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Abstract
This thesis is concerned with a so-called speedup technique for Dijkstra’s algorithm:
Contraction hierarchies. We present a model of contraction hierachies sufficiently
sophisticated to capture real-world applications but yet concise enough to lend itself
to theoretical investigations. This model reveals an interrelation between contraction
hierarchies and filled graphs that directly relates the search space size and space con-
sumption of contraction hierarchies to the height of elimination trees and the number
of fill-edges in filled graphs, respectively. These observations facilitate the construction
of contraction hierarchies with an upper bound ofO(tw(G) · log(n)) andO(

√
n) on the

maximum search space size and an upper bound ofO(tw(G)·n log(n)) andO(n log(n))
on their space consumption for graphs of treewidth tw(G) and graphs admitting re-
cursive O(

√
n)-separator decompositions. We further consider the problem of locally

modifying contraction hierarchies to increase the performance of subsequent distance
queries.

Deutsche Zusammenfassung
Diese Arbeit beschäftigt sich mit einer sogenannten Beschleunigungstechnik für Dijk-
stra’s Algorithmus: Contraction Hierarchies. Wir erarbeiten ein Modell, welches
die, in der Praxis gebräuchlichen, heuristischen Contraction Hierarchies erfasst und
sich trotzdem für theoretische Betrachtungen eignet. Insbesondere deckt dieses
Modell einen unerwarteten Zusammenhang zwischen Contraction Hierarchies und
den wesentlich älteren und besser untersuchten Problemen einen gefüllten Graphen
mit wenigen Kanten und einen “elimination tree” geringer Höhe zu berechnen auf.
Diese Beobachtungen ermöglichen die Konstruktion von Contraction Hierarchies mit
garantierter maximaler Suchraumgröße O(tw(G) · log(n)) bzw. O(

√
n) und garantier-

tem Platzverbrauch O(tw(G) · n log(n)) bzw. O(n log(n)) für Graphen von Baum-
breite tw(G) bzw. Graphen mit Zerlegungen in Separatoren der GrößeO(

√
n). Schluss-

endlich untersuchen wir noch inwieweit lokale Änderungen die Performanz von
Distanz-Abfragen in Contraction Hierarchies beeinflussen.





Declaration
I hereby confirm that this document
has been composed by myself, and de-
scribes my own work, unless other-
wise acknowledged in the text.

Erklärung
Ich erkläre hiermit die vorliegende
Arbeit selbständig verfasst zu haben
und keine außer den angegebenen
Quellen verwendet zu haben.

Karlsruhe, den 15. Oktober 2012





Contents

Introduction 1

1 Preliminaries and Notation 5

2 Modelling Contraction Hierarchies 13
2.1 Algorithmic Approach to Contraction Hierarchies . . . . . . . . . . . . 13
2.2 Formal Approach to Contraction Hierarchies . . . . . . . . . . . . . . . 20
2.3 Contraction Hierarchies and Shortest Paths . . . . . . . . . . . . . . . . 26
2.4 Weak Contraction Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Upper Bounds on Search Space Size via Nested Dissection 51
3.1 Contraction Hierarchies and Filled Graphs . . . . . . . . . . . . . . . . . 51
3.2 Nested Dissection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Nested Dissection in Graphs with O(

√
n)-Separators . . . . . . . . . . . 70

3.4 Nested Dissection and Highway Dimension . . . . . . . . . . . . . . . . 73

4 Local Modification of Contraction Hierarchies 79
4.1 Constitutive Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Tame Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Swapping of Tame Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Conclusion 103

Index of Notation 107

Bibliography 111





List of Figures

1 Preliminaries and Notation
1.1 Flawed halting criterion for bidirectional Dijkstra’s algorithm . . . . . . 9

2 Modelling Contraction Hierarchies
2.1 Contraction of a single vertex . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Iterated contraction of vertices and the associated graphs G(i). . . . . . 15
2.3 Non-unique shortest paths during contraction . . . . . . . . . . . . . . . 18
2.4 A contraction hierarchy Ḡα = (Ḡ∧
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Introduction

The problem of determining the distance between two given points of a network is one
of the fundamental problems in computer science whose domain of application spans
the seemingly unrelated areas of route planning, computational biology and social
sciences – among others. The classic solution dating back to 1959 is the algorithm
of Dijkstra [Dij59]. To be precise, Dijkstra’s algorithm does not solve the problem as
stated above but rather computes the distance between one prescribed source and all
other points – an overhead that is negligible if the network in question is sufficiently
small but becomes noticeable in networks with literally millions of points, such as
e.g. the road networks of whole continents or social networks with millions of users.
Stimulated by the 9th DIMACS implementation challenge [DGJ09], so called speedup
techniques for Dijkstra’s algorithm emerged. Targeted at road networks and exploiting
their specific structure, some of these techniques outperform Dijkstra’s algorithm
by factors of 106. To achieve this impressive speedup, many of these algorithms
employ some kind of preprocessing to augment the graph with additional information
that facilitates fast subsequent distance queries. Although there is overwhelming
experimental evidence of the effectiveness of these techniques, near to nothing is
known about why exactly they are so successful. This thesis provides at least a
partial answer to this latter question for one of these speedup techniques called
contraction hierarchies. More precisely, we develop a formal model of contraction
hierarchies and investigate the performance of distance queries with respect to this
model. We are able to show that distance queries in contraction hierarchies outperform
Dijkstra’s algorithm for any class of graphs that admits small separators such as e.g.
planar graphs. More precisely, we prove the existence of contraction hierarchies of
graphs of treewidth tw(G) and of graphs having separators of size

√
n that facilitate

distance queries settling at most O(tw(G) · log(n)) and O(
√
n) vertices, respectively.

Furthermore, we investigate how our approach relates to previous work of Abraham
et al. [AFGW10; ADFGW11] on the performance of contraction hierarchies. To this
end, we conclude that our approach does at least not perform worse than the approach
of Abraham et al. in the worst case. Finally, we are concerned with local modifications
to the preprocessed network while retaining its most important properties.



2 Introduction

Related Work
The reader may consult the recent survey of Sommer [Som12] for a comprehensive
overview of many preprocessing techniques for shortest path and distance queries not
only in road networks but for arbitrary static graphs. In what follows below, we give
some more specific references related to contraction hierarchies and our findings.

Contraction hierarchies were first introduced by Geisberger et al. and the original
article [GSSD08] is still the definitive treatment. A recent account of contraction
hierarchies that focuses on their deployment in mobile route planning may also be
found in [GSSV12]. Broadening the perspective, the survey of Delling et al. [DSSW09]
contains an overview and experimental evaluation of the different competing speedup
techniques for Dijkstra’s algorithm on road networks – of which contraction hierarch-
ies are only a single instance – that emerged during the 9th DIMACS Implementation
Challenge [DGJ09]. The article [BDSSSW10] of Bauer et al. further explores the pos-
sibility to combine several of these techniques and includes a detailed experimental
study. However, the currently fastest practical technique known as hub labeling due to
Abraham et al. [ADGW11; ADGW12] misses in both these articles as hub labels were
only discovered after the publication of [DSSW09] and [BDSSSW10]. Interestingly,
it is this currently fastest algorithm that is based on a profound theoretical model
of road networks that was developed by Abraham et al. in an attempt to explain the
general success of speedup techniques for Dijkstra’s algorithm on road networks. Not
only do Abraham et al. utilise their model of road networks to devise another speedup
technique in [ADGW11; ADGW12], but they also obtain guarantees for the perform-
ance of several other speedup techniques in [AFGW10; ADFGW11]. Apart from these
recent results, the author is not aware of any other performance guarantees for any
of the various known speedup techniques for Dijkstra’s algorithm on road networks.

Another strand of theoretical research concerned explicitly with speedup techniques
is the work of Bauer et al. [BDDW09; BCKKW10; BBRW12]. Beginning with the study
of the problem to optimally augment a graph with a prescribed number of shortcuts in
the article [BDDW09], Bauer et al. consider the computational complexity of optimally
filling the degree of freedom present in many preprocessing phases of speedup tech-
niques in [BCKKW10] and further strengthen their results for a particular technique
in [BBRW12]. It is also this context in which the author’s student thesis [Col09] was
already concerned with search spaces in contraction hierarchies. However, in [Col09]
only contraction hierarchies of paths could be dealt with satisfactorily.

Although we start off with a practical algorithm having its roots in the route
planning community, our findings also relate to more theoretical developments. Sev-
eral researchers have been concerned with the problem of constructing a data struc-
ture of prescribed size S that allows subsequent distance queries to be answered in
time O(f (n, S)), where f is increasing in n and decreasing in S . Some of these tech-
niques utilise separator decompositions in their preprocessing phase and are therefore
comparable to our approach to preprocessing contraction hierarchies. The first such
data structure employing separator decompositions seems to have been constructed
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in 1996 by Djidjev [Dji96]. Recently, Mozes and Sommer [MS12] devised a prepro-
cessing algorithm that facilitates distance queries on planar graphs in time Õ(n/

√
S)

using only O(S) space.

Organisation of this Thesis
We introduce some basic notation in Chapter 1. Chapter 2 is then devoted to the
development and justification of our particular model of contraction hierarchies. We
derive upper bounds on both the space consumption and the running time of distance
queries for this very model of contraction hierarchies in Chapter 3. Finally, we invest-
igate the effect of local modifications to contraction hierarchies in Chapter 4. All in
all, we tried hard to always use the same notation to refer to the same concepts. For
the convenience of the reader, we included an index containing the most frequently
used symbols and their point of first use or definition.
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constant encouragement that made the endeavour of this thesis possible. Furthermore,
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1 Preliminaries and Notation

In this chapter we fix notation and terminology used throughout this work. We
assume the reader to be familiar with the very basics of graph theory, treated e.g. in
the first chapter of [Die06].

We distinguish between directed and undirected graphs. We call the latter simply
graphs and refer to the former as directed graphs or digraphs. Edges of digraphs are
also called arcs and will be written uv , where u is the source and v is the target
vertex. Their undirected counterparts are denoted by {u ,v}. Paths in both graphs
and digraphs are denoted by p = (x1, x2, . . . , x`). The number of edges or arcs of a
path p is denoted by |p |. A weighted graph or weighted digraph is a graph or digraph
equipped with positive, real edge lengths lenG(u ,v) or arc lengths lenG(uv). As usual,
the length len(p) of a path p is the sum over all the lengths of its edges and a shortest
path from s to t – or simply a shortest s-t-path – is a path of minimal length with
source s and target t . We denote by distG(s , t) the length of a shortest s-t-path from
some vertex s to some other vertex t .

Computing the distance distG(s , t) or a shortest path between a source vertex s and
a target vertex t in a weighted graph or digraph is a classic problem of computer science.
If one restricts this problem to non-negative or – like we do – even strictly positive
edge weights, there is a classic solution due to Dijkstra [Dij59] known as Dijkstra’s
algorithm, which computes for a fixed source s the distances distG(s ,u) for all u ∈ V .
Essentially, Dijkstra’s algorithm starts with the given source vertex s ∈ V and visits all
the vertices u ∈ V sorted by ascending distances distG(s ,u). For this purpose, it keeps
for eachu ∈ V a tentative distance d(u) that is initially set to∞ ifu , s . Starting with s
of tentative distance d(s) = 0, it chooses in each iteration the vertex u of minimal
tentative distance for which distG(s ,u) is still unknown and settles it. Here, settling
of a vertex u ∈ V means setting distG(s ,u) to d(u) and relaxing all the outgoing
arcs uv ∈ A, that is, comparing and possibly updating all the tentative distances d(v)
with d(u) + lenG(uv). We call a vertex discovered if its tentative distance has been
updated at least once. The aforementioned choice of the vertex u of minimal tentative
distance d(u) is commonly implemented by some kind of priority queue that keeps
track of all the vertices that are discovered but not settled yet. For this reason, we call
the set of vertices that are discovered but not settled the queue and denote it byQ . An
implementation of Dijkstra’s algorithm in pseudo code may be seen in Algorithm 1.1.

Broadly speaking, Dijkstra’s algorithm is correct since each vertexu ∈ V gets settled
only after all vertices with smaller tentative distances are already settled, i.e. after all
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Algorithm 1.1: Dijkstra’s algorithm

Data: Weighted digraph G = (V ,A)
Input: Source vertex s ∈ V
Output: Distances distG(s ,u)

// Initial tentative distances
1 foreach u ∈ V r {s} do d(u)← ∞
2 d(s)← 0

// Vertices discovered but not settled.
3 Q ← {s}
4 while Q , ∅ do
5 Choose u ∈ Q such that d(u) is minimal
6 Q ← Q r {u}
7 foreach uv ∈ A do
8 if d(u) + lenG(uv) < d(v) then
9 d(v)← d(u) + lenG(uv)

10 if v < Q then Q ← Q ∪ {v}

11 return distG(s ,u) = d(u)

vertices that can possibly lie on a path shorter than the current tentative distance d(u)
are taken into consideration. Furthermore, each possible path is taken account of. All
the outgoing arcs uv of any settled vertex u are relaxed, so that any vertex reachable
from s is eventually inserted into the queue and thus eventually settled. Making this
argument precise, requires a bit of work, which we want to invest nevertheless, for we
can make good use of it in what follows below. We begin with some rather obvious
remarks about the general workings of Algorithm 1.1, but state them explicitly, for
we will make frequent use of them in this and the next chapter.

1.1 Remark: Consider Algorithm 1.1.

(a) The tentative distance d(u) of a single vertex u decreases monotonically with
each iteration of Algorithm 1.1.

(b) The minimum tentative distance among all vertices u ∈ Q increases monotonic-
ally with each iteration of Algorithm 1.1.

(c) d(u) ≥ distG(s ,u) for all u ∈ V and during the whole course of Algorithm 1.1.

(d) Algorithm 1.1 terminates. †
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Proof:

(a) Observe that the tentative distance d(v) of a vertex v can only change in line 9,
where it is overwritten with d(u) + lenG(uv). However, d(v) is overwritten if
and only if the new value value is less than d(v). This already shows part (a).

(b) When u is removed from Q in line 6, then d(u) ≤ d(v) for all v ∈ Q by the
choice of u. Furthermore, any tentative distance d(v), that is modified during
this iteration, satisfies d(v) = d(u) + lenG(uv) ≥ d(u) afterwards. Hence,
the minimum minu∈Q d(u) is monotonically increasing with each iteration
of Algorithm 1.1.

(c) We do induction on the number of iterations. After initialisation of d(−) in
line 1 and line 2, we have d(s) = 0 and d(u) = ∞ if u , s . Our claim is thus
satisfied just before the first iteration. Furthermore, d(−) gets modified only in
line 9, where d(v) is overwritten with d(u)+ lenG(uv). However, the induction
hypothesis implies that at this point d(u) ≥ distG(s ,u), which gives

d(u) + lenG(uv) ≥ distG(s ,u) + lenG(uv) ≥ distG(s ,v) .

This finishes the proof.

(d) We have shown in (a) and (b) that d(u) is monotonically decreasing for each
single vertex u but minu∈Q d(u) is monotonically increasing. As v is inserted
into Q only after d(v) got strictly smaller, it follows that no vertex is inserted
into Q twice. Moreover, each vertex contained in Q is eventually settled and
Algorithm 1.1 therefore terminates after at most |V | iterations. �

According to № 1.1, d(u) is decreasing and satisfies d(u) ≥ distG(s ,u) during the
whole course of Dijkstra’s algorithm. Consequently, if d(u) = distG(s ,u) in one
iteration, then d(u) = distG(s ,u) for the whole remainder of the algorithm. In
order to show that Algorithm 1.1 actually computes the correct distances distG(s ,u),
it therefore suffices to show that, for any vertex u, there is some point in time at
which d(u) and distG(s ,u) are equal. We are even able to specify this point in time a
bit more precisely in terms of the following lemma.

1.2 Lemma: Each vertex u ∈ V with distG(s ,u) < ∞ is eventually settled. Further-
more, d(u) = distG(s ,u) at the latest from when its predecessor on some shortest
path from s to u is settled. †

Proof: Consider a shortest path p from s to some vertexu ∈ V . We employ induction
on the number of arcs in p.

|p | = 0: If |p | = 0, then u = s and there is nothing to show, since s gets settled in the
very first iteration and d(s) is initialised to zero in line 2.
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|p | > 0: Decompose p into p = q · (v ,u) for some shortest path q from s to v . By
induction hypothesis, v is eventually settled and d(v) = distG(s ,v) during this
very iteration. Therefore,

d(u) ≤ d(v) + lenG(vu) = distG(s ,v) + lenG(vu) = distG(s ,u)

regardless of whether d(u) is updated in line 9 or not. By № 1.1, part (c), it thus
follows that d(u) = distG(s ,u).

It only remains to show that u will eventually be settled. To this end, note that
if u < Q , then u is inserted into Q when v is settled. However, each vertex in
the queue eventually gets settled by № 1.1. �

We have the following immediate corollary of № 1.2, which we spell out for the sake
of completeness.

1.3 Corollary: Dijkstra’s algorithm is correct in the sense that it terminates and
that d(u) = distG(s ,u) for all u ∈ V after its termination. †

The running time of Dijkstra’s algorithm depends largely on how the choice ofu ∈ Q
with minimal tentative distanced(u) in line 5 is implemented. The best knownmethod
for non-negative real arc lengths – called Fibonacci heaps – is due to Fredman and
Tarjan [FT87], with which Dijkstra’s algorithm has time complexity O(n · log(n)+m),
where n denotes the number of vertices andm denotes the number of arcs inG . Ahuja
et al. [AMOT90] observed that this upper bound on the performance of Dijkstra’s
algorithm is optimal in a comparison based model of computation and thus can only be
beaten if one imposes further restrictions on the input. If one allows for example only
integral arc lengths, there are several data structures with which Dijkstra’s algorithm
has running time asymptotically less thanO(n ·log(n)+m). To the author’s knowledge,
the best known such data structure is due to Thorup [Tho03], who has shown that
one may achieve a running time of O(n · log log(n) +m) or O(n · log log(C) +m),
where C = maxe∈A lenG(e).

Apart from these enhancements regarding the data structures used in the imple-
mentation of Dijkstra’s algorithm, there are other, more conceptual improvements. If
one restricts the attention to undirected graphs with integral edge weights, there is
an algorithm with time complexity O(n+m) due to Thorup [Tho99]. This linear-time
algorithm is no variant of Dijkstra’s algorithm but actually based on a slightly different
approach. However, it is not clear, whether this approach may be adapted to directed
graphs or not. For directed graphs with positive, real arc lengths, there are other
improvements targeted at the computation of only a single distance distG(s , t) instead
of the distances distG(s ,u) for all u ∈ V . Contraction hierarchies – the very subject
of the thesis at hand – are one of these.

Another such improvement, which is also of relevance for our work, is called
bidirectional Dijkstra’s algorithm. Instead of only searching for shortest paths with
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Figure 1.1: An example of a graph, for which the correct distance distG(s , t) is not known
when the vertex 3 is first to be discovered by both queries of bidirectional Dijkstra’s
algorithm. Settled vertices are drawn in grey, while the relaxed arcs and the discovered
vertices are drawn on a background shaded in lighter grey.

source vertex s , one may additionally look for shortest paths with target vertex t .
If these two queries meet, one may compute the distance from s to t as the sum
of distG(s ,u) and distG(u , t) for some appropriate vertex u. One has to be careful
though since a single vertex u discovered by both queries is usually not suited for the
computation of distG(s , t) from distG(s ,u) and distG(u , t). This phenomenon may
also be seen in Figure 1.1, where the first vertex to be discovered by both queries is
vertex 3, which does not even lie on a shortest s-t-path. One solution to this problem
is not to abort, when an arbitrary vertex is discovered by both queries, but rather
when one knows that all other vertices not yet settled cannot possibly lie on a path
shorter than the ones already discovered. This idea may be implemented using the fact
that the minimum tentative distances Ms = minx∈Qs ds(x) and Mt = minx∈Q t dt(x)
of the vertices in the respective queuesQs andQt are increasing with each iteration of
Dijkstra’s algorithm. The resulting algorithm is the announced bidirectional Dijkstra’s
algorithm. A rough description in pseudo code may be seen in Algorithm 1.2.

Although there is no asymptotic gain of performance when compared to Dijkstra’s
algorithm, bidirectional Dijkstra’s algorithm is preferable in actual applications and
additionally serves as a building block for more sophisticated shortest-path algorithms
like contraction hierarchies. We close this chapter with a brief proof that Algorithm 1.2
is correct and one further remark on its performance.

1.4 Proposition: Bidirectional Dijkstra’s algorithm (Algorithm 1.2) is correct. †

Proof: We use the notation from Algorithm 1.2. Let us first suppose that the al-
gorithm terminates because both queues Qs and Qt are empty. In this case, there is
no path from s to t in G since the original algorithm of Dijkstra is correct and one of
the queries would eventually have found the source of the respective other query.

Let us now suppose that the algorithm terminates because there is some vertexu ∈ V ,
such that ds(u) + dt(u) ≤ Ms +Mt . Choose a shortest path p from s to t . Further
choosev ∈ p, such thatv is settled in the query with source s and such that distG(s ,v)
is maximal with respect to this property. Letw denote the successor of v on p. Note
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Algorithm 1.2: Bidirectional Dijkstra’s algorithm

Data: Weighted digraph G = (V ,A)
Input: Source vertex s ∈ V , target vertex t ∈ V
Output: Distance distG(s , t)

/* Run one instance of Dijkstra’s algorithm with source s in G and one instance with
source t in G with all arcs reversed. Denote the queues by Qs and Qt and the
tentative distances by ds(−) and dt(−), respectively. Furthermore,
letMs = minx∈Qs ds(x) andMt = minx∈Q t dt(x). */

1 while minu∈V ds(u) + dt(u) > Ms +Mt and Qs ∪Qt , ∅ do
2 Choose one instance x of Dijkstra’s algorithm, such thatQx , ∅

3 Perform one single iteration in the chosen instance

4 return minu∈V ds(u) + dt(u)

that by our choice of v , its successorw on the path p cannot possibly be settled in the
query starting from s , hence ds(w) ≥ Ms . On the other hand, the predecessor v ofw
on a shortest path from s tow is settled, so that distG(s ,w) = ds(w) by № 1.2. Thus,
distG(s ,w) ≥ Ms , which gives

distG(s ,w) +Mt ≥ Ms +Mt ≥ ds(u) + dt(u)

≥ distG(s , t) = distG(s ,w) + distG(w , t)

and hence

Mt ≥ distG(w , t) .

Note that this last inequality implies dt(w) = distG(w , t), because any predecessor
ofw on a reversed shortest path fromw to t has to be settled already. Altogether, we
therefore have

ds(w) + dt(w) = distG(s ,w) + distG(w , t) = distG(s , t) ,

which finishes the proof since ds(x) + dt(x) ≥ distG(s , t) for all x ∈ V . �

Note that the strategy bywhich an instance of Dijkstra’s algorithm is chosen in line 2
has considerable impact on the performance of Algorithm 1.2 while it was completely
irrelevant in Algorithm 1.1. However, there is a strategy which is guaranteed to be
within a constant factor of the optimal strategy for each pair of input vertices s and t .

1.5 Remark: Suppose that in line 2 of Algorithm 1.2 the two instances are chosen
alternately. Then the number of vertices settled after termination is at most twice the
number of vertices settled with any other strategy. †
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Proof: Consider an optimal choice consisting of k iterations and suppose that the
instancewith source s is chosenσ times. The instancewith source t is then chosenk−σ
times and the algorithm with both instances chosen alternately terminates after at
most 2 ·max{σ , k − σ } iterations. �





2 Modelling Contraction Hierarchies

Contraction hierarchies were originally introduced and studied by Geisberger [Gei07]
and Geisberger et al. [GSSD08]. They gave an iterative algorithm to compute two
weighted digraphs (Ḡ∧

α , Ḡ
∨
α ) from a weighted digraph G = (V ,A) and an order α

on its vertices. Geisberger et al. showed that one may compute distances and even
shortest paths inG using a variant of bidirectional Dijkstra’s algorithm on Ḡ∧

α and Ḡ∨
α .

We motivate and recall these results and take the opportunity to introduce notation
and terminology. Moreover, we complement the ideas of Geisberger et al. with our
own observations and develop a more concise definition of contraction hierarchies,
which is also the reasonwhywe denote the contraction hierarchies of [GSSD08; Gei07]
by Ḡα instead of the simpler Gα .

2.1 Algorithmic Approach to Contraction Hierarchies

Fix a weighted digraph G = (V ,A) with n = |V | vertices and let v ∈ V . Suppose
we want to remove v from G but preserve the distances between all vertices distinct
fromv . If we simply deletev and its incident arcs fromG , there may be vertices s and t
whose distance distG(s , t) grows. More precisely, this happens if and only if v lies on
all shortest paths from s to t . Any such unique shortest path p from s to t passing v
necessarily contains an arcuv with targetv and an arcvw with sourcev . Observe that
the path (u ,v ,w) is itself such a unique shortest path, for otherwise p would be either
not unique or no shortest path. In order to preserve the distances between all vertices
distinct from v , it thus suffices to insert a new arc uw of length lenG(uv) + lenG(vw)
for each two arcsuv andvw as above; One can then replace any occurrence of (u ,v ,w)
in a shortest s-t-path by the corresponding arc uw of equal length. This deletion of v
together with the insertion of an arcuw for each unique shortest path (u ,v ,w) is called
contraction of v . We denote the graph G after contraction of v by G(v) = (Vv ,Av).
The possibly new arcs uw are called shortcuts. An explicit example of contraction is
depicted in Figure 2.1. Algorithm 2.1 is a more succinct description of contraction in
pseudo code.

There is a subtle point to contraction, which we did not mention explicitly but which
lies hidden in the formulation of Algorithm 2.1. Contraction does not necessarily
preserve all arc lengths ofG , for the length of an arc uw is “overwritten” if contraction
causes the insertion of a shortcut with the very same source and target vertices.
As the length lenG(v)(uw) of any shortcut uw is nothing but the length of a shortest
path (u ,v ,w) fromu tow inG , we at least have the inequality lenG(v)(xy) ≤ lenG(xy)
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(a) A weighted digraph G on five vertices.
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(b) The digraph G after contraction of 1.

Figure 2.1: Contraction of a single vertex. Figure 2.1a shows a digraphG on five vertices with
arc lengths drawn on the respective arcs. In Figure 2.1b one may see G after contraction of
the vertex 1. Shortcuts are drawn dashed and arc lengths are again drawn on the respective
arcs.
Note that there are four paths that have to be taken into consideration during contraction of
the vertex 1. Of these, only (3, 1, 5) and (2, 1, 5) are unique shortest paths, while (3, 1, 2)
is a shortest path but not unique and (5, 1, 2) is not even a shortest path.

Algorithm 2.1: Contraction of a single vertex

Input: Weighted digraph G = (V ,A), a vertex v ∈ V
Output: G(v) = (Vv ,Av), which is G after contraction of v

1 Vv ← V r {v}

2 Av ←
{
xy ∈ A

∣∣∣ v < {x ,y} }
3 lenG(v) ← lenG restricted to Av

4 foreach uv ,vw ∈ A do
5 if (u ,v ,w) is the only shortest path between u andw then
6 Av ← Av ∪ {uw }
7 lenG(v)(uw)← lenG(uv) + lenG(vw)

8 return G(v) = (Vv ,Av)
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(a) The graph shown in Figure 2.1b after con-
traction of the vertex 2.
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(b) The digraph shown to the left after contrac-
tion of the vertex 3.

Figure 2.2: Iterated contraction of vertices of the graph shown in Figure 2.1a. Shortcuts are
drawn dashed. The order α on V is assumed to be given by the values α(v) drawn inside
the respective nodes. The graphs G = G(1) and G(2) are depicted in Figure 2.1a and 2.1b,
respectively, while Figure 2.2a and 2.2b show the graphs G(3) and G(4). Note that G(5)
consists of a single vertex only and is thus not depicted.

for all arcs xy of G with v < {x ,y}. We commonly refer to this fact by saying that
contraction does not increase arc lengths. This phenomenon also appears in Figure 2.1,
where the arc 3→ 5 has length 3 in Figure 2.1a but length 2 after contraction of the
vertex 1 in Figure 2.1b.

Contraction of vertices may be iterated until the remaining graph is eventually
empty. The structure of the intermediate graphs depends crucially on the order in
which this successive contraction of vertices takes place. We therefore equip our
graph G with an order α on its vertices, that is, with a bijective map α : V → [n],
where [n] denotes the set {1, . . . ,n}. Given such an order α and two vertices u and v ,
we say that u is below v or that v is above u, if α(u) ≤ α(v). We further say that u is
strictly below v or that v is strictly above u, if u is below v and additionally u , v . We
always assume that contraction proceeds from lower to higher vertices, i.e. a vertex v
is contracted only after all vertices u with α(u) < α(v) have already been contracted.
We denote the graph G after the (i − 1)-th contraction by G(i) = (Vi ,Ai). More
precisely, we let

G(i) =

G if i = 1

G(i − 1)(v) where v = α−1(i − 1) if 1 < i ≤ n

If one assumes that the vertices in Figure 2.1a are labelled with their respective
values α(v), then Figure 2.1a and 2.1b show nothing butG(1) andG(2). The next two
steps G(3) and G(4) for this particular example are depicted in Figure 2.2. Note that
the graph G(5) already consists of a single vertex only.

