP-hardness proofs for outerplanar graphs and
for trees as well since they are very intuitive, follow ideas similar to those used in the proof
for stars and delineate the therein occurring problems.

Theorem 5. The Disk Touching Graph Recognition with fixed Radii (DTR) problem is
NP-hard even for outerplanar graphs.

Proof. Note that Theorem 2 immediately implies that DTR is NP-hard even for out-
erplanar graphs. As explained above, we nevertheless decided to include this particular

32

3. Recognition problems with fixed radii

theorem as the proof follows roughly the same idea as the proof for Theorem 7 and, there-
fore, prepares the reader for the upcoming final theorem of this section. However, since
our hypothesis is implied by Theorem 2 we feel justified in omitting some technical details
and instead just present a proof sketch that focuses on intuition.

We perform a polynomial-time reduction from the 3-Partition problem. Let (A,B) be
a 3-Partition instance, where A is the set of positive integers with |A| = 3n, n ∈ N
and B ∈ N is the bound. We have to construct a graph G = (V,E) as well as a radius
assignment r : V → R+ such that G has a realization as a disk touching graph with respect
to r if and only if (A,B) is a yes-instance of the 3-Partition problem.

We start by creating a central disk Dc as well as a total of n outer disks adjacent to Dc.
We choose the radius of the outer disks uniformly such that in any realization they have
to be placed close next to each other (the last paragraph of this proof sketch explains this
notion in more detail), thus, creating n funnel-shaped gaps of equal size, see Figure 3.2. We
determine a disk radius ri ∈ R+ such that exactly B disks with radius ri fit tightly inside a
single of the gaps while touching the central disk Dc. For each integer a ∈ A we now create
a gadget consisting of a total of a disks Da

1 , . . . , D
a
a with radius ri such that Da

i is adjacent
to Da

i+1 for 1 ≤ i ≤ a − 1 and additionally such that each Da
i , 1 ≤ i ≤ a is adjacent to

the central disk Dc, see Figure 3.3a. Consider a triple t = (a1, a2, a3) of elements of A.
The triple t corresponds to a triple of disk gadgets with a total of a1 + a2 + a3 disks. If t
is feasible and, therefore, a1 + a2 + a3 = B, then an algorithm that tries to realize our
graph G with respect to r can place the three corresponding disk gadgets all together in
one gap since ri is chosen such that up to exactly B disks with radius ri can be placed in
a gap. However, if t is infeasible and, therefore, a1 + a2 + a3 > B, only two of the gadgets
can be placed together in one gap. The remaining gadget has to be placed in another gap
entirely since its disks are consecutively adjacent. We can conclude that the constructed
graph G can be realized as a disk touching graph with respect to r if and only if (A,B)
is a yes-instance of the 3-Partition problem. Note that since 3-Partition is NP-hard in
the strong sense, this is indeed a polynomial-time reduction, even tough we create a total
of nB + n + 1 ∈ O(nB) disks. The constructed graph G is outerplanar, which concludes
this proof sketch except for the precision problem described in the following paragraph.

Note that by choosing one of the three different occurring radii in this construction we
uniquely determine the other two radii. They can be calculated using trigonometry and the
Pythagorean Theorem, which involves computing square roots as well as sine and cosine
functions and, therefore, can take a superpolynomial, even an infinite amount of time. For
a complete proof, we would need to argue that either all coordinates are good-natured
or that approximate values suffice. Furthermore, note that we actually do not want to
construct a tight packing. Instead, the outer disks as well as the gadget are not actually
supposed to touch each other. This could be achieved by ensuring that the central disk’s
radius is a tiny value ε larger than it would be in a tight packing. Note, however, that
whether value ε is small enough depends on the input since the larger central disk allows
the outer disks to move around, thereby, increasing a gaps possible size and for larger B
the largest tolerable gap size decreases.

Theorem 6. The Disk Touching Graph Recognition with fixed Radii problem is NP-hard
even for trees.

Proof. With Theorem 7 we provide an in-depth proof that shows that the DTR problem
remains NP-hard even for stars, which, of course, implies that this is true for trees as
well. As explained above, we nevertheless decided to include this particular theorem as
the proof follows roughly the same idea as the proof for Theorem 7 and, therefore, prepares

33

3.1. Disk Touching Graph Recognition with fixed Radii

Dc

(a) A gap in Theorem 5.

Dc

(b) A gap in Theorem 6.

Figure 3.3.: Comparison of the gaps in Theorem 5 and Theorem 6. The central and the
outer disks are colored white, the gadgets representing the input integers are
colored lightgray and the plug disk subtrees are colored darkgray.

the reader for the upcoming final theorem of this section. However, since our hypothesis
is implied by Theorem 7 we feel justified in omitting some technical details and instead
just present a proof sketch that focuses on intuition.

We perform a polynomial-time reduction from the 3-Partition problem. The first part of
the proof is analogous to the proof of Theorem 5. We create a central disk Dc and n
outer disks that are adjacent to Dc and which have to be placed close together (the
last paragraph of Theorem 5 explains this notion and related problems) around Dc, thus
creating n funnel-shaped equal-sized gaps. Again, for each integer a ∈ A we now create
a gadget consisting of a total of a disks Da

1 , . . . , D
a
a with radius ri, which is chosen such

that up to exactly B disks can be placed together in one of the gaps while touching the
central disk Dc. Recall that we have to ensure that all of these disks have to be placed
together in one of the gaps. In Theorem 5 we ’tied’ them together by making them touch
the central disk as well as each other consecutively. Since now our constructed graph has
to be a tree, we have to find a different solution. We still make all disks corresponding to a
consecutively adjacent, however, we only make the first disk Da

1 of the sequence adjacent
to the central disk Dc. Disks Da

2 , . . . , D
a
a can now be placed anywhere in the gap, in

particular, they do not have to be placed near the central disks. Therefore, it might be
possible to place more than three gadgets together in a single gap.

The idea to solve this problem is to attach trees consisting of plug disks to the outer disks
that have to be placed in the gaps and which take up almost all the remaining space in the
gap and, therefore, ensure that our gadgets still have to be placed tightly next to the central
disk Dc. This idea is illustrated in Figure 3.3b. In particular, the disks of the attached tree
are the recursively largest possible disks that can be placed in the remainder of the gap.
In a full proof, one needs to precisely argue that a total of O(nB) plug disks is sufficient.
Intuitively this is the case since B is also the upper bound for the number of disks that
can be placed in a single gap while being placed next to the central disk Dc. In order to
ensure that the attached trees with the plug disks are placed inside the gaps, we attach
some additional disks (for example additional copies of the plug disk trees as illustrated
in Figure 3.3b) to the outer disks. By filling the remaining space in the gaps with plug
disks, we have ensured that, like in the proof of Theorem 5, only gadgets corresponding
to feasible input triples can be placed together in a single gap and, therefore, that the
constructed graph, which is a tree, can be realized by a disk touching graph with respect

34

3. Recognition problems with fixed radii

to the construction radius function if and only if the 3-Partition instance is a yes-instance.
Since we only create O(nB) disks and 3-Partition is NP-hard in the strong sense, this
concludes our proof sketch.

Theorem 7. The Disk Touching Graph Recognition with fixed Radii problem is NP-hard
even for stars.

Proof. Like in the NP-hardness proof sketches for trees (Theorem 6) and outerplanar
graphs (Theorem 5), we perform a polynomial-time reduction from the 3-Partition prob-
lem. Note that in order to increase readability certain portions of this proof have been
moved to detail Sections (a) – (d) at the end of the proof as well as Appendix A. Let (A,B)
be a 3-Partition instance, where A is the set of positive integers with |A| = 3n, n ∈ N
and B ∈ N is the bound. We have to construct a star S as well as a radius assignment r′

for S such that G has a realization as a disk touching graph that respects r′ if and only
if (A,B) is a yes-instance of the 3-Partition problem. For this reduction we shall create
several disks that are all adjacent to a central disk Dc. Since S is supposed to be a star,
these are the only adjacencies in our construction. However, several of the disks adjacent
to Dc are required to be placed very close together without actually touching. We shall,
whenever we need to calculate distances, handle these barely not touching disks as if they
are actually touching. In Section (d) at the end of this proof, we describe how to actually
compute these distances using approximations and during this step the radius of the cen-
tral disk increases by a suitably small amount such that no unanticipated embeddings can
be created.

As in the previous proofs, we create a total of m outer disks with uniform radius ro
chosen such that in any embedding these disks have to be placed close together around
the central disk, thus creating m funnel-shaped gaps of equal size. Each of the gaps is
supposed to be large enough that disks that represent a feasible input triple can be placed
inside it, however, the gaps should be too small to contain an infeasible integer triple’s
disk representation. Unlike in the previous proofs, since our disk graph is supposed to
be a star, we can not represent an integer a ∈ A by a gadget consisting of a disks with
some uniform radius since we can not use adjacencies to ensure that the gadget’s disks
have to be placed in the same gap. Instead we will represent each integer in A by a single
disk and encode its value in its disk’s radius. Each of the disks that represents one of the
integers will be refered to as an input disk. A feasible (infeasible) disk triple is a triple
that represents a feasible (infeasible) integer triple.

In the original scenario described above, a gap’s boundary belonging to the central disk Dc,
which we call the gap’s bow, is curved as illustrated in Figure 3.4a. We will, however, first
consider a simplified scenario in which a gap is created by placing two disks of radius ro
right next to each other on a straight line as depicted in Figure 3.4b. We refer to this
gap’s straight boundary as the bottom of the gap. We call a point’s vertical distance from
the bottom its height. We also utilize the terms left and right in an obvious manner.
Assume for now that we can place two separator disks in the gap’s left and right corner,
touching the bottom and such that the distance between the rightmost point pl of the left
separator and the leftmost point pr of the right separator is exactly 12 units. Since B ≡ 0
mod 4 we know that a ∈ {B/4 + 1, . . . , B/2− 1} for any a ∈ A. Our first goal is to find a
function r : {B/4, B/4+1, . . . , B/2} → R+ that assigns a disk radius to each input integer
as well as to the values B/4 and B/2 such that a disk triple t together with two separator
disks can be placed on the bottom of a gap without intersecting each other or the outer
disks if and only if t is feasible. In the following, we show that r(x) = 2− (4− 12x/B)/B
will satisfy our needs.

35

3.1. Disk Touching Graph Recognition with fixed Radii

Dc d chord

bow
separator

outer disk

ro

12

ro

ro ro

(a) A gap in the original scenario.

ro ro

ro ro

bottom

separator
12

(b) A gap in the simplified scenario.

Figure 3.4.: Comparison of the two scenarios. In the original scenario the gap is bounded
by two disks and its bow. In the simplified scenario the gap’s bottom replaces
its bow. The distance between the separators is 12 in both scenarios.

Assume for now that for any a ∈ A it is not possible that a disk with radius r(a) intersects
one or even both of the outer disks that bound the gap when placed between the two
separators (we prove this later in Section (c)). Observe that for B > 12 the function r is
linear and that a triple of disks with uniform radius r(B/3) = 2 requires a total horizontal
space of 2 · 2 · 3 = 12 if placed tightly next to each other on a straight line. Therefore, if
we choose the radius of the separators to be rmin = r(B/4 + 1) = 2 − (1 − 12/B)/B, it
follows that every feasible disk triple fits in the gap since (1) a triple of disks with uniform
radius r(B/3) yields an upper bound for the amount of horizontal space required by any
feasible disk triple and since (2) r(B/3) > rmin, which implies that if the three disks are
placed next to each other on the bottom, the height of the leftmost point of the disk triple
is greater than the height of the rightmost point pl of the left separator and, therefore,
these disks do not touch (and the same holds true for the right side respectively), see
Figure 3.5a.

Note that rmin is the smallest possible input disk radius. Analogously we define rmax, the
largest possible input disk radius with rmax = r(B/2− 1) = 2 + (2− 12/B)/B. Consider
the disk triple ti = (rmin, rmax, rmin). The sum of the integers corresponding to the disks
of ti is B/4 + 1 +B/2− 1 +B/4 + 1 = B+ 1 and, therefore, ti is infeasible. When placing
the three disks next to each other on a straight line, placing the disk with radius rmax

in the middle maximizes the difference between the radii of adjacent disks and, therefore,
minimizes the overall horizontal space required, which, using the Pythagorean Theorem,
can be described as si = 2rmin + 2

√
(rmax + rmin)2 − (rmax − rmin)2, see Figure 3.6a.

Since r is linear and B + 1 is the smallest possible sum of any infeasible integer triple, si
is the least possible amount of horizontal space required by any infeasible disk triple. In
order to prove that no infeasible disk triple triple can be placed in the gap together with
two separators, we later show the existence of values ε > 0 and ε1, ε2, φ ≥ 0 with ε = ε1+ε2
which satisfy the following two conditions (an explanation of these conditions as well as
a definition for distance d(ε1, x), which occurs in these conditions, is given in the next
paragraph).

12 + ε ≤ si (3.2)

d(ε1, x) ≤ r(x)− φ,∀x ∈ {B/4 + 1, . . . , B/2− 1} (3.3)

36

3. Recognition problems with fixed radii

12

rmin rminrminr(B/3) r(B/3) r(B/3)

bottom

separator

(a) Depiction of a feasible input triple’s disk representation. This particular rep-
resentation requires the largest possible amount of horizontal space out of all
representations for feasible input triples with sum B.

12

rmin

rmin + 12/B2

bottom

separator
24/B2

12− 24/B2

(b) An upper bound for the amount of horizontal space between the two disks placed
in a gap’s corner.

Figure 3.5.: Two illustrations regarding the proof of Theorem 7.

Recall that the distance between rightmost point pl of the left separator and the leftmost
point pr of the right separator, which are located at height rmin, is exactly 12 units.
Condition 3.2 ensures that all infeasible disk triples take up at least 12+ε units of horizontal
space, however, this condition is not sufficient to guarantee that infeasible disk triples
can not be placed between the separators since we do not know yet at what height the
leftmost and the rightmost point of the disk triple are located. However, it is guaranteed
that either the leftmost point of the disk triple is located at least ε1/2 units to the left
of pl or the rightmost point of the triple is located at least ε1/2 units to the right of pr.
Let now x ∈ {B/4 + 1, . . . , B/2 − 1} be an input integer. The Pythagorean Theorem
tells us that the distance between pl (pr) and the center of a disk D(x) with radius r(x)
whose center is located between the two separator disks and whose leftmost (rightmost)
point is located at least ε1/2 units to the left (right) of pl (pr) is at most d(ε1, x) =√

(r(x)− ε1/2)2 + (r(x)− rmin)2, as illustrated in Figure 3.6b. Condition 3.3 ensures that
this distance is at most r(x)− φ, implying that D(x) intersects the left (right) separator.
Therefore, Condition 3.2 and Condition 3.3 together guarantee that infeasible disk triples
together with two seperators can not be placed inside a gap in the simplified scenario. The
significance of ε2 is discussed later in the proof, where we tailor our conditions to apply to
the original scenario as well.

So far we assumed that the separators are always placed in the corners of the gap. In
reality separators can be placed in different location, moreover, there could even be gaps
with multiple separators and gaps with zero or one separator. Since the radius of the
separators is rmin, which is the radius of the smallest possible input disk, it seems natural
to place them in the gaps’ corners to efficiently utilize the horizontal space. However,
all feasible disk triples (except (B/3, B/3, B/3)) require less than 12 units of horizontal
space. It might therefore be possible to place a feasible disk triple inside a gap together
with two disks that are not necessarily separators but input disks with a radius greater
than rmin. To account for this problem, we additionally show the existence of values ξ > 0

37

3.1. Disk Touching Graph Recognition with fixed Radii

rmin

bottom

rmin

rmax rmax

(a) The smallest possible infeasible disk triple.

rmin

bottom

r(x)

D(x)

≥ ε1/2

pl

(b) Disk D(x) is intersecting the separator.

Figure 3.6.: It is not possible to place an infeasible disk triple inside a simplified gap.

and ξ1, ξ2, ψ ≥ 0 with ξ = ξ1+ξ2 which satisfy the following two conditions (an explanation
for these conditions as well as a definition for distance d(ξ1, x) and for length sf , which
occur in these conditions, is given in the next paragraph).

12− 24/B2 + ξ ≤ sf (3.4)

d(ξ1, x) ≤ r(x)− ψ,∀x ∈ {B/4 + 1, . . . , B/2− 1} (3.5)

The second smallest possible input disk radius is r(B/4 + 2) = 2 − (1 − 24/B)/B =
2 − (1 − 12/B)/B + 12/B2 = rmin + 12/B2 and, therefore, 12 − 2 · 12/B2 = 12 − 24/B2

is an upper bound for the remaining horizontal space in a gap in which two disks have
been placed such that one of the disks has radius greater than rmin, see Figure 3.5b.
The input integers’ values are at least B/4 + 1 and at most B/2 − 1, therefore, the
horizontal space consumption of the disk triple tf = (r(B/4), r(B/2), r(B/4)) is a lower
bound for the space consumption of any feasible disk triple since the total difference
between the radii of adjacent disks in tf is larger than that of any feasible disk triple.
Yet again we utilize the Pythagorean Theorem to describe tf ’s required horizontal space

as sf = 2r(B/4) + 2
√

(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2. Condition 3.4 therefore
ensures that any feasible disk triple consumes at least 12 − 24/B2 + ξ and, analog to
Condition 3.3, Condition 3.5 together with d(ξ1, x) =

√
(r(x)− ξ1/2)2 + (r(x)− rmin)2

ensures that the disks of tf intersect the disk(s) that have replaced the seperator(s). Like
with ε2 the significance of ξ2 will become apparent later in the proof when we describe
how to apply our conditions to the original scenario.

We evaluated that suitable values that satisfy our four conditions are ε1, ξ1 = 16/B2

and 0 ≤ ε2, φ, ξ2, ψ ≤ 1/B2 (recall that ε = ε1 + ε2 and ξ = ξ1 + ξ2). The calculations for
these values are lengthy and have been moved to Appendix A. Specifically, Appendix A.1
shows that ε1, ξ1 = 16/B2 and 0 ≤ φ, ψ ≤ 1/B2 satisfy Condition 3.3 and Condition 3.5.
Appendix A.2 states that ε ≤ 17/B2 is a sufficient choice to satisfy Condition 3.2, which
implies that we need to ensure that ε2 ≤ 1/B2. Similarly, Appendix A.3 states that
ξ ≤ 17/B2 is a sufficient value to satisfy Condition 3.4, which implies that we need to
ensure that ξ2 ≤ 1/B2.

In the simplified scenario the separators are placed 12 units apart from each other on a
straight line. In the original scenario we also want separators to be placed in the gap’s
corners and the distance between rightmost point pl of the left separator and the leftmost

38

3. Recognition problems with fixed radii

point pr of the right separator is still supposed to be 12 units. In Section (c) of this
proof, we use a geometric construction to show that in the original scenario even a disk
with radius rmax placed right next to a separator can not intersect an outer disk, which
implies that input disks of all sizes can actually be placed inside the gap together with
the two separators. Together with the upper bound of 12 units for the horizontal space
consumption of any feasible disk triple placed next to each other on a straight line, this
ensures that any feasible disk triple together with a pair of separators can be placed inside
a gap in the original scenario.

We now describe how Conditions 3.2–3.5 translate to the original scenario. By virtue of
the previous calculations, Condition 3.2 and Condition 3.4 ensure that every infeasible disk
triple requires at least 12+ε = 12+16/B2+ε2, 0 ≤ ε2 ≤ 1/B2 units of horizontal space and
that every feasible disk triple requires at least 12−24/B2+ξ = 12−8/B2+ξ2, 0 ≤ ξ2 ≤ 1/B2

units of horizontal space if placed on a straight line. Note that the horizontal space
consumption of a disk triple placed on the bow is lower compared to the disk triple being
placed on the bottom. We define ε2, ξ2 = 1/B2. If we make sure that ε2 (ξ2) is an
upper bound for the amount of horizontal space that can be saved in the original scenario
compared to the simplified scenario when placing any infeasible (feasible) disk triple, we
know that Condition 3.2 (Condition 3.4) still holds true for the original scenario. Therefore,
we know that, without loss of generality, the leftmost point of the leftmost disk D(x) of a
disk triple placed in the gap is located at least ε1/2, ξ1/2 = 8/B2 units to the left of the
rightmost point pl of the left separator or the disk that has replaced it respectively. Let r(x)
be the radius of D(x). For the simplified scenario Condition 3.3 and Condition 3.5 ensure
that the distance between pl and the center of D(x) is at most r(x) − ψ, 0 ≤ ψ ≤ 1/B2

or r(x)− φ, 0 ≤ φ ≤ 1/B2, indicating that D(x) intersects the left separator or replacing
disk respectively. In the simplified scenario the conditions hold true even for φ, ψ = 0.
We define φ, ψ = 1/B2. If we make sure that φ and ψ are upper bounds for the increase
of distance between pl and the center of D(x) in the original scenario compared to the
simplified scenario, we know that Condition 3.3 and Condition 3.5 still hold true in the
original scenario.