The fact that contraction of a single vertex v = α−1(1) preserves the distances
between all vertices distinct from v was our very motivation to study contraction
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of vertices. We argued that one obtains a shortest path in G(v) from a shortest
path in G by replacing any occurrence of a unique shortest path (u ,v ,w) with the
corresponding shortcut uw . We now want to make these arguments precise not
only for a single contraction G(v) but for the whole chain G(1),G(2), . . . ,G(n) of
contractions. Interestingly, a formal proof of our intuition is surprisingly involved and
it seems necessary – or at least convenient – to additionally consider the problem of
finding a path p1 inG = G(1) that corresponds to a given path pk in one of theG(k).
This may be accomplished by successively unfolding shortcuts in p to the shortest
path that led to their insertion. As an example, consider the path (4, 5) of length 3 in
the digraph shown in Figure 2.2a. The shortcut 4→ 5 was inserted upon contraction
of the vertex 2 as a replacement for the path (4, 2, 5) in Figure 2.1b. Moreover, the
arc 2→ 5 in this latter path is also a shortcut that got inserted during contraction of
the vertex 1 to replace the path (2, 1, 5) in Figure 2.1a. Altogether, we see that if we
replace the only arc in (4, 5) with the path (4, 2, 5), we obtain the path (4, 2, 5), in
which we may replace the arc 2→ 5with the path (2, 1, 5) to obtain a path (4, 2, 1, 5)
of the same length 3 as our initial path (4, 5) in G(3). As can also be seen in this
example, unfolding of shortcuts to the corresponding paths does not change the source
and target of the path in question since the unfolded paths always have the same
endpoints as the original shortcut.

All our informal arguments from above concerning unfolding of shortcuts uw to
shortest paths (u ,v ,w) and concerning the substitution of shortest paths (u ,v ,w) by
their corresponding shortcuts uw are finally made precise in terms of the following
lemma.

2.1 Lemma: Let s and t be two vertices and let k = min{α(s), α(t)}.

(a) For any path p inG(k) from s to t , there exist paths p = pk ,pk−1, . . . ,p1, such
that pi ⊆ G(i) and such that the length of each pi equals the length of p.

(b) For any shortest path p inG from s to t , there are shortest paths p = p1, . . . ,pk ,
such that pi ⊆ G(i) and p ∩Vi ⊆ pi and such that the length of each pi equals
the length of p.

In particular, distG(k)(s , t) = distG(s , t) for all vertices s and t in G(k). †

Proof:

(a) Beginning with pk = p, we inductively construct the paths pi as claimed. Sup-
pose that pk , . . . ,pi for some i > 1 are already given. Let v = α−1(i − 1),
so that G(i) = G(i − 1)(v). Further let S denote the shortcuts inserted upon
contraction of v . We distinguish the following cases.

pi ∩ S = ∅: If pi ⊆ G(i) contains no shortcut uw ∈ S , then all the arcs of pi are
already present in G(i − 1). We may therefore simply choose pi−1 = pi .
Note that lenG(i−1)(pi−1) = lenG(i)(pi) since during passage fromG(i−1)
to G(i) only the arc lengths of shortcuts change.
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pi ∩ S , ∅: We obtain a path pi−1 in G(i − 1) from pi by replacing all the
shortcuts uw ∈ S with the corresponding shortest path (u ,v ,w) that led
to their insertion. Recall that the arc length of a shortcut uw is given by

lenG(i)(uw) = lenG(i−1)(uv) + lenG(i−1)(vw) .

The new subpaths (u ,v ,w) of pi−1 therefore have the same length as
the arcs uw of pi that they replace. As the length of any arc of pi−1
that is no shortcut remains unchanged during contraction of v , it follows
that lenG(i−1)(pi−1) = lenG(i)(pi).

(b) According to (a), all paths from s to t in G(i) induce paths from s to t in G of
the same length. If p is a shortest path from s to t in G, it follows that any
path pi from s to t in G(i) has length at least lenG(p). In order to establish
that pi is a shortest path in G(i) of length lenG(p) it therefore suffices to show
that lenG(i)(pi) ≤ lenG(p). This observation will be used several times in our
following proof of part (b)

Starting with p1 = p, we inductively construct the shortest paths pi in G(i).
Suppose that p1, . . . ,pi are given for some 1 ≤ i < k and let v = α−1(i), so
that G(i + 1) = G(i)(v). Note that since pi is a shortest path, it contains at
most one subpath of the form (u ,v ,w). We distinguish the following cases.

pi does not contain v: Since v is the only vertex of G(i) that is not contained
in G(i + 1), we find that pi already is a path in G(i + 1). Furthermore,
our assumption p ∩Vi ⊆ pi immediately yields p ∩Vi+1 ⊆ pi . Since arc
lengths do not grow during contraction, we additionally have

lenG(i+1)(pi) ≤ lenG(i)(pi) = lenG(p)

and we may therefore simply choose pi+1 = pi .

pi contains a unique shortest path (u ,v ,w) as subpath: In this case, we may
more or less apply our informal argument for the contraction of a single
vertex from above: If (u ,v ,w) is a unique shortest path, then contrac-
tion of v leads to the insertion of a shortcut uw . Recall that the length
of uw inG(i + 1) is given by lenG(i+1)(uw) = lenG(i)(uv) + lenG(i)(vw),
so that we may replace the subpath (u ,v ,w) of pi by the shortcut uw
of the same length to obtain a path pi+1 in G(i + 1). Since contrac-
tion of v does not increase any of the lengths of the remaining arcs, we
find that lenG(i+1)(pi+1) ≤ lenG(i)(pi) = lenG(p). Furthermore, we
only removed the vertex v from pi , so that pi+1 = p ∩ Vi+1 follows
from pi = p ∩Vi .

pi contains a non-unique shortest path (u ,v ,w) as subpath: Although we com-
pletely ignored this case in our informal arguments above, it is not entirely
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Figure 2.3: Non-unique shortest paths from the vertex 3 to the vertex 4, such that each
of them contains the vertex 1. Note that the shortest path (3, 2, 1, 5, 4) with a maximal
number of arcs, contains the unique shortest path (2, 1, 5) as subpath. This is not just a
coincidence but also shown to be true in general in the proof of № 2.1.

trivial. If the subpath (u ,v ,w) of pi is non-unique, one may of course
replace it with another shortest path q from u to v of the same length.
However, as can also be seen in Figure 2.3, there is no guarantee that this
path q does not contain the vertex v . Nevertheless, if one chooses the
shortest u-v-path q with some care, then it either does not contain v or
contains a unique shortest path (x ,v ,y), so that our arguments of above
apply.

More precisely, let us choose q such that it is the shortest path from u to v
with a maximal number of arcs. Let us further assume that v ∈ q. In
this case, q contains a shortest path (x ,v ,y) as subpath. If (x ,v ,y) is not
unique, i.e. if there is another shortest path r from x toy, then r consists of
at least three arcs since r , (x ,v ,y). If one replaces the subpath (x ,v ,y)
of q with the path r , one therefore obtains a shortest path from u to v
consisting of at least |q | + 1 arcs. This contradicts our choice of q, so that
we may conclude that (x ,v ,y) is a unique shortest path.

If one replaces the subpath (u ,v ,w) of pi with the path q, one thus either
obtain a path p′i with v < p′i or a path p′i containing a unique shortest
path (x ,v ,y) as subpath. In either case, our previous arguments show
that there is a shortest s-t-path pi+1 ⊆ G(i + 1) of length equal to that
of p′i such thatv is the only vertex possibly contained in p′i but not in pi+1.
As both (u ,v ,w) and q are shortest paths, it follows that p′i and pi have
the same length and thus lenG(i+1)(pi+1) = lenG(p), too. Furthermore,
v is the only vertex that is contained in pi but possibly not in p′i , so
that p∩Vi+1 ⊆ pi+1 follows from p∩Vi ⊆ pi . Altogether, we see that pi+1

is in fact the desired path from s to t in G(i + 1). �
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Let us now try to motivate the construction of the digraphs Ḡ∧
α and Ḡ∨

α of Geisber-
ger et al. mentioned at the very beginning of this paragraph. Consider the problem
of computing the distance distG(s , t) between two vertices s and t . We have just
shown that contraction does not alter the distances between all the remaining ver-
tices and it therefore suggests itself that in order to compute distG(s , t) it suffices to
consider the possibly smaller graphG(k), where k = min{α(s), α(t)}. Moreover, one
might switch to an even smaller graph G(l) once one has taken account of all the
paths (s = x1, . . . , xr ) and (xr , . . . , x1 = t) with k ≤ α(x1), . . . , α(xr ) ≤ l . Intuit-
ively, this distance-query should outperform Dijkstra’s algorithm, for one only has
to deal with successively smaller and smaller graphs G(l). However, storing all these
graphsG(l) is a tremendous overhead and one therefore rather works with something
like the union of allG(l) and ensures this process of “going upwards” by other means.
More precisely, one stores two digraphs Ḡα = (Ḡ∧

α , Ḡ
∨
α ), where Ḡ∧

α = (V ,A∧
α ) con-

tains all arcs occurring in one of the G(l) whose target vertex lies above its source
vertex and Ḡ∨

α = (V ,A∨
α ) contains all arcs whose target vertex lies below its source

vertex. Formally, A∧
α and A∨

α are given by

A∧
α =

{
uv ∈

n⋃
i=1

Ai

∣∣∣∣ α(u) < α(v)
}

A∨
α =

{
uv ∈

n⋃
i=1

Ai

∣∣∣∣ α(u) > α(v)
} (2.1)

The length of an arc uv in A∧
α or A∨

α is given by the minimum over all lenG(i)(uv),
where uv ∈ Ai . To not further complicate our notation, we denote this length
by lenαG(uv) instead of lenḠ∧

α
(uv) or lenḠ∨

α
(uv). Likewise, the length of a shortest

path fromu tov in one of the graphs Ḡ∧
α and Ḡ∨

α is denoted by dist∧G (u,v) and dist∨G (u,v),
respectively. We call the pair Ḡα = (Ḡ∧

α , Ḡ
∨
α ) the contraction hierarchy of G. In Fig-

ure 2.4 one may see the contraction hierarchy for our example from Figure 2.1 and
Figure 2.2. Note that since all arcs in Ḡ∧

α point upwards and all arcs in Ḡ∨
α point

downwards, it follows that Dijkstra’s algorithm visits only vertices in successively
higher levels of our chain G(1), . . . ,G(n) of digraphs if it is given Ḡ∧

α or Ḡ∨
α with

reversed arcs as input.
Contraction hierarchies may easily be computed from a given weighted digraph G

and an order α on its vertices. For this purpose, one simply contracts all the vertices
of G and picks up all the arcs of Ḡ∧

α and Ḡ∨
α during the course of this computation.

An implementation of this approach in pseudo code may be seen in Algorithm 2.2.
This algorithm essentially is the one given in [GSSD08] and [Gei07], so that we have
just recovered the definition of contraction hierarchies due to Geisberger et al. We
are currently not concerned with the running time of Algorithm 2.2, but will return
to it in Chapter 2.4, where there will be some results at our disposal that facilitate
substantial simplifications of Algorithm 2.2.
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(a) The upwards-directed digraph Ḡ∧
α .
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(b) The downwards-directed digraph Ḡ∨
α .

Figure 2.4: The contraction hierarchy Ḡα = (Ḡ∧
α , Ḡ

∨
α ) associated with the digraph G shown

in Figure 2.1a and the order α on its vertices indicated by the values α(v) drawn inside the
respective nodes.

The reader should be aware that our considerations of № 2.1 do not apply to
neither Ḡ∧

α nor Ḡ∨
α . Even though shortest paths in G correspond to shortest paths

in each of the G(i) and vice versa, separating the arcs pointing upwards from those
pointing downwards does not preserve this nice property. This means, that one does
not obtain a shortest path in G from a shortest path in Ḡ∧

α or Ḡ∨
α by simply unfold-

ing shortcuts as done in the proof of № 2.1. Moreover, the shortest paths pi ⊆ G(i)
that we constructed in № 2.1 for any shortest path p in G may contain both arcs
pointing upwards and arcs pointing downwards, so that they are generally neither
paths in Ḡ∧

α nor in Ḡ∨
α . These phenomena also occur in the contraction hierarchy

shown in Figure 2.4a, where the path (1, 2, 4) is a shortest path of length 5 in Ḡ∧
α

but distG(1, 4) = 2 as may be seen in Figure 2.1a. Similarly, (3, 1, 5, 4) is a shortest
path of length 3 in G but neither Ḡ∧

α nor Ḡ∨
α contains a path from 3 to 4.

2.2 Formal Approach to Contraction Hierarchies

Before we explore the relation between shortest paths inG and shortest paths in Ḡ∧
α

and Ḡ∨
α any further, we would like to give another characterisation of contraction

hierarchies. We are particularly interested in a kind of “global” description of the arcs
of Ḡα , for this would greatly simplify some arguments about contraction hierarchies.
We feel obliged to point out that an earlier but far less sophisticated account of what
follows below already appeared in previous work of the author [Col09] and Bauer
et al. [BCKKW10]. All arguments concerning the validity of our model as well as the
extension to directed graphs are novel results, though.
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Algorithm 2.2: Computation of a contraction hierarchy Ḡα = (Ḡ∧
α , Ḡ

∨
α )

Input: Weighted digraph G = (V ,A), an order α on V
Output: Contraction hierarchy Ḡα = (Ḡ∧

α , Ḡ
∨
α )

1 A∧
α ← ∅

2 A∨
α ← ∅

3 for i = 1 to n do
/* V = Vi and A = Ai */

4 A∧
α ← A∧

α ∪
{
uv ∈ A | α(u) < α(v)

}
5 A∨

α ← A∨
α ∪

{
uv ∈ A | α(u) > α(v)

}
6 v ← α−1(i)
7 Contract v /* See Algorithm 2.1 */

8 return Ḡ∧
α = (V ,A∧

α ) and Ḡ
∨
α = (V ,A∨

α )

Recall that during contraction of v a shortcut st is inserted if and only if (s ,v , t)
is a unique shortest path. If one iterates contraction, it may happen that the arcs sv
or vt are shortcuts themselves, so that the shortest path (s ,v , t) as it occurs during
contraction of v actually corresponds to a shortest path from s to t in G consisting
of more than two arcs. Furthermore, it may be the case that there were initially
many shortest paths between s and t but that all vertices on these shortest paths –
except s ,v and t – were already contracted. In order to find a criterion for the presence
of a shortcut st in Ḡα that only depends on G and α , we therefore have to drop the
requirements that the shortest path causing the insertion of st is unique or consists of
only two arcs. Nevertheless, for (s ,v , t) to be a unique shortest path upon contraction
of v , it is mandatory that there exists no shortest s-t-path inG containing a vertexw
strictly above v and distinct from s and t ; For when v gets contracted, this vertexw
would not have been contracted yet and would still lie on a shortest s-t-path distinct
from (s ,v , t). However, any such vertexw will eventually be contracted, so that its
contraction may also cause the insertion of st – provided that s or t does not get
contracted beforehand. Summarising the above discussion, we see that a shortcut st
is present in Ḡα only if all vertices v distinct from s and t and additionally lying
on a shortest s-t-path are contracted before s and t . As the order of contraction is
given by our bijective map α on V , this is equivalent to saying that the only vertices
that are above s or above t and that additionally lie on a shortest s-t-path are s and t
themselves. We claim that this latter condition for the presence of a shortcut st in the
contraction hierarchy is already sufficient.

Before turning to the actual proof, let us introduce a little notation. We denote
by Pα (s , t) the set of vertices that are above s or above t and that lie on a shortest
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path from s to t in G. One may formally define Pα (s , t) by

Pα (s , t) =
{
v ∈ V

∣∣∣ α(v) ≥ min{α(s), α(t)} and

distG(s ,v) + distG(v , t) = distG(s , t) < ∞
}
.

(2.2)

The reader should note that our claim that Ḡα contains a shortcut st if and only if the
sole vertices above s or above t that lie on a shortest s-t-path are s and t themselves,
is equivalent to the claim that Ḡα contains a shortcut st if and only if Pα (s , t) = {s , t }.
With these abbreviations at hand, we are now able to succinctly state our criterion
for the presence of a shortcut in Ḡα .

Theorem 1 Global description of the contraction hierarchy Ḡα = (Ḡ∧
α , Ḡ

∨
α )

Let G = (V ,A) be a weighted digraph and let α : V → [n] be an order on its vertices.
The arcs A∧

α and A∨
α of Ḡ∧

α and Ḡ∨
α are then precisely the sets

A∧
α =

{
uv ∈ A

∣∣∣ α(u) < α(v)
}
∪

{
uv

∣∣∣ α(u) < α(v) and Pα (u ,v) = {u ,v}
}

A∨
α =

{
uv ∈ A

∣∣∣ α(u) > α(v)
}
∪

{
uv

∣∣∣ α(u) > α(v) and Pα (u ,v) = {u ,v}
}
.

Furthermore, the length of a shortcut uv in Ḡ∧
α or Ḡ∨

α is given by distG(u ,v). ‡

Proof: Recall from (2.1) that A∧
α ∪A

∨
α is a partition of all the arcs

⋃
Ai occurring in

one of the intermediate contractions G(i) = (Vi ,Ai). Since A = A1, it follows from
the definition of A∧

α and A∨
α that{

uv ∈ A
∣∣∣ α(u) < α(v)

}
⊆ A∧

α and
{
uv ∈ A

∣∣∣ α(u) > α(v)
}
⊆ A∨

α .

Furthermore, any arc st ∈ A∧
α r A or st ∈ A∨

α r A is a shortcut. It therefore suffices
to show that each shortcut st satisfies Pα (s , t) = {s , t } and that there is an arc st
contained in one of the Ai for any two vertices s and t with Pα (s , t) = {s , t }.

To this end, let us first spell out our discussion that lead us to this very claim.
Let s and t be two vertices with distG(s , t) < ∞, let k = min{α(s), α(t)} and as-
sume Pα (s , t) , {s , t }. We may then choose some vertex v ∈ Pα (s , t) r {s , t }. By the
definition of Pα (s , t), there exists a shortest path p from s to t in G that contains v .
Since, furthermore, α(v) > k by our choice of v , it follows from № 2.1 that there is
for each i ∈ {1, . . . , k } some shortest path pi from s to t in G(i) that also contains v .
Observe that α(w) < k for any vertexw that is contracted before both s and t . Any
shortest path (s ,w , t) encountered during contraction of such a vertex w therefore
cannot be unique, for there are still the shortest s-t-paths pi containing v and hence
distinct from (s ,w , t). Consequently, if Pα (s , t) , {s , t }, then st cannot be a shortcut
and any shortcut st therefore satisfies Pα (s , t) = {s , t }.

Now consider any two vertices s and t , such that Pα (s , t) = {s , t }. As above, we
letk = min{α(u), α(v)}. We further choose a shortest pathp from s to t inG . By№ 2.1
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there exists a shortest s-t-path pk in G(k) of length lenG(p). We claim that pk in fact
consists of a single arc only, so that pk is the sought shortcut. Assume the contrary, i.e.
that pk contains a vertex v distinct from both s and t . Then v lies strictly above s or
strictly above t since v is a vertex ofG(k). Furthermore, v lies on a shortest s-t-path
inG(k) and by № 2.1 there is then a shortest path inG that also containsv . Altogether,
this implies v ∈ Pα (s , t), which contradicts our assumption Pα (s , t) = {s , t }. Thus,
pk actually consists only of the arc st whose existence we claimed. Moreover, № 2.1
implies that the length of st in Gα is equal to distG(s , t) as pk = (s , t) has the same
length as the shortest path p from s to t in G. �

This theorem provides a concise description of the arcs of a contraction hierarchy Ḡα .
Moreover, not only does it shed some light on the structure of contraction hierarchies,
but also suggests an alternative definition. Consider any arc st of G that is no unique
shortest path. Removing it from G does not change any distances, for there still
remains a shortest path from s to t . On the other hand, if st is a unique shortest path,
then Pα (s , t) = {s , t } anyway. Therefore, it thus turns out that one might equally well
work with the following alternative definition of contraction hierarchies.

For a given weighted graph G = (V ,A) and an order α on its vertices, we thus
define Gα = (G∧

α ,G
∨
α ), where G∧

α = (V ,A∧
α ) and G

∨
α = (V ,A∨

α ), by

A∧
α =

{
uv

∣∣∣ α(u) < α(v) and Pα (u ,v) = {u ,v}
}

A∨
α =

{
uv

∣∣∣ α(u) > α(v) and Pα (u ,v) = {u ,v}
}
.

(2.3)

Inspired by Theorem 1 we further define arc lengths lenαG(uv) on A∧
α and A∨

α by

lenαG(uv) = distG(u ,v) . (2.4)

As for Ḡα , we denote the distance fromu tov inG∧
α andG∨

α by dist∧G (u,v) and dist∨G (u,v),
respectively. We call this pair Gα = (G∧

α ,G
∨
α ) of directed, weighted graphs a contrac-

tion hierarchy ofG , too. The reader awaiting some genuine examples of this new kind
of contraction hierarchies will be put off until Figure 2.8, where we consider a digraph
and one of its contraction hierarchies Gα that actually deviates from Ḡα .

For the rest of this work, we almost exclusively work with Gα instead of Ḡα . Nev-
ertheless, we gain much of our intuition of contraction hierarchies from the iterative
construction presented in Chapter 2.1. In the next few lines, we therefore show how
to transfer some of the notions which arose during our inspection of the graphs G(i)
and Ḡα to the contraction hierarchies Gα . Recall that an arc uw of G(i) or Ḡα is
called a shortcut if it was newly inserted or its length was overwritten during con-
traction of a vertex v . Observe that the length of uw is overwritten if and only
if lenG(uw) > distG(u ,w) and if all the shortest paths from u tow lie below u and v ,
i.e. if Pα (u ,w) = {u ,w }. Inspired by these observations, we call shortcuts those
arcs uw of Gα that are either not contained in G or satisfy lenG(uw) > distG(u ,w).
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Given any such shortcut uw ∈ A∧
α or uw ∈ A∨

α , we are even able to recover the vertex
whose contraction would have caused the insertion of uw in Ḡα . For this purpose,
consider the set

S =
{
v ∈ V r {u ,w } : distG(u ,v) + distG(v ,w) = distG(u ,w)

}
. (2.5)

Note that S is nonempty, for otherwise uw would be an arc ofG of length distG(u ,v).
Further note that α(v) < α(u) and α(v) < α(w) for all v ∈ S , because any v ∈ S
with α(v) ≥ α(u) or α(v) ≥ α(w) would be an element of Pα (u ,w) = {u ,w }. We
call the vertex v ∈ S with maximal α(v) the supporting vertex of uw . It is implicit
in the proof of Theorem 1 that contraction of this supporting vertex v leads to the
insertion of uw in Ḡα . Spelled out more precisely, the argument runs as follows: By
the choice of v , there is a shortest path p from u tow that contains v . According to
№ 2.1, this path induces shortest paths pi from u tow in G(i) for each 1 ≤ i ≤ α(v).
Any shortest path (u , x ,w) with α(x) < α(v) is therefore not unique and contraction
of such a vertex x cannot lead to the insertion of the arc uw . However, uw is an arc
of Ḡα byTheorem 1 and asv gets contracted last among all vertices lying on a shortest
path from u tow , it follows that contraction of v causes the insertion of uw .

It already follows from the above argument that at least Ḡα contains arcsuv andvw
connecting the supporting vertex v with the endpoints of the shortcut uw . This fact
may also be deduced from the mere definition ofGα and that of the supporting vertex,
though. We include this argument, for we consider the development of contraction
hierarchies from the definition ofGα to be interesting on its own. Our argument will
make use of the following elementary observation.

2.2 Remark: LetG be a weighted digraph and let H be the digraph obtained fromG
by reversing all the arcs of G. Then G∧

α = H∨
α and G∨

α = H∧
α . †

Proof: Write PGα (−, −) and PH
α (−, −) to distinguish the sets Pα (−, −) in G from

those in H . Observe that distG(s , t) = distH (s , t) and hence PGα (s , t) = PH
α (t , s). Our

claim now follows from the definition (2.3) of Gα and Hα . �

The above remark allows us to prove some statement aboutGα by only takingG∧
α into

consideration, for the analogous statement forG∨
α follows from № 2.2 by reversing all

the arcs. This strategy is exemplified in the proof of the subsequent lemma and will
be exploited a many more times in what follows further below.

2.3 Lemma: Let uw be a shortcut in Gα and let v be its supporting vertex. Then Gα
also contains arcs uv ∈ A∨

α and vw ∈ A∧
α . †

Proof: It suffices to prove the existence of uv ∈ A∨
α , for the existence of vw ∈ A∧

α
then follows from № 2.2. Let us assume for the sake of contradiction that uv < A∨

α .
The construction of the supporting vertex v of uw implies distG(u ,v) < ∞ and
hence Pα (u ,v) ⊇ {u ,v}. As uv < A∨

α , there is then a vertex x ∈ Pα (u ,v) such
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thatx < {u ,v}. Sincex ∈ Pα (u ,v)r{u ,v} andα(u) > α(v), it follows thatα(x) > α(v)
and

distG(u ,v) = distG(u , x) + distG(x ,v) . (2.6)

Moreover, it follows from α(x) > α(v) and the definition of the supporting vertex
that v lies on a shortest path from u tow but that no such shortest path contains the
vertex x , i.e. that

distG(u ,w) = distG(u ,v) + distG(v ,w) (2.7)

and

distG(u ,w) < distG(u , x) + distG(x ,w) . (2.8)

Using these three relations and the triangle inequality, one then computes

distG(u ,w) = distG(u ,v) + distG(v ,w) by (2.7)

= distG(u , x) + distG(x ,v) + distG(v ,w) by (2.6)

≥ distG(u , x) + distG(x ,w) by the triangle inequality

> distG(u ,w) . by (2.8)

This is obviously contradictory. �

We coined the term supporting arcs for the arcs uv and vw whose existence is guar-
anteed by the preceding lemma. We also write sup(uw) = (uv ,vw) to express
that uv and vw are the supporting arcs of a given shortcut uw . Observe that if uv is a
supporting arc of uw , then α(v) < α(w) by the definition of the supporting vertex v
of uw . So, even if uv is again a shortcut with supporting arcs, this chain of nested
supporting shortcuts cannot descend indefinitely, for there are only finitely many
vertices in G. Technically speaking, this allows us to do induction on the depth of
nested shortcuts below a given arc uw . In order to make this precise, we define the
shortcut depth scd(uw) of an arc uw of Gα by

scd(uw) =

scd(uv) + scd(vw) uw is a shortcut and sup(uw) = (uv ,vw)

1 otherwise.
(2.9)

Note that scd(uw) ≥ 1 for all arcs uw of Gα . Further note that the shortcut depths of
the supporting arcs uv and vw of any shortcut uw are strictly less than the shortcut
depth of uw , so that we may indeed do induction on the shortcut depth scd.

Given only the definition ofGα , we just recovered the vertex v and the associated
shortest path (u ,v ,w) whose contraction would lead to the insertion of a given
shortcut uw of Ḡα . The length of uw in Ḡα is then given by the sum of the lengths of
the supporting arcs uv and vw . This is also true in Gα , where it follows immediately
from our definition (2.4) of the arc lengths of Gα .
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2.4 Remark: Let uw be a shortcut in Gα and let sup(uw) = (uv ,vw). The length
of uw is then given by lenαG(uw) = lenαG(uv) + lenαG(vw). †

Proof: Let uw ∈ A∧
α be a shortcut and let sup(uw) = (uv ,vw). Note that

lenαG(uw) = distG(u ,w) , lenαG(uv) = distG(u ,v) , lenαG(vw) = distG(v ,w)

by our definition (2.4) of the arc lengths in Gα . Further recall from our construc-
tion (2.5) of the supporting vertex v that distG(u ,w) = distG(u ,v) + distG(v ,w),
which completes the proof. �

In view of № 2.3 and № 2.4, Gα still possesses the most essential properties of Ḡα
that derived from its construction by iterated contraction of vertices. We will dis-
cuss a further generalisation of contraction hierarchies based upon these similarities
between Ḡα and Gα in Chapter 2.4, but are content with Gα for the moment.

2.3 Contraction Hierarchies and Shortest Paths

We saw above that even though shortest paths in the graphs G(i) correspond to
shortest path in G and vice versa, there is no such relation between shortest paths
in Gα and those in G. In this paragraph we show how one can nonetheless utilise
the contraction hierarchy Gα to compute distances and shortest paths in G. These
considerations naturally lead to the notions of search space and search space size that
play a predominant role in the remainder of this work.

Recall that the contraction hierarchy Ḡα is nothing but the union of all the intermedi-
ate contractionsG(i), where the arcs pointing upwards are separated from those point-
ing downwards. Any shortest path from some source vertex s to some target vertex t
inG induces a shortest s-t-path p of equal length inG(k), where k = min{α(s), α(t)}.
One may decompose p into subpaths p1, . . . ,pr , such that each of the pi consists
either of arcs pointing upwards or of arcs pointing downwards only. With this decom-
position of p, one finds that each pi is a path in Ḡ∧

α or Ḡ∨
α . In order to determine the

distance distG(s , t), it thus suffices to get hold of this decomposition p = p1 · · · · · pr
of p. It even suffices to consider decompositions p = p1 · p2 of p, so that one may
actually compute them with a simple, bidirectional variant of Dijkstra’s algorithm.
The deployment of this very algorithm to compute distG(s , t) and a proof of its cor-
rectness are the main goals of this paragraph, while the rest of this work is devoted
to the study of its performance.

We begin with a remark about the sets Pα (s , t) used in the definition ofGα . Essen-
tially, these Pα (s , t) encode shortest paths from s to t and hence share some essential
properties with them. The two single most important common features are the fact
that any subpath q of a shortest path p is again a shortest path and that one obtains
further shortest paths by replacing q in p with another shortest path q′ having the
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s t

u

v w

qs

qu ru

rtqs pt

Figure 2.5: Sketch of all the shortest paths p = ps · pt , q = qs · qu and r = ru · rt occurring in
the proof of № 2.5.

same source and target as q. The following remark simply spells out these properties
for the sets Pα (s , t).