In the original scenario, consider a straight line directly below the two separators. We call
this straight line the gap’s chord, see Figure 3.4a. The gap’s chord has a function similar
to the bottom in the simplified scenario. The required upper bounds for Condition 3.3 and
Condition 3.5 are certainly achieved if the maximum distance d between the gap’s bow
and its chord is at most 1/B2 = ψ, φ, since this implies that in the orignial scenario D(x)
is located at most 1/B2 units above the chord. Interestingly enough, this requirement
for d is also sufficient to satisfy the required upper bounds for Condition 3.2 and Condi-
tion 3.4 as we shall elaborate in remainder of this paragraph. Consider the disk triple t =
(r(B/4), r(B/2), r(B/4)). Yet again utilizing the Pythagorean Theorem, we calculate an
upper bound for the amount of horizontal space that can be saved when placing t on a
gap’s bow instead of its string to be s = 2(

√
(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2 −√

(r(B/2) + r(B/4))2 − (r(B/2) + d− r(B/4))2) by simply moving the left and right disk
down by d units and as far to the center disk as possible, see Figure 3.7. Since the sum of
the integer triple corresponding to t is B and B/4 is smaller and B/2 is greater than any
input integer, the value s is also an upper bound for the amount of horizontal space that
can be saved in the original scenario compared to the simplified scenario when placing any
infeasible or feasible disk triple since the differences between the radii of adjacent disks in t
are larger than in any actual input disk triple. In Appendix A.4 we show that for d ≤ 1/B2

an upper bound for s is 1/B2 = ε2, ξ2. In order to conclude the proof, it therefore remains
to describe how to choose the radii for the central and outer disks and how to create the
gaps such that d ≤ 1/B2.

Recall that we have a central disk Dc with radius rc and m outer disks with radius ro

39

3.1. Disk Touching Graph Recognition with fixed Radii

r(B/4)

r(B/2) r(B/2)

r(B/4)

r(B/4)

r(B/2) r(B/2)

r(B/4)
d

Figure 3.7.: An upper bound for the amount of horizontal space that can be saved by
placing a disk triple on the gap’s bow instead of its chord can be calculated by
replacing the bow by a straight line d units above the chord and comparing the
required space to the space required when placing the two outer disks directly
on the chord.

which are tightly packed around Dc such that m equal-sized gaps are created. With basic
trigonometry we see that rc + ro = ro/sin(π/m) (see Figure 3.10) and, therefore, rc =
ro/sin(π/m)− ro. Clearly, there always exists a value ro such that the two separator disks
can be placed in each gap’s corners and such the distance between each pair of separators
is exactly 12 units. The value of particular importance is the maximum distance between
a gap’s bow and its chord, which, utilizing the Pythagorean Theorem, can be calculated to
be d = rc− (

√
(rc + rmin)2 − (6 + rmin)2− rmin), see Figure 3.4a. The crucial observation

is that we do not necessarily need to choose m to be n. Instead we may choose any m ≥ n
and thereby decrease d, as long as we make sure that m is still a polynomial in the input’s
size or numeric values (see Section (a)) and that none of the input disks or separators can
be placed in one of the m− n additional gaps (see Section (b)).

(a) Determining a suitable number of gaps

In order to choose an m ≥ n such that d ≤ 1/B2, we require some information about
the radius ro of the outer disks. A precise calculation of this value yields a complicated
formula, however, a lower as well as an upper bound for ro are sufficient to conclude our
argument. Clearly, rlo = 6 is a lower bound for ro. In Section (c) we designate a minimum
value of mmin = 6 for m and use it to show that ruo = 38 is an upper bound for ro. Recalling
that rmin is a polynomial in B, that m ≥ mmin = 6 and utilizing that sin(x) ≤ x,∀x ≥ 0,
we can now prove that m can be chosen as a polynomial in B such that d ≤ 1/B2:

40

3. Recognition problems with fixed radii

d ≤ 1/B2 ⇔
rc − (

√
(rc + rmin)2 − (6 + rmin)2 − rmin) ≤ 1/B2 ⇔

(rc + rmin)− 1/B2 ≤
√

(rc + rmin)2 − (6 + rmin)2 ⇐
1/B4 − 2(rc + rmin)/B2 ≤ −(6 + rmin)2 ⇔
1/(2B2) +B2(6 + rmin)2/2− rmin ≤ rc ⇔

1/(2B2) +B2(6 + rmin)2/2− rmin + ro ≤ ro/sin(π/m)⇔
sin(π/m) ≤ ro/(1/(2B2) +B2(6 + rmin)2/2− rmin + ro)⇐

π/m ≤ ro/(1/(2B2) +B2(6 + rmin)2/2− rmin + ro)⇔
m ≥ (π/ro) · (1/(2B2) +B2(6 + rmin)2/2− rmin + ro))⇐
m ≥ (π/rlo) · (1/(2B2) +B2(6 + rmin)2/2− rmin + ruo))

Therefore, we define m = Bcm where cm is a sufficiently large constant. Note that we
need to ensure that m ≥ n, which is however no problem since we can, without loss of
generality, assume that B is a multiple of n since we could simply multiply each input
integer as well as the bound by n to obtain a problem instance that is a yes-instance if
and only if the original instance was a yes instance and whose size is polynomial in the
size of the original input.

(b) Coping with additional gaps

Our construction contains m > n gaps. We need to ensure that it is not possible to use the
additional gaps to solve an infeasible problem instance. We therefore attach another m−n
huge plug disks to the central disk. The uniform radius of the huge plugs is chosen so that
each one fits tightly inside a gap. Embedding a huge plug in a gap creates two new, equally
sized small gaps next to the central disk Dc. We distinguish three cases.

First, if a disk with radius rmin is too large to be embedded in a small gap, then no
input disk can be embedded in the small gaps. Otherwise, we create two new maximum
sized small plug disks per gap that tightly fit inside the small gaps. If the radius of the
small plug disks is at least rmin and at most rmax, then the small gaps do not make
an infeasible instance feasible since embedding one of the input disks D in a small gap
requires embedding a small plug disk in a regular gap, which is only possible if the instance
is feasible anyways. Note that since disks with radius rmax can be embedded inside the
gaps, the radius of the huge plugs is at least rmax. Therefore, it is also not possible to
embed two (or more) input disks in a single small gap since it is not even possible to embed
four disks with radius rmin together with a huge plug inside a single gap since these five
disks constitute an infeasible disk triple together, as well as two separators. Finally, if the
radius of the small plugs is greater than rmax, the two small plugs together with the huge
plug constitute an infeasible disk triple, it therefore is not possible to place any more input
or separator disks inside the same gap.

(c) An upper bound for ro and placing maximum sized disks

In this section, we first utilize a geometric construction to show that ruo = 38 is an upper
bound for the outer disks’ radius ro and then use this result to prove that even disks with
radius rmax placed in a gap right next to a separator do not intersect an outer disk in the
original scenario, implying that the input disks can actually be placed inside the gaps.

Observe that the outer disk radius ro increases when m decreases and when rmin increases.
We designate a minimum value of mmin = 6 to m and observe that rmin = r(B/4 + 1) =

41

3.1. Disk Touching Graph Recognition with fixed Radii

π/3

π/3

d1

c1 c2

l1 l2

cc

π/3

π/3
d112 2

k k

k

k

k

k

d2

Figure 3.8.: The geometric construction for part (c) in the proof of Theorem 7.

dx

dl dr

Figure 3.9.: A disk with radius rmax can always be placed right next to a separator in a
corner of a gap.

42

3. Recognition problems with fixed radii

2− (1−12/B)/B < 2 for any B > 12. The angle between two line segments l1, l2 bounded
by the centers c1, c2 of two adjacent outer disks and the center cc of of the central disk Dc

when our construction contains mmin outer disks is 2π/mmin = π/3 and therefore l1
and l2 together with the line segment c1c2 constitute an equilateral triangle. This implies
that the outer disk radius is equal to the radius of the central disk, we denote this radius
with k. As illustrated in Figure 3.8, by using basic trigonometry as well as the Pythagorean
Theorem, we obtain that k has to satisfy the equality k = d1 + 2 + 12 + 2 + d1 = 2d1 + 16,
where d1 = cos(π/6) · d2 =

√
3 · d2/2 and d2 =

√
(k + 2)2 − k2 =

√
4k + 4 = 2

√
k + 1.

This set of equalities solves for k = 22 + 4
√

5
√

3 = 37.4919... < 38 = ruo .

We now show that a disk with radius rmax placed in a gap right next to a separator
does not intersect an outer disk. Observe that placing a disk with radius rmax next to a
separator without intersecting outer disks becomes more complicated as ro, rc and rmax

increase and as rmin decreases (Figure 3.11 from Section (d) illustrates why this is the
case). In order to show that placing a disk with radius rmax can always be placed as
intended, we consider a gap created by using upper bounds for ro, rc and rmax and a
lower bound for rmin as depicted in Figure 3.9. We show that the disk whose radius is
the upper bound for rmax does not intersect the outer disk by determining the distance dx
between the centers of the two disks. In the previous paragraph, we have established an
upper bound ruo = 38 for ro. A lower bound for rmin is 2−1/13 < 2−1/B+12/B2 and an
upper bound for rmax is 2+1/6 > 2+2/B−12/B2 since B > 12. As depicted in Figure 3.9
we can think of a maximum sized central disk as a straight line since limm→∞ rc = ∞.
By utilizing the Pythagorean Theorem, the distance in question can now be calculated as
dx =

√
(38− (2 + 1/6))2 + (dl + dr)2 with dl =

√
(38 + (2− 1/12))2 − (38− (2− 1/12))2

and dr =
√

((2− 1/12) + (2 + 1/6))2 − ((2 + 1/6)− (2− 1/12))2. This set of equalities
solves for dx = 41.606... > 41 > 38 + (2 + 1/6), which concludes our proof.