2.5 Remark: Let s , t ∈ V be two vertices and let u ∈ Pα (s , t).

(a) Pα (s ,u) ⊆ Pα (s , t) and Pα (u , t) ⊆ Pα (s , t).

(b) If u , t , then Pα (s ,u) ( Pα (s , t) and if u , s , then Pα (u , t) ( Pα (s , t).

(c) If w ∈ Pα (u , t), then u ∈ Pα (s ,w). Likewise, u ∈ Pα (w , t) for all w ∈ Pα (s ,u).
†

Proof: Note that each claim consists of two completely symmetric statements. Hence,
by№ 2.2, it suffices to prove just one of them. The various paths and vertices occurring
in our proof are also sketched in Figure 2.5.

(a) Consider any vertex u ∈ Pα (s , t), i.e. some vertex u that lies on a shortest path p
from s to t and that additionally satisfies α(u) ≥ min{α(s), α(t)}. Decompose
the path p as p = ps · pt , where ps is a shortest path from s to u and pt is a
shortest path fromu to t . The length of any shortest path q from s tou coincides
with the length of ps , as both are shortest paths. Any such shortest path q may
therefore be prolonged by pt in order to obtain another shortest path q · pt
from s to t . It follows that each vertex v that lies on a shortest path from s to u,
also lies on a shortest path from s to t . Moreover, α(v) ≥ min{α(s), α(u)}
and α(u) ≥ min{α(s), α(t)} imply α(v) ≥ min{α(s), α(t)}. Altogether, we
have just shown Pα (s ,u) ⊆ Pα (s , t).

(b) Let us now assume t ∈ Pα (s ,u). As t ∈ Pα (s ,u), there exists a decomposi-
tionq = qs ·qu of any shortest pathq from s tou into shortest pathsqs from s to t
and qt from t to u, respectively. Since u lies on a shortest s-t-path by assump-
tion, u = t is immediate. Consequently, if u , t , then t < Pα (s ,u) and
hence Pα (s ,u) ( Pα (s , t).

(c) Finally, let w ∈ Pα (u , t). There is a shortest path r = ru · rt from u to t , such
that ru is a shortest path from u to v and rt is a shortest path from v to t .
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Let q be a shortest path from s to u. Then q · r is a shortest path from s to t
since distG(s , t) = distG(s ,u) + distG(u , t) by our choice of u ∈ Pα (s , t). This
implies in particular, that the subpath q · ru of q · r is a shortest path, too.
Furthermore, as α(w) ≥ min{α(u), α(t)} and α(u) ≥ min{α(s), α(t)}, we
have α(w) ≥ min{α(s), α(u)} and thereforew ∈ Pα (s ,u). �

With these technical prerequisites at hand, we are now able to prove the main result
concerning shortest paths inG andGα . The following theorem is due to Geisberger
et al. and is arguably the single most important theoretical result in [Gei07] and
[GSSD08].

Theorem 2 Relation between shortest paths in G and shortest paths in Gα
Let G = (V ,A) be a weighted digraph, let α be an order on its vertices and let s and t
be arbitrary vertices. Then

distG(s , t) = min
u∈V

dist∧G(s ,u) + dist∨G(u , t) .

If additionally distG(s , t) < ∞, then the minimum on the right hand side of above
equation is always assumed by some u ∈ Pα (s , t) with α(u) > min{α(s), α(t)}, such
that dist∧G(s ,u) = distG(s ,u) and such that dist∨G(u , t) = distG(u , t). ‡

Before delving into the main part of the proof ofTheorem 2, we would like to show that
at least distG(s , t) does not exceed minu∈V dist∧G(s ,u) + dist∨G(u , t). This inequality
readily follows from our definition (2.4) of the arc lengths in Gα and will be used
afterwards to prove that both values do indeed coincide.

2.6 Lemma: Let G = (V ,A) be a weighted digraph and let α be an order on its
vertices. Then

distG(s , t) ≤ min
u∈V

dist∧G(s ,u) + dist∨G(u , t)

for all s , t ∈ V . †

Proof: Let p = (s = x1, . . . , xk = u) and q = (u = xk , . . . , x` = t) be paths in G∧
α

and G∨
α , respectively. Recall from the definition (2.4) of the arc lengths lenαG(xixi+1)

in Gα that they are given by distG(xi , xi+1), so that the triangle inequality implies

len(p) + len(q) =
k−1∑
i=1

distG(xi , xi+1) +
`−1∑
i=k

distG(xi , xi+1) ≥ distG(s , t) .

As p and q were chosen arbitrarily, our claim follows. �

Observe that № 2.6 finishes the proof of Theorem 2 in the case distG(s , t) = ∞, so
that we may concentrate on the case distG(s , t) < ∞ in what follows below. Note
further that № 2.6 implies distG(s , t) ≤ dist∧G(s , t) for all s and t . We may therefore
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(a) The vertex u ∈ Pα (s , t) lies above s .

s

t

u

v

w

(b) The vertex u ∈ Pα (s , t) lies below s .

Figure 2.6: Visualisation of the strategy used in the main part of the proof of Theorem 2.

infer equality of distG(s , t) and dist∧G(s , t) from only distG(s , t) ≥ dist∧G(s , t). This
observation and the analogous statement for dist∨G(s , t) will be used without further
mention in the following proof.

Proof of Theorem 2: We want to show that there exists some vertex u ∈ Pα (s , t),
such that

distG(s ,u) = dist∧G(s ,u) and distG(u , t) = dist∨G(u , t) , (2.10)

because anyu ∈ Pα (s , t) satisfies distG(s , t) = distG(s ,u)+distG(u , t). Moreover, we
require that this vertex u may be chosen in such a way that α(u) > min{α(s), α(t)}.

The general strategy of the proof is as follows: We do induction on the cardinality
of the set Pα (s , t), where the base clause Pα (s , t) = {s , t } turns out to be rather trivial
since in this case st ∈ A∧

α or st ∈ A∨
α . In the induction step, we construct the desired

vertex in the following manner. Choose u ∈ Pα (s , t) r {s , t } and apply the induction
hypothesis to s and u. This yields a vertex v together with paths from s to v in G∧

α
and from v to u in G∨

α . We may then apply our induction hypothesis to t and v and
obtain a vertex w and paths from v to w in G∧

α and from w to t in G∨
α . Verifying

our claimed property (2.10) for this vertexw essentially amounts to assembling the
various paths obtained during its construction. The relative positioning of these
vertices s , t ,u ,v and w and the associated paths may be seen in Figure 2.6a. There
is still one technical difficulty stemming from the fact that the vertex u does not
necessarily lie strictly above s . As indicated in Figure 2.6b, this obstacle, too, may be
overcome by simply applying the induction hypothesis to slightly different pairs of
vertices. Let us now turn these suggestive sketches into rigorous proof:

Pα (s , t) = {s , t }: By the definition of Gα , it is either st ∈ A∧
α or st ∈ A∨

α . If st ∈ A
∧
α ,

then we may choose u = t since

distG(s , t) = lenαG(st) ≥ dist∧G(s , t) .
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and hence distG(s , t) = dist∧G(s , t). Similarly, if st ∈ A∨
α , then u = s possesses

all the claimed properties.

Pα (s , t) ) {s , t }: Choose u ∈ Pα (s , t) such that u < {s , t }. As already indicated above,
we need to distinguish the following two cases.

α(u) > α(s): Then Pα (s ,u) is a proper subset of Pα (s , t) by № 2.5, and our
induction hypothesis implies that there is some vertex v ∈ Pα (s ,u) such
that

dist∧G(s ,v) = distG(s ,v) , (2.11)

dist∨G(v ,u) = distG(v ,u)

and such that α(v) > min{α(s), α(u)}. Our assumption α(u) > α(s)
gives min{α(s), α(u)} = α(s) and hence v , s . By № 2.5, Pα (v , t) is
therefore a proper subset of Pα (s , t) and we may once again apply our
induction hypothesis to obtain a vertexw ∈ Pα (v , t) such that

dist∧G(v ,w) = distG(v ,w) , (2.12)

dist∨G(w , t) = distG(w , t) (2.13)

and such that α(w) > min{α(v), α(t)}. Using the earlier established
inequality α(v) > α(s), we obtain α(w) > min{α(s), α(t)}. Moreover,
according to № 2.5, v ∈ Pα (s ,u) ⊆ Pα (s , t) and w ∈ Pα (v , t) together
imply v ∈ Pα (s ,w), hence distG(s ,v) + distG(v ,w) = distG(s ,w). Em-
ploying (2.11) and (2.12), we compute

dist∧G(s ,w) ≤ dist∧G(s ,v) + dist∧G(v ,w)

= distG(s ,v) + distG(v ,w)

= distG(s ,w)

This finishes this case as, by (2.13), dist∨G(w , t) = distG(w , t) is also satis-
fied.

α(u) < α(s): Note that in this case min{α(s), α(t)} = α(t) since our choice
of u ∈ Pα (s , t) implies α(u) ≥ min{α(s), α(t)}. Furthermore, u , s by
assumption and Pα (u , t) is thus a proper subset of Pα (s , t) by № 2.5. The
induction hypothesis therefore implies the existence of some v ∈ Pα (u , t),
such that

dist∧G(u ,v) = distG(u ,v) ,

dist∨G(v , t) = distG(v , t) (2.14)

and such that α(v) > min{α(u), α(t)}. Recall that α(u) ≥ α(t), which
implies α(v) > α(t).



2.3 Contraction Hierarchies and Shortest Paths 31

Note that we would be finished if v = s since (2.14) would then im-
ply dist∨G(s , t) = distG(s , t) and α(s) > α(t) is satisfied anyway. We
may therefore assume that v , s . Since v ∈ Pα (u , t) ⊆ Pα (s , t), this im-
plies in particular, that Pα (s ,v) is a proper subset of Pα (s , t). We may thus
apply our induction hypothesis once again to obtain a vertexw ∈ Pα (s ,v),
such that

dist∧G(s ,w) = distG(s ,w) , (2.15)

dist∨G(w ,v) = distG(w ,v) (2.16)

and such that α(w) > min{α(s), α(v)}. We already saw that α(v) > α(t)
and α(s) > α(t), which together give α(w) > min{α(s), α(t)}. Further-
more,w ∈ Pα (s ,v) impliesv ∈ Pα (w , t) by№ 2.5. This means in particular
that distG(w ,v) + distG(v , t) = distG(w , t) and hence

dist∨G(w , t) ≤ dist∨G(w ,v) + dist∨G(v , t)

= distG(w ,v) + distG(v , t) by (2.16) and (2.14)

= distG(w , t) .

This eventually finishes this case because dist∧G(s ,w) = distG(s ,w) is
satisfied by (2.15). �

By Theorem 2 one may compute distances distG(s , t) inG by computing the appro-
priate distances dist∧G(s ,u) and dist∨G(u , t) in a contraction hierarchyGα ofG. With
a little care, it is even possible to extract a shortest path between s and t in G from
this computation in Gα in time proportional to the number of arcs on this shortest
path. We do not consider this problem any further but point the interested reader
to [Gei07], where all the details are carried out. Let us focus on the computation of
distances in Gα instead.

Algorithm 2.3: Naive shortest path query in contraction hierarchies

Data: Contraction hierarchyGα = (G∧
α ,G

∨
α ) of some weighted graphG = (V , E)

Input: Vertices s , t ∈ V
Output: Distance distG(s , t)
/* Run one instance of Dijkstra’s algorithm with source s in G∧

α and one instance
with source t inG∨

α with all arcs reversed. Denote the tentative distances by ds(−)
and dt(−). */

1 Run Dijkstra’s algorithm with source s in G∧
α

2 Run Dijkstra’s algorithm with source t in G∨
α with reversed arcs

3 return minu∈V ds(u) + dt(u)
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(a) The graph G∧
α and the state of the

query starting from s . Observe that
minx∈Qs ds(x) = 2.
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(b) The graph G∨
α and the state of the

query starting from t . Observe that
minx∈Q t dt (x) = 2.

Figure 2.7: An example of a contraction hierarchy Gα , where the halting criterion of bidirec-
tional Dijkstra’s algorithm does not work. The correct distance distG(s , t) is not known,
even though minu∈V ds(u) + dt(u) = ds(1) + dt(1) = 4 and Ms + Mt = 4. Settled ver-
tices are drawn in grey, while the relaxed arcs and the discovered vertices are drawn on a
background shaded in lighter grey.

Consider Algorithm 2.3. By the correctness of Dijsktra’s algorithm, it follows
that ds(u) = dist∧G(s ,u) and dt(u) = dist∨G(u , t) when the algorithm terminates in
line 3. According to Theorem 2, Algorithm 2.3 is thus correct, i.e. it returns distG(s , t).
Note that Algorithm 2.3 closely resembles the bidirectional query Algorithm 1.2 in the
sense that there are two concurrent instances of Dijkstra’s algorithm – one starting
from s and one starting from t in the reverse direction. As with bidirectional Dijkstra’s
algorithm in general graphs, there is a point in time at which these two concurrent
queries meet and the value of distG(s , t) is already known but Algorithm 2.3 continues
nonetheless. Recall from № 1.4 that bidirectional Dijkstra’s algorithm may terminate
as soon as

min
u∈V

ds(u) + dt(u) ≤ Ms +Mt , (2.17)

where ds(−) and dt(−) denote the respective tentative distances and Ms and Mt
denote the minimum tentative distance among all vertices contained in the queuesQs
and Qt of the queries starting from s and from t , respectively. Similarly, we may
improve on Algorithm 2.3 by introducing an appropriate criterion for when to abort
the shortest path computations in G∧

α and G∨
α . However, it is not possible to employ

the criterion (2.17) in Algorithm 2.3 without further modification. This stems from the
fact that in plain graphs all the arcs and vertices on a shortest s-t-path are reachable
from both s and t , while in contraction hierarchies there may be arcs or vertices
reachable only from s or only from t . This problem may also be seen in Figure 2.7,
where the query inG∨

α did not relax the arc 2→ t , which would have been taken into
consideration in a bidirectional query on a plain graph. As a consequence, (2.17) is
satisfied but distG(s , t) is still not known in this example. One solution to this problem
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is not to terminate until

min
u∈V

ds(u) + dt(u) ≤ min{Ms ,Mt } . (2.18)

This criterion is actually the one that we make use of in Algorithm 2.4, our improved
variant of Algorithm 2.3. Even though this criterion might seem rather weak on first
sight, it appears to be difficult to devise a stronger but still correct criterion. To see
this, consider our example from Figure 2.7 again. Therein, as well as in many other
examples, the distance of s and t in G is completely determined by only the distance
of s and t inG∧

α . That is, the algorithm must not abort while Ms is still greater than
the currently smallest tentative distance ds(u) + dt(u) from s to u.

Algorithm 2.4: Improved shortest path query in contraction hierarchies

Data: Contraction hierarchy Gα = (G∧
α ,G

∨
α )

Input: Source vertex s ∈ V , target vertex t ∈ V
Output: Distance distG(s , t)

/* Run one instance of Dijkstra’s algorithm with source s in G∧
α and one instance

with source t in G∨
α with all arcs reversed. Denote the queues by Qs and Qt and

the tentative distances by ds(−) and dt(−), respectively. Further
letMs = minx∈Qs ds(x) andMt = minx∈Q t dt(x). */

1 while minu∈V ds(u) + dt(u) > min{Ms ,Mt } do
2 Choose one instance x of Dijkstra’s algorithm, such thatQx , ∅

3 Perform one single iteration in the chosen instance

4 return minu∈D ds(u) + dt(u)

2.7 Proposition: Bidirectional Dijkstra’s algorithm on contraction hierarchies with
halting criterion (2.18) is correct. †

Proof: We make use of the notation in Algorithm 2.4. Suppose that there is some
vertex u ∈ V , such that

ds(u) + dt(u) ≤ min{Ms ,Mt } . (2.19)

Recall from № 1.1, that ds(u) ≥ dist∧G(s ,u) and dt(u) ≥ dist∨G(u , t). Employing these
inequalities in (2.19), one computes

Ms ≥ ds(u) + dt(u) ≥ dist∧G(s ,u) + dist∨G(u , t) ≥ distG(s , t) (2.20)

and Mt ≥ ds(u) + dt(u) ≥ dist∧G(s ,u) + dist∨G(u , t) ≥ distG(s , t) . (2.21)

Now consider some vertex v ∈ V such that distG(s , t) = dist∧G(s ,v) + dist∨G(v , t).
Note that there is at least one such vertex by Theorem 2. Our computations (2.20)
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and (2.21) from above show that Ms ≥ dist∧G(s ,v) and Mt ≥ dist∨G(v , t). As the min-
imum tentative distancesMs andMt among all the vertices in the respective queueQs
or Qt are both monotonically increasing, each vertex in one of the queues Qs or Qt
may from this point on only be updated with tentative distances strictly greater
than dist∧G(s ,v) or dist∨G(v , t). Since Dijkstra’s algorithm is still correct when con-
sidered on G∧

α or G∨
α only, it follows that ds(v) = dist∧G(s ,v) and dt(v) = dist∨G(v , t).

Hence
min
u∈V

ds(u) + dt(u) ≤ dist∧G(s ,v) + dist∨G(v , t) = distG(s , t) .

This finishes the proof, because minu∈V ds(u)+dt(u) ≥ distG(s , t) is always satisfied.�

The reader should note that the strategy with which an instance of Dijkstra’s algorithm
is chosen in line 2 of Algorithm 2.4 may have considerable impact on its performance.
As it was the case with bidirectional Dijkstra’s algorithm, there is a simple strategy
that guarantees a running time at most twice the optimum. Both the strategy and the
proof of its performance are precisely the same as in № 1.5.

Special halting criteria like the one in Algorithm 2.4 are an opportunity to increase
performance which one is rarely willing to neglect in practise. In theory, however,
these special halting criteria introduce major technical difficulties while simpler al-
gorithms are still amenable to concise and clear analysis. For this very reason, we
chose Algorithm 2.3 as starting point for our studies of contraction hierarchies. How-
ever, we are mainly concerned with upper bounds on the performance of Algorithm 2.3
and these upper bounds naturally hold for Algorithm 2.4, too. Moreover, there is exper-
imental evidence in [Gei07] that at least on road networks Algorithm 2.3 settles only
a small multiple of the number of vertices settled by Algorithm 2.4. For these reasons,
we end our detour to special halting criteria and focus exclusively on the simple query
Algorithm 2.3. As there are then no special halting criteria, the instance of Dijkstra’s
algorithm with source s eventually settles all the vertices u ∈ V with dist∧G(s ,u) < ∞.
Likewise, all the vertices u ∈ V with dist∨G(u , t) < ∞ are settled by the query starting
with t . The sets

S(s ,G∧
α ) =

{
u ∈ V

∣∣∣ dist∧G(s ,u) < ∞ }
and

R(t ,G∨
α ) =

{
u ∈ V

∣∣∣ dist∨G(u , t) < ∞ }
are thus precisely the sets of vertices settled during these two queries. More generally,
we define

S(v ,G) =
{
u ∈ V

∣∣∣ distG(v ,u) < ∞ }
R(v ,G) =

{
u ∈ V

∣∣∣ distG(u ,v) < ∞ } (2.22)

for any directed, acyclic graph G and any v ∈ V . We call S(v ,G) the search space
and R(v ,G) the reverse search space of v in G. The cardinalities of these sets S(v ,G)
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and R(v ,G) are the search space size and reverse search space size of v , respectively.
We denote these values by #S(v ,G) and #R(v ,G). An example of a contraction
hierarchy Gα together with specific search spaces S(s ,G∧

α ) and R(t ,G∨
α ) in Gα is

depicted in Figure 2.8.
Despite the fact that the runtime of Dijkstra’s algorithm depends not only on the

number of settled vertices but also on the number of relaxed arcs, the former value
is considered as a rough measure for the performance of a specific query algorithm
by Bauer et al. [BDDW09; BCKKW10; BBRW12]. We also comply with this model
but denote the actual running time of Algorithm 2.3 or Algorithm 2.4 by Tquery to
distinguish it from the search space size. Finding the contraction hierarchy Gα on
which Algorithm 2.3 is fastest in our chosen model is equivalent to finding an order α
that minimises

max
s ,t∈V

#S(s ,G∧
α ) + #R(t ,G∨

α ) .

Having chosen Algorithm 2.3 as starting point for our studies, we see that #S(s ,G∧
α )

and #R(t ,G∨
α ) are actually independent of each other, so that we might equally well

ask for an order α , such that

max
s∈V

#S(s ,G∧
α ) +max

t∈V
#R(t ,G∨

α ) (2.23)

is minimal. We additionally simplify the problem and only ask for an order α that
minimises the maximum search space size Smax(Gα ) given by

Smax(Gα ) = max
{
#S(v ,G∧

α ), #R(v ,G
∨
α )

∣∣∣ v ∈ V }
.

We justify this last simplification by the fact that Smax(Gα ) differs from (2.23) by at
most a factor of two. For an arbitrary digraph G, we also write Smax(G) and Rmax(G)
to denote the values maxv∈V #S(v ,G) and maxv∈V #R(v ,G), respectively. With this
notation, our above definition of Smax(Gα ) immediately implies that Smax(Gα ) is
equal to max{Smax(G

∧
α ),Rmax(G

∨
α )}. We further denote by Smax(G) the minimum

maximum search space size, that is the value minα Smax(Gα ).
We further define the unidirectional average search space size #S(G) of a directed

acyclic graph G as

#S(G) =
1

n
·
∑
v∈V

#S(v ,G) . (2.24)

Note that u ∈ R(v ,G) if and only if v ∈ S(u ,G) by the definition (2.22) of S(−,G)
and R(−,G). Consequently, the two maps δS and δR given by

δS(u ,v) =

1 if v ∈ S(u ,G)

0 otherwise
δR(u ,v) =

1 if u ∈ R(v ,G)

0 otherwise
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(a) A weighted graph G = (V ,A) on seven
vertices. The values α(v) for an order
α : V → {1, . . . , 7} are drawn inside the re-
spective nodes v ∈ V .
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(b) The upwards directed graph G∧
α associated

with the digraph G and the order α shown
on the left. All vertices in S(2,G∧

α ) are
shaded in darker grey, while all vertices
in R(3,G∧

α ) are shaded in lighter grey.
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(c) The downwards directed graph G∨
α as-

sociated with the digraph G and the or-
der α shown in Figure 2.8a. All vertices
inS(5,G∨

α ) are shaded in darker grey, while
all vertices inR(2,G∨

α ) are shaded in lighter
grey.

Figure 2.8: Figure 2.8a shows a weighted digraph G = (V ,A) on seven vertices and an or-
der α : V → {1, . . . , 7} onV . Figure 2.8b and Figure 2.8c depict the upwards and downwards
directed graphsG∧

α andG∨
α associated with the graphG and the given order on its vertices.

Note in particular that the arc 4 → 7 of G is not present in Gα anymore. Moreover, one
may see the search space and reverse search space of single vertices in Figure 2.8b and
Figure 2.8c.
Arc lengths len(e) are always drawn on the respective arcs and shortcuts of the contraction
hierarchy are drawn dashed.
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are actually equal. Utilising the equality of these two maps, one computes

#S(G) =
1

n
·
∑
u∈V

#S(u ,G) =
1

n
·
∑
u∈V

∑
v∈V

δS(u ,v)

=
1

n
·
∑
v∈V

∑
u∈V

δR(u ,v) =
1

n
·
∑
v∈V

#R(v ,G) .
(2.25)

Hence, a definition of unidirectional average reverse search space size in the spirit of
(2.24) is superfluous, for it would coincide with unidirectional average search space
size anyway.

We close this paragraph with a brief computation showing that #S(G∧
α ) + #S(G∨

α )
is indeed nothing but the average number of vertices settled by Algorithm 2.3. To this
end, observe that the average number of settled vertices is given by

1

n2

∑
(s ,t)∈V ×V

#S(s ,G∧
α ) + #R(t ,G∨

α ) ,

which may be recast as

1

n2

∑
(s ,t)∈V ×V

#S(s ,G∧
α ) + #R(t ,G∨

α ) =
1

n2

(
n

∑
s∈V

#S(s ,G∧
α ) + n

∑
t∈V

#R(t ,G∨
α )

)

=
1

n

∑
s∈V

#S(s ,G∧
α ) +

1

n

∑
t∈V

#R(t ,G∨
α )

= #S(G∧
α ) + #S(G∨

α ) ,

where the last equality follows from (2.25). For a given weighted digraph G and an
order α on its vertices, we therefore define the average search space size Savg(Gα )
as the sum Savg(Gα ) = #S(G∧

α ) + #S(G∨
α ). Just as we consider Smax(Gα ) to be a

measure for the worst-case performance, we will treat Savg(Gα ) as a measure for the
average-case performance of Algorithm 2.3 when run with input Gα .

2.4 Weak Contraction Hierarchies

In this paragraph, we recapitulate our different models of contraction hierarchies one
last time and devise a definition that captures not onlyGα and Ḡα but also many more
graphs akin to contraction hierarchies. The following is therefore both a summary of
Chapter 2 and a supplement to its contents.

Motivated by the problem of removing vertices from a given graph while preserving
the distances between all remaining vertices, we defined and studied contraction
of single vertices in Chapter 2.1. On the basis of iterated contraction, we then de-
vised an algorithm that computes a contraction hierarchy Ḡα = (Ḡ∧

α , Ḡ
∨
α ) from a
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given weighted digraph G and an order α on its vertices. We asserted that the con-
traction hierarchy Ḡα essentially contains all the information about shortest paths
and distances in G. Our subsequent analysis of Ḡα ultimately led to Theorem 1 in
which we gave a concise description of Ḡα by means of only the order α and the
shortest paths in G. This characterisation of Ḡα also revealed that it actually con-
tains arcs that do not account for shortest paths or distances at all. Removing those
arcs led us to define a second notion of contraction hierarchy, which we denoted
by Gα . In № 2.3 and № 2.4 we argued that our two notions Ḡα and Gα of contrac-
tion hierarchies still have some essential properties in common. More precisely, we
established that a shortcut uw in both Ḡα and Gα has supporting arcs uv and vw ,
such that lenαG(uw) = lenαG(uv) + lenαG(vw). The existence of these supporting arcs
is at the heart of contraction as we introduced it in Chapter 2.1 and is yet a feature
of our abstract definition, too. Then again, the abstract contraction hierarchies Gα
contain precisely the information that is necessary to reconstruct distances inG from
distances in Gα as we have seen in Theorem 2. Finding such a pair of graphs was
the very motivation to define Ḡα in the first place. It therefore appears to us that
the presence of all the arcs of Gα and a well-defined notion of supporting arcs are
the two most important characteristics shared by both Ḡα andGα . We take these as
the defining properties of a weak contraction hierarchy, that is, a weak contraction
hierarchy Hα of a given weighted digraph G = (V ,A) is a pair Hα = (H∧

α ,H
∨
α ) of

digraphs H∧
α = (V , B∧

α ) and H∨
α = (V , B∨

α ), such that the following conditions (w1),
(w2) and (w3) are met.

(w1) Gα ⊆ Hα

(w2) α(u) < α(v) for each uv ∈ B∧
α and each vu ∈ B∨

α

(w3) If uw is an arc of Hα that is not contained in G , then there is at least one pair of
arcs uv ∈ B∨

α and vw ∈ B∧
α .

In the remainder of this paragraph, we indicate how to extend our previous findings
for contraction hierarchies to weak contraction hierarchies and investigate the rela-
tionship between different weak contraction hierarchies – an important issue that
becomes apparent only in this generality. For this purpose we keep a weighted
digraph G = (V ,A) and an order α on its vertices fixed. As usual, we denote
by Gα = (G∧

α ,G
∨
α ) the contraction hierarchy of G with respect to α . In addition

to this data, we also fix a weak contraction hierarchy Hα = (H∧
α ,H

∨
α ) whose arcs will

be denoted by B∧
α and B∨

α as above.
Recall from Chapter 2.1 and Chapter 2.2 that we insisted on calling certain arcs

of Ḡα orGα shortcuts even though they were contained in the graphG underlying the
contraction hierarchy in question. More precisely, an arc uw of G is called a shortcut
in Ḡα or Gα if there is some vertex v whose contraction during the computation
of Ḡα would cause the length of uw to be overwritten, i.e. if lenG(uw) > distG(u ,w)
and additionally Pα (u ,w) = {u ,w }. We adopt this definition as it stands for weak
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contraction hierarchies. That is, an arc uw of Hα is a shortcut, if it is either not
contained in G or if Pα (u ,w) = {u ,w } and lenG(uw) > distG(u ,w). When it is
requisite to distinguish shortcuts in Gα from those in Hα , we call the latter weak
shortcuts.

2.8 Remark: There are arcs uv ∈ B∨
α and vw ∈ B∧

α for each shortcut uw of a weak
contraction hierarchy Hα . †

Proof: If uw is no arc of G, condition (w3) immediately implies the existence of
arcs uv ∈ B∧

α and vw ∈ B∨
α . If, on the other hand, uw is contained inG , our definition

of shortcuts in Hα then implies that uw is a shortcut of Gα for which we already
reassured the existence of supporting arcs in № 2.3. �

Although distances and arc lengths are only secondary in the remaining chapters, we
still want to point out that all the results concerning distances in G and distances
in Gα that we established in Chapter 2.3 hold for weak contraction hierarchies Hα ,
too. To this end, consider the arc lengths lenαH (uv) on Hα given by

lenαH (uw) =


min

uv∈B∨
α

vw∈B∧
α

lenαH (uv) + lenαH (vw) uw is a shortcut

lenG(uw) otherwise.

(2.26)

Observe that lenαH (−) is well-defined by virtue of № 2.8. Just as with distances in
contraction hierarchies, we write dist∧H (u ,v) and dist∨H (u ,v) to denote the distance of
two vertices u and v in H∧

α and H∨
α , respectively. Observe that the above definition of

arc lengths lenαH (−) in Hα coincides with the definition of arc lengths lenαG(−) in Ḡα
when considered as a weak contraction hierarchy. To see this, recall that the length
of any arc uw of Ḡα is given by the minimum of the lengths lenG(i)(uw) of uw in
the graphs G(i). This obviously equals lenG(uw) in the case that uw is no shortcut
and is nothing but the minimum of the lengths of all the paths (u ,v ,w) encountered
during the contraction of some vertex v in the case that uw is a shortcut. However,
any such path (u ,v ,w) corresponds to a pair uv ∈ A∨

α and vw ∈ A∧
α of arcs and vice

versa. All in all, the length lenαG(uw) of a shortcut uw in Ḡα is given by the minimum
of lenαG(uv) + lenαG(vw) over all pairs uv ∈ A∨

α and vw ∈ A∧
α of arcs – the definition

of the length of uw in Hα . Note that this also implies that lenαH (−) coincides with
the arc lengths lenαG(−) inGα considered as a weak contraction hierarchy, for the arc
lengths in Gα are precisely those in Ḡα by Theorem 1 and our very definition of Gα .

Finally, we show how to transfer the notions of supporting arcs and shortcut depth
from contraction hierarchies to weak contraction hierarchies. For this purpose con-
sider a shortcut uw of a weak contraction hierarchy Hα . Mimicking the construc-
tion (2.5) of the supporting vertex in Gα , we consider the set

S =
{
(uv ,vw)

∣∣∣ uv ∈ B∨
α ,vw ∈ B

∧
α and lenαH (uw) = lenαH (uv) + lenαH (vw)

}
.
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This set is nonempty by № 2.8 and our definition (2.26) of lenαH (−). The supporting
arcs sup(uw) = (uv ,vw) ofuw are now defined to be that pair (uv ,vw) ∈ S with max-
imal α(v). The supporting vertex ofuw is simply the vertexv occurring as target of the
first and source of the second supporting arc of uw . Now, our previous definition (2.9)
of the shortcut depth scd(uw) of an arc uw of Gα carries over to weak contraction
hierarchies without any modifications. Spelled out, the shortcut depth scd(uw) of an
arc of Hα is given by

scd(uw) =

scd(uv) + scd(vw) uw is a shortcut, sup(uw) = (uv ,vw)

1 otherwise.
(2.27)

As it was the case with the shortcut depth of the arcs of Gα in Chapter 2.2, it is
easy to convince oneself that scd(uw) is well-defined and that one is allowed to
do induction on scd(−), i.e. that the shortcut depths of the supporting arcs of some
shortcutuw are strictly less than scd(uw). Further observe that this notion of shortcut
and shortcut depth coincides with our previous notions of shortcuts in Ḡα and Gα
and shortcut depth scd(−) in Gα when considering those contraction hierarchies as
weak contraction hierarchies.

The notions of shortcut and supporting arcs in weak contraction hierarchies encom-
pass the corresponding notions in Ḡα andGα . In addition, we argued above that the
arc lengths lenαH (−) defined in (2.26) also coincide with the lengths lenαG(−) in Ḡα
and Gα . Altogether, weak contraction hierarchies in fact embrace both our previous
definitions of contraction hierarchies. Moreover, carefully revisiting the proof of
Theorem 2, we realise that it incorporates only very few properties of Gα and its arc
lengths. To be precise, we utilised the fact that lenαG(uv) ≥ distG(u ,v) in № 2.6 to be
able to infer equality of dist∧G(s ,u) + dist∨G(u , t) and distG(s , t) from just the inequal-
ity dist∧G(s ,u) + dist∨G(u , t) ≤ distG(s , t). Furthermore, the base case of the induction
used to settleTheorem 2 crucially depended on the equality of lenαG(uv) and distG(uv)
for all arcs uv with Pα (u ,v) = {u ,v}. Apart from these two properties, our proof
made use only of the induction hypothesis and properties of the sets Pα (−, −), which
do not depend onGα , Ḡα orHα though. As demonstrated by the following remark, the
arc lengths of Hα as defined above possess both these properties and Theorem 2 there-
fore holds for weak contraction hierarchies, too. Furthermore, both Algorithm 2.3 and
Algorithm 2.4 remain correct when run with a weak contraction hierarchy as input.

2.9 Remark: Let Hα be a weak contraction hierarchy.

(a) lenαH (uw) ≥ distG(u ,w) for all arcs uw of Hα .

(b) lenαH (uw) = distG(u ,w) for all arcs uw of Hα with Pα (u ,w) = {u ,w }. †

Proof: We do induction on the shortcut depth scd(uw) of uw .
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scd(uw) = 1: Observe that scd(uw) = 1 implies that uw is an arc of G and that
additionally lenG(uw) = distG(u ,w). Given our definition (2.26) of lenαH (−),
both conditions (a) and (b) are then trivially satisfied.

scd(uw) > 1: In this case, uw is a shortcut of Hα and its length therefore equals the
sum of the lengths of its supporting arcs sup(uw) = (uv ,vw). The induction
hypothesis then implies lenαH (uv) ≥ distG(u ,v) and lenαH (vw) ≥ distG(v ,w),
which already gives lenαH (uw) ≥ distG(u ,w) by the triangle inequality.

Let us now suppose Pα (u ,w) = {u ,w }. In this caseuw is an arc ofGα and№ 2.3
and № 2.4 hence imply thatGα contains supporting arcs sup(uw) = (uv ,vw)
satisfying lenαG(uw) = lenαG(uv) + lenαG(vw). Since both uv and vw are arcs
of Gα , it follows from the induction hypothesis that lenαH (uv) = distG(u ,v)
and lenαH (vw) = distG(v ,w). Employing these equalities in the definition
of lenαH (−) finally gives lenαH (uw) = distG(u ,w) since the arc lengths in Gα
are by definition nothing but the respective distances in G. �

Although a bit terse, the above discussion should have convinced the reader that
weak contraction hierarchies are the “right” definition to embrace both Gα and Ḡα
while retaining the most desirable properties of both. As a side note, we remark
that Algorithm 2.2, which facilitated our definition of Ḡα , is not quite the algorithm
given by Geisberger et al. in [Gei07; GSSD08]. Actually, they considered it too costly
to check if a given path (u ,v ,w) is a unique shortest path upon contraction of the
vertex v in an actual implementation and therefore devised an algorithm that inserts
more shortcuts than necessary. In fact, the algorithms in [Gei07; GSSD08] compute
weak contraction hierarchies.

In view of condition (w1) it is clear thatGα is the unique smallest weak contraction
hierarchy. Utilising shortest path queries in Hα , it is even possible to efficiently
compute Gα from any given weak contraction hierarchy Hα . To this end, consider
the following proposition, which characterises the arcs of Gα as a subset of the arcs
of Hα in terms of a criterion that is suitable for an actual algorithm.

2.10 Proposition: Let Hα be a weak contraction hierarchy and let u and v be two
vertices of Hα , such that α(u) < α(v). The conditions

(i) Pα (u ,v) = {u ,v}

(ii) (u ,v) is the only shortest u-v-path in H∧
α and v is additionally the only vertex

in Pα (u ,v) that satisfies distG(u ,v) = dist∧H (u , x) + dist∨H (x ,v)

as well as

(i′) Pα (v ,u) = {v ,u}

(ii′) (v ,u) is the only shortest v-u-path in H∨
α and v is additionally the only vertex

in Pα (v ,u) that satisfies distG(v ,u) = dist∧H (v , x) + dist∨H (x ,u)
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are then equivalent. †

Proof: Note that the equivalence of (i′) and (ii′) follows from that of (i) and (ii) by
symmetry. We therefore prove the equivalence of (i) and (ii) only.

“(i)⇒ (ii)”: Note that α(x) ≤ α(v) for all x ∈ Pα (u ,v). This implies in particular that
there cannot possibly exist any vertex x ∈ Pα (u ,v) that is distinct from v and
still satisfies distG(u ,v) = dist∧H (u , x)+ dist∨H (x ,v), for any such vertex would
have to satisfy α(x) > α(v).

Now consider an arbitrary shortest path p from u to v in Hα . Since (u ,v) is
a shortest path by assumption and since lenαH (uv) = distG(u ,v) by № 2.9,
it follows that len(p) = distG(u ,v). Let us assume for the sake of contra-
diction that p contains some vertex x < {u ,v}. This vertex x would neces-
sarily satisfy α(x) > α(u) and dist∧H (u , x) + dist∧H (x ,v) = distG(u ,v). This
latter equality can be satisfied only if distG(u , x) + distG(x ,v) = distG(u ,v)
since dist∧H (u , x) ≥ distG(u , x) and dist∨H (x ,v) ≥ distG(x ,v) by № 2.9. Note
that distG(u , x) + distG(x ,v) = distG(u ,v) implies x ∈ Pα (u ,v), which contra-
dicts our assumptions. Altogether, we conclude that p = (u ,v), which was to
be shown.

“‘(ii)⇒ (i)”: This part of the proof is technically more involved than the first part and
we therefore begin with a brief sketch of our argument. The proof consists of
two steps, where each step utilises one of the two statements of condition (i).
Assuming Pα (u ,v) , {u ,v}, we choose x ∈ Pα (u ,v) r {u ,v}, such that α(x)
is maximal. We then employ Theorem 2 twice to obtain vertices y ∈ Pα (x ,v)
and z ∈ Pα (u ,y) together with shortest pathspxy from x toy andpuz fromu to z
in H∧

α and pzy from z to y and pyv from y to v in H∨
α . A sketch of these paths

may also be seen in Figure 2.9a. By concatenating all these paths, we then
deduce that the vertex z is actually one of the vertices z ∈ Pα (u ,v), such
that dist∧H (u , z) + dist∨H (z ,v) = distG(z ,v), which gives z = v = y by our
assumptions.

As can also be seen in Figure 2.9b, we then find x somewhere between u and v .
Since any vertex in Pα (u , x) is contained in Pα (u ,v) and since x was chosen
from Pα (u ,v) such that α(x) is maximal,w = x is the only vertexw ∈ Pα (u , x)
together with paths from u to w and from w to x in H∧

α and H∨
α , respectively.

However, such paths are guaranteed to exist by Theorem 2, which implies the
existence of a path from u to x and hence a path from u via x to v . We are
then able to prove this path to be a shortest path, which contradicts our second
assumption and therefore finishes the proof.

Let us now fill in the technical details. Assume Pα (u ,v) , {u ,v} and choose
the vertex x ∈ Pα (u ,v)r {u ,v} with α(x)maximal. By Theorem 2, there is then
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(a) Sketch of all the paths in Hα that occur
during the first step of the proof.

u

v

x

w

z

pxy

(b) Sketch of the relevant parts of Hα during
the second step of the proof.

Figure 2.9: Visualisation of the strategy used in the proof of № 2.10.

some vertex y ∈ Pα (x ,v), such that

dist∧H (x ,y) = distG(x ,y)

and dist∨H (y ,v) = distG(y ,v) . (2.28)

We denote the paths in H∧
α and H∨

α that correspond to the above distances
by pxy and pyv , respectively. Another application of Theorem 2 now guarantees
the existence of some z ∈ Pα (u ,y), such that

dist∧H (u , z) = distG(u , z) (2.29)

and dist∨H (z ,y) = distG(z ,y) . (2.30)

Again, we denote by puz and pzy the paths in Hα that correspond to these two
equations. Utilising the equations (2.29), (2.30) and (2.28), we now compute

dist∧H (u , z) + dist∨H (z ,v) ≤ dist∧H (u , z) + dist∨H (z ,y) + dist∨H (y ,v)

= distG(u , z) + distG(z ,y) + distG(y ,v)

= distG(u ,v)

where the last equality follows from z ∈ Pα (u ,y) and y ∈ Pα (x ,v) ⊆ Pα (u ,v).
Note that our assumptions now imply z = v . Moreover, since y lies on the
path pzy · pyv from z = v to v in H∨

α , we may also conclude that y = v .

We now claim that H∧
α contains a shortest path from u via x to v . To this end,

note thatTheorem 2 implies the existence of somew ∈ Pα (u , x) ⊆ Pα (u ,v) such
thatα(w) > min{α(u), α(x)} and such that there is a pathq fromu tow inH∧

α of
length distG(u ,w) and a path r fromw to x inH∨

α of length distG(w , x). Observe
that each such vertex w is an element of Pα (u ,v) distinct from both u and v
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and still satisfies α(w) ≥ α(x). Our initial choice of x therefore impliesw = x .
The concatenation q · pxy of the path q from u to w = x and the path pxy
from x to y = v from above is then a path in H∧

α of length

len(q · pxy) = dist∧H (u , x) + dist∧H (x ,v)

= distG(u , x) + distG(x ,v)

= distG(u ,v) ,

where the last equality follows from x ∈ Pα (u ,v). As dist∧H (u ,v) ≥ distG(u ,v),
we find that q · pxy is a shortest path in H∧

α , which contradicts our assumption
that (u ,v) is the only shortest path from u to v in H∧

α . �

The above proposition facilitates an algorithm that determines whether a given arc st
of a weak contraction hierarchyHα is an arc of the contraction hierarchyGα contained
in Hα . To this end, it suffices to adapt the distance query Algorithm 2.3, which is
correct for weak contraction hierarchies by our previous discussions, such that it does
not only compute some vertex x with distG(s , t) = dist∧H (s , x) + dist∨H (x , t) but also
determines whether both this vertex and the accompanying shortest path from s to x
are unique. According to № 2.10, st is an arc of Gα if and only if the above condi-
tions are met and if furthermore x = t . Recall from Chapter 2.3 that Algorithm 2.3
performs two concurrent Dijkstra queries with respective source vertices s in H∧

α
and t in H∨

α with reversed arcs. Further recall that we denoted by ds(x) and dt(x)
the tentative distances of x in the instance of Dijkstra’s algorithm with source s and
source t , respectively. If, during the course of this algorithm, one does not only main-
tain the length minds(x) + dt(x) of the as yet shortest path from s to t but also a
set M containing all the vertices x that minimise ds(x) + dt(x), then it is certainly
possible to decide whether the vertex x with distG(s , t) = dist∧G(s , x) + dist∨G(x , t) is
unique and equal to v . Utilising for example linked lists, this is obviously possible
with only a constant overhead per arc relaxation.

The only remaining issue is to determine whether a shortest path from u to x
in H∧

α is unique. For this purpose, one maintains a boolean flag unique(x) for each
vertex x ∈ V . Initially, this flag is set to True. Upon relaxation of an arc xy in the
instance of Dijkstra’s algorithm with source s , one updates the flag unique(y) by

unique(y)←

False if ds(x) + lenG(xy) = ds(y)

unique(x) if ds(x) + lenG(xy) < ds(y) .

Stated less formally, unique(y) is set to Falsewhenever Dijkstra’s algorithm discovers
a path from s to y that is of the same length as some previously discovered path and it
is set to unique(x) when the algorithm discovers a path – or possibly many? – from s
via x to y of length strictly less than all previously discovered such paths. Since all
the flags unique(y) are True initially, an easy induction on the number of iterations



2.4 Weak Contraction Hierarchies 45

proves unique(y) to be True when y gets settled if and only if there is a unique
shortest path from s to y in H∧

α . That is, the algorithm is correct indeed. Moreover,
the situation is completely symmetric in H∨

α and the flags unique(−) can obviously
be implemented with constant overhead per arc relaxation. Altogether, we thus have
the following corollary.

2.11 Corollary: Given an arc st of H∧
α or H∨

α , there is an algorithm that decides in
time O(Tquery) whether st is an arc of Gα . Successive application of this algorithm
computes Gα from Hα in time O(mα · Tquery), wheremα denotes the number of arcs
in Hα . †

After being able to reduce a given weak contraction hierarchy to Gα , let us in-
vestigate the reverse process, i.e. enlarging a weak contraction hierarchy. To this
end, observe that the union of two weak contraction hierarchies Hα and Kα , i.e. the
pair (H∧

α ∪ K∧
α ,H

∨
α ∪ K∨

α ), is again a weak contraction hierarchy since (w1), (w2)
and (w3) are all trivially satisfied. Thus, it turns out that there is not only a smallest but
also a unique largest weak contraction hierarchy: The union of all weak contraction
hierarchies Hα ⊇ Gα . We denote this largest weak contraction hierarchy by Mα . The
existence and structure ofMα are not only of mere theoretical interest but turn out to
be central to our study of search space sizes in contraction hierarchies in Chapter 3.
The following remark might be understood as a first indication of the importance
ofMα , for it allows us to infer upper bounds on the search space sizes inGα orHα from
upper bounds on the search space sizes in the maximal weak contraction hierarchyMα .

2.12 Remark: LetG be a subgraph of an acyclic digraph H . Then S(u ,G) ⊆ S(u ,H)
for all u ∈ V . This means in particular, that

S(u ,G∧
α ) ⊆ S(u ,H

∧
α ) ⊆ S(u ,M

∧
α ),

R(u ,G∨
α ) ⊆ R(u ,H

∨
α ) ⊆ R(u ,M

∨
α )

and hence

#S(u ,G∧
α ) ≤ #S(u ,H∧

α ) ≤ #S(u ,M∧
α ),

#R(u ,G∨
α ) ≤ #R(u ,H∨

α ) ≤ #R(u ,M∨
α )

for all weak contraction hierarchies Hα and all vertices u ∈ V . Consequently, we also
have

Smax(Gα ) ≤ Smax(Hα ) ≤ Smax(Mα )

and

Savg(Gα ) ≤ Savg(Hα ) ≤ Savg(Mα ).

for all weak contraction hierarchies Hα of G. †
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Proof: Let v ∈ S(u ,G). There is then a path from u to v inG . This path is of course
also a path in H ⊇ G, which proves v ∈ S(u ,H) and hence S(u ,G) ⊆ S(u ,H). The
implications for Gα , Hα and Mα follow immediately since Gα ⊆ Hα ⊆ Mα by the
definition of weak contraction hierarchies and the definition of Mα . �

Admittedly, the definition of Mα as it stands is not very practical – neither for the
deployment of actual algorithms nor for some of our arguments below. In what
follows, we therefore develop another description of Mα akin to the definition (2.1)
of Ḡα . This description additionally brings forth an algorithm to compute Mα , which
closely resembles Algorithm 2.2. The following remark is a step in the direction of
this very characterisation of Mα .

2.13 Remark: A weak contraction hierarchy Hα is maximal if and only if Hα pos-
sesses the following two properties.

(i) Each arc of G is contained in Hα .

(ii) There are no two arcs uv ∈ B∨
α and vw ∈ B∧

α , such that Hα does not contain the
arc uw . †

Proof: It is clear that Mα satisfies conditions (i) and (ii). On the other hand, let us
consider any weak contraction hierarchy Hα satisfying the conditions (i) and (ii). We
want to show that Hα is in fact nothing but Mα , i.e. that Hα contains any other weak
contraction hierarchyH ′

α . To this end, we do induction on the shortcut depth scd(uw)
of the arcs of H ′

α .

scd(uw) = 1: In this case uw is an arc of G, which is contained in Hα by (i).

scd(uw) > 1: Consider the supporting arcs sup(uw) = (uv ,vw) of uw . By construc-
tion, scd(uv) < scd(uw) and scd(vw) < scd(uw) and the induction hypothesis
hence implies that both uv and vw are contained in Hα . According to (ii), uv is
then an arc of Hα , too. �

Let us now reconsider Algorithm 2.2 from Chapter 2.1. This algorithm iteratively con-
structs the intermediate graphsG(i) obtained by contraction of the first (i−1) vertices
ofG , while collecting all the arcsuv of Ḡα . In view of the above remark, wemaymodify
this algorithm to compute Mα by inserting not only the strictly necessary but all pos-
sible shortcuts. In order to make this precise, let us denote byG〈v〉 = (V〈v〉 ,A〈v〉) the
digraph obtained fromG by removing v and inserting an arc uw for each and every
path (u ,v ,w) in G. We say that G〈v〉 is obtained from G by weak contraction of v .
Mimicking our definitions from Chapter 2.1, we write G〈i〉 = (V〈i〉 ,A〈i〉) to denote
the digraph G after weak contraction of the vertices α−1(1), . . . , α−1(i − 1) in the
given order. Let us now consider Algorithm 2.5, which is nothing but Algorithm 2.2
with ordinary contraction of vertices replaced by weak contraction. A close look at
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this algorithm reveals that the digraphs H∧
α = (V , B∧

α ) and H∨
α = (V , B∨

α ) returned
by this algorithm are given by

B∧
α =

{
uv ∈

n⋃
i=1

A〈i〉
∣∣∣ α(u) < α(v)

}
and B∨

α =
{
uv ∈

n⋃
i=1

A〈i〉
∣∣∣ α(u) > α(v)

}
.

(2.31)

The reader should note the similarity of (2.31) to our definition (2.1) of Ḡα , where we
defined A∧

α and A∨
α to contain precisely those arcs of

⋃
G(i) pointing upwards and

pointing downwards, respectively.

Algorithm 2.5: Computation of the maximal weak contraction hier-
archy Mα = (M∧

α ,M
∨
α )

Input: Weighted digraph G = (V ,A), an order α on V
Output: Maximal weak contraction hierarchy Mα = (M∧

α ,M
∨
α )

1 B∧
α ← ∅

2 B∨
α ← ∅

3 for i = 1 to n do
/* V = V〈i〉 and A = A〈i〉 */

4 B∧
α ← B∧

α ∪
{
uv ∈ A | α(u) < α(v)

}
5 B∨

α ← B∨
α ∪

{
uv ∈ A | α(u) > α(v)

}
6 v ← α−1(i)
7 Weakly contract v

8 returnM∧
α = (V , B∧

α ) and M∨
α = (V , B∨

α )

We now show that Algorithm 2.5 actually computes Mα . To this end, let us first
assure that Hα = (H∧

α ,H
∨
α ) is indeed a weak contraction hierarchy

2.14 Remark: The digraphs Hα = (H∧
α ,H

∨
α ) as computed by Algorithm 2.5 form a

weak contraction hierarchy. †

Proof: Observe thatG(i) ⊆ G〈i〉 follows from an easy inductive argument employing
the fact that each shortcut inserted upon contraction of some vertex v of G is also
inserted upon weak contraction of v . Comparing (2.31) to the definition (2.1) of Ḡα ,
we therefore find Ḡα ⊆ Hα and henceGα ⊆ Hα . Moreover, all the arcs of Hα do have
supporting arcs by the construction of Hα . As (w2) is also trivially satisfied by Hα , it
is indeed a weak contraction hierarchy. �
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Note thatG = G〈1〉 and that Hα hence contains all the arcs ofG. Furthermore, weak
contraction ofv causes the insertion ofuw for any two arcsuv ∈ B∨

α andvw ∈ B∧
α since

these arcs have to be contained inG〈α−1(v)〉 if they are contained in Hα . Altogether,
we may conclude that Hα satisfies both conditions (i) and (ii) of № 2.13 and we thus
have proven Hα = Mα as claimed.

There is yet one subtlety we did not touch upon. Up to this point, we have only
shown that Algorithm 2.5 computes the digraph Mα but completely ignored the arc
lengths lenαM(−) therein. Luckily, only a slight alteration of our notion of weak con-
traction is necessary to sort out this last problem. Recall from Chapter 2.1 that the arc
length lenαG(uw) of an arcuw of Ḡα is given by the minimum length lenG(i)(uw) ofuw
in the graphs G(i). With a little abuse of notation, our definition (2.26) of lenαM(−)
may also be written as

lenαM(uw) = min
{
lenG(uw),min

{
lenαM(uv)+lenαM(vw)

∣∣∣ uv ∈ B∨
α ,vw ∈ B

∧
α

} }
,

so that we may actually adopt this approach, i.e. determine lenαM(uw) by taking the
minimum over the lengths of all the paths (u ,v ,w) that get removed from G prior
to u or v during the course of Algorithm 2.5. In terms of the graphs G〈i〉, this is
equivalent to defining the length lenG〈v〉(uw) of a shortcut uw ∈ A〈v〉 that is inserted
upon weak contraction of v by

lenG〈v〉(uw) = min
{
lenG(uw), lenG(uv) + lenG(vw)

}
and letting lenαM(uw) be given by theminimum length lenG〈i〉(uw) over all graphsG〈i〉
that actually contain uw . An easy induction on the shortcut depth scd(uw) indeed
proves these arc lengths to coincide with the ones we defined in (2.26) above. A
properly adapted implementation of weak contraction in pseudo code may also be
seen in Algorithm 2.6. Altogether, Algorithm 2.5 thus computes Mα and it is not hard
to see that its running time is bounded by O(n +mα ), wheremα denotes the number
of arcs of Mα . We have thus proven the following proposition.

2.15 Proposition: Algorithm 2.5 determines the maximal weak contraction hier-
archy Mα of a given weighted digraph G = (V ,A) in time O(n +mα ), where mα
denotes the arcs of Mα . †

We remark that Algorithm 2.5 may be adapted to dynamically update the edge lengths
of a given weak contraction hierarchy in time O(Tquery) per update. As all our upper
bounds on Smax(Gα ) and Smax(Hα ) that we prove in Chapter 3 are actually bounds
on Smax(Mα ), these dynamic updates retain our guarantees on the maximum search
space size in the contraction hierarchy in question.

Being able to compute Mα in time O(n +mα ) also allows us to compute Gα in
time O(n +mα · Tquery) by № 2.11, hence the following corollary.
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2.16 Corollary: There is an algorithm that computesGα in time O(n +mα · Tquery),
wheremα denotes the number of arcs in Mα and where Tquery is the running time of
Algorithm 2.3 in Mα . †

This corollary is in fact worth stating, for there are bounds on andmα in terms of
parameters depending on G and not on Mα . As a step towards these bounds, the
following remarks relatesmα to the average search space size Savg(Mα ).

2.17 Remark: Thenumber of arcs in someweak contraction hierarchyHα is bounded
from above by n · Savg(Hα ). †

Proof: As above, we denote by B∧
α and B∨

α the arcs of Hα . Observe that the number
of arcs uv ∈ B∧

α with source u is certainly less than or equal to #S(u ,H∧
α ). Likewise,

the number of arcsuv ∈ B∨
α with prescribed targetv is less than or equal to #R(v ,H∨

α ).
Utilising these observations, we compute∣∣∣B∧

α

∣∣∣ + ∣∣∣B∨
α

∣∣∣ = ∑
u∈V

∣∣∣∣{uv ∈ B∧
α

} ∣∣∣∣ + ∑
v∈V

∣∣∣∣{uv ∈ B∨
α

} ∣∣∣∣
≤

∑
u∈V

#S(u ,H∧
α ) +

∑
v∈V

#S(v ,H∨
α ) = n · Savg(Hα ) ,

which finishes the proof. �

Algorithm 2.6: Weak contraction of a single vertex

Input: Weighted digraph G = (V ,A), a vertex v ∈ V
Output: G〈v〉 = (Vv ,Av), which is G after weak contraction of v

1 V〈v〉 ← V r {v}

2 A〈v〉 ←
{
xy ∈ A

∣∣∣ v < {x ,y} }
3 foreach uv ,vw ∈ A do
4 A〈v〉 ← A〈v〉 ∪ {uw }

5 lenG〈v〉(uw)← min
{
lenG(uw), lenG(uv) + lenG(vw)

}
6 return G〈v〉 = (V〈v〉 ,A〈v〉)





3 Upper Bounds on Search Space Size
via Nested Dissection

This chapter is organised as follows. In Chapter 3.1 we recall the definition of the
filled graphGα that can be associated with any undirected graphG and an order α on
its vertices. Given our previous work on contraction hierarchies, it appears that the
maximal weak contraction hierarchyMα is nothing but a directed variant of the filled
graphGα . Motivated by this similarity ofGα and Mα , we then explore how certain
invariants of Gα , that is, the elimination tree T (Gα ) and its height ht(Gα ), relate
to the search spaces in Mα . More explicitly, we show that the height ht(Gα ) of the
elimination treeT (Gα ) is an upper bound on themaximum search space sizeSmax(Mα )
and hence also on Smax(Gα ) by № 2.12. We also touch on secondary aspects like the
computational complexity of finding the elimination tree of minimum height and the
feasibility of a lower bound on Smax(Gα ) in terms of the height of an elimination tree.
Finding elimination trees of low height is a well studied problem and in Chapter 3.2
we investigate a particular heuristic known as nested dissection. Utilising results
about the performance of this heuristic, we obtain an upper bound of log(n) · tw(G)
on Smax(G), where n denotes the number of vertices of G and tw(G) its treewidth.
In many cases of practical relevance, this upper bound is further accompanied by
an algorithm to compute orders α that actually attain this bound. By virtue of our
findings in Chapter 3.1, these algorithmsmay be usedwithout any further modification
to compute orders α such that Smax(Mα ) ≤ log(n) · tw(G). We further show how
to improve on this upper bound on Smax(Mα ) for a minor-closed class of graphs
admitting balanced separators of size O(

√
n) in Chapter 3.3.

Finally, we try to relate our results to previous work of Abraham et al. in Chapter 3.4.
Abraham et al. study the performance of contraction hierarchies in terms of a para-
meter called highway dimension. We show that there are edge lengths on any undirec-
ted graphG , such that nested dissection orders α and the orders β as computed by the
algorithms of Abraham et al. yield contraction hierarchies of comparable performance.