(d) Precision

In this section we describe how to compute the disks radii in polynomial time. Note that for
the input and separator disks the radius computation does not cause any complications
since the output of our radius function r is always a rational number. Computing the
radius of the outer disks and the central disk, however, is more complicated. Recall that
the central radius can be described as rc = ro/sin(π/m) − ro. By using the Pythagorean
Theorem, we obtain the following(see Figure 3.10).√

(ro/ sin(π/m))2 − r2o = d3 = d1 + d2 =√
(ro + rmin)2 − (ro − 6− rmin)2 +

√
(ro/ sin(π/m)− ro + rmin)2 − (6 + rmin)2

By keeping in mind that a lower bound for ro is ruo = 6 we can determine a unique solution:

ro =
rmin sin(π/m)− 3rmin − 6− 2

√
2r2min + 6rmin − 2r2min sin2(π/m)− 6rmin sin2(π/m)

sin(π/m)− 1

Precise computation of this formula can take a superpolynomial amount of time. In
the remainder of this section we shall, however, prove that we do not require precisely
computed radii for the outer disks and the central disk. Instead, we shall approximate
radii rεo ≤ ro + ε3 and rεc ≤ rεo/sin(π/m) − rεo + ε4 for the outer disks’ radii and the cen-
tral disk’s radius respectively, where ε3 = 1/Bc3 and ε4 = 1/Bc4 are small, positive error
terms.

Observe that for the calculations of the values ε1, ε2, ξ1, ξ2, ψ, φ (the existence of which
implied that our radius function r satisfies Condition 3.2 - 3.5) we did not encounter or
use any tight bounds. The same holds true for the statement with which we argued that

43

3.1. Disk Touching Graph Recognition with fixed Radii

d1

d2 d3

6

rc

ro

ro

Figure 3.10.: Determining the outer disk radius by utilizing the Pythagorean Theorem.

ro ro

12

ds

outer disk outer disk

outer disk outer disk

central disk

central disk

12

rcrc

ro ro

> ds

ε′

> rc > rc

> ε′ > ε′

2π/m

2π/m

dc

dt

< dc

dtp
pε

ε′

Figure 3.11.: Increasing the separator distance by 2ε′ increases the outer disks’ radii by at
least ε′.

44

3. Recognition problems with fixed radii

rεo

ds

central disk

r′c2π/m

outer disk outer disk
rεo

ε4

> ds

ε5

Figure 3.12.: Increasing the central radius by ε4 creates a distance of ε5 between the outer
disks. The distance between the separators increases by at most ε5.

we can choose m as a polynomial in B such that the distance d is sufficiently small. As
a consequence, it is possible to adjust these values such that our conditions also hold
true if we allow a distance of 12 + εs (instead of just 12) between the separator disks
in a gap where εs = 1/Bc > ε3, ε4 for some suitable constant c. We now examine how
this larger distance between the separators changes the outer and central disks’ radii in a
corresponding tight packing compared to the original tight packings with radii ro and rc.

The left part of Figure 3.11 illustrates two outer disks bounding a gap with the original
radii and the original separator distance of 12. Changing this distance to 12 + 2ε′ (as
depicted in the right part of Figure 3.11) increases the required outer and central radii
for a tight packing since we do not change m and, therefore, maintain the angle between
the two outer disks. In both packings, consider the tangent line between the respective
left outer disk and the central disk. We travel a distance dt along these tangent lines
and arrive at points p and pε (see Figure 3.11). From these points we travel orthogonally
(to the tangents) until we reach the central disk. Let dc be the distance traveled in the
original packing and observe that the traveled distance in the modified packing is smaller
than dc since the radius of the central disk is larger. On an intuitive level, this means that
the funnel-shaped regions next to the tangent points become more narrow as the radii
of the outer and central disks increase. This phenomenon causes separator disks (which
maintain their original size) in the modified packing to be pushed farther away from the
lines that connect the centers of the central and outer disks than in the original packing
(the distance ds in Figure 3.11 increases). For this reason, increasing the separator distance
from 12 to 12 + 2ε′ pushes the centers of the outer disks at least distance ε′ to the sides
since this is also the distance that the separators move to the left or right respectively. We
can conclude that increasing the separator distance by 2ε′ increases the radius of the outer
disks in a tight packing by at least ε′. The implication is that in a tight packing with outer
disk radius rεo ≤ ro +ε3 and a corresponding (precise) central radius r′c = rεo/sin(π/m)−rεo
the distance between the separators is at most 12 + 2ε3.

Once again, we can not necessarily compute the central radius r′c precisely. Instead, we
approximate it as rεc with r′c < rεc ≤ r′c+ε4 = rεo/sin(π/m)−rεo+ε4, which basically pushes

45

3.1. Disk Touching Graph Recognition with fixed Radii

central disk

r′c ε4

ε5
xi

c1

c2

c3
rεo

rεo
rεo

rεo

central disk

r′c ε4

xi+1

c1

c2

c3

rεo

rεo
rεo

rεo

rεo rεo

T1 T2

Figure 3.13.: When allowing i+1 instead of i outer disks to move (non-movable outer disks
in gray), the maximum distance increases at most linear in ε5.

the outer disks to the outside as depicted in Figure 3.12. Assuming that the outer disks
can not deviate from these positions, this creates some distance ε5 between the outer disks
in each gap. The outer disk radius remains rεc but the central disk radius is larger than
in a tight packing with radius r′c. Like in the argument in the previous paragraph, this
causes the separator disks to be pushed away from the lines that connect the outer and
central disks’ centers. For this reason, the distance between the separators increases by at
most ε5 from at most 12 + 2ε3 to at most 12 + 2ε3 + ε5.

So far, we have assumed that the outer disks can not deviate from their positions even
though they are placed distance ε5 apart from each other. In reality, however, the outer
disks can rotate around the central disk and, therefore, the distance between two outer
disks can increase to some value ε6 > ε5. We prove that ε6 < 2mε5 by showing by
induction that if we allow i of the outer disk to move, the maximum distance xi between
two outer disks is smaller than 2(i + 1)ε5 for any 0 ≤ i ≤ m − 1. Clearly this holds true
for x0 = ε5 < 2ε5. Now assume that our hypothesis is true for some fixed i ≤ m − 2.
Clearly, the distance xi is maximized when we place all of the i movable disks close together
and thereby create one large gap. One of the neighboring gaps is bounded by two non-
movable (in step i) disks such that the distance between these disks is ε5 as depicted in the
left part of Figure 3.13. The distance xi+1 gets maximized by now allowing the previously
non-movable disk next to the xi gap to move such that the two gaps merge as illustrated
in the right part of Figure 3.13. Consider the triangles T1 (left) and T2 (right) formed by
the centers c1, c2, c3 in Figure 3.13. The bottom side of these triangles is identical, the
height of T2 is smaller than the height of T1 and the circumcircle of both triangles has
radius r′c + ε4 + rεo. We can conclude that the area of T2 is smaller than the area of T1.
Recalling that the area of a triangle T with sides a, b, c can be described as abc/(4r) where r
is the radius of the circumcircle of T , we obtain 2rεo(2r

ε
o + xi+1) < (2rεo + ε5)(2r

ε
o + xi)

and, hence, xi+1 < xi + ε5 + ε5xi/(2r
ε
o) < 2(i + 1)ε5 + ε5 + ε5(2(i + 1)ε5)/(2r

ε
o) by our

induction hypothesis. By choosing ε4 and, therefore, ε5 such that 2mε5 < 1 we obtain
that xi+1 < 2(i+ 1)ε5 + ε5 + ε5/(2r

ε
o) < 2(i+ 1)ε5 + ε5 + ε5 = 2(i+ 2)ε5, which conclucdes

our induction proof. Thus, the maximum distance between two outer disks increases to
at most ε6 < 2mε5. This increases the maximum distance between the separators to at
most 12 + 2ε3 + 2mε5 as illustrated in Figure 3.14.

With basic trigonometry, we determine that 2rεo + ε5 = 2(r′c + ε4 + rεo) sin(π/m) and 2rεo =
2(r′c + rεo) sin(π/m), see Figure 3.12. We combine these two equalities and obtain ε5 =
2ε4 sin(π/m) < 2ε4π/m < 2ε44/m. The maximum distance between two separators is,
therefore, at most 12 + 2ε3 + 16ε4. Recall that Condition 3.2 - 3.5 hold true for our radius

46

3. Recognition problems with fixed radii

central disk

r′c ε4

ε5
rεo rεo

outer disk
ε6α

α

dh
dv

dh

dv

ds

Figure 3.14.: Increasing the distance between two outer disks from ε5 to ε6 increases the
distance between the separators by at most ε6 − ε5 since ds ≥ 0.

function r as long as the maximum distance between two separators is at most 12 + εs
with εs = 1/Bc. We can now simply choose ε3 = 1/Bc3 and ε4 = 1/Bc4 such that 2ε3 +
16ε4 ≤ εs. Therefore, we can conclude that the approximate radii for the outer and central
disks suffice.

It remains to argue that we can approximate our radii as required. The formulas for ro
and r′c contain a constant number of square root and sine operations. Recall that m = Bcm .
Redefining and increasing m such that m = 2p with 2p−1 < Bcm ≤ 2p = m causes no is-
sues for our construction. Therefore, by using half-angle formulas, we can replace each
sine operation in our formulas by p = log2m nested square root operations. In total,
we therefore perform O(logm) = O(logBcm) square root operations. Individually, each
square root approximation can be performed in polynomial time using Heron’s quadrati-
cally converging method since we can easily determine constant upper and lower bounds
for each square root term and use these as the initiation values. In order to approximate
the nested square roots, we need to increase the approximation accuracy by an according
polynomial amount.

3.2. Disk Touching Graph Recognition with fixed Radii and
Embedding

In this section we consider the Disk Touching Graph Recognition with fixed Radii and
Embedding (DTRE) problem. We begin by summarizing implications of previous chapters
and then provide a linear time algorithm that solves the DTRE for stars in the Real RAM
model, in spite of the DTR being NP-hard for stars.

Since the combinatorial embedding of any path or cycle is unique, Observation 4 and
Theorem 4 yield the following:

47

3.2. Disk Touching Graph Recognition with fixed Radii and Embedding

D1

Dc

Di+1

Di

Figure 3.15.: Placing Di+1 right next to Di would cause a collision (dashed circle) with D1.

Corollary 6. Any path P can be realized as a disk touching graph with respect to any
radius assignment for P and any combinatorial embedding for P .

Corollary 7. Let C = (V,E) be a cycle, let r : V → R+ be a radius assignment for C
and let Γ be a combinatorial embedding for C. There exists a realization of C as a disk
touching graph with respect to r and Γ.

Theorem 3 from the Unit Disk Touching Graph Recognition with fixed Embedding section
carries over to the more general DTRE as follows:

Corollary 8. The Disk Touching Graph Recognition with fixed Radii and Embedding prob-
lem is NP-hard even for outerplanar graphs.

Theorem 8. For stars the Disk Touching Graph Recognition with fixed Radii and Embed-
ding problem can be decided in O(n) time in the Real RAM model, where n is the number
of vertices of the given star.

Proof. Let S = (V,E) be a star, Γ be a combinatorial embedding for S and r be a radius
assignment for S. Let vc ∈ V be the central vertex of S and let (v1, . . . , v|V |−1) a sequence
of the remaining vertices which is clockwise-ordered according to Γ. Let Dc, D1, . . . , D|V |−1
be the disks that correspond to vc, v1, . . . , v|V |−1 and let rc, r1, . . . , r|V |−1 be the disks’ radii
respectively. We can, without loss of generality, assume that r1 ≥ ri for any 2 ≤ i ≤ |V |−1.

We provide a constructive algorithm that can recognize no-instances. Suppose for now,
however, that we are dealing with a yes-instance. We start by placing D1 adjacent to Dc

and add the remaining disks in clockwise order around Dc. Adding D2 tightly next to D1

and adjacent to Dc is always possible. Now suppose we have already added D3, . . . , Di

where i < |V | . If ri+1 ≤ ri, we can simply place Di+1 tightly next to Di while touching Dc.
If, however, ri+1 > ri, we have to test whether placing Di+1 tightly next to Di would
cause Di+1 to intersect one (or more) of the previously added disks and if this is the case,
find a new suitable location for Di+1. As depicted in Figure 3.15, it is even possible that
our initial location for Di+1 causes Di+1 to intersect the first disk D1. Simply testing
for collisions with all previously added disks would yield a runtime of O(i) for this step
and, therefore, a total runtime of O(|V |2). However, we can improve this runtime to
amortized O(|V |) by maintining a list L in which we add each disk as we place it in our
disk touching graph. Now, if ri+1 > ri, we traverse the list backwards until we find a
disk Dj with ri+1 ≤ rj and test for collision with any of the traversed disks. A crucial
observation is that none of the remaining disks Di+2, . . . , D|V |−1 can have a collision with
any of the disks Dj , . . . , Di since all of these disks have radius at most ri+1, thus we can
delete these disks from L and therefore, in total, each disk is traversed at most once.

48

3. Recognition problems with fixed radii

If we are indeed dealing with a yes-instance, our approach clearly generates disk touching
graph that realizes S with respect to r and Γ. To cope with no-instances, every time we
add a disk, we additionally test whether it intersects D1. This is sufficient, since r1 ≥ ri
for any 2 ≤ i ≤ |V | − 1, which implies that the new disk can not intersect any disk that is
located clockwise after D1. Technically, even in the Real RAM model we can not simply
place disks barely not touching next to each other if we do not know how to determine a
sufficiently small distance that guarantees that we recognize every yes-instance. However,
we can simply compute the disk locations such that tightly placed disks do actually touch.
This way, if the last added disk does not intersect D1, since the disk centers have real
coordinates there clearly exists a realization. Note that with the modification, a collision
only occurs if disks do intersect in more than one point.

49

4. Recognition problems with fixed seeds

In this chapter we consider the Disk Touching Graph Recognition with fixed Seeds (DTS)
and the Unit Disk Touching Graph Recognition with fixed Seeds (and Embedding) (UDTS
and UDTSE) problems. Recall that in these problems we need to decide whether a realiza-
tion of a given graph G = (V,E) exists that respects a given seed assignment σ : V → R2,
meaning that σ(v) ∈ Dv for every v ∈ V where Dv ∈ V is the disk that corresponds
to v. In Section 4.1 we strengthen an NP-hardness result of Atienza et al. [AdCC+12] by
showing that DTS remains NP-hard even for trees. In Section 4.2 we combine assigning
seeds with assigning radii, specifically uniform radii. We show that UDTS (and UDTSE)
are NP-hard, even if the input graph is a path.

4.1. Disk Touching Graph Recognition with fixed Seeds

Atienza et al. [AdCC+12] show that the Disk Touching Graph Recognition with fixed
Seeds (DTS) problem is NP-hard by performing a reduction from Planar 3-Satisfiability
(P3SAT). In this reduction, for any P3SAT instance (U,C), they construct a graph G
and a seed assignment σG for G, such that G can be realized as a disk touching graph
respecting σG if and only if C is satisfiable. In this section we first recapitulate their
reduction and observe that the constructed graph G is outerplanar (and not connected).
We then extend their seed assignment σG and transform the graph G into a tree T that
can be realized as a disk touching graph respecting the extended seed assignment σ if and
only if C is satisfiable. We thereby strengthen the result of Atienza et al. by showing that
the DTS problem is NP-hard even for trees.

Similar to Cabello et al. [CDR07], Atienza et al. make use of the fact that each P3SAT
instance can be represented by a planar (multi-) graph that be drawn on a slanted grid of
polynomial size such that all variable vertices are placed on a horizontal line and such that
the clause vertices are connected from above and below in a comb-shaped manner [KR92]
(see Section 1.1.2). They construct G and σG on a triangular grid. As basic subgraphs in
their construction serve the so-called chains of adjacent points/vertices. Each chain has
one of excatly two possible states in any realization and they are used to propagate truth
states between their variable and clause gadgets. A small part of a chain is depicted in
Figure 4.1. We refer to the seeds s and s′ as stopper elements for the inner seed p. Note
how the seeds s, t1, t2, r1, r2, q and their counterparts s′, t′1, t

′
2, r
′
1, r
′
2, q
′ and the adjacencies

are chosen such that the center of the disk Dp that covers p has to be located either in
the region Itruep or in the region I falsep and that these regions can made arbitrarily small by

51

4.1. Disk Touching Graph Recognition with fixed Seeds

p

I falsepq
r1

Itruep

s′

Dtrue
p Dfalse

p

p

q

q′

r1

r′1

s

s′

s

p̂

t1 r2
t2

r2

t1 t2

r′2

t′1 t′2

Figure 4.1.: A small part of a chain in the construction by Atienza et al. [AdCC+12]. This
figure is a modified version of a figure provided by Atienza et al. that occured
in [AdCC+12].

choosing the aforementioned seeds appropriately. Accordingly, Dp has to be located either
to the left (like the black disk Dtrue

p) or to the right (like gray disk Dfalse
p). Choosing the

left (right) embedding forces the disk covering the other inner seed p̂ to also be embedded
to the left (right), the depicted small chain part therefore only has two states. Clearly, this
holds true for longer chains with more inner seeds as well, and it is not necessary that all
the inner seeds are collinear, which can be seen in Figure 4.2a. The wavelike chain in the
middle of this figure is part of a variable gadget in true (false) state illustrated by the black
(gray) disks. Additional chains connect the variable gadget for x ∈ U to all clause gadgets
whose corresponding clauses contain a literal of x. The seeds at the end of such a chain
are chosen such that the disks are pulled towards the variable gadget if the clause’s literal
for x evaluates to false for the respective state of the variable gadget. This is illustrated
in Figure 4.2b and Figure 4.2c. Note how in Figure 4.2b the two topmost disks of the
bottom chain can be embedded since the disks of the chain are embedded to the top and,
therefore, towards the variable gadget. However, in Figure 4.2c we see that if the disks
are embedded to the bottom and, therefore, towards the clause gadget, one of the topmost
disks intersects the variable gadget. If a chain’s literal evaluates to true, its disks can be
embedded in either direction, see the top chain in Figure 4.2a. Figure 4.3a depicts a valid
realization of a clause gadget. Note, how the last two disks of a chain oriented towards the
clause gadget can have a very small radius. The last two disks of a chain oriented away
from the clause gadget, however, are forced to have a much larger radius. In fact, if all
three chains are oriented away from the gadget, it is impossible to find a valid realization,
see Figure 4.3b.

Let t be a truth assignment for U . If C is not satisfied by t then at least one of its clauses
is not satisfied by t. All chains of the corresponding clause gadget are therefore pulled
towards the variable gadgets and there exists no realization of G with respect to σG.
However, if C is satisfiable, than there exists a truth assignment t for U for which all
clauses are satisfied. Therefore, one of the literals of each clause evaluates to true for t and
the corresponding chains can be oriented towards their respective clause gadget thereby
allowing a valid realization. Atienza et al. conclude their reduction by arguing that the
time required to construct G and σG is polynomial in the size of (U,C).

Clearly each chain in this construction corresponds to a non-connected (the seeds q and q′

in Figure 4.1 have no incident edges), outerplanar subgraph of G, which therefore also is
non-connected and outerplanar. This yields the following.

Observation 5. The Disk Touching Graph Recognition with fixed Seeds problem is NP-
hard even for outerplanar graphs.

52

4. Recognition problems with fixed seeds

¬x

x

false

true

· · ·

..
.

variable
gadget
for x

(a) Variable gadget for x in true (false) state illustrated by the black (gray) disks.

¬x

x

false

true

· · ·

..
.

(b) Valid realization. (c) Invalid realization.

Figure 4.2.: A variable gadget in the construction by Atienza et al. [AdCC+12]. These
figures were provided by Atienza et al. and occured in [AdCC+12].