3.1 Contraction Hierarchies and Filled Graphs

In this paragraph we recall the definition of the filled graph Gα , the associated elimin-
ation treeT (Gα ) and its height ht(Gα ). Since our definitions deviate slightly from the
ones commonly found in the literature and since we explicitly carve out similarities
to contraction hierarchies, more than a quick skimming might be worth it even for
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the knowledgeable reader. The filled graph Gα was introduced by Parter in his ana-
lysis [Par61] of Gaussian elimination. The related notion of an elimination tree was
introduced only two decades later by Schreiber [Sch82]. Both the elimination tree and
the filled graph have been studied extensively by numerous authors. A comparatively
old but still valuable introduction to the various applications of elimination trees in
sparse factorisation algorithms is the survey article by Liu [Liu90]. The filled graph
and the elimination tree are also closely related to chordal graphs, chordal completion
and treewidth. The article of Bodlaender et al. [BGKH91] includes a good survey of
the interrelation of all these notions. A prominent application of the filled graph in
this context is their use in linear-time algorithms for chordal graph recognition based
on a characterisation of chordal graphs by Fulkerson and Gross [FG65] in terms of
elimination orders.

Let us fix an undirected graph G = (V , E) with n = |V | vertices and an or-
der α : V → [n]. We consider the so-called elimination game played onG. Beginning
with G1 = G, one removes in each step i ∈ [n] the vertex vi = α−1(i) and all its
incident edges fromG i . Afterwards, one obtains the graphG i+1 by inserting a fill-edge
between each pair of remaining neighbours of vi . That is, the remaining neighbour-
hood of vi becomes a clique. Let F i be the set of edges inserted upon removal of vi
and denote by F =

⋃n
i=1 F

i the whole of fill-edges during the course of this game. The
filled graphGα is now commonly defined to be the undirected graph with edges E ∪ F .
For our purposes it is more convenient to define the filled graph as the accordant
directed graph with all arcs pointing upwards with respect to α . That is, the filled
graph Gα is the acyclic digraph Gα = (V ,Aα ) given by

Aα =
{
uv

∣∣∣ {u ,v} ∈ E ∪ F and α(u) < α(v)
}
. (3.1)

An example of an undirected graph G = (V , E) and one of its filled graphs Gα may
also be seen in Figure 3.1. The reader should note that the construction of the filled
graphGα bears a strong resemblance to Algorithm 2.5 from Chapter 2.4 that computes
the maximal weak contraction hierarchy Mα from a given digraph and an order on
its vertices. More precisely, during both the elimination game and Algorithm 2.5 the
vertices α−1(1), . . . , α−1(n) ofG are successively removed fromG and an additional
arc uw or edge {u ,w } is inserted for each path (u ,v ,w) containing the most recently
deleted vertexv . The only difference is that Algorithm 2.5 operates on directed graphs
while the elimination game is played on undirected graphs.

In order to explore the relation between themaximalweak contraction hierarchyMα
and the filled graph Gα in some greater detail, let us fix a digraph G = (V ,A) and
let ∗G = (V , E) denote the associated undirected graph. Further let α be an order on
the verticesV . It is clear that there is an undirected path (u ,v ,w) in ∗G for each direc-
ted path (u ,v ,w) inG . Any shortcutuw inserted during the first step of Algorithm 2.5
due to the presence of a directed path (u ,v ,w) therefore gives rise to a fill-edge {u ,w }
that is inserted during the very first step of the elimination game played on ∗G . Again,
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(a) A graph G = (V , E) with 7 vertices. The
numbers shown inside the nodes corres-
pond to the respective values α(v) of an or-
der α on V .
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(b) The filled graph Gα associated with the
graphG and the map α . Arcs corresponding
to fill-edges are drawn dashed and labelled
with α(v) where v is the vertex whose re-
moval led to their insertion.

Figure 3.1: A graph G = (V , E) and one of its filled graphs.

we find a corresponding undirected path in the remainder ∗G2 of ∗G for each directed
path in the remainder G〈2〉 of G. We now see, by induction, that M∧

α and M∨
α with

reversed arcs are subgraphs of ∗Gα . Even though our previous work renders the proof
trivial, the consequences of this very observation are of such significance, that we
state it as a genuine theorem.

Theorem 3 Maximal weak contraction hierarchies and filled graphs
LetG = (V ,A) be a directed graph and let α be an order on its vertices. Further let ∗G
be the undirected graph associated with G and let Mα = (M∧

α ,M
∨
α ) be the maximal

weak contraction hierarchy. Then both M∧
α and M∨

α with reversed arcs are subgraphs
of the filled graph ∗Gα . IfG was undirected in the first place, that is, ifG contained for
each arc uv ∈ A also the reverse arc vu, then all three graphs M∧

α , M
∨
α with reversed

arcs and the filled graph Gα are even equal. ‡

The above theorem has many far-reaching consequences of which we are only able to
explore very few in this thesis. Filled graphs are an extensively studied subject and a
vast amount of work has been invested in their analysis since their introduction by
Parter [Par61]. It even turns out that the maximal weak contraction hierarchy Mα
is nothing essentially new but has already been defined and studied by Rose and
Tarjan [RT78] in 1978. However, much of the work on filled graphs is primarily
concerned with the problem of minimising the number of arcs in Gα – a problem
commonly known as minimum fill-in. The beautiful survey by Heggernes [Heg06]
contains an overview of many classic and recent developments concerning this very
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problem. In view of Theorem 3, the question how to minimise the number of arcs
inGα is also of importance in the context of contraction hierarchies, for the number
of fill-arcs is certainly an upper bound on the number of shortcuts in Gα and hence
on its space requirements. Although the arguments concerning the computational
complexity of the minimum fill-in problem due to Yannakakis [Yan81] do not carry
over to contraction hierarchies, it is already known that deciding whether there is a
contraction hierarchy Gα with less than k arcs is NP-complete [Col09; BCKKW10].
Given these hardness results, it seems quite appropriate to take known heuristics for
theminimumfill-in problem as a starting point for the design of algorithmsminimising
the space requirements of contraction hierarchies. A quite recent development seems
to be of particular interest also with respect to our findings concerning the maximum
search space size. Instead of trying to find an order α that minimises the number
of arcs in Gα , researchers have been studying the easier problem of determining an
order β minimising the number of arcs inG β while retaining the conditionG β ⊆ Gα

for an initially given order α . This problem is known as the minimal triangulation
sandwich problem and there are efficient and practical algorithms due to Peyton [Pey01]
and Heggernes and Peyton [HP08] among others. Beginning with a maximal weak
contraction hierarchyMα that has small maximum search space size, these algorithms
can be used to reduce the space requirements of Mα retroactively without increasing
their search space sizes. It seems definitely worth the effort to investigate the effect
of these algorithms on Mα and their “compatibility” with the computation of Gα
from Mα from № 2.16.

Instead of the above ramifications concerning the space requirements of contraction
hierarchies, we rather concentrate on the implications of Theorem 3 regarding the
search spaces and their size. To this end, consider the following corollary ofTheorem 3.

3.1 Corollary: Let G = (V ,A) be a weighted directed graph, let α be an order on its
vertices and let ∗G be the undirected graph associated with G. Then

S(u ,H∧
α ) ⊆ S(u ,

∗Gα ) and R(u ,H∨
α ) ⊆ S(u ,

∗Gα )

for all u ∈ V and all weak contraction hierarchies Hα ⊇ Gα . Consequently

#S(u ,H∧
α ) ≤ #S(u , ∗Gα ) and #R(u ,H∨

α ) ≤ #S(u , ∗Gα )

for all u and Hα as above. Summation over all the vertices u ∈ V finally gives

Smax(Hα ) ≤ Smax(
∗Gα ) and Savg(Hα ) ≤ Savg(

∗Gα )

for all weak contraction hierarchies Hα . †

Proof: Follows immediately from № 2.12 and Theorem 3. �
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Figure 3.2: The elimination tree T (Gα ) associated with the filled graph shown in Figure 3.1.
It is rooted in the vertex 7 and has height ht(Gα ) = 5.

We now give an alternative description of Smax(
∗Gα ) known as the height of the

elimination tree of ∗Gα . For this purpose, consider an undirected graph G = (V , E)
and one of its filled graphsGα again. Associated withGα is the so-called elimination
tree T (Gα ) ofG. The elimination tree has the same vertices asGα but contains only
those arcs uv of Gα with minimal α(v). More formally, the arcs of T (Gα ) are given
by {

uv
∣∣∣ uv ∈ Aα and α(v) ≤ α(w) for all uw ∈ Aα

}
.

As it was the case with the filled graphGα , the elimination tree, too, is usually defined
as an undirected tree. There is a natural choice of root in T (Gα ), namely α−1(n).
The height of T (Gα ) with respect to this root is commonly known as elimination
tree height and we denote it by ht(Gα ). The minimum of ht(Gα ) over all orders α
is called minimum elimination tree height of G and is denoted by ht(G). The elim-
ination tree associated with the filled graph of Figure 3.1 is depicted in Figure 3.2
as an example. Deciding for a given graph G whether there is an elimination tree
of G of height less than or equal to some given k ∈ N is known to be NP-complete
even when restricted to co-bipartite graphs due to a result of Pothen [Pot88]. Later,
this problem was shown to be NP-complete on other families of graphs like bipart-
ite [BDJKKMT98] and chordal graphs [DN06]. Nevertheless, there are also several
classes of graphs for which polynomial-time algorithms determining the elimination
tree T (Gα ) of minimum height are known. Among these classes are for example
trees [Sch89; IRV88; HPS07], interval graphs [AH94], trapezoid, circular-arc or per-
mutation graphs [DKKM94; DKKM99]. Many of these results are actually not expli-
citly concerned with minimising the height of elimination trees but with an equivalent
problem known as ordered colouring or vertex ranking. There is also an attempt to gen-
eralise these problems to directed graphs due to Kratochvíl and Tuza [KT99], which
is further explored in the article [Der07] of Dereniowski. Apart from the optimal
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vertex ranking algorithms for trees due to Schäffer [Sch89], Iyer, Ratliff and Vijayan
[IRV88] and Hsu, Peng and Shi [HPS07] that we shortly touch upon at the end of
the next paragraph, we do not investigate any of these issues further, but suggest the
above articles as a starting point for more profound studies of vertex ranking and
elimination tree height.

Let us now return to our investigation of search spaces in Gα and their claimed
relation to the height of the elimination treeT (Gα ). For we chose each arcuv inT (Gα )
to be directed towards the root, the height of T (Gα ) is one less than the maximum
number of vertices reachable from any vertex u in T (Gα ). Similarly, the search
space S(u ,T (Gα )) of some vertex u inT (Gα ) is the set of vertices inT (Gα ) reachable
from u. This suggests the following reinterpretation of ht(Gα ) in our framework of
search spaces and their size.

3.2 Remark: LetG = (V , E) be a connected graph, α an order onV and letT = T (Gα )
be the elimination tree of G with respect to α . Then Smax(T ) = 1 + ht(Gα ). †

Proof: Let r denote the root of T = T (Gα ) and denote by p(u) the vertices lying on
the path from u to r . Then

ht(Gα ) = max
u∈V
|p(u)| − 1

and it therefore suffices to show S(u ,T ) = p(u) for all u ∈ V . This latter equality is
trivially satisfied though, for G is connected, hence each vertex u ∈ V is the source of
precisely one arc uv . �

Let us stress one particular property ofT (Gα ) that is of great interest to us: If u and v
are two vertices connected by a path p in the filled graph Gα of G, then there is a
path p′ from u to v in the elimination tree T (Gα ). It obviously suffices to prove this
statement when p is an arc, as the general case then follows by induction. This is
precisely the subject of the following lemma.

3.3 Lemma: If uv is an arc of the filled graphGα , then there is a path p with source u
and target v in T = T (Gα ). †

Proof: Let us denote by p(u) the unique path in T = T (Gα ) from u to the root r .
Recall that each vertex u ∈ V is the source of at most one arc uv in T , which is also
the first arc of p(u) of course. We show by descending induction on α(u) that we
have p(v) ⊆ p(u) for all arcs uv of Gα . Note that this implies our claim, for it then
follows that p(u) = q · p(v), where q is a path from u to v .

α(u) = n − 1: If α(u) = n − 1, then α(v) = n and it follows that v = r . There is
nothing to show, for the root r is a subpath of p(u) by definition of p(u).
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α(u) < n − 1: Let uw be the unique arc of T with source u. Note that our choice
of w implies α(w) ≤ α(v), since T contains only those arcs uw where w is
the α-minimal neighbour of u in Gα . The path p(u) is, according to our pre-
liminary remark, nothing but the concatenation p(u) = uw · p(w). If v = w ,
there is again little to show as p(w) ⊆ p(u) is trivially satisfied. If v , w ,
then Gα contains the arc vw as both v and w are neighbours of u when it
gets removed during the elimination game. The induction hypothesis therefore
implies p(v) ⊆ p(w), hence p(v) ⊆ p(u). �

This lemma has one important implication concerning search spaces in the filled
graph Gα and in the elimination tree T = T (Gα ).

3.4 Corollary: Let G = (V , E) be a graph, α an order on V and T = T (Gα ) the
corresponding elimination tree. Then S(u ,T ) = S(u ,Gα ) for all u ∈ V . †

Proof: As T is a subgraph of Gα , it follows that S(u ,T ) ⊆ S(u ,Gα ) for all u ∈ V
by № 2.12. Conversely, if v ∈ S(u ,Gα ), there is some path p = (x1, . . . , x`) with
source x1 = u and target x` = v in Gα . By № 3.3 there exists for each arc xixi+1 in p
some path qi from xi to xi+1 in T . The concatenation of all these paths qi is a path
in T that has source x1 = u and target x` = v . �

We already saw in № 3.2 that the maximum search space size in the elimination
tree T is nothing but its height. As search spaces in the elimination tree and the filled
graph coincide by the above corollary, we find that studying elimination tree height
is the same as studying maximum search space size in Gα . Moreover, we know from
Theorem 3 – or more precisely from № 3.1 – that Smax(Gα ) is at most Smax(

∗Gα ).
Altogether, we find Smax(Gα ) ≤ ht(∗Gα ) + 1 and have thus proven the following
corollary.

3.5 Corollary: Let G = (V , E) be a connected weighted digraph and let ∗G be the
associated undirected graph. Then

Smax(Hα ) ≤ ht(∗Gα ) + 1

for any order α on the vertices of G and any weak contraction hierarchy Hα ⊇ Gα . †

Despite its innocent appearance, the above corollary is central to our analysis of search
spaces in contraction hierarchies, for it enables us to translate upper bounds on ht(∗G)
into upper bounds on Smax(G). These upper bounds are not seldom accompanied
by algorithms to determine orders α so that ht(∗Gα ) is less than the upper bound at
hand. Without any further modification these algorithms may be used to compute
contraction orders α with good upper bounds on Smax(Gα ).

Given № 3.5 and the apparently strong connection between weak contraction
hierarchies Hα , filled graphs ∗Gα and their elimination trees T (∗Gα ), the reader
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might wonder if there also exists a lower bound on Smax(Gα ) or Smax(Mα ) in terms
of ht(∗Gα ). In the remainder of this paragraph, we briefly sketch examples rendering
such lower bounds impossible if one is not willing to impose further restrictions on
either the arc lengths or the connectivity of G. Let us first discuss the feasibility
of a lower bound on Smax(Gα ) in terms of ht(∗Gα ). For each positive integer k , we
construct an undirected graph G as follows. Its vertices are composed of a single
vertex s and two rows a1, a2, . . . , ak+1 and b1,b2, . . . ,bk of vertices. Each ai is con-
nected to s , bi−1 and bi . If i − 1 < 1 or i > k , then G does simply not include
the corresponding edge {ai ,bi−1} or {ai ,bi }. The edges have lengths len(sai) = 1/3
and len(aibi−1) = len(aibi) = 1. The construction ofG is also schematically depicted
in Figure 3.3a. We consider the order α on V given by

α(x) =


i if x = bi

k + i if x = ai

2k + 2 if x = s .

(3.2)

Less formally, the vertex s gets contracted last and all the vertices bi are contracted
prior to the vertices ai . Furthermore, the vertices ai and bi are ordered by their
indices. It is not hard to convince oneself that contraction of G in this order leads
to no shortcut at all as each shortest path in G necessarily passes the vertex s that is
contracted last. The contraction hierarchy Gα of G hence looks like the one shown
in Figure 3.3b. Observe that Smax(Gα ) = 4. The filled graph Gα , on the other hand,
contains all the fill-arcs aiai+1 caused by the removal of the vertices bi during the
course of the elimination game. As can also be seen in Figure 3.3c and Figure 3.3d this
results in an elimination tree of height k + 2. All in all, the gap between Smax(Gα )
and ht(Gα ) is linear in the number of vertices of G and this example renders a lower
bound onSmax(Gα ) in terms of ht(Gα ) obviously infeasible. As a side note, we remark
that all the graphs G constructed above are fairly elementary in that they are planar
and bipartite. The suspicious reader might object that the degree of s is unbounded in
this example, but replacing the vertex s and its incident edges with e.g. a rooted binary
tree, a similar argument as above shows that the gap between Smax(Gα ) and ht(Gα ) is
still of the order of Ω(n/ log(n)). We leave the details to the reader but have sketched
the corresponding construction in Figure 3.4.

Let us now consider the difference between Smax(Mα ) and ht(∗Gα ). At first glance,
it might seem surprising that there is any gap at all between Smax(Mα ) and ht(∗Gα ),
for we have shown above thatMα andGα do coincide ifG is undirected. Moreover, the
preceding examples can obviously not be extended toMα since they exploited the fact
thatGα depends on the edge lengths andGα does not. However, the weak contraction
hierarchy Mα is constructed from the directed graph G, while the filled graph ∗Gα

is built only from the undirected graph ∗G associated with G. If we choose G to be
e.g. a directed acyclic graph whose vertices are topologically sorted by α , then Mα
contains no shortcut at all as there occurs no directed path (u ,v ,w) during contrac-
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b1 bk

· · ·
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1 1 1 1

(a) The undirected graph G with its edge
lengths drawn on the respective edges.

s

a1 a2 ak ak+1

b1 bk

· · ·

· · ·

(b) The contraction hierarchyGα = (G∧
α ,G

∨
α )

associated with the graph shown to the left
and the order α defined in (3.2). Note that
Smax(Gα ) = 4.

s

a1 a2 ak ak+1

b1 bk

· · ·

· · ·

(c) The filled graph Gα associated with the
graph shown in Figure 3.3a and the order
α defined in (3.2).

s

a1 a2 ak ak+1

b1 bk

· · ·

· · ·

(d) The elimination treeT (Gα ) associated with
the filled graph Gα shown to the left. Note
that ht(Gα ) = k+2 as the longest path with
target s in T (Gα ) is the one with source b1
of length k + 2.

Figure 3.3: An example of a family of weighted graphs G = (V , E) and orders α on their
vertices, such that the gap between Smax(Gα ) and ht(Gα ) is linear in the number of ver-
tices of G. Note that G∧

α and G∨
α with reversed arcs coincide since G is undirected and

since lenG(xy) = lenG(yx). The single graphG∧
α depicted in Figure 3.3b therefore suffices

to completely describe Gα .
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s

a11 a12

a21 a22 a23 a24

al1 al2
alk

2

alk+2
2

alk−1 alk

b1 b k
2

bk−1

· · · · · ·

· · · · · ·

ε ε

ε ε ε ε

1 1 1 1 1 1

T

(a) A graph G = (V , E) consisting of a complete binary tree T of height l with k = 2l

leaves al1, . . . , a
l
k and an additional row b1, . . . ,bk−1. Each bi is connected to ali and a

l
i+1

by an edge of length 1. All edges of T have length ε < 1/2l, so that each shortest path
of G lies inside of T . If contraction takes place bottom-up and from left to right in each
row, there is no shortcut at all in the corresponding contraction hierarchy Gα of G. The
maximum search space size Smax(Gα ) hence equals l + 2.
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(b) Relevant parts of the filled graphGα corresponding to the elimination game played on the
above graphG in bottom-up and left to right order. The arcs also occurring in the elimination
treeT (Gα ) are drawn black. All other arcs are shaded in grey. Note that ht(Gα ) = 2l+1−1
since the longest path with target s is essentially a zig-zag path starting in b1 and passing
all the vertices a ji .

Figure 3.4: A family of undirected graphs G = (V , E) with n = 3 · 2l − 2 vertices, bounded
degree and a gap between Smax(Gα ) and ht(Gα ) of order Ω(n/ log(n)).
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a1 a2 ak ak+1

b1 bk

· · ·

· · ·

(a) The directed acyclic graphG. We suppose
that vertices are contracted bottom-up and
from left to right in each row. Note that the
downwards directed graph M∨

α of the max-
imal weak contraction hierarchy Mα con-
tains no arcs at all. Furthermore, M∧

α = G
since there are no shortcuts in Mα . There-
fore, Smax(Mα ) = 3.

a1 a2 ak ak+1

b1 bk

· · ·

· · ·

(b) The filled graph ∗Gα resulting from the
elimination game played on the undirec-
ted graph associated with the graph G
shown to the left. Vertices are removed
bottom-up and from left to right in each
row. The arcs also occurring in the elim-
ination tree are drawn black and all other
arcs are drawn in shades of grey. Observe
that ht(∗Gα ) = k +1, which is linear in the
number of vertices of G.

Figure 3.5: An example of a family of weighted digraphs G = (V , E) and orders α on their
vertices, such that the gap betweenSmax(Mα ) and ht(∗Gα ) is linear in the number of vertices
of G.

tion of some vertex v . The filled graph Gα may nevertheless contain many fill-arcs.
The height ht(Gα ) of the corresponding elimination tree may thus be significantly
larger than Smax(Mα ). This phenomenon may also be seen in Figure 3.5. For a par-
ticular choice of α , the digraphG depicted therein has a maximal weak contraction
hierarchy Mα with Smax(Mα ) = 3 but the elimination tree height ht(Gα ) for this
particular order α is linear in the number of vertices.

Although the preceding examples render a lower bound on Smax(Gα ) or Smax(Mα )
in terms of ht(∗Gα ) impossible in general, some unanswered questions remain that are
worth mentioning. It is not clear whether appropriate conditions on the arc lengths
of G exist, such that the gap between Smax(Gα ) and ht(∗Gα ) may be bounded by
some slowly growing function or a constant. Similarly, finding a relation between the
connectivity of a digraph G and the gap between Smax(Mα ) and ht(Gα ) seems to be
a difficult but interesting task. Moreover, there is also a more conceptual issue with
our above examples. We always consider the filled graph ∗Gα and the contraction
hierarchy Gα with respect to the same order α . We leave it as an open question,
whether orders α with contraction hierarchies Gα that have small maximum search
space size Smax(Gα ) may be transformed into orders β , such that the resulting filled
graphs ∗G β have small elimination tree height. A positive answer to this question
would automatically imply the existence of approximation algorithms for the problem
of finding a contraction hierarchy with minimummaximum search space size Smax(G)
as we shall see below.
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3.2 Nested Dissection

As the computation of an order α that minimises ht(Gα ) is rendered computation-
ally infeasible for a large class of graphs by virtue of the above-mentioned hardness
results [Pot88; BDJKKMT98; DN06], one must be content with heuristics or approxim-
ation algorithms. In this paragraph, we revisit a particular heuristic going back to the
work of George [Geo73] that is commonly known as nested dissection. The basic idea
of nested dissection is to separate a given graph G = (V , E) into pieces G1, . . . ,Gd
of approximately equal size by the removal of a subset S ⊆ V , place the elements
of S last with respect to the prospective order α on V and recursively order the ver-
tices contained in the subgraphsG1, . . . ,Gd ofG. Employing approximate balanced
minimum separators in this very algorithm, Bodlaender et al. [BGKH91] show that
nested dissection gives in fact a r · log(n)-approximation to ht(G), where r denotes
the approximation ratio of the algorithm computing the separators. To the author’s
knowledge, the current best approximation ratio of r =

√
log opt, where opt denotes

the size of a minimum balanced separator, is achieved by the algorithm of Feige,
Hajiaghayi and Lee [FHL05]. Their algorithm even turns out to approximate balanced
minimum separators within only a constant factor on families of graphs that exclude
a fixed minor, such as the family of planar graphs. However, we have seen above
that our current techniques do not suffice to transform approximations to ht(G) into
approximations to Smax(G). As all known approximation algorithms for balanced
minimum separators are additionally not able to cope with graphs as large as those
one typically wants to compute a contraction hierarchy of, we do not pursue this line
of thought any further.

In order to make the notion of nested dissection precise, we suppose to be given
a (b , f )-balanced separator decomposition ofG , that is, a rooted tree T = (X, E) whose
nodes X ∈ X are subsets of the vertices V of G and that is recursively defined as
follows. Let n denote the number of vertices in G. If n ≤ n0 for some fixed con-
stant n0, then a (b , f )-balanced separator decomposition of G = (V , E) consists of
a single node X = V . If n > n0, then a (b , f )-balanced separator decomposition
of G consists of a root X ⊆ V of size at most f (n) whose removal separates G into
at least two subgraphs G1, . . . ,Gd with at most bn vertices each. The children of X
in T are then the roots of (b , f )-balanced separator decompositions of the connected
componentsG1, . . . ,Gd ofG after removal of X . We thereby assume that 0 < b < 1 is
a constant and that f is a not necessarily strictly increasing function that assumes its
values in the positive reals. Note, that we deliberately call the vertices of T nodes and
those of G vertices. To ease the following discussion, let us denote by TX the subtree
of T rooted in X and by GX the connected subgraph of G induced by the vertices
contained in the nodes of TX . Given some vertexu ∈ V , we refer to the unique nodeX
of T with u ∈ X also by Xu . A node X of T is further said to be of level i , if the unique
simple path from X to the root of T has length i . An illustration of a graph G and
one of its (1/2,

√
n)-balanced separator decompositions may be seen in Figure 3.6. It
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(a) A graph G = (V , E) with vertices numbered 1 through 11.
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(b) A (1/2,
√
n)-separator decomposition T = (X, E) of the graph shown

in Figure 3.6a. The nodes X ∈ X are drawn as grey circles containing
the vertices u ∈ X . The shades of grey become increasingly lighter with
ascending levels of the nodes X ∈ X. The root of T is the node drawn at
the top.

Figure 3.6: A graph G = (V , E) and a (1/2,
√
n)-balanced separator-decomposition of G.
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may also be seen in this example that each edge {u ,v} ofG , where Xu is of greater or
equal level than Xv , “follows” the unique simple path from Xu to the root R of T. It is
this very observation that we will exploit in what follows below and therefore record
in terms of the following remark.

3.6 Remark: Let T = (X, E) be a (b , f )-balanced separator decomposition of some
undirected graph G and let {u ,v} be an edge of G, such that Xu is of greater or equal
level than Xv . The node Xv is then an ancestor of Xu . †

Proof: Let R denote the root of T. Consider the lowest common ancestor X of Xu
and Xv in T, that is, the node X of T of highest level that simultaneously lies on both
the unique simple path from Xu to R and the unique simple path from Xv to R. As X
is the node of highest level that lies on both these paths, it follows that either X = Xv
or that Xu and Xv lie in distinct subtrees of TX . Observe that Xu and Xv cannot
possibly lie in distinct subtrees of TX , for u and v are connected by an edge and
vertices contained in distinct subtrees of TX belong to distinct connected components
ofGX rX by the definition of a (b , f )-balanced separator decomposition. It therefore
follows that X = Xv , which obviously implies our claim. �

Given a (b , f )-balanced separator decomposition T of G, we associate a nested
dissection order α(T) on the vertices of G with T. For this purpose, we choose an
arbitrary bijection αX : X → {n − |X | + 1, . . . ,n} and let

α(u) =

αX (u) if u ∈ X

α(Ti)(u) +
∑

j<i n j otherwise ,
(3.3)

where Ti denotes the subtree of T rooted in the i-th child X i of X and ni denotes
the number of vertices contained in the nodes of Ti . The order α(T) hence assigns
the maximum values to the vertices contained in the root X of T, maps the vertices
contained in the subtrees Ti of T rooted in X i into pairwise disjoint intervals

[1, . . . ,n1], [1 + n1, . . . ,n1 + n2], . . . , [1 +
∑
j<d

n j , . . . ,
∑
j≤d

n j ]

and induces a nested dissection order α(Ti) in each such interval. We denote by d
the degree of X in T. The reader should be aware that it is not mandatory but merely
convenient to require a nested dissection order α to map the subtrees Ti into disjoint
intervals. If one assumes that the children of a node X in our previous example from
Figure 3.6 are sorted from left to right, the nested dissection order α(T) associated
with the (1/2,

√
n)-balanced separator decomposition T of this example may be seen in

Figure 3.7. Nested dissection orders α = α(T) relate to our earlier observation № 3.6
in the following manner. Any edge {u ,v} with α(u) < α(v) certainly satisfies that Xu
is of greater or equal level than Xv , for otherwise u and v would have to be vertices
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i 1 2 3 4 5 6 7 8 9 10 11

α−1(i) 1 2 4 5 3 9 11 8 10 6 7

Root X of the
corresponding
subtree TX of T

{1, 2} {4, 5} {9} {11}

{3} {8, 10}

{6, 7}

Figure 3.7:The nested dissection order α(T) associated with the (1/2,
√
n)-balanced separator

decomposition T from Figure 3.6.

contained in disjoint subtrees of T, which is excluded by the existence of the edge {u ,v}.
Therefore, № 3.6 implies that Xu is not only of greater or equal level than Xv , but
that Xv is an ancestor of Xu . The following remark merely spells out this discussion.