53

4.1. Disk Touching Graph Recognition with fixed Seeds

false

false

true

(a) Valid realization.

false

false

false

(b) Invalid realization.

Figure 4.3.: A clause gadget in the construction by Atienza et al. [AdCC+12]. These figures
were provided by Atienza et al. and occured in [AdCC+12].

By slightly modifying G and σG, however, we can strengthen this result.

Theorem 9. The Disk Touching Graph Recognition with fixed Seeds problem is NP-hard
even for trees.

Proof. For this proof, we modify the previously presented construction by Atienza et
al. [AdCC+12]. In particular, we transform the constructed outerplanar, non-connected
graph G and its seed assignment σG into a tree T (by adding/removing some edges and
vertices) and a seed assignment σ such that T can be realized as a disk touching graph
with respect to σ if and only if G can be realized as a disk touching graph with respect
to σG.

First, we reconsider the construction of the inner parts of the chains as depicted in Fig-
ure 4.1. We add an edge between seed q and s and q′ and s′ for any inner seed p and
thereby transform the subgraph of the inner part of each chain into a tree as depicted in
Figure 4.4a. We additionally shift the seeds q (q′) a little bit towards s (s′) such that the
additional edges do not change the original purpose of s, s′, q and q′ and, therefore, such
that all previously (in-)valid realizations are still (in-)valid. Next, we consider the end-
ings of the chains that connect variable and clause gadgets. We add an edge between the
leftmost singleton seed and the nearest stopper element of the bottom chain as depicted
in Figure 4.4b. Note, that the edge between the two topmost seeds of the bottom chain
is not necessary to ensure that the disk of the right seed intersects the variable gadget if
the chain’s disks are embedded away from the variable gadget. We can therefore remove
it without creating new possible valid realizations. Similarly, we can remove the edge be-
tween the two seeds at the other end of the chain, which are (for example) the two leftmost
seeds of the right chain as depicted in Figure 4.4c. Even if this edge is removed, the last
two disks of the chain are forced to have large radii if the chain is pulled away from the
clause gadget which can not be the case for all three chains. We additionally connect the
two singleton seeds at this end of the chain to the common neighbor of the chain’s last two
seeds, see Figure 4.4c. The subgraphs of each of these chains, as well as the subgraphs of
all variable gadgets are now trees. It remains to connect these trees, which can be done
by adding a simple path of seeds between each literal chain and its corresponding variable

54

4. Recognition problems with fixed seeds

p

I falsepq
r1

Itruep

s′

Dtrue
p Dfalse

p

p

q

q′

r1

r′1

s

s′

s

p̂

t1 r2
t2

r2

t1 t2

r′2

t′1 t′2

add

add

(a) A modified chain.

remove

add

(b) A modified variable gadget.

false

false

true

remove

add

add

(c) A modified clause gadget.

Figure 4.4.: The construction of Atienza et al. [AdCC+12] can be modified such that the
resulting graph is a tree. These figures are modified versions of figures provided
by Atienza et al. that occured in [AdCC+12].

gadget (see the bottom-left corner of Figure 4.4b) and by connecting all variable gadgets
by adding additional simple paths of seeds between them. These additional paths should
connect to stopper elements such that no previously valid realization becomes invalid.

For any P3SAT instance (U,C) we have created a tree T and a seed assignment σ such
that T can be realized as a disk touching graph with respect to σ if and only if G can be
realized as a disk touching graph with respect to σG, which by the construction of Atienza
et al. is the case if and only if C is satisfiable. Atienza et al. argue that amount of time to
construct G and σG is polynomial in the size of (U,C) . The time required to transform G
and σG into T and σ is polynomial in the size of G and σG and, therefore, polynomial in
the size of (U,C), which concludes our proof.

4.2. Unit Disk Touching Graph Recognition with fixed Seeds
(and Embedding)

In this section we consider the Unit Disk Touching Graph Recognition with fixed Seeds
(UDTS) problem, which combines assigned seeds and assigned radii. We begin by defining
a rigidity concept for the UDTS context and then prove that it is NP-hard to decide
whether there exists a unit disk touching graph realization of a given graph that respects

55

4.2. Unit Disk Touching Graph Recognition with fixed Seeds (and Embedding)

(a) A chain and the corresponding path. (b) A 60◦ turn.

s1 s2

(c) UDTS-rigidity.

(d) Adjusting length by
increasing overlap.

Figure 4.5.: The elemental components for the reduction in Theorem 10.

a given seed assignment even if the graph is a path. This result carries over to the Unit
Disk Touching Graph Recognition with fixed Seeds and Embedding (UDTSE) problem.

Let G be a graph, σ be a seed assignment for G and G be a realization of G as a unit disk
touching graph that respects σ. We say that G is UDTS-rigid with respect to σ if and
only if G is the only possible realization of G as a unit disk touching graph that respects σ.

Theorem 10. The Unit Disk Touching Graph Recognition with fixed Seeds (UDTS) prob-
lem is NP-hard, even for paths.

Proof. We perform a polynomial-time reduction from Planar 3-Satisfiability (P3SAT).
Recall that any P3SAT instance (U,C) can be represented as a planar (multi-) graph H
that can be drawn on a slanted grid of polynomial size such that all variable vertices are
placed on a horizontal line and such that the clause vertices are connected from above and
below in a comb-shaped manner (see Section 1.1.2). Due to formatting reasons, however,
we rotate this slanted layout 90◦ clockwise such that the variable vertices now are organized
on a vertical line. We construct a path G and a seed assignment σ for G, which resemble
the planar, slanted and rotated drawing of H such that G can be realized as a unit disk
touching graph that respects σ if and only if C is satisfiable.

Figure 4.5c illustrates that it is very easy to construct UDTS-rigid subgraphs containing
at least two adjacent vertices v1 and v2. This can be done by simply assigning seeds s1
and s2 to v1 and v2 such that the distance between s1 and s2 is exactly twice the unit
diameter. Further vertices/disks can be attached in a UDTS-rigid manner by choosing
their seeds exactly one unit diameter away from the desired touching point. In the figures
in the remainder of this section, we represent UDTS-rigid structures by gray disks and
omit representing the corresponding seeds.

The most basic components in our construction are structures called chains, as depicted
in Figure 4.5a. Note that the depicted structure is a path and observe that any disk that
represents any of the vertices belonging to one of the seeds in the middle can be placed in
one of exactly two location as illustrated by the straight and dashed white disks. We say
that these disks/vertices/seeds belong to the chains inner path. The potential locations for
disks belonging to two consecutive vertices of the inner path overlap each other. Therefore,
if the left location is chosen for the seed on the very right, the left location has to be chosen
for any other disk of the inner path as well (and vice versa). Chains are not restricted to
being straight. They can form turns as depicted in Figure 4.5b, in which a 60◦ turn is
realized by a succession of four 15◦ turns. We can fine-tune the length of a straight chain
by shortening the distance between two consecutive seeds from the chains inner path as
depicted in Figure 4.5d.

56

4. Recognition problems with fixed seeds

middle section

middle section

middle section

top section

bottom section

x

x

x

x

x

xx

x

x

x

x

x

false

false

true

true

literal chain for x

literal chain for x

literal chain for x

literal chain for x

Figure 4.6.: A variable gadget for x in true state.

57

4.2. Unit Disk Touching Graph Recognition with fixed Seeds (and Embedding)

For each variable in U we construct a variable gadget which basically is one huge cyclic
chain, see Figure 4.6. The cyclic structure of this chain ensures that choosing a location for
any of the disks of the inner path dictates the locations for all other disks of the variable
gadget. It therefore has exactly two possible states, which are used to reflect the two
possible truth states of the corresponding variable. Each variable gadget has a top and a
bottom section and a number of middle sections that is linear in the number |C| of clauses
(we require max{degl(v), degr(v)} middle sections for the variable gadget corresponding
to vertex v in H where degl and degr denote the number of edges connected from the left
or right in the drawing of H respectively). Recall that in the drawing of H the variable
vertices are organized on a vertical line. Accordingly our variable gadgets are placed
on a vertical line and the bottom and top sections are designed such that consecutive
gadgets connect to each other. To the top-most variable gadget we add the two disks
depicted in black, which ensure that our constructed graph, in the end, is indeed a single
path. Recall the each clause of C contains exactly three literals. Accordingly, in the
drawing of H each clause vertex is incident to exactly three edges that connect the clause
vertex to the corresponding variable vertices. We realize each of these edges as chains
which we call literal chains. The literal chains connect the clause gadgets to the variable
gadgets according to the drawing of H. We attach the literal chains belonging to some
variable x ∈ U to the the sides of the middle sections of the variable gadget for x. More
specifically, each side of a middle section contains two designated disk locations, which are
labeled x and x in Figure 4.6, exactly one of which is occupied by a disk of the variable
gadget’s inner path in both of the two states. We connect a literal chain such that its disks
are pushed away from the variable gadget if the corresponding literal is not satisfied by
the truth state that is represented by the variable gadget. For example, the literal chain in
the bottom-right corner of Figure 4.6 represents the literal x and it is connected such that
the left disk location for the inner path’s left-most vertex overlaps with a disk location of
the variable gadget that is occupied by a disk if the variable gadget for x is in true state
(this disk location is marked with x in Figure 4.6). Because of this overlap, the disks of
the literal chain are pushed away from the variable gadget and towards its clause gadget,
which is explained in the next paragraph. Note that disks of literal chains whose literal is
satisfied can be embedded in either direction.

For each clause vertex of H we construct a clause gadget at which its three literal chains
meet symmetrically at 120◦ angles, see Figure 4.7a. Each literal chain is connected to
a junction which again is connected with junction chains to the other two junctions.
The junctions are designed such that if its literal chain is oriented away from the clause
gadget, both adjacent junction chains can be oriented towards the junction, see Figure 4.7b.
However, if the literal chain is oriented towards the clause gadget, at least one of the
adjacent junction chains has to be oriented away from the junction and therefore towards
another junction, see Figure 4.7c and Figure 4.7d. By shifting two seeds of one of the
junction chains we generate two dead ends in the sense that the disks of this modified
chain are pushed towards both its adjacent junctions, see the top chain in Figure 4.7a.
If the literal chain connected to one of these junctions is oriented towards it, the other
adjacent chain therefore has to be oriented towards the third junction. Observe that this
construction allows at most two literal chains to be oriented towards the clause gadget,
otherwise its subgraph can not be realized as a unit disk touching graph that respects our
seed assignment.

In any realization, each variable gadget has one of two states, corresponding to the two
possible truth states. The literal chains are connected such that they are pushed towards
their respective clause gadgets if the literal evaluates to false. A clause gadget can be real-
ized if and only if at least one literal chain can be oriented away from it, which corresponds
to at least one satisfied literal. The entire construction can be realized if and only if all of

58

4. Recognition problems with fixed seeds

120◦120◦

120◦

junction

dead ends

truefalse

false

(a) A clause gadget. Two of its literal chains are embedded towards it.

(b) A junction whose literal
chain is embedded away
from it. Both its junction
chains can be embedded to-
wards it.

(c) A junction whose literal
chain is embedded towards
it. It is not possible to em-
bed both its junction chains
towards it.

(d) A junction whose literal
chain is embedded towards
it. One of its junction
chains can be embedded to-
wards it.

Figure 4.7.: Clause gadgets and junctions.

59

4.2. Unit Disk Touching Graph Recognition with fixed Seeds (and Embedding)

its clause gadgets can be realized, therefore, if at least one of the literals of each clause is
satisfied. In conclusion, the construction can be realized if and only if C is satisfiable.

Observe that our construction is indeed a single path (intuitively, we remove the points
representing the clause vertices from the drawing of H and traverse along the side of the
resulting tree-like structure). The number of disks in a variable gadget is linear in the
number of clauses. Each clause gadget contains a constant number of disks. The drawing
of H can be realized on a polynomial sized grid and the literal chains resemble lines on
this grid. Each literal chain contains a number of disks that is linear in the lengths of the
corresponding line (and the length of a chain can be fine-tuned by modifying a constant
number of disks). Due to the overlap of the disk locations of the chains’ inner paths we do
not need infinitely precise coordinates for the seeds and can instead perturb and shift the
seeds such that all of them are located on a Cartesian grid (note that the required density
of this grid does not depend on the input). When determining the seeds of the gray disks
we technically loose the precise UDTS-rigidity property, however, as long as we make sure
that we ’round’ to the inside such that realizing the gray disks is still possible such that
locations of the inner paths’ disks still overlap consecutively, the construction with the
shifted seeds serves the same purpose as with the precise seeds. Due to the seeds being
located on a Cartesian grid of size polynomial in (U,C), the computation of the seeds can
be accomplished in polynomial time as well, which concludes our proof.

Since a path’s combinatorial embedding is unique, we furthermore obtain the following.

Corollary 9. The Unit Disk Touching Graph Recognition with fixed Seeds and Embedding
(UDTSE) problem is NP-hard, even for paths.

60

5. Conclusion

In this thesis, we explored disk touching graph related recognition problems. It was known
that the basic Disk Touching Graph Recognition problem can be solved in linear time due
to Koebe’s Theorem [Koe36], which implies that the set of planar graphs coincides with
the set of graphs that are realizable as disk touching graphs. However, once one tries to
dictate the radii or provides seeds that need to be covered, the related recognition problems
become NP-hard [BK98, AdCC+12]. We considered several variations and combinations
of these basic scenarios and showed that our problems remain NP-hard even for input
graph classes that are (much) more basic than planar graphs. We thereby strengthened
several old results and provided findings for new interesting problem variations. We sum-
marize our results in the following list. To provide a more complete view, we included very
easy, but not necessarily new observations in []-brackets.

• Unit Disk Touching Graph Recognition is NP-hard even for outerplanar graphs
(which strengthens a result by [BK98]). For caterpillars, the problem can be solved
in linear time. [There exist realizations for any path or cycle. For spiders, the
problem can be solved in linear time.]

• Unit Disk Touching Graph Recognition with fixed Embedding is NP-hard, even for
outerplanar graphs. [There exist realizations for any path or cycle. For spiders, the
problem can be solved in linear time.]

• For spiders the ρ-bounded Disk Touching Graph Recognition problem can be solved
in linear time in the Real RAM model for any fixed ρ ≥ 1.

• Disk Touching Graph Recognition with fixed Radii is NP-hard even for stars (which
strengthens a result by [BK98]). There exists a realization for any cycle regardless
of the radius assignment. [There exists a realization for any path regardless of the
radius assignment.]

• Disk Touching Graph Recognition with fixed Radii and Embedding is NP-hard,
even for outerplanar graphs. For stars, the problem can be solved in linear time
in the Real RAM model. There exists a realization for any cycle regardless of the
radius assignment. [There exists a realization for any path regardless of the radius
assignment.]

• Disk Touching Graph Recognition with fixed Seeds is NP-hard even for trees (which
strengthens a result by [AdCC+12]).

61

• Unit Disk Touching Graph Recognition with fixed Seeds is NP-hard, even for paths.

• Unit Disk Touching Graph Recognition with fixed Seeds and Embedding isNP-hard,
even for paths.

We achieved closure for some of our problem variations, however, a few open problems
remain. A particularly interesting one is the following:

• Is it possible to solve the Unit Disk Touching Graph Recognition problem for trees
in polynomial time / Does the Unit Disk Touching Graph Recognition problem
remain NP-hard even for trees?

In spite of this open problem, we can conclude our work by stating that disk touching
graph related recognition problems are in many casesNP-hard even for basic graph classes,
especially when a lot of information is supposed to be encoded in the disks radii or positions.
This motivates researching heuristics and approximation algorithms. We have listed some
heuristics in Section 1.2, however, little seems to be known about approximation algorithms
with guaranteed quality which generate realizations while, for example, allowing a certain
percentage of overlap between touching disks or ignoring a certain number of adjacencies.

62

Bibliography

[AdCC+12] N. Atienza, N. de Castro, C. Cortés, M. Á. Garrido, C. I. Grima, G. Hernán-
dez, A. Márquez, A. Moreno-González, M. Nöllenburg, J. R. Portillo, P. Reyes,
J. Valenzuela, M. T. Villar, and A. Wolff, “Cover Contact Graphs,” Journal
of Computational Geometry, vol. 3, no. 1, pp. 102–131, 2012.

[AEG+14] M. J. Alam, D. Eppstein, M. T. Goodrich, S. G. Kobourov, and S. Pupyrev,
“Balanced Circle Packings for Planar Graphs,” CoRR, vol. abs/1408.4902,
2014, to appear in Proceedings of Graph Drawing 2014. [Online]. Available:
http://arxiv.org/abs/1408.4902

[BK96] H. Breu and D. G. Kirkpatrick, “On the Complexity of Recognizing
Intersection and Touching Graphs of Disks,” in Graph Drawing, ser.
Lecture Notes in Computer Science, F. Brandenburg, Ed. Springer
Berlin Heidelberg, 1996, vol. 1027, pp. 88–98. [Online]. Available:
http://dx.doi.org/10.1007/BFb0021793

[BK98] ——, “Unit Disk Graph Recognition is NP-hard,” Computational
Geometry, vol. 9, no. 1-2, pp. 3–24, Jan. 1998. [Online]. Available:
http://dx.doi.org/10.1016/S0925-7721(97)00014-X

[CCJ90] B. N. Clark, C. J. Colbourn, and D. S. Johnson, “Unit Disk Graphs,”
Discrete Mathematics, vol. 86, no. 1–3, pp. 165–177, 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0012365X9090358O

[CDR07] C. Cabello, E. D. Demaine, and G. Rote, “Planar Embeddings of Graphs
with Specified Edge Lengths,” Journal of Graph Algorithms and Applications,
vol. 11, no. 1, pp. 259–276, 2007.

[CLRS09] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[Coo71] S. A. Cook, “The Complexity of Theorem-proving Procedures,” in Proceedings
of the Third Annual ACM Symposium on Theory of Computing, ser. STOC
’71. New York, NY, USA: ACM, 1971, pp. 151–158. [Online]. Available:
http://doi.acm.org/10.1145/800157.805047

[Dor96] D. Dorling, “Area Cartograms: Their Use and Creation,” in Concepts and
techniques in modern geography. University of East Anglia: Environmental
Publications, 1996.

[GJ75] M. R. Garey and D. S. Johnson, “Complexity Results for Multiprocessor
Scheduling under Resource Constraints,” SIAM Journal on Computing,
vol. 4, no. 4, pp. 397–411, 1975. [Online]. Available: http://dx.doi.org/10.
1137/0204035

[GJ79] ——, Computers and Intractability: A Guide to the Theory of NP-
Completeness, 1979.

63

http://arxiv.org/abs/1408.4902
http://dx.doi.org/10.1007/BFb0021793
http://dx.doi.org/10.1016/S0925-7721(97)00014-X
http://www.sciencedirect.com/science/article/pii/0012365X9090358O
http://doi.acm.org/10.1145/800157.805047
http://dx.doi.org/10.1137/0204035
http://dx.doi.org/10.1137/0204035

Bibliography

[Hal80] W. Hale, “Frequency Assignment: Theory and Applications,” Proceedings of
the IEEE, vol. 68, no. 12, pp. 1497–1514, Dec 1980.

[HK01] P. Hliněný and J. Kratochv́ıl, “Representing graphs by disks and
balls (a survey of recognition-complexity results),” Discrete Mathematics,
vol. 229, no. 1–3, pp. 101–124, 2001. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0012365X00002041

[HT74] J. Hopcroft and R. Tarjan, “Efficient Planarity Testing,” Journal of the ACM
(JACM), vol. 21, no. 4, pp. 549–568, 1974.

[Ino11] R. Inoue, “A New Construction Method for Circle Cartograms,” Cartography
and Geographic Information Science, vol. 38, no. 2, pp. 146–152, 2011.
[Online]. Available: http://dx.doi.org/10.1559/15230406382146

[Koe36] P. Koebe, “Kontaktprobleme der konformen Abbildung,” in Berichte über
die Verhandlungen der Sächsischen Akadmie der Wissenschaften zu Leipzig.
Math.-Phas. Klasse, vol. 88, 1936, pp. 141–164.

[KR92] D. E. Knuth and A. Raghunathan, “The Problem of Compatible Represen-
tatives,” SIAM Journal on Discrete Mathematics, vol. 5, no. 3, pp. 422–427,
1992.