3.7 Remark: Let G = (V , E) be an undirected graph and α = α(T) be the nes-
ted dissection order associated with a given (b , f )-balanced separator decompos-
ition T = (X, E) of G. Then Xv is an ancestor of Xu for any edge {u ,v} of G
with α(u) < α(v). †

Proof: We may assume without loss of generality that Xu , Xv , for otherwise our
claim is trivially satisfied. Let us assume for the sake of contradiction that Xv is
of greater level than Xu . Since α(u) < α(v) by assumption, our construction (3.3)
of α = α(T) then implies that Xu and Xv are nodes of disjoint subtrees of T. This is
in fact a contradiction since u and v are connected by an edge in G but ought to lie
in different connected components of GX r X , where X denotes the lowest common
ancestor of Xu and Xv in T. We may thus draw the conclusion that Xu is of greater
or equal level than Xv and our claim hence follows from № 3.6. �

Let us now investigate how these findings relate to the elimination game played onG in
order α(T). If the removal ofv = α−1(1) during the first step of the elimination game
played onG causes the insertion of a fill-edge {u ,w }, we find that both Xu and Xw are
ancestors ofXv by virtue of the above remark. If we additionally assume α(u) < α(w),
i.e. that uw is an arc of the filled graph Gα , we see that Xw is an ancestor of Xu .
Altogether, the graph G2 obtained from G = G1 by this first step of the elimination
game contains only edges, such that the node of T containing one endpoint is an
ancestor of the node containing the other endpoint. It now follows by induction that
subsequent steps of the elimination game can only lead to the insertion of fill-arcs xy
inGα , whereXy is an ancestor ofXx in T. The following remark makes this discussion
precise.
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Figure 3.8:Thefilled graphGα associatedwith the graphG shown in Figure 3.6a and the nested
dissection order α(T) of the (1/2,

√
n)-balanced separator decomposition from Figure 3.6.

Fill arcs are drawn dashed.

3.8 Remark: Let G = (V , E) be an undirected graph and α = α(T) be the nes-
ted dissection order associated with a given (b , f )-balanced separator decomposi-
tion T = (X, E) of G. Then Xv is an ancestor of Xu for any arc uv of the filled
graph Gα . †

Proof: It suffices to show that Xv is an ancestor of Xu for each edge {u ,v} of G i

with α(u) < α(v) and each step i of the elimination game. Observe that № 3.7 ensures
precisely this property for G = G1. We thus only need to show that G i+1 possesses
the above property if G i does, for our claim then follows by induction. To this end,
consider the vertex vi = α−1(i) that is removed in the i-th step of the elimination
game. Further let {u ,w } be a fill-edge with α(u) < α(w) that is inserted during
this step. There are then edges {vi ,u} and {vi ,w } in G i . Our assumptions imply
that both Xu and Xv are ancestors of Xvi in T since α(vi) is minimal among all the
vertices of G i . Note that this is possible only if either Xu is an ancestor of Xv or vice
versa. However, our assumption α(u) < α(v) and the construction (3.3) of α = α(T)
preclude the case that Xu is an ancestor of Xv . Altogether, we conclude that Xv is
indeed an ancestor of Xu for any fill-edge {u ,v} with α(u) < α(v) inserted during
the i-th step of the elimination game. This obviously finishes the proof. �

Summarising our above discussion, we have just shown that the target vertexv of any
arc uv ofGα is contained in a node X on the unique simple path from Xu to the root R
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of T. This can also be seen in Figure 3.8, where the filled graph Gα associated with
the graph from Figure 3.6a and the nested dissection order α = α(T) from Figure 3.6
and Figure 3.7 is depicted. An easy induction over the number of arcs of a path in Gα

now gives the following corollary.

3.9 Corollary: Let G = (V , E) be an undirected graph and α = α(T) be the nes-
ted dissection order associated with a given (b , f )-balanced separator decomposi-
tion T = (X, E) of G. Furthermore, let u ∈ V be any vertex of G. The search
space S(u ,Gα ) of u inGα is a subset of the set of vertices contained in all the nodes
lying on the unique simple path from Xu to the root R of T. In particular, this implies
that #S(u ,Gα ) is less than or equal to the number of those vertices. †

As the elimination tree T (Gα ) is a subgraph of Gα this same assertion holds true
in T (Gα ), too. We thus have the following corollary.

3.10 Corollary: Let G = (V , E) be an undirected graph and α = α(T) be the nes-
ted dissection order associated with a given (b , f )-balanced separator decomposi-
tion T = (X, E) ofG. Further let u ∈ V be any vertex ofG. The length of the unique
simple path from u to the root r of the elimination tree T (Gα ) is less than or equal
to the number of vertices contained in all the nodes lying on the unique simple path
from Xu to the root R of T. †

Comparing the above two corollaries, we feel that the formulation in terms of search
spaces and their size better reflects the actual reasoning we employed in № 3.6, № 3.7
and № 3.8 to draw these conclusions. In fact, our machinery of search spaces and their
size renders the usual indirection over elimination trees and their height essentially
superfluous and allows us to state the very same content naturally in terms of the
filled graph Gα . However, we ought to stop philosophising and rather explore the
consequences of the above corollaries concerning search space sizes in contraction
hierarchies. To this end, the following theorem is an immediate consequence of our
previous results.

Theorem 4 Contraction hierarchies with respect to nested dissection orders
Let G = (V , E) be a weighted digraph and α = α(T) be the nested dissection order
associated with a given (b , f )-balanced separator decomposition T = (X, E) of ∗G.
The search spaceS(u ,H∧

α ) as well as the reverse search spaceR(u ,H∨
α ) of any vertexu

in any weak contraction hierarchy Hα ofG is a subset of the set of vertices contained
in all the nodes lying on the unique simple path from Xu to the root R of T. This
implies in particular, that #S(u ,H∧

α ) and #R(u ,H∨
α ) are bounded from above by the

number of those vertices. ‡

In order to finally obtain an upper bound on Smax(u ,Hα ), we only need to bound the
number of vertices contained in the nodes on the simple path from Xu to the root R
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of T. This issue can not be handled simultaneously for all families of graphs, but
needs special treatment depending on the properties of G. In the remainder of this
paragraph, we give a rather general such treatment, but devote Chapter 3.3 to the
investigation of the issue at hand for some particular family of graphs.

Recall that a (b , f )-balanced separator decomposition T of a graphG with n vertices
is recursively defined as a tree with root X ⊆ V of size at most f (n), such that G r X
consists of at least two connected components G1, . . . ,Gd with at most bn vertices
each. The children X i of X in T are then the roots of (b , f )-balanced separator de-
compositions of G1, . . . ,Gd . As we required f to be increasing and as 0 < b < 1, it
follows that the children X i of X in T have size at most f (bn) ≤ f (n). Iterating this
argument, we find that all the internal nodes X of T have size at most f (n), while the
leaves have size n0 for some constant n0 ≥ 1. The number of vertices contained in all
the nodes on a path from a leaf of T to its root is therefore bounded from above by

n0 +
h∑

i=1

f (n) = n0 + h · f (n) , (3.4)

where h denotes the height of T. However, the height h of T may also bounded in
terms of the following remark.

3.11 Remark: The height of a (b , f )-balanced separator decomposition T of G is
bounded from above by loga n, where n denotes the number of vertices of G and
where a = 1/b. †

Proof: The proof is by induction on n.

n ≤ n0: If n ≤ n0, then T is a tree of height 0 and loga n ≥ 0 since n ≥ 1. In this case,
our claim is thus satisfied.

n > n0: If n > n0, the height h of T is given by h = 1 + maxi hi , where hi de-
notes the height of the subtree Ti rooted at the i-th child X i of X . Recall
that Ti contains at most bn < n vertices. Our induction hypothesis hence
implies hi ≤ loga(bn). Note that the right hand side of the latter inequality
equals loga(n) − 1 since a = 1/b. This gives the desired result. �

Combining the above remark with Theorem 4 and (3.4), we obtain the following
corollary.

3.12 Corollary: LetG be a weighted digraph and denote by ∗G the undirected graph
associated with G. Then

Smax(Hα ) ≤ n0 + f (n) · log1/b(n)

for any weak contraction hierarchy Hα ofG and any nested dissection order α associ-
ated with a (b , f )-balanced separator decomposition T of ∗G. †
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Albeit the above corollary finally gives the desired upper bound on Smax(Hα ), an
open question that we did not touch upon at all still remains to be answered: Are
there any suitable (b , f )-balanced separator decompositions of a given graphG and
how can they be computed in case they exist? We will answer this very question
for a particularly interesting case in Chapter 3.3. However, in this paragraph, we
committed ourselves to the most general phrasing of our results and deemed the
notions of treewidth and tree decomposition appropriate for a sufficiently general yet
meaningful summary of our findings so far. Essentially, we only make use of the fact
that a (1/2, k + 1)-balanced separator decomposition is computable from a suitable
tree decomposition of width at most k in time O(n · log(n)). The constant n0 that we
kept throughout this whole paragraph turns out to equal k + 1 in this particular case.
We remark that we require the tree decomposition ofG to be “suitable” only to exclude
too large tree decompositions; This is no serious restriction though. The reader may
find all the relevant definitions in the article of Bodlaender et al. [BGKH91] or in the
book of Diestel [Die06]. Given the definition of a tree decomposition and its width,
the well-known algorithm to compute (1/2, 1)-balanced separator decompositions in
trees facilitates the computation of (1/2, k + 1)-balanced separator decomposition
from a given tree decomposition of width k . Let us take these notions and the said
result for granted. We then obtain the following theorem.

Theorem 5 Contraction hierarchies of graphs with bounded treewidth
For any weighted digraph G of treewidth at most k , there exists an order α on the
vertices of G, such that

Smax(Hα ) ≤ (k + 1) · (1 + log(n))

for any weak contraction hierarchy Hα ofG . The number of arcs in Hα is thereby less
than or equal to n · (k + 1) · (1 + log(n)).

Moreover, given a suitable tree decomposition of width at most k , there are al-
gorithms that compute this order α in time O(n log(n)), the corresponding maximal
weak contraction hierarchyMα in timeO(kn log(n)) and the contraction hierarchyGα
in time O(kn log(n) · Tquery). ‡

Proof: The order α is of course the nested dissection order α(T) associated with
the (1/2, k + 1)-balanced separator decomposition T that one obtains from any tree
decomposition of G of width at most k . The upper bound on Smax(Hα ) then follows
from № 3.12. Moreover, this bound also applies to the maximal weak contraction
hierarchy Mα . This implies in particular that the average search space size in Mα
is bounded by the same term as is the maximum search space size Smax(Mα ). The
claimed bound on the number of arcs in any weak contraction hierarchy Hα ⊆ Mα
now follows from № 2.17.

Since T can be computed from a suitable tree decomposition in time O(n log(n))
and since the nested dissection order α(T) can then be constructed in linear time,
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the claimed running time for the computation of α follows. As the number of arcs
in Mα is of the order of O(nk log(n)), it follows that the algorithms from № 2.15 to
compute Mα and from № 2.16 to compute Gα in fact achieve the claimed running
times. �

The simplest class of graphs to which the above theorem applies are trees having con-
stant treewidth one. For them,Theorem 5 states that the maximum search space size in
a contraction hierarchy with respect to a nested dissection order is at most O(log(n))
while its space consumption is of the order of O(n log(n)). It is also the class of trees,
where explicit examples for an exponential gap between the minimum elimination
tree height and the height of an elimination tree associated with a nested dissection
order are known. More precisely, Heggernes constructs in her master’s thesis [Heg92]
a family of trees containing n = 2k vertices that have minimum elimination tree
height ht(G) ≤ log(k) but for which there is a nested dissection order resulting in
an elimination tree of height k . Note that this does not contradict the approximation
results of Bodlaender et al. [BGKH91] as the gap between the minimum elimination
tree height and the height of the elimination tree with respect to the nested dissection
order is still of the order of O(log(n)) = O(k). However, in the case that one is
really concerned with contraction hierarchies of trees, there are superior methods.
Algorithms due to Schäffer [Sch89], Iyer, Ratliff and Vijayan [IRV88] and Hsu, Peng
and Shi [HPS07] compute orders α on the vertices of an undirected tree, such that
the corresponding elimination tree is of minimum height. Moreover, utilising the fact
that paths in trees are unique, it is easy to see that the height ht(T α ) of an elimination
tree and the maximum search space size Smax(Tα ) in the contraction hierarchy Tα
of T coincide indeed. Thus, said algorithms also solve the problem to determine op-
timal contraction hierarchies of trees. Despite the fact that nested dissection orders
are not suitable for an approximation of the optimal maximum search space size, an
easy argument proves nested dissection to yield a 2-approximation to the minimum
average search space size in contraction hierarchies of trees – a problem that has not
been previously studied.

3.3 Nested Dissection in Graphs with O(
√
n)-Separators

In this paragraph we study the specifics of nested dissection in graphs admitting
balancedO(

√
n)-separators. In this particular situation, we can improve on our results

from Chapter 3.2 in that we obtain smaller upper bounds on both the number of arcs
in Gα and the maximum search space size Smax(Gα ) for nested dissection orders α .

In order to keep our exposition as self-contained as possible, we briefly recall the
notion of edge contraction and that of a minor of a graph. For this purpose, fix an
undirected graph G = (V , E) and let {u ,v} ∈ E be an edge of G. By the contraction
of {u ,v}wemean the removal of one of its endpoints, sayv , fromG and the subsequent
insertion of edges {u ,w } for each neighbourw of the removed endpoint v . The reader
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u vu v

yx z

(a) An undirected graph G = (V , E).

u v

yx z

(b) The undirected graph G shown to the left
after contraction of the edge {u ,v}.

Figure 3.9: Contraction of an edge {u ,v}. The graph obtained from contraction of the
edge {u ,v} of the graph shown in Figure 3.9a may be seen in Figure 3.9b. The vertex
corresponding to {u ,v} is drawn as grey circle containing both u and v .

might also envision the contraction of an edge {u ,v} as the process of continuously
shrinking the edge {u ,v} until both endpoints u and v meet and thus become a single
vertex ofG . Formally, the graphH = (V ′, E′) obtained fromG by contraction of {u ,v}
is given by V ′ = V r {v} and

E′ =
(
E r

{
{x ,y}

∣∣∣ v ∈ {x ,y} }) ∪ {
{u ,w }

∣∣∣ {v ,w } ∈ E andw , u
}
.

An example of an edge contraction may also be seen in Figure 3.9. Given the notion
of edge contractions, it is now straightforward to define what is meant by a minor
of some graph G: A graph H is said to be a minor of some graph G, if H may be
obtained from an arbitrary subgraph of G by successive contraction of edges. For
the remainder of this paragraph, we fix a class C of graphs that is closed under taking
minors and of which every graph on at least n0 vertices admits a (b , a

√
n)-balanced

separator. That is, any minor H of some G ∈ C is also contained in C and each G ∈ C
with n ≥ n0 vertices contains a set S of vertices of size at most a

√
n whose removal

separates G into connected components containing at most bn vertices each. Recall
from [Mad67] that any such class C of graphs is sparse in the sense that there is a
constant δ > 0, such that the number of edges of a graph G ∈ C with n vertices is at
most δn. By the infamous planar separator theorem of Lipton and Tarjan [LT79] and
its generalisation due to Gilbert, Hutchinson and Tarjan [GHT84], both the family
of planar graphs and the family of graphs embeddable on a surface of fixed genus д
are examples of such classes C. Moreover, there are algorithms to compute such
balanced separators in linear time [LT79; AD96]. Inspired by these results, Reed
and Wood and Kawarabayashi and Reed among others have studied the existence of
balanced O(

√
n)-separators in classes of graphs that exclude a fixed graph as minor.

For these families of graphs, there are O(n2/3)-separators, which can be computed
in linear time [RW09] and O(

√
n)-separators that can be computed in time O(n1+ε)

for any constant ε > 0 [KR10]. Perhaps a little less prominent but certainly worth
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mentioning in the context of our work is the model of road networks due to Eppstein
and Goodrich [EG08b; EG08a] that also features the existence of O(

√
n)-separators

and an algorithm to compute these separators in linear time.
We remark that (b , a

√
n)-balanced separator decompositions were already studied

by Gilbert and Tarjan and we refer the reader to their article [GHT84] for some of the
omitted proofs. Nevertheless, we want to give a proof of at least the most crucial result
concerning (b , a

√
n)-balanced separator decompositions T of graphs G ∈ C. More

precisely, we want to show that we are able to bound the number of vertices contained
in the nodes of a simple path in T from one of its leaves to the root by n0 + a

1−
√
b

√
n,

where n0 denotes the number of vertices contained in a leaf of T. This obviously
improves on the bound ofO(f (n) · log(n)) from Chapter 3.2 for the general case. More
precisely, we have the following remark.

3.13 Remark: Let T = (X, E) be a (b , a
√
n)-balanced separator decomposition of a

graph G = (V , E). The number of vertices contained in the nodes of a simple path
from a leaf of T to its root, is at most

n0 +
a

1 −
√
b

√
n . †

Proof: Recall that a node X of T is said to be of level i if the simple path from X to
the root R of T is of length i . Observe that a node X of level i contains at most a

√
b in

vertices. Therefore, the number of vertices contained in the nodes of a simple path
from the root of T to one of its leaves is certainly less than

n0 +
∞∑
i=0

a
√
b in .

This infinite series converges from below to

n0 +
a

1 −
√
b

√
n ,

which is the claimed bound. �

We thus obtain an upper bound of O(
√
n) on Smax(Hα ) for a nested dissection order α

and all weak contraction hierarchies Hα of a graph G belonging to the class C. Ac-
cording to № 2.17, this also implies an upper bound of O(n3/2) on the number of arcs
in Gα . However, for classes C as studied in this paragraph, a clever analysis due to
Gilbert and Tarjan [GT86] shows that there are at most O(n log(n)) arcs in the filled
graph Gα . Hence, the number of arcs in any weak contraction hierarchy Hα is also
bounded from above by O(n log(n)). Altogether, we obtain the following theorem.



3.4 Nested Dissection and Highway Dimension 73

Theorem 6 Contraction hierarchies of graphs with O(
√
n)-separators

For any minor-closed class C of graphs, such that any G ∈ C with at least n0 vertices
admits a (b , a

√
n)-balanced separator, there exists an order α on the vertices of G,

such that
Smax(Hα ) ≤ n0 +

a

1 −
√
b

√
n

for any weak contraction hierarchy Hα of G. The number of arcs in Hα is thereby of
the order of O(n log(n)).

Moreover, given a (b ,
√
n)-balanced separator decomposition of a graph G ∈ C,

this specific order α , the corresponding maximal weak contraction hierarchy Mα and
the contraction hierarchy Gα may be constructed in time O(n log(n)), O(n log(n))
and O(n log(n) · Tquery), respectively. ‡

The above theorem is not as strong as one might wish. Although we have bounded
the maximum search space size Smax(Hα ), a distance query in Hα might still require
time Tquery = Θ(n). This stems from the fact, that we are not able to bound the
number of arcs occurring in a particular search space S(x ,Hα ) and therefore have to
act on the assumption that a single search space may contain as many as Θ(n) arcs.
Obtaining sublinear bounds on the number of arcs contained in the search space of a
single vertex turns out to be a rather difficult problem. Admittedly, all our attempts
failed miserably. Nevertheless, this question is definitely worth considering, because
an upper bound on the number of arcs or a slight improvement on the query algorithm
would possibly render contraction hierarchies comparable to the data structures by
Djidjev [Dji96] or even Sommer [Som12] for answering distance queries in static
graphs.

3.4 Nested Dissection and Highway Dimension

In this paragraphwe try to compare our results of Chapter 3.1 to the results of Abraham
et al. [AFGW10; ADFGW11]. They propose a new graph parameter, called highway
dimension intended to capture the intuition that all sufficiently long shortest paths in
road networks necessarily pass at least one vertex out of a set of very few important
access nodes, like e.g. motorway junctions and slip roads. Utilising this new parameter,
they deduce upper bounds for the space consumption and query time of several
speedup techniques for Dijkstra’s algorithm – including contraction hierarchies. Our
approach differs from their work in that the edge lengths and shortest paths play a
crucial role in both the definition of highway dimension and in the resulting algorithms,
while we obtained Theorem 4 by hiding the edge lengths and shortest path structure
to arrive at a conceptually simpler problem. As a consequence, Abraham et al. obtain
smaller upper bounds on both the space consumption of contraction hierarchies and
the query time Tquery if the edge lengths are sufficiently well-behaved. However, our
main result in this paragraph states that our approach leads to strikingly similar
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upper bounds on both the space consumption of contraction hierarchies and the
running time of distance queries if the edge lengths are sufficiently ill-behaved. As
highway dimension has been defined only recently, near to nothing is known about its
relation to other graph parameters. We contribute to the understanding of highway
dimension in the sense that our results imply the existence of edge lengths on any
graphG , such that its highway dimension with respect to these lengths is of the order
of Ω(pw(G)/ log(n)), where pw(G) denotes the pathwidth of G.

Let us briefly recall the definition of highway dimension from [ADFGW11]. For
this purpose, let us fix a weighted, undirected graphG = (V , E). Given a vertex u ∈ V ,
the set of vertices v of distance at most ε from u is called the ball of radius ε around u
or simply the ε-ball. We denote the ε-ball around u by Bε(u). We say that a vertex u
covers a shortest path p if p contains u. The highway dimension hd(G) of G is the
least integer d , such that all the shortest paths p in G of length ε < len(p) ≤ 2ε that
intersect a given ball of radius 2ε can be covered by at most d vertices. This definition
does not generalise to digraphs as it stands and we restrict ourselves to undirected
graphs only, as our arguments below rely crucially on this very characterisation of
highway dimension. Abraham et al. devise a polynomial-time approximation of hd(G)
with approximation ratio of log(hd(G)) that is furthermore capable of computing sets
of size log(hd(G)) · hd(G) covering all shortest paths of length between ε and 2ε that
intersect a given 2ε-ball. Moreover, they describe specific orders α , for which they
are able to prove the following theorem.

Theorem (Abraham et al. [ADFGW11]):
LetG be a weighted graph of highway dimension d , diameter D and let ∆ denote the
maximum degree in G.

(a) There exists an order α on the vertices ofG , such that the number of arcs in the
contraction hierarchyGα is of the order of O(nd log(D)) and such that distance
queries in Gα can be answered in time O((∆ + d log(D)) · d log(D)).

(b) There is a polynomial-time algorithm that computes an order α on the vertices
of G, such that the number of arcs in Gα is of the order of O(nd log(n) log(D))
and such that distance queries in Gα may be answered with running time of
the order of O((∆ + d log(d) log(D) · d log(d) log(D)). ‡

The reader should be aware that the diameter D referred to in the above theorem is
the diameter with respect to integral edge lengths greater or equal to one.

In the remainder of this paragraph, we proceed as follows. We make the most
pessimistic assumptions on the edge lengths inG; That is, we consider edge lengths
on G, such that hd(G) with respect to these lengths actually achieves the maximum
possible highway dimension k over all edge lengths on G. For this particular choice
of lengths, we construct a (2/3, k)-balanced separator decomposition ofG , which then
provides the link to nested dissection orders and Theorem 4.
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3.14 Lemma: Let G = (V , E) be a connected undirected graph and denote by k the
maximum highway dimension over all possible edge lengths on G. Any connected
subgraph H of G containing at least 2k + 2 vertices may then be separated by the
removal of at most k vertices into at least two connected components, each of them
containing at most dnH/2e vertices. We thereby denote by nH the number of vertices
of H . †

Proof: The idea of this proof is the following. We construct edge lengths on G,
such that all paths connecting vertices of an appropriately sized subgraph H1 of H
to vertices in the remainder of G are shortest paths of length equal to one. We then
assign “infinitesimal” lengths to all the other edges, so that there is a ball containing
the whole of H1 of radius 3/2. By our assumptions, we may then choose a set S of at
most k vertices, such that each edge having one endpoint in H1 and the other in the
remainder ofG is covered by S . It turns out that S is in fact the sought separator of H .

Denote the set of vertices ofH byVH and its cardinality by nH . Choose a connected
subgraph H1 of H containing bnH/2c vertices and let V1 and n1 denote the set of
vertices of H1 and its cardinality, respectively. We define edge lengths len : E → R+

onG as follows. Any edge with one endpoint in V1 and the other endpoint in V rV1
is assigned a length of 1 and any edge with both endpoints in either V1 or V rV1 is
assigned a length of ε = 3/2 · nH . Observe that any simple path that lies completely
inside H1 has length at most nH · ε ≤ 3/2. Let us consider a ball B of radius 3/2
around any vertex u of H1. Observe that B contains the whole of V1 by the above
computation. According to our choice of k , the highway dimension hd(G) of G is at
most k . We may thus choose a set S of at most k vertices, such that each shortest
path in G that intersects H1 and has length between 3/4 and 3/2 contains at least one
element of S . We claim that removal of S ∩VH separatesH into at least two connected
components with at most dnH/2e vertices each. To this end, let us first reassure that
removal of S separates H1 from H r V1. Consider any path with source s ∈ V1 and
target t ∈ V rV1. This path necessarily contains an edge {u ,v} with u ∈ V1 andv < V1.
However, by the construction of the edge lengths in G, this edge is a shortest path
of length 1 and one of its endpoints is therefore contained in S . It remains to verify
that the connected components of H r S contain at most dnH/2e vertices each and
that there are at least two such components. However, the former claim follows
immediately from our choice of H1. In order to settle also the latter claim, note that
our assumption nH ≥ 2k + 2 implies

|V1 r S | ≥ |V1 | − k

≥ k + 1 − k = 1

∣∣∣VH r (V1 ∪ S)∣∣∣ ≥ |VH rV1 | − k
≥ k + 1 − k = 1 ,

which finishes the proof. �

We want to point out that the above argument can easily be adapted to the slightly
different definition of highway dimension in [AFGW10]. Although the proof of № 3.14
can hardly be called constructive, we still obtain the following corollary.
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3.15 Corollary: Let G = (V , E) be a connected undirected graph and denote by k
the maximum highway dimension over all possible edge lengths inG . ThenG admits
a (2/3, k)-balanced separator decomposition T whose leaves contain at most 2k + 1
vertices. Moreover, there exists an algorithm with polynomial time complexity that
computes a (2/3,O(k log(k)))-balanced separator decomposition T ofG , such that the
leaves of T contain at most O(k log(k)) vertices. †

Proof: According to № 3.14, each subgraph consisting of of n′ ≥ 2k + 2 vertices
may be separated into at least two connected components with at most dn′/2e ver-
tices each by the removal of at most k vertices. As dn′/2e ≤ 2

3n
′, we may construct

a (2/3, k)-balanced separator decomposition as follows: Beginning with G , we choose
in each step a separator of size at most k in each remaining connected component
of G, make it the root of a (2/3, k)-balanced separator decomposition of that specific
component and recursively proceed on the connected components after removal of
that separator. This obviously gives the desired (2/3, k)-balanced separator decompos-
ition T ofG . The leaves of T thereby have size at most 2k + 1, for otherwise we could
separate the corresponding connected component of G once more.

Employing the earlier-mentioned log(k)-approximation of the minimum set of
vertices covering all sufficiently long shortest paths instead of choosing an optimal
cover of size k , one obviously obtains the claimed polynomial-time algorithm to
compute a (2/3,O(k log(k)))-balanced separator decomposition of G whose leaves
contain at most O(k log(k)) vertices. �

Note that the above corollary together with № 3.10 implies that the minimum elimina-
tion tree height ht(G) of G has an upper bound in terms of the worst-case highway
dimension k . More precisely, applying № 3.10 to the (2/3, k)-balanced separator de-
composition of № 3.15 implies an upper bound of

ht(G) ≤ 2k + 1 + k
log(n)

log(3) − 1

on the minimum elimination tree height ht(G) ofG . Furthermore, as it is well known
that the pathwidth pw(G) of a graphG does not exceed its minimum elimination tree
height ht(G), we have just proven the below theorem. We refer the reader once again
to the article of Bodlaender et al. [BGKH91] for the relevant definitions and a proof
of the inequality pw(G) ≤ ht(G).

Theorem 7 Highway dimension and pathwidth
Let G be a weighted undirected graph. There exist edge lengths on G, such that

hd(G) ≥
(log(3) − 1)(pw(G) − 1)

log(n) + 2 log(3) − 2
>

1

2
·
pw(G) − 1

log(n) + 1
. ‡
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The above theorem is to our knowledge a novel and unanticipated relation between
highway dimension and more commonly used width parameters.

Moreover, № 3.15 may also be utilised to compare the performance of contraction
hierarchies computed with nested dissection orders to those computed on the basis of
highway dimension. More precisely, employing the estimates of № 3.15 in Theorem 4
and № 3.12, we obtain the following theorem.

Theorem 8 Nested dissection and highway-dimension based preprocessing
LetG = (V , E) be an undirected graph of diameter D and with maximum degree ∆.
Further denote by β the order whose existence is guaranteed by the theorem of
Abraham et al. and by δ the order as computed by the polynomial-time preprocessing
algorithm of Abraham et al. There exist edge lengths on G and a nested dissection
order α , such that

(a) the worst-case space consumption ofGα is at most a factor ofO(log(n)/ log(D))
greater than that of Gβ .

(b) the worst-case running time of distance queries in Gα is at most a factor
of O(log2(n)/ log2(D)) greater than that in Gβ .

Moreover, there is a polynomial-time algorithm that computes a nested dissection
order γ , such that

(c) the worst-case space consumption ofGγ is at most a factor ofO(log(n)/ log(D))
greater than that of Gδ .

(d) the worst-case running time of distance queries in Gγ is at most a factor
of O(log2(n)/ log2(D)) greater than that in Gδ . ‡

Proof: We choose edge lengths on G such that the maximum highway dimension k
of G is actually assumed. Recall from above that the optimal order β of the theorem
of Abraham et al. [ADFGW11] results in a contraction hierarchy Gβ that has

mβ = O
(
nk log(D)

)
arcs and on which a distance query has worst-case running time

Tβquery = O
(
(∆ + k log(D)) · k log(D)

)
.