[Lic82] D. Lichtenstein, “Planar Formulae and their Uses,” SIAM Journal on Com-
puting, vol. 11, no. 2, pp. 329–343, 1982.

[LW70] D. R. Lick and A. T. White, “k-Degenerate Graphs,” Canadian J. of Mathe-
matics, vol. 22, pp. 1082–1096, 1970.

[Men27] K. Menger, “Zur allgemeinen Kurventheorie,” Fundamenta Mathematicae,
vol. 10, no. 1, pp. 96–115, 1927. [Online]. Available: http://eudml.org/doc/
211191

[PS85] F. P. Preparata and M. I. Shamos, “Computational Geometry, An Introduc-
tion,” 1985.

[RT90] J.-M. Robert and G. Toussaint, “Computational Geometry and Facility Lo-
cation,” in Proc. International Conference on Operations Research and Man-
agement Science, 1990, pp. 11–15.

[Wel91] E. Welzl, “Smallest Enclosing Disks (Balls and Ellipsoids),” in New Results
and New Trends in Computer Science, ser. Lecture Notes in Computer
Science, H. Maurer, Ed. Springer Berlin Heidelberg, 1991, vol. 555, pp.
359–370. [Online]. Available: http://dx.doi.org/10.1007/BFb0038202

64

http://www.sciencedirect.com/science/article/pii/S0012365X00002041
http://www.sciencedirect.com/science/article/pii/S0012365X00002041
http://dx.doi.org/10.1559/15230406382146
http://eudml.org/doc/211191
http://eudml.org/doc/211191
http://dx.doi.org/10.1007/BFb0038202

Appendix

A. Theorem 7

A.1. Calculations for Condition 3.3 and Condition 3.5

In order to show that ε1, ξ1 = 16/B2 and 0 ≤ φ, ψ ≤ 1/B2 satisfy Condition 3.3 and
Condition 3.5, we substitute y = x · 12/B and show that

d((16/B2), (y ·B/12)) ≤ r(y ·B/12)− c/B2

for any y ∈ {3 + 1 · 12/B, 3 + 2 · 12/B, . . . , 6− 12/B}, any 0 ≤ c ≤ 1 and any B > 12.

d((16/B2), (y ·B/12)) ≤ r(y ·B/12)− c/B2 ⇔√
(r(y ·B/12)− 8/B2)2 + (r(y ·B/12)− rmin)2 ≤ r(y ·B/12)− c/B2 ⇐

2 · r(y ·B/12)2 − 16 · r(y ·B/12)/B2 + 64/B4 − 2r(y ·B/12)rmin + (rmin)2 ≤
r(y ·B/12)2 − 2c · r(y ·B/12)/B2 + c2/B4 ⇔

r(y ·B/12)2 − 16 · r(y ·B/12)/B2 + 64/B4 − 2r(y ·B/12)rmin + (rmin)2 ≤
−2c · r(y ·B/12)/B2 + c2/B4 ⇔

(4 + 16/B2 + y2/B2 − 16/B + 4y/B − 8y/B2) + (−32/B2 + 64/B3 − 16y/B3)+

64/B4 + (−8 + 16/B − 4y/B + 4/B − 8/B2 + 2y/B2 − 48/B2 + 96/B3 − 24y/B3)+

(4 + 1/B2 + 144/B4 − 4/B + 48/B2 − 24/B3) + (4c/B2 − 8c/B3 + 2cy/B3)− c2/B4 ≤ 0⇔
(208− c2)/B4 + (64− 16y + 96− 24y − 24− 8c+ 2cy)/B3+

(16 + y2 − 8y − 32− 8 + 2y − 48 + 1 + 48 + 4c)/B2 ≤ 0⇔
(208− c2)/B4 + (136− 40y + 2cy − 8c)/B3 + (−23 + y2 − 6y + 4c)/B2 ≤ 0⇐

208− c2 + (136− 40y + 2cy − 8c)B + (−23 + y2 − 6y + 4c)B2 ≤ 0⇐
208− 02 + (136− 40 · 3 + 2 · 1 · 6− 8 · 0)B + (−23 + 0 + 4 · 1)B2 ≤ 0⇔

208 + 28B − 19B2 ≤ 0

The last inequality clearly holds true for any B > 12, which concludes the proof.

65

A. Theorem 7

A.2. Calculations for Condition 3.2

In order to show that 0 < ε ≤ 17/B2 is a sufficient choice to satisfy Condition 3.2, we
assign ε = c/B2 and show that the condition holds for any 0 < c ≤ 17 and for any B > 12.

12 + ε ≤ si ⇔
12 + c/B2 ≤ 2rmin + 2

√
(rmax + rmin)2 − (rmax − rmin)2 ⇔

3 + (c/4)/B2 − (1/2)rmin ≤
√
rmaxrmin ⇐

(3 + (c/4)/B2 − (1/2)(2− 1/B + 12/B2))2 ≤ (2− 1/B + 12/B2)(2 + 2/B − 12/B2)⇔
9 + (c2/16)/B4 + 1 + 1/(4B2) + 36/B4 − 1/B + 12/B2 − 6/B3 + 3c/(2B2)− 6 +

3/B − 36/B2 − c/(2B2) + c/(4B3)− 3c/B4 ≤ 4 + 2/B − 2/B2 + 36/B3 − 144/B4 ⇔
(c2/16− 3c+ 180)/B4 + (c/4− 42)/B3 + (c− 87/4)/B2 ≤ 0⇐

c2/16− 3c+ 180 + (c/4− 42)B + (c− 87/4)B2 ≤ 0⇐
17/16− 3 · 0 + 180 + (17/4− 42)B + (17− 87/4)B2 ≤ 0⇔

17/16 + 180− (151/4)B − (19/4)B2 ≤ 0

The last inequality clearly holds true for any B > 12, which concludes the proof.

A.3. Calculations for Condition 3.4

In order to show that 0 < ξ ≤ 17/B2 is a sufficient choice to satisfy Condition 3.4, we
assign ξ = c/B2 and show that the condition holds for any 0 < c ≤ 17 and for any B > 12.

12− 24/B2 + ξ ≤ sf ⇔
12− 24/B2 + c/B2 ≤ 2r(B/4) + 2

√
(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2 ⇔

12 + (c− 24)/B2 − 2r(B/4) ≤ 4
√
r(B/2) · r(B/4)⇔

2 + (c/4− 6)/B2 + (1/2)/B ≤
√

(2 + 2/B) · (2− 1/B)⇐
4 + (c2/16− 3c+ 36)/B4 + (1/4)/B2 + (c− 24)/B2 + 2/B + (c/4− 6)/B3 ≤

4− 2/B + 4/B − 2/B2 ⇔
(c2/16− 3c+ 36)/B4 + (c/4− 6)/B3 + (c− 24 + 1/4 + 2)/B2 ≤ 0⇐

c2/16− 3c+ 36 + (c/4− 6)B + (c− 22 + 1/4)B2 ≤ 0⇐
172/16− 3 · 0 + 36 + (17/4− 6)B + (17− 22 + 1/4)B2 ⇔

289/16 + 36− (7/4)B − (19/4)B2 ≤ 0

The last inequality can easily be verified to be true for any B > 12, which concludes the
proof.

66

Appendix

A.4. Upper bounds for Condition 3.2 and Condition 3.4

We show that s ≤ 1/B2 for any d ≤ 1/B2 and for any B > 12.

s ≤ 1/B2 ⇔
2(
√

(r(B/2) + r(B/4))2 − (r(B/2)− r(B/4))2

−
√

(r(B/2) + r(B/4))2 − (r(B/2) + d− r(B/4))2) ≤ 1/B2 ⇔
2(
√

4 · r(B/2) · r(B/4)

−
√

4 · r(B/2) · r(B/4)− 2d · r(B/2) + 2d · r(B/4)− d2) ≤ 1/B2 ⇔√
4 · r(B/2) · r(B/4)− (1/2)/B2

≤
√

4 · r(B/2) · r(B/4)− 2d · r(B/2) + 2d · r(B/4)− d2 ⇐
(1/4)/B4 −

√
4 · r(B/2) · r(B/4)/B2 ≤ 2d · r(B/4)− 2d · r(B/2)− d2 ⇔

(1/4)/B2 + 2dB2 · (2 + 2/B)− 2dB2 · (2− 1/B) + d2B2 ≤
√

4 · (2 + 2/B) · (2− 1/B)⇐
((1/8)/B2 + dB2(2 + 2/B − 2 + 1/B) + (1/2) · d2B2)2 ≤ (2 + 2/B) · (2− 1/B)⇐

((5/8)/B2 + 1 · (3/B))2 ≤ 4− 2/B + 4/B − 2/B2 ⇔
(25/64)/B4 + (30/8)/B3 + 9/B2 ≤ 4− 2/B + 4/B − 2/B2 ⇔

(25/64)/B4 + (15/4)/B3 + 11/B2 − 2/B − 4 ≤ 0⇐
25/64 + (15/4)B + 11B2 − 2B3 − 4B4 ≤ 0

The last inequality clearly holds true for any B > 12, which concludes the proof.

67

	Contents
	1 Introduction
	1.1 Preliminaries
	1.1.1 Graph theory
	1.1.2 NP-hard problems and the Real RAM model
	1.1.3 Disk graphs and problem definitions

	1.2 Related work
	1.3 Contribution and section overview

	2 Recognition problems with unit radii
	2.1 Unit Disk Touching Graph Recognition
	2.2 Unit Disk Touching Graph Recognition with fixed Embedding

	3 Recognition problems with fixed radii
	3.1 Disk Touching Graph Recognition with fixed Radii
	3.2 Disk Touching Graph Recognition with fixed Radii and Embedding

	4 Recognition problems with fixed seeds
	4.1 Disk Touching Graph Recognition with fixed Seeds
	4.2 Unit Disk Touching Graph Recognition with fixed Seeds (and Embedding)

	5 Conclusion
	Bibliography
	Appendix
	A Theorem 7
	A.1 Calculations for Condition 3.3 and Condition 3.5
	A.2 Calculations for Condition 3.2
	A.3 Calculations for Condition 3.4
	A.4 Upper bounds for Condition 3.2 and Condition 3.4