By virtue of Theorem 4 and № 3.12, the nested dissection order α associated with
the (2/3, k)-balanced separator decomposition from № 3.15 results in a contraction
hierarchy Gα , such that

Smax(Gα ) = O(2k + 1 + k log(n)) .

By № 2.17, this implies that Gα has at most

mα = O
(
n · (2k + 1 + k log(n))

)
= O (kn log(n))
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arcs, which is a factor of O(log(n)/ log(D)) worse than the upper bound on mβ .
Moreover, we may estimate the worst-case query time inGα by simply assuming that
Dijsktra’s algorithm relaxes O(Smax(Gα )

2) arcs. This rather pessimistic assumption
then results in an upper bound of

Tαquery = O
(
Smax(Gα ) · log (Smax(Gα )) + Smax(Gα )

2
)

= O
(
k log(n) · log (k log(n)) + k2 log2(n)

)
on the running time of a distance query. This is a factor of at most

O

(
k log(n) · log (k log(n)) + k2 log2(n)

(∆ + k log(D)) · k log(D)

)
= O

(
k2 log2(n)

k2 log2(D)

)
= O

(
log2(n)

log2(D)

)
worse than the upper bound on Tβquery. The proof of the second part of the statement is
completely analogous. The only difference is that we employ the polynomial-time com-
putable (2/3,O(k log(k)))-balanced separator decomposition instead of the optimal
one we used above. �



4 Local Modification of Contraction
Hierarchies

The contraction hierarchyGα of some fixed weighted digraphG depends crucially on
the order α on V . In this chapter we are concerned with the question of how modific-
ations to α influence the structure of a possibly weak contraction hierarchy Gα . How-
ever, our theory does not allow for arbitrary rearrangements of the order. Instead, we
have to restrict ourselves to the case where the relative order of the endpoints s and t
of certain well-behaved arcs st is interchanged. These limitations are mostly due to
technical reasons and a prospective improvement on our formalism might provide
deeper insight into the impact of modifications of α on Gα .

The chapter is divided into three parts, of which the first introduces constitutive
pairs, which are used to classify all orders β for which Gα and Gβ are equal, that is,
to give a complete description of the arguably most simple modifications of α . The
second part of this chapter is concerned with tame arcs – our notion of well-behaved
arcs – and the last part is concerned with the question of how the rearrangement of the
relative order of the endpoints of such a tame arc affects the contraction hierarchyGα
in general. These investigations may serve as a solid foundation for postprocessing
algorithms for contraction hierarchies.

4.1 Constitutive Pairs

The aim of this paragraph is to gain a basic understanding of modifications to a given
order α . The conceivably simplest modification to α is one that does not changeGα at
all, and we initially focus on precisely these alterations of α . Let β denote the outcome
of such amodification toα , i.e. let β be an order onV , such thatGα = Gβ . It is clear that
ifuv is an arc ofG∧

α , thenuv is also an arc ofG∧
β . As β(u) < β(v) for any arcuv ofG∧

β ,
we see that β(u) < β(v) for all arcs uv of G∧

α . More generally, the same argument
applies to any pair of verticesu andv , where one is contained in the search space of the
other. If for examplev ∈ S(u ,G∧

α ), thenv ∈ S(u ,G
∧
β ) and hence β(u) ≤ β(v). Similar

observations apply of course also to G∨
α and G∨

β . After introducing some convenient
terminology and establishing some technical prerequisites, we will actually show that
these conditions are not only necessary but already sufficient for Gα and Gβ to be
equal.
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Inspired by our above discussion, let us call a pair u and v of vertices constitutive
of Gα if one vertex is contained in the search space of the other. More precisely, we
say that u and v are constitutive of Gα , if at least one of the four conditions

u ∈ S(v ,G∧
α ) u ∈ S(v ,G∨

α )

v ∈ S(u ,G∧
α ) v ∈ S(u ,G∨

α )

is satisfied. Let us further say that two orders α and β induce the same relative order on
two verticesu andv , if either bothα(u) < α(v) and β(u) < β(v) or if bothα(u) > α(v)
and β(u) > β(v). With this terminology at hand, our discussion at the beginning
of this paragraph may be summarised by saying that if Gα = Gβ , then α and β
necessarily induce the same relative order on any pair of vertices that is constitutive
ofGα . We also indicated that these conditions are already sufficient forGα andGβ to
coincide. Prior to proving this claim, we need to establish some more or less technical
results concerning the relative order of pairs constitutive of Gα .

There is an easy criterion to decide whether two orders α and β induce the same
relative order on all pairs of vertices that are constitutive of Gα in terms of the
following remark.

4.1 Remark: Two orders α and β induce the same relative order on any pair u and v
of vertices that is constitutive of Gα if and only if they induce the same relative order
on the endpoints of any arc uv of Gα . †

Proof: As the endpoints of any arc of Gα are constitutive of Gα , it is obvious that α
and β induce the same relative order on the endpoints of all arcs ofGα if they induce
the same relative order on any pair of vertices that is constitutive of Gα .

Suppose on the other hand that α and β induce the same relative order on the
endpoints of any arc of Gα and consider a pair u and v of vertices that is constitutive
of Gα . By the symmetry of G∧

α and G∨
α , we may assume without loss of general-

ity that v ∈ S(u ,G∧
α ). There is then a directed path p = (u = x1, . . . , xk = v)

in G∧
α . Since α and β induce the same relative order on any arc of Gα , it follows

that β(xi) < β(xi+1) for all i and hence β(u) ≤ β(v) by the transitivity of “≤”. �

If the equality of Gα and Gβ is really equivalent to the fact that α and β induce the
same relative order on all pairs of vertices that are constitutive of Gα , then this latter
condition ought to be symmetric. Apart from being useful in our subsequent proofs,
the following lemma may therefore be regarded as indirect evidence for the accuracy
of our claim.

4.2 Lemma: LetG = (V ,A) be a weighted digraph and let α and β be two orders on
its vertices V . If α and β induce the same relative order on each pair of vertices that
is constitutive of Gα , then they also induce the same relative order on each pair of
vertices that is constitutive of Gβ . †
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Proof: Let α and β induce the same relative order on each pair of vertices that is
constitutive of Gα . In view of № 4.1, it suffices to show that α and β induce the same
relative order on the endpoints of any arc of Gβ . By the symmetry of G∧

β and G∨
β , we

may furthermore restrict our attention to arcs uv ∈ A∧
β . Consider any arc uv ∈ A∧

β .
In order to prove that α and β induce the same relative order on u and v , it suffices to
show that α(u) < α(v). Let us assume for the sake of contradiction that α(u) ≥ α(v).
By Theorem 2, there is a vertex w ∈ Pα (u ,v), such that dist∧G(u ,w) = distG(u ,w)
and dist∨G(w ,v) = distG(w ,v) and such that α(w) > min{α(u), α(v)}. Our assump-
tion α(v) ≤ α(u) then implies α(v) < α(w). Observe that dist∧G(u ,w) < ∞ im-
plies w ∈ S(u ,G∧

α ) and that u and w are therefore constitutive of Gα . The ver-
ticesw and v are constitutive ofGα by an analogous argument involving dist∨G(w ,v).
This implies in particular that α and β induce the same relative order on the pairs u,w
andw , v and we therefore obtain the inequalities

β(u) ≤ β(w) and β(v) < β(w) (4.1)

from α(u) ≤ α(w) and our earlier established α(v) < α(w). Recall that uv ∈ A∧
β

and hence β(u) < β(v). In combination with (4.1) we thus obtain β(u) < β(w) and
hencew < {u ,v}. Moreover, our choice ofw ∈ Pα (u ,v) implies

distG(u ,v) = distG(u ,w) + distG(w ,v) .

Altogether we have thus found a vertexw ∈ Pβ(u ,v) distinct from both u and v . This
contradicts uv ∈ A∧

β and therefore finishes the proof. �

In view of the above lemma, it makes perfect sense to say that α and β induce the
same relative order on all constitutive pairs of vertices – without actually referring
to Gα or Gβ . There is just one minor technicality left before we can finally approach
our yet unproven claim.

4.3 Remark: Let u ,v ∈ V with distG(u ,v) < ∞ and assume Pα (u ,v) , {u ,v}. Then
there existw1,w2 ∈ Pα (u ,v) r {u ,v} such that both u,w1 and v ,w2 are constitutive
of Gα . †

Proof: Choose x ∈ Pα (u ,v)r {u ,v}. By Theorem 2, there is then somew ∈ Pα (u , x)
such that

dist∧G(u ,w) = distG(u ,w)

and dist∨G(w , x) = distG(w , x)

and such that α(w) > min{α(u), α(x)}. The latter inequality implies α(w) > α(u)
since α(x) ≥ α(u) by the choice of x . Moreover, w ∈ Pα (u , x) implies w ∈ Pα (u ,v)
and w , v by № 2.5 and our choice of x . We therefore find w ∈ Pα (u ,v) r {u ,v}
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as claimed. Now, it will suffice to show that w ∈ S(u ,G∧
α ) which follows readily

from dist∧G(u ,w) = distG(u ,w) < ∞. This proves the existence of w1 and a com-
pletely analogous argument proves the existence of a vertexw2 possessing the claimed
properties. �

Finally, we have mastered all technicalities and are ready to prove the main result of
this paragraph.

4.4 Proposition: LetG = (V ,A) be a weighted digraph and let α and β be two orders
on V . The following statements are equivalent:

(i) Gα = Gβ .

(ii) α and β induce the same relative order on the endpoints of all arcs of Gα .

(iii) α and β induce the same relative order on all constitutive pairs of vertices. †

Proof: It is clear that (i) implies (ii). Furthermore, (ii) and (iii) are equivalent by№ 4.1.
Hence, it remains to show that (iii) implies (i). To this end, in light of № 2.2, we need
to consider only G∧

α and G∧
β . Moreover, the equality of G∧

α and G∧
β is already implied

by A∧
α ⊆ A∧

β since by № 4.2 our claim is symmetric in the sense that the roles of α
and β may be interchanged.

Let us therefore assume that α and β induce the same relative order on all con-
stitutive pairs of vertices and consider some arc uv ∈ A∧

α . Note that α(u) < α(v) by
our choice ofuv ∈ A∧

α . Sinceu andv are constitutive ofGα , it follows that β(u) < β(v),
too. In order to show uv ∈ A∧

β it therefore suffices to show Pβ(u ,v) = {u ,v}. To this
end, assume Pβ(u ,v) , {u ,v}. By№ 4.3, we then find somew ∈ Pβ(u ,v)r{u ,v}, such
that u andw are constitutive ofGβ . Note that distG(u ,v) = distG(u ,w)+distG(w ,v)
and min{β(u), β(v)} < β(w). This latter inequality and the earlier established inequal-
ity β(u) < β(v) imply β(u) < β(w). Furthermore, u and w are constitutive, so that
we obtain α(u) < α(w). Altogether, we have just found a vertexw ∈ Pα (u ,v) that is
distinct from both u andv . This contradicts uv ∈ A∧

α and therefore finishes the proof.�

The above proposition completely classifies the modifications to α that leave Gα
unchanged. By negating the conditions (ii) or (iii) of№ 4.4, we thus obtain a description
of the modifications to α that have an actual effect on Gα . In order to effectively
alter Gα , one therefore has to rearrange the relative order of at least one pair of
constitutive vertices s and t . We study those modifications to α that leave the relative
order of all but one constitutive pair of vertices fixed in the following two paragraphs.

Let us close this paragraph with some remarks about the validity of our findings
for weak contraction hierarchies. Observe that speaking of constitutive pairs in
weak contraction hierarchies makes perfect sense, for their definition utilised only
search spaces, which do also exist in weak contraction hierarchies. Moreover, the
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(a) The weak contraction hierarchy Hα depic-
ted as H∧

α ∪ H
∨
α .

a

c

b

d

2

2

1

1

4

(b) The weak contraction hierarchy Hβ depic-
ted as H∧

β ∪ H
∨
β .

Figure 4.1: Two weak contraction hierarchies Hα and Hβ , where α and β induce the same
relative order on each pair of vertices that is constitutive of Hα but induce different relative
orders on the vertices b and c that are constitutive of Hβ . Arc lengths are drawn on the
respective arcs and the orders α and β are assumed to increase with the vertical position of
the vertices in both Figure 4.1a and Figure 4.1b.

proofs of № 4.1 and № 4.3 merely involved search spaces and the existence of cer-
tain paths in Gα , which are of course present in any weak contraction hierarchy,
too. Therefore, these two statements also apply to weak contraction hierarchies.
However, the proof of № 4.2 depended crucially on the fact that each arc uv of Gα
satisfies Pα (u ,v) = {u ,v} – a defining property of contraction hierarchies that is
generally not shared by their weak counterparts. It is not only our proof that fails but
the statement of № 4.2 is simply not true for weak contraction hierarchies. This may
also be seen in Figure 4.1, where there are two contraction hierarchies Gα and Gβ
such that α and β induce the same relative order on any pair of vertices that is con-
stitutive ofGα but not on any pair of vertices that is constitutive of Gβ . We already
argued above that № 4.2 should be understood as an indicator of the truth of № 4.4.
Moreover, our above example shows that there cannot be a well-defined notion of a
constitutive pair of weak contraction hierarchies independent of the order α . Con-
dition (iii) of № 4.4 hence makes no sense for weak contraction hierarchies and it
therefore shouldn’t come as a surprise that № 4.4, too, does not hold for arbitrary weak
contraction hierarchies. This, too, may be seen in Figure 4.1 but there are even simpler
counterexamples, which may be constructed by simply inserting some appropriate
arc into a given weak contraction hierarchy Hα while keeping the order α fixed. The
resulting weak contraction hierarchy and Hα obviously satisfy condition (ii) of № 4.4
but condition (i) fails for them. Furthermore, any possible adaption of condition (iii)
to weak contraction hierarchies also holds true in this example, because α and β are
exactly the same order.

Despite the above problems concerning an immediate translation of № 4.4 to weak
contraction hierarchies, we are still able to draw some important conclusions. To this
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end, note that both our counterexamples exploited the fact that weak contraction hier-
archies Hα are not completely determined by the order α but may include an almost
arbitrary set of additional shortcuts. However, if two weak contraction hierarchies
are equal, they contain the same set of additional shortcuts and their orders most
certainly induce the same relative order on each pair of vertices that is constitutive of
one of those hierarchies. Moreover, if one forbids arbitrary shortcut insertions and
deletions and instead concentrates on modifications of the order α only, one indeed
obtains an analogon of № 4.4 for weak contraction hierarchies. This is precisely the
subject of the following proposition.

4.5 Proposition: LetG = (V ,A) be a weighted digraph and let α and β be two orders
on V . Further consider two contraction hierarchy Hα and Hβ . Then

(a) If Hα = Hβ , then α and β induce the same relative order on all pairs of vertices
that are constitutive of Hα or Hβ .

(b) If α and β induce the same relative order on each pair of vertices that is con-
stitutive of Hα , then Hα and Hβ differ at most by weak shortcuts. †

Proof:

(a) If u and v are constitutive of Hα or Hβ , there is a path from u to v in one and
hence in both of the weak contraction hierarchies. We may assume without
loss of generality that α(x) < α(y) and β(x) < β(y) for each arc xy of this path.
Hence, we see that α(u) ≤ α(v) if and only if β(u) ≤ β(v).

(b) If α and β induce the same relative order on each pair of vertices that is con-
stitutive ofHα andHβ , they induce in particular the same relative order on each
pair of vertices that is constitutive of Gα and Gβ . Now, № 4.4 implies Gα = Gβ .
Any arc contained in Hα and not in Hβ or vice versa is thus a weak shortcut as
claimed. �

Note in particular that the above proposition has the same consequences as the non-
weak analogon № 4.4 when it comes to the classification of modifications to α that
have an actual effect on Hα . More precisely, we have just shown that in order to
achieve an actual effect on Hα with modifications to α only, we have to change the
relative order of at least one pair of vertices that is constitutive of Hα .

4.2 Tame Pairs

We saw in the preceding paragraph that a modification of α has to change the relative
order of at least one pair of constitutive vertices of a contraction hierarchy Gα or a
weak contraction hierarchy Hα in order to have any effect at all. For the purpose
of clear analysis, we focus on rearranging the relative order of exactly one pair of



4.2 Tame Pairs 85

constitutive vertices s and t while keeping the relative order of all other pairs of con-
stitutive vertices fixed. We call such a pair s and t of vertices a tame pair and say that
any order β which changes the relative order of s and t but retains the relative order of
all other pairs of constitutive vertices is obtained from α by swapping s and t . In view
of № 4.4 it is even plausible to speak of the order α obtained from swapping s and t
since any two orders β1 and β2 obtained from α by swapping s and t necessarily give
rise to equal contraction hierarchiesGβ1 andGβ2 or weak contraction hierarchies Hβ1
and Hβ2 that only differ by a set of weak shortcuts. It is a priori not clear, which
vertex pairs s and t are tame or if there are any tame pairs at all. We will immediately
address the former problem and develop a more manageable description of tame pairs
but delay a proof that they actually do exist until later. For this purpose, we focus on
actual contraction hierarchies Gα but point out to the reader that all our results are
equally well applicable to weak contraction hierarchies.

As a step in understanding tame pairs, let us consider the directed path that exists
between any two vertices s and t that are constitutive of Gα . It is rather easy to see
that this path has to consist of a single arc only if s and t ought to be tame.

4.6 Remark: Let s and t be a tame pair of vertices. Then there is neither in G∧
α

nor in G∨
α any path with endpoints s and t that contains more than a single arc.

Since s and t are constitutive of Gα this means in particular that Gα contains at least
one of the arcs st and ts . †

Proof: Let s and t be tame and let β be an order obtained from α by swapping s and t .
We may suppose t ∈ S(s ,Gα ) by the symmetry of G∧

α and G∨
α . Note that β(s) > β(t)

by our choice of β . Now consider any path p in G∧
α or G∨

α with endpoints s and t .
Let us assume for the sake of contradiction that there is some vertex u ∈ p distinct
from s and t . Then α(s) < α(u) < α(t) and both s ,u and u , t are constitutive of Gα .
Our choice of β implies in particular that β(s) < β(u) < β(t), which contradicts our
earlier established inequality β(s) > β(t). �

Given a tame pair s and t of vertices, we call the arcs st and ts – of which at least one
is guaranteed to exist by the above remark – tame, too.

In view of № 4.6, one might be tempted to conjecture that an arc st is tame if there
is no path with endpoints s and t in Gα other than (s , t). However, this turns out to
be false in general as may also be seen in Figure 4.2a. Therein, s , u and u, t are pairs of
vertices that are constitutive of the depicted contraction hierarchyGα and any order β
that induces the same relative order on each constitutive pair distinct from s and t
consequently satisfies β(s) < β(u), β(u) < β(t) and hence also β(s) < β(t). Therefore,
st cannot be tame even though there is no path between s and t distinct from (s , t)
in neither G∧

α nor G∨
α . Phrased a bit more generally, it was not a path in G∧

α or G∨
α

that hindered st from being tame in this example, but a sequence a1, . . . , ak of arcs
of Gα , where one endpoint of ai coincided with one endpoint of ai+1, that is, a path
in the undirected graph associated withG∧

α ∪G
∨
α . Indeed, it is easy to see that if there
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s

t

u

(a) An arc st that is not tame even though there
is no path inG∧

α ∪G
∨
α between s and t apart

from (s , t).

s

t

x1

x2

(b) Example of an arc st that is tame despite the
fact that there is a path (s , x1, x2, t) , (s , t)
in the undirected graph associated
with G∧

α ∪G
∨
α .

Figure 4.2: Example of a non-tame and a tame arc st . Both Figure 4.2a and Figure 4.2b depict
the graph G∧

α ∪G
∨
α for a specific contraction hierarchy Gα . The order on the vertices is

assumed to be ascending with the vertical position of the nodes.

is no such path in the undirected graph associated with G∧
α ∪G

∨
α , then st is a tame

arc. However, the non-existence of an undirected path from s to t other than (s , t)
turns out to be a criterion too strong. This may also be seen in Figure 4.2b, where
one can easily convince oneself that st is a tame arc even though (s , x1, x2, t) is a
path in the undirected graph associated with the shown contraction hierarchy Gα .
These two examples strongly suggest that tame arcs may possibly be characterised by
requiring that certain paths between s and t in some graph intermediate between Gα
and the undirected graph associated with Gα do not exist. Actually, this is precisely
the strategy we embark on.

Fix a pair s and t of vertices such that α(s) < α(t) and such that s and t are
constitutive ofGα . Let Dα (s , t) denote the set of vertices that are above s and below t ,
i.e. let

Dα (s , t) =
{
u ∈ V

∣∣∣ α(s) ≤ α(u) ≤ α(t)
}
.

Further let Kα (s , t) denote the union of G∧
α [Dα (s , t)] and G∨

α [Dα (s , t)] with all arcs
reversed, that is, let Kα (s , t) = (Dα (s , t), B) be given by

B =
{
uv | u ,v ∈ Dα (s , t) and uv ∈ A∧

α or vu ∈ A∨
α

}
.

It is precisely this graphKα (s , t), where we locate the obstruction that possibly hinders
a pair s , t from being tame. More precisely, we show that s and t are tame if and only
if there is no path from s to t in Kα (s , t) other than (s , t).
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4.7 Proposition: Let s , t ∈ V be a pair of vertices that is constitutive of Gα and
suppose α(s) < α(t). The following statements are then equivalent.

(i) The pair s and t is tame.

(ii) There is no path from s to t in Kα (s , t) other than (s , t). †

Proof: During the course of this proof we will simply write K instead of Kα (s , t)
and D instead of Dα (s , t).

“(i)⇒ (ii)”: If s and t are tame, then there is an order β on V , such that β(s) > β(t)
and such that α and β induce the same relative order on all constitutive pairs
of Gα except on s and t . Assume for the sake of contradiction that there is
a path p = (s = x1, . . . , xk = t) other than (s , t) in K . Note that since p is
distinct from (s , t), we have {xi , xi+1} , {s , t } for each i . Each arc xixi+1 of p
corresponds to an arc xixi+1 ∈ A

∧
α or an arc xi+1xi ∈ A

∨
α by construction of K .

In either case it is α(xi) < α(xi+1) and thus β(xi) < β(xi+1) by our choice of β .
Altogether, we see that β(s) < β(t), which contradicts our choice of β .

“(ii)⇒ (i)”: Note that K is an acyclic digraph by construction and that one may there-
fore speak of the search space S(s ,K) of s in K . We abbreviate S(s ,K) r {t }
by S . The basic idea of this part of the proof is as follows. We construct an
explicit order β by “pushing” S above t and thereby retaining the relative order
among all the vertices in S and all the vertices in D rS . The orders α and β then
induce the same relative order on any two vertices that are both contained in S
or both contained in D r S . Moreover, if u ∈ S and v ∈ D r S are constitutive
ofGα , then α(v) < α(u), for there would otherwise be a path from s via u to v
in K witnessing v ∈ S . This is also depicted in Figure 4.3, where a sketch of
both the original order α and the order β may be seen.

Let us make this argument precise. We write s = x0, . . . , xk to denote the
vertices contained in S and y0, . . . ,yl−1 = t to denote those in D r S . We
further assume the vertices xi and yi to be sorted by ascending values of α , that
is

α(s) = α(x0) < · · · < α(xk)

and

α(y0) < · · · < α(yl−1) = α(t) .

Let us define an order β on V by

β(u) =


α(t) − k + i if u = xi

α(t) − k − l + i if u = yi

α(u) otherwise.

(4.2)
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s

t

(a) The graph G∧
α ∪ G∨

α . The vertices
of S = S(s ,K) r {t } are fit in a grey shape.
The dashed path corresponds to the one in
Figure 4.3b.

s

t

(b) The order of the vertices after “moving” S
above t while retaining the relative order
among the vertices in S and among the ver-
tices in D r S .

Figure 4.3: Sketch of the construction of an order β that changes the relative order of the
endpoints of a tame arc st and fixes the relative order between any other pair of constitutive
vertices. The orders α and β on the vertices are indicated by their vertical position. Any
constitutive pair of vertices other than {s , t } on which α and β do not induce the same
relative order, gives rise to a path like the dashed one in Figure 4.3b. Any such path would
violate the assumptions of № 4.7, for it is part of a path from s to t in K other than (s , t).

Note that β is well-defined. Further observe that α(s) = α(t) − k − l and that

β
(
{x0, . . . , xk }

)
=

{
α(t) − k , . . . , α(t)

}
and

β
(
{y0, . . . ,yl−1}

)
=

{
α(t) − k − l , . . . , α(t) − k − 1

}
.

The map β : V → {1, . . . ,n} is therefore in fact bijective. Moreover, β(s) > β(t)
by construction. It only remains to verify that α and β induce the same relative
order on any pair of vertices that is constitutive of Gα but distinct from {s , t }.

To this end, note that α and β induce the same relative order on any two
vertices u and v , where {u ,v} * D. Let us now consider some pair u and v of
vertices constitutive of Gα such that {u ,v} ⊆ D and such that {u ,v} , {s , t }.
Note that if {u ,v} ⊆ S or if {u ,v} ⊆ D r S , then we are finished with the proof,
for α and β induce the same relative order on any such pair by the construction
of β . Let us consider the caseu ∈ S andv ∈ DrS instead. Note that β(v) < β(u)
for any such pair by the construction of β . If u ∈ S , there is a path p from s to u
in K . Furthermore, u and v are constitutive of Gα , so that there is a directed
path q between u and v in G∧

α or G∨
α . Observe that q induces a path qK in K

with source u and target v if it is a path with source u and target v in G∧
α or a

path with source v and target u in G∨
α . The concatenation p · qK would then
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be a path from s to v in K and would therefore witness v ∈ S(s ,K) r S . This
implies v = t and hence p · qK = (s , t) by assumption. Since u ∈ p · qK , it
follows that {u ,v} = {s , t }, which contradicts our initial choice of u and v . We
may therefore conclude that q is a path with source v and target u in G∧

α or a
path with source u and target v in G∨

α . In either case it is α(v) < α(u), which
finishes the proof since we already saw β(v) < β(u) earlier. �

The above proposition finally enables us to formally confirm the existence of tame
pairs. It even turns out that each vertex is incident to at least one tame arc.

4.8 Corollary: Let Kα denote the union of G∧
α and G∨

α with all arcs reversed and
let s be a vertex. Furthermore, let us be the arc of Kα with maximal value of α(u) and
let sv be the arc of Kα with minimal value of α(v). Then both u, s and s , v are tame.†

Proof: We restrict our attention to the arc us only, for the proof of the statement
concerning sv is completely analogous.

Note that Kα (u , s) ⊆ Kα . Suppose that u and s are not tame, i.e. there is a
path p from u to s in K(u , s) other than (u , s). Decompose p into p = (u ,w) · q
for some vertexw < {u , s}. Since all arcs in Kα are pointing upwards, it now follows
that α(u) < α(w) < α(s), which contradicts our choice of u. �

Note that № 4.7 does not only classify the set of tame arcs in a convenient way
but has some rather practical consequences, too. The characterisation of tame arcs st
by the existence of a path in Kα (s , t) is perfectly suited for the employment in an
algorithm. Moreover, for such an algorithm, it is neither necessary to explicitly com-
pute Kα (s , t) nor to examine the whole of Kα (s , t). Consider Algorithm 4.1. Given
an arc st ∈ A∧

α or ts ∈ A∨
α , it performs an implicit depth-first traversal with source

vertex s in Kα (s , t) by taking into consideration only the arcs uv ∈ A∧
α and vu ∈ A∨

α
with α(v) < α(t). As soon as the depth-first traversal discovers an arc ut ∈ A∧

α
or tu ∈ A∨

α , where u , s , it returns False, for it has found a path from s to t
in Kα (s , t) different from (s , t). If the algorithm terminates without ever finding such
an arc ut ∈ A∧

α or tu ∈ A∨
α , it returns True, for there cannot be a path from s to t other

than (s , t). This algorithm is clearly correct and may be implemented with running
time O(#S(s ,Kα (s , t))+mK), wheremK denotes the number of arcs in S(s ,Kα (s , t)).
We have just proven the following corollary.

4.9 Corollary: Given an arc st ∈ A∧
α or ts ∈ A∨

α , Algorithm 4.1 decides whether the
given arc is tame in time O(#S(s ,Kα (s , t)) +mK), wheremK denotes the number of
arcs in S(s ,Kα (s , t)). †

Algorithm 4.1 may be adapted to not only decide whether one specific arc st is
tame but to rather find all tame arcs st ∈ A∧

α and ts ∈ A∨
α for a prescribed vertex s .

For this purpose, the algorithm traverses Kα (s , t), where t is the neighbour of s with
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Algorithm 4.1: Deciding whether a given arc st is tame

Data: (Weak) Contraction hierarchy Gα = (G∧
α ,G

∨
α )

Input: Arc st of Gα
Output: True if st is tame and False otherwise

/* Initialisation */
1 (s , t)← (s , t) if α(s) < α(t) else (t , s)
2 Q ← 〈s〉
3 D ← ∅

/* Depth-first traversal of S(s ,Kα (s , t)) */
4 while Q , 〈〉 do
5 u ← Q .pop()
6 D ← D ∪ {u}
7 foreach uv ∈ A∧

α , vu ∈ A
∨
α do

8 if u , s and v = t then return False // A path , (s , t) from s to t
9 if α(v) < α(t) and v < D then Q .push(v)

10 return True

maximal α(t) and does not terminate when it discovers a path other than (s ,v) but
simply marks the arcs sv and vs as not tame and continues until all of S(s ,Kα (s , t))
is eventually taken care of. An implementation of this approach in pseudo code may
be seen in Algorithm 4.2. As marking arcs is clearly possible in constant time, the
time complexity of this algorithm is again O(#S(s ,Kα (s , t)) +mK). Altogether, we
have the following corollary.

4.10 Corollary: Given a vertex s , Algorithm 4.2 computes the set{
st ∈ A∧

α

∣∣∣ st is tame
}
∪

{
ts ∈ A∨

α

∣∣∣ ts is tame
}

in time O (#S(s ,Kα (s , t)) +mK), where t is the neighbour of s in Gα with max-
imal α(t) and wheremK denotes the number of arcs in S(s ,Kα (s , t)). †

Note that the subgraph of G consisting only of the tame arcs is also known as the
transitive reduction of G. The problem of determining the transitive reduction of a
given directed graph is an interesting problem on its own and was first studied by Aho,
Garey and Ullman [AGU72]. An algorithm solving the problem on directed acyclic
graphs with running time O(n +mr · k), wheremr denotes the number of tame arcs
and where k denotes the width of a so-called chain-decomposition ofG , was given by
Simon [Sim88].
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Algorithm 4.2: Computation of all tame arcs st ∈ A∧
α and ts ∈ A∨

α for a given
vertex s
Data: (Weak) Contraction hierarchy Gα = (G∧

α ,G
∨
α )

Input: Vertex s of Gα
Output: Set of all tame arcs st ∈ A∧

α or ts ∈ A∨
α .

/* Initialisation */
1 T ←

{
su

∣∣∣ su ∈ A∧
α

}
∪

{
us

∣∣∣ us ∈ A∨
α

}
2 Q ← 〈s〉
3 D ← ∅

/* Depth-first traversal of S(s ,Kα (s , t)) */
4 while Q , 〈〉 do
5 u ← Q .pop()
6 D ← D ∪ {u}
7 foreach uv ∈ A∧

α , vu ∈ A
∨
α do

8 if u , s then T ← T r {uv ,vu} // A path , (s ,v) from s to v
9 if α(v) < α(t) and v < D then Q .push(v)

10 return T

4.3 Swapping of Tame Pairs

After being able to determine the set of tame pairs in a given possibly weak contraction
hierarchyGα and having seen an explicit construction of the order β obtained from α
by swapping the endpoints of a tame arc, there still remains one major question to be
answered: How exactly does Gα differ from Gβ? Prior to delving into the technical
details, let us try to develop some intuition for what should happen upon swapping
the relative order of a tame pair s and t . The structure of Gα and Gβ , respectively,
essentially depends on the sets Pα (u ,v) and Pβ(u ,v) only. Both Pα (u ,v) and Pβ(u ,v)
depend on the respective order α or β and the distances and shortest paths in G.
However, changing the order has no impact whatsoever on the distances in G and
any discrepancy between Gα and Gβ therefore has to originate from a discrepancy
between α and β . More precisely, any vertex x ∈ Pα (u ,v) with x < Pβ(u ,v) necessar-
ily satisfies α(x) > min{α(u), α(v)} but also β(x) < min{β(u), β(v)}. That is, x was
“moved downwards” relative to u and v when we swapped s and t . If we consider the
explicit construction (4.2) of the order β and borrow related notation like S andD from
the proof of № 4.7, it is clear that the only vertices that are moved downwards in this
sense are those of D r S and the only vertices that are moved upwards are those of S .
That said, one might get an idea of what Gβ should look like by closely inspecting
Figure 4.4. Assuming that s lies on a shortest path from t to u, one realises that the
arc tu in Figure 4.4a becomes obsolete after swapping s and t in Figure 4.4b, for there
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s

t

v

u

(a) The digraph G∧
α ∪ G∨

α before swapping
the relative order of a tame pair s and t of
vertices.

s

t

v

u

(b) The digraph G∧
β ∪ G∨

β obtained from

swapping the vertices s and t in the hier-
archy G∧

α ∪G
∨
α shown to the left.

Figure 4.4: Sketch of the neighbourhood of a tame pair s and t before and after swapping their
relative order. The vertex s is assumed to lie on a shortest path from t to u and t is assumed
to lie on a shortest path from s to v . Observe that the arc tu in Figure 4.4a is obsolete in
Figure 4.4b, for there is now a path (t , s , . . . ,u) of equal length. Observe further that the
dashed shortcut sv in Figure 4.4b becomes necessary since the former path (s , t ,v) of G∧

α
is not contained in G∧

β anymore.

is then the path (t , s , . . . ,u) of equal length. Moreover, the potential shortcut sv is
unnecessary in Figure 4.4a, for there is still the path (s , t ,v). This path is missing in
Figure 4.4b after swapping s and t , which is why a new shortcut sv becomes necessary.

In what follows below, we make the above discussion precise and are eventually
able to deploy a proof of Theorem 9, which completely determines the structure ofGβ
in terms ofGα only. We additionally aim at a characterisation ofGβ that is applicable
in actual algorithms to computeGβ without the need to construct a whole contraction
hierarchy from scratch. Albeit rather technical, this material is certainly the technical
centrepiece of the whole current chapter. Let us fix some notation for this undertaking.
We consider a contraction hierarchy Gα and a tame pair s and t with α(s) < α(t).
We denote by β the order obtained from α by swapping s and t . We further assume
without loss of generality that β is precisely the order β constructed in (4.2) during
the proof of № 4.7. In that instance, we obtained β by “pushing the vertices x ∈ S
above t”, where S denoted the search space S(s ,K)r {t } of s in the graphK = Kα (s , t)
with vertices D = Dα (s , t). Additionally, we do not only borrow the definition of β
but also this related notation from the proof of № 4.7.

Let us start off by reassuring ourselves that swapping the endpoints of a tame
arc st preserves this arc in an appropriate manner, that is, moves st from G∧

α to G∨
α .
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Note that this is precisely what is depicted in Figure 4.4 and was also implicit but
unsubstantiated in our informal discussion above.

4.11 Remark:

(a) If st ∈ A∧
α , then st ∈ A∨

β .

(b) If ts ∈ A∨
α , then ts ∈ A∧

β . †

Proof: Note that (a) and (b) are symmetric, so that it suffices to prove (a) only. In
order to show st ∈ A∨

β it further suffices to prove Pβ(s , t) = {s , t } since β(t) < β(s)

by assumption. Let us assume the contrary, i.e. Pβ(s , t) , {s , t }. There is then
some x ∈ Pβ(s , t) r {s , t }. By the construction (4.2) of β , we see that x is either
an element of S or is not contained in D at all. Note that α and β then induce the same
relative order on x and s and we have thus found a vertex x ∈ Pα (s , t) r {s , t }. This
contradicts st ∈ A∧

α and therefore finishes the proof. �

The argument used to prove the above remark is exemplary for the more involved
proofs below. We mostly exploit our explicit construction (4.2) of β to show that
certain elements of Pβ(u ,v) are also contained in Pα (u ,v) or vice versa. Note that
these kinds of arguments would be far more involved with an arbitrary order obtained
from α by swapping s and t , for we would have to find ad-hoc justifications for each
argument involving the relative order induced by α and β on some non-constitutive
pair of vertices.

The following lemma provides a first characterisation of the the arcs of Gα that
become superfluous after swapping s and t .

4.12 Lemma: Let u and v be vertices with α(u) < α(v). The statements

(i) uv ∈ A∧
α and Pβ(u ,v) , {u ,v}

(ii) uv ∈ A∧
α and u = t and distG(t , s) + distG(s ,v) = distG(t ,v) < ∞

as well as

(i′) vu ∈ A∨
α and Pβ(v ,u) , {v ,u}

(ii′) vu ∈ A∨
α and u = t and distG(v , s) + distG(s , t) = distG(v , t) < ∞

are equivalent. Moreover, ts ∈ A∨
α or st ∈ A∧

α whenever there exists an arc tv ∈ A∧
α

satisfying (i) and (ii) or an arc vt ∈ A∨
α satisfying (i′) and (ii′), respectively. †

Proof: Note that it suffices to prove the equivalence of (i) and (ii), for the equivalence
of (i′) and (ii′) then follows by reversing all the arcs. More precisely, we show that
conditions (i) and (ii) are equivalent and that the existence of an arcuv ∈ A∧

α satisfying
condition (i) implies ts ∈ A∨

α .
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“(ii)⇒ (i)”: Note that uv ∈ A∧
α and u = t imply α(v) > α(t) and hencev , s . Further-

more, our assumption distG(t , s) + distG(s ,v) = distG(t ,v) < ∞ immediately
gives s ∈ Pβ(u ,v) r {u ,v} since u = t , β(s) > β(t) and s , v .

“(i)⇒ (ii)”: Note that Pα (u ,v) = {u ,v} by our assumption uv ∈ A∧
α . We choose a

vertex x ∈ Pβ(u ,v) r {u ,v} such that α(x) is maximal. By this choice of x ,
we then have β(x) > min{β(u), β(v)}. Moreover, α(x) < min{α(u), α(v)}, for
otherwise x would be an element of Pα (u ,v) distinct from both u and v . Note
that α(u) = min{α(u), α(v)} since uv ∈ A∧

α by assumption. A close look at
the definition (4.2) of β now reveals that the inequalities α(x) < α(u) < α(v)
and β(x) > min{β(u), β(v)} can be satisfied simultaneously only if x ∈ S and
at least one of the vertices u and v is contained in D r S . For the moment, let us
assume u < D r S . Then u is either an element of S or not contained in D at all.
It turns out that α and β induce the same relative order on x and u in both cases.
Since α(u) > α(x) and β(x) > min{β(u), β(v)} are satisfied simultaneously,
it follows that β(u) > β(x) > β(v). Observe that α and β induce different
relative orders on u and v ; Since s and t are tame by assumption, we find u = s
and v = t , which contradicts № 4.11. Altogether, we may thus draw the
conclusion that x ∈ S and u ∈ D r S .

We claim that ux ∈ A∨
α . Let us assume the contrary, i.e. Pα (u , x) , {u , x }.

According to № 4.3, we may then choose a vertex y ∈ Pα (u , x) r {u , x } such
that y ∈ R(x ,G∨

α ). Observe that α(y) < α(u) because otherwise

distG(u ,v) = distG(u , x) + distG(x ,v) =
distG(u ,y) + distG(y , x) + distG(x ,v) ≥ distG(u ,y) + distG(y ,v)

(4.3)

would prove y ∈ Pα (u ,v) r {u ,v}. Since s and t are tame and since x ∈ S
and y ∈ R(x ,G∨

α ), either y ∈ S , too, or x = s and y = t . The latter case
is contradictory as it would imply α(t) = α(y) < α(u) and hence u < D.
We therefore conclude y ∈ S . This implies β(y) > β(x) since both x and y
are elements of S and α and β induce the same relative order on any two
vertices contained in S by the construction of β . By (4.3), we may now conclude
that y ∈ Pβ(u ,v). Note that α(y) > α(x) since α(y) > min{α(u), α(x)} by
the choice of y and α(y) < α(u). This contradicts our choice of x and we thus
find Pα (u , x) = {u , x }, hence ux ∈ A∨

α .

Altogether we therefore have ux ∈ A∨
α and x ∈ S and u ∈ D r S . Since s

and t are tame by assumption, it follows that u = t and x = s . This finishes
this proof, for ux = ts ∈ A∨

α and x = s was chosen from Pβ(u ,v), hence
satisfies distG(u ,v) = distG(u , s) + distG(s ,v). �

Observe that the statement of the above lemma coincides with what we arrived at
by our preceding discussion. The only arcs uv ∈ A∧

α that become superfluous upon
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swapping s and t have source u = t and there is a condition for the disappearance of
such an arc tv in terms of the existence of a shortest path from t to v containing s .
However, the condition we conjectured differs from the one we have proven in that
we initially used arguments inGα but № 4.12 employs distances inG. The following
remark bridges this gap and fully justifies our informal discussion regarding arcs tv
of G∧

α that do not appear in Gβ .

4.13 Remark: Let u and v be vertices with α(u) < α(v).

(a) There is a path p = (s , . . . ,v) in G∧
α of length distG(s ,v) for each arc tv ∈ A∧

α
satisfying the equivalent conditions (i) and (ii) of № 4.12.

(b) There is a path p = (v , . . . , s) in G∨
α of length distG(v , s) for each arc vt ∈ A∨

α
satisfying the equivalent conditions (i′) and (ii′) of № 4.12. †

Proof: It suffices to prove (a) since (b) then follows by symmetry. Assume that there
is no path p satisfying our claim. According to Theorem 2 there exists then some
vertex x ∈ Pα (s ,v), such that dist∧G(s , x) = distG(s , x) and dist∨G(x ,v) = distG(x ,v).
Note that α(x) > α(v) since otherwise x = v and we would have found a path p as
claimed. Furthermore, our choice of x ∈ Pα (s ,v) and condition (ii) of № 4.12 imply

distG(t ,v) = distG(t , s) + distG(s ,v)

= distG(t , s) + distG(s , x) + distG(x ,v) ≥ distG(t , x) + distG(x ,v) ,

which proves x ∈ Pα (t ,v). This contradicts tv ∈ A∧
α as α(x) > α(v) implies that x is

distinct from both t and v . �

Combining the above remark with № 4.12, we already obtain a rather convenient
description of the arcs ofGα that are missing inGβ . Due to the restrictions imposed
by№ 4.13, we are even able to compute the setsA∧

αrβ = A∧
α rA

∧
β andA∨

αrβ = A∨
α rA

∨
β

quite efficiently. To this end, consider Algorithm 4.3. Provided that ts ∈ A∨
α this

algorithm collects all the arcs tv ∈ A∧
α whose target v is reachable from s and that

further satisfy
lenαG(tv) = lenαG(ts) + dist∧G(s ,v) .

Note that this latter equation is in fact equivalent to condition (ii) of № 4.12 because

lenαG(tv) = distG(t ,v) , lenαG(ts) = distG(t , s)

and

dist∧G(s ,v) ≥ distG(s ,v) .

It thus follows from № 4.12 and № 4.13 that Algorithm 4.3 correctly determines the
set of arcs uv ∈ A∧

α such that Pβ(u ,v) , {u ,v}. Furthermore, the only arc of G∧
α

that is possibly missing from G∧
β but not contained in this set, is the arc st . However,
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Algorithm 4.3: Computation of the arcs of G∧
α that become superfluous after

swapping a tame pair s and t in a contraction hierarchy Gα

Data: Contraction hierarchy Gα = (G∧
α ,G

∨
α )

Input: Tame pair s and t with α(s) < α(t).
Output: Arcs A∧

αrβ = A∧
α rA

∧
β , where β is the order obtained from α by

swapping s and t .

1 A∧
αrβ ← {st } if st ∈ A

∧
α else ∅

2 if ts ∈ A∨
α then

3 Compute dist∧G(s ,v) for all v ∈ S(s ,G
∧
α )

4 foreach tv ∈ A∧
α do

5 if lenαG(tv) = lenαG(ts) + dist∧G(s ,v) then A∧
αrβ ← A∧

αrβ ∪ {tv}

6 return A∧
αrβ

Algorithm 4.3 takes care of st in line 1, so that it is correct indeed. Further note that
Algorithm 4.3 has running time O(Tquery + deg(t)), as it computes dist∧G(s ,v) for
all v ∈ S(s ,G∧

α ) and subsequently examines each arc tv ∈ A∧
α once. Moreover, there

is an analogous algorithm that computes A∨
αrβ with running time O(Tquery + deg(t)).

Altogether, we have just proven the following corollary.

4.14 Corollary: For a given contraction hierarchy Gα there is an algorithm that
computes the sets A∧

α rA
∧
β and A∨

α rA
∨
β in time O

(
Tquery + deg(t)

)
. †

Algorithm 4.3 is a quite satisfactory solution to the problem of determining the arcs
ofGα that become superfluous upon swapping s and t . Therefore, all that remains is to
get hold of the arcs that are contained inGβ but not inGα . To a certain extent № 4.12
already allows us to argue about those arcs. Swapping s and t twice yields Gα again
and the arcs ofGβ that are not contained inGα are therefore precisely those arcs that
become superfluous upon swapping s and t in Gβ , hence the following corollary.

4.15 Corollary: Let u and v be vertices with α(u) < α(v). The statements

(i) uv ∈ A∧
β and Pα (u ,v) , {u ,v}

(ii) uv ∈ A∧
β and u = s and distG(s , t) + distG(t ,v) = distG(s ,v) < ∞

as well as

(i′) vu ∈ A∨
β and Pα (v ,u) , {v ,u}

(ii′) vu ∈ A∨
β and u = s and distG(v , t) + distG(t , s) = distG(v , s) < ∞

are equivalent. †
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The above corollary is hardly suited for a computation of Gβ from Gα , for it still
involves Gβ . However, reasoning quite similar to the proof of № 4.12 leads to a
characterisation of the additional arcs in Gβ using conditions in Gα only.

4.16 Lemma: The statements

(i) sv ∈ A∧
β and distG(s , t) + distG(t ,v) = distG(s ,v) < ∞.

(ii) (s , t ,v) is the only path from s to v of length distG(s ,v) in G∧
α and there is

furthermore no vertex x ∈ Pα (s ,v) r {v}, such that dist∧G(s , x) = distG(s , x)
and dist∨G(x ,v) = distG(x ,v).

as well as

(i′) vs ∈ A∨
β and distG(v , t) + distG(t , s) = distG(v , s).

(ii′) (v , t , s) is the only path from v to s of length distG(v , s) in G∨
α and there is

furthermore no vertex x ∈ Pα (v , s) r {v}, such that dist∧G(v , x) = distG(v , x)
and dist∨G(x , s) = distG(x , s).

are equivalent. †

Proof: Like before, it is sufficient to prove the equivalence of (i) and (ii) since the
equivalence of (i′) and (ii′) then follows by symmetry.

“(i)⇒ (ii)”: Let us first prove st ∈ G∧
α . Assume the contrary, i.e. that there exists some

vertex x ∈ Pα (s , t) r {s , t }. Observe that Pβ(s , t) ⊆ Pβ(s ,v) and v < Pβ(s , t),
for t lies on a shortest path from s to v by assumption. According to № 4.3,
we may assume without loss of generality that x ∈ S(s ,G∧

α ). Since x , t , it
then follows that either x ∈ S or x < D. In both cases, α and β induce the same
relative order on s and x . Note that this implies x ∈ Pβ(s , t), hence x ∈ Pβ(s ,v).
This contradicts our assumption sv ∈ A∧

β and thus proves st ∈ G∧
α .

Let us now consider t and v . Note that sv ∈ A∧
β implies β(v) > β(s) and thus

either v ∈ S or v < D. We claim that only the latter case occurs. Let us assume
the contrary, i.e. v ∈ S . Choose x ∈ Pα (t ,v) such that dist∧G(t , x) = distG(t , x)
and dist∨G(x ,v) = distG(x ,v). Such a vertex does always exist by Theorem 2.
Observe thatx , t , for otherwise dist∨G(x ,v) < ∞would imply the existence of a
path from s viav ∈ S to t in Kα that would be distinct from (s , t) sincev < {s , t }.
This means in particular that α(x) > α(t) and thus x < D. Note that this
also implies α(x) > α(v) since v ∈ S . Moreover, α and β induce the same
relative order on x < D and v ∈ S and we thus find β(x) > β(v). Utilising our
assumptions and the choice of x ∈ Pα (t ,v) one further computes

distG(s ,v) = distG(s , t) + distG(t ,v)

= distG(s , t) + distG(t , x) + distG(x ,v) ≥ distG(s , x) + distG(x ,v)
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and hence finds x ∈ Pβ(s ,v). This contradicts our assumption sv ∈ A∧
β

since α(x) > α(t) implies both x , s and x , v as seen above.

Altogether, we may draw the conclusion that v < D and thus α(v) > α(t). In
order to show tv ∈ A∧

α , it now suffices to prove Pα (t ,v) = {t ,v}. However,
any vertex x ∈ Pα (t ,v) r {t ,v} satisfies α(x) > α(t) and is thus not contained
in D. This implies in particular that α and β induce the same relative order on t
and any such x ∈ Pα (t ,v). It follows that Pα (t ,v) ⊆ Pβ(t ,v) = {t ,v}, which
finishes the proof of tv ∈ A∧

α .

Up to this point, we have proven the existence of a path (s , t ,v) in Gα . Note
that this path has length distG(s ,v) by the definition of the arc lengths in Gα
and our assumptions. Let us now show that there is no other path from s to v
of length distG(s ,v) in G∧

α . For this purpose consider an arbitrary such path p.
Note that p , (s ,v) since sv < A∧

α . We may thus choose some vertex x ∈ p
distinct from both s andv . Since there is a path from s to x and since s and t are
tame by assumption, it follows that either x = t , x ∈ S or x < D. The latter two
cases are obviously contradictory since α and β would induce the same relative
order on s and x and we would therefore find x ∈ Pβ(s ,v). Let us suppose x = t
instead. In that case, it follows that p = (s , t) · q since s and t are tame and
there thus cannot be any other path from s to t other than (s , t). Moreover, the
path q has length distG(t ,v) and any q , (t ,v) would therefore contain some
vertex of Pα (t ,v) r {t ,v}. This would obviously contradict tv ∈ A∧

α , which we
have just shown above. We may therefore conclude that p = (s , t ,v), which
proves the path (s , t ,v) to be unique.

It only remains to verify that v is the only vertex x ∈ Pα (s ,v) that satisfies
both dist∧G(s , x) = distG(s , x) and dist∨G(x ,v) = distG(x ,v). Note that any
such x necessarily satisfies α(x) ≥ α(v) and hence x < D. This means in
particular, that v is the only such vertex, for they all belong to Pβ(s ,v) = {s ,v}
by arguments completely analogous to the ones we employed above.

“(ii)⇒ (i)”: We choose to prove sv ∈ A∧
β and Pα (s ,v) , {s ,v}, which is equivalent to

condition (i) by № 4.15. Note that t ∈ Pα (s ,v) and hence also Pα (s ,v) , {s ,v}
follows immediately from our assumptions. It only remains to show sv ∈ A∧

β .
To this end, let us assume Pβ(s ,v) , {s ,v}. We choose x ∈ Pβ(s ,v) r {s ,v}
such that α(x) is maximal. Note that any x ∈ Pβ(s ,v) satisfies β(x) ≥ β(s) and
is therefore an element of S or not contained in D at all. As above, it follows
that α and β induce the same relative order on x and s , that is α(x) ≥ α(s), and
hence x ∈ Pα (s ,v).

By Theorem 2, there is some vertex y ∈ Pα (s , x), such that

dist∧G(s ,y) = distG(s ,y) , dist∨G(y , x) = distG(y , x) .
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Recall from above that either x , s and x ∈ S or x < D. Since there is a path
from y to x in G∨

α , it follows in both cases that y , t . As there is furthermore
a path from s to y in G∧

α , it follows that y ∈ S or y < D. Observe that α and β
induce the same relative order on s andy in both cases. We thus find β(y) > β(s)
and hence y ∈ Pβ(s , x) ⊆ Pβ(s ,v). Our initial choice of x now implies x = y
since α(y) ≥ α(x) follows from the existence of a path from y to x in G∨

α . This
implies in particular that dist∧G(s , x) = distG(s , x).

Let us now consider the vertices x and v . By Theorem 2 there exists some
vertex z ∈ Pα (x ,v) such that

dist∧G(x , z) = distG(x , z) , dist∨G(z ,v) = distG(z ,v) ,

which implies

dist∧G(s , z) ≤ dist∧G(s , x) + dist∧G(x , z)

= distG(s , x) + distG(x , z)

= distG(s , z) .

Observe that any z ∈ Pα (x ,v) is also contained in Pα (s ,v) sincex ∈ Pβ(s ,v) lies
on a shortest path from s to v and since we have already seen above that x = y
and α(y) ≥ α(s). Altogether, we have thus found a vertex z ∈ Pα (s ,v) such
that dist∧G(s , z) = distG(s , z) and dist∨G(z ,v) = distG(z ,v). Our assumptions
thus imply z = v . Note that x then lies on a path from s tov of length distG(s ,v),
which gives x ∈ {s , t ,v} by our assumptions. As β(x) ≥ β(s), we finally
obtain x ∈ {s ,v}, which contradicts our initial choice of x and therefore finishes
this proof. �

Note that the statement of the above lemma is in fact suited for an actual computation
of the arcsA∧

βrα = A∧
β rA

∧
α that have to be inserted upon swapping s and t . Dijkstra’s

algorithm in contraction hierarchies may easily be modified, so that it does not only
compute the distance of two vertices s and t but also the number of vertices x that
satisfy dist∧G(s , x) + dist∨G(x , t) = distG(s , t). Moreover, it is also possible to count
for each such x the number of predecessors on shortest paths from s to x inG∧

α . Both
these modifications can be implemented with constant overhead, so that condition (ii)
of № 4.16 can actually be checked in time O(Tquery). As one has to take each arc tv
into consideration, the resulting Algorithm 4.4 has running time O(deg(t) · Tquery).
Likewise, there is an algorithm computing the arcs A∨

βrα = A∨
β r A

∨
α with running

time O(deg(t) · Tquery). Altogether, we have the following corollary.

4.17 Corollary: There is an algorithm that computes for a given contraction hier-
archy Gα the sets A∧

β rA
∧
α and A∨

β rA
∨
α in time O

(
deg(t) · Tquery

)
. †

Having finally mastered all the above technicalities, we merely have to assemble
these results to obtain a complete description of Gβ in terms of Gα .
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Algorithm 4.4: Computation of the arcs of G∧
β that have to be inserted upon

swapping a tame pair s and t in a contraction hierarchy Gα

Data: Contraction hierarchy Gα = (G∧
α ,G

∨
α )

Input: Tame pair s and t with α(s) < α(t).
Output: Arcs A∧

βrα = A∧
β rA

∧
α , where β is the order obtained from α by

swapping s and t .

1 A∧
βrα ← {ts} if ts ∈ A

∨
α else ∅

2 if st ∈ A∧
α then

3 foreach tv ∈ A∧
α do

4 if condition (ii) of № 4.16 is satisfied then A∧
βrα ← A∧

βrα ∪ {tv}

5 return A∧
βrα

Theorem 9 Swapping the relative order of a tame pair
Let s and t be a tame pair with α(s) < α(t) and let β be the order obtained from α by
swapping s and t . Further let

∆st = {st } ∩A
∧
α ∆ts = {ts} ∩A

∨
α .

Then

A∧
β = A∧

α∪

∆ts ∪

 sv

∣∣∣∣∣∣∣∣∣∣∣
(s , t ,v) is a unique shortest s-v-path of
length distG(s ,v) in G∧

α and there is no
x ∈ Pα (s ,v) r {v} with dist∧G(s , x) = distG(s , x)
and dist∨G(x ,v) = distG(x ,v).




r

(
∆st ∪

{
tv ∈ A∧

α

∣∣∣∣∣ There is a path (s , . . . ,v) of length distG(s ,v)
inG∧

α and distG(t ,v) = distG(t , s) + distG(s ,v).

})
and

A∨
β = A∨

α∪

∆st ∪

 vs

∣∣∣∣∣∣∣∣∣∣∣
(v , t , s) is a unique shortest v-s-path of
length distG(v , s) in G∨

α and there is no
x ∈ Pα (v , s)r {v} with dist∧G(v , x) = distG(v , x)
and dist∨G(x , s) = distG(x , s).




r

(
∆ts ∪

{
vt ∈ A∨

α

∣∣∣∣∣ There is a path (v , . . . , s) of length distG(v , s)
inG∨

α and distG(v , t) = distG(v , s) + distG(s , t).

})
.

There is furthermore an algorithm computing this contraction hierarchy Gβ from Gα

in time O
(
deg(t) · Tquery

)
. ‡

Proof: The above description of A∧
β r A

∧
α and A∨

β r A
∨
α follows from № 4.16. The

characterisation ofA∧
αrA

∧
β andA∨

αrA
∨
β follows from№4.12 and№ 4.13. The appended

remark concerning an algorithm that computesGβ fromGα is just a summary of our
results № 4.14 and № 4.17 concerning Algorithm 4.3 and Algorithm 4.4. �
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The reader should note that the above theorem is nothing but a precise paraphrasing
of our informal discussion at the very beginning of this paragraph. In the end, our
intuition turned out to be true.

Given the above description of Gβ in terms of Gα , we may now reason about Gβ
using variables inGα only. It is in particular possible to determine for any given tame
pair s and t of vertices, whether swapping the relative order of s and t results in a
contraction hierarchy with smaller search space sizes. It remains to be determined
experimentally which criteria, like maximum search space size or average search
space size of vertices in R(s ,G∧

α ) and R(t ,G
∧
α ) r R(s ,G

∧
α ) are actually suited to be

employed in such a postprocessing of contraction hierarchies. The above theorem
may serve as a solid foundation for such practical algorithms.





Conclusion

In this thesis, we developed and justified a model of contraction hierarchies suffi-
ciently sophisticated to capture actual applications like the graphs computed by the
original algorithms of Geisberger et al. [GSSD08] but yet concise enough to lend itself
to theoretical investigations as carried out in Chapter 3 and Chapter 4. In Chapter 3.1,
we uncovered an unanticipated interrelation between contraction hierarchies and
filled graphs that directly relates the search space size and space consumption of
contraction hierarchies to the height of elimination trees and the number of fill-edges
in filled graphs, respectively. These relations allow the transfer of a huge amount
of both theoretical and practical research concerning filled graphs to the younger
problem of constructing efficient contraction hierarchies. Employing previous results
on a heuristic to compute elimination trees of low height known as nested dissec-
tion, we deduced in Chapter 3.2 and Chapter 3.3 upper bounds of O(log(n) · tw(G))
and O(

√
n) on the maximum search space size of contraction hierarchies of graphs of

bounded treewidth tw(G) and graphs belonging to minor-closed families of graphs
with separators of size O(

√
n), respectively. Moreover these bounds are accompanied

by reasonable upper bounds on the space consumption of the corresponding contrac-
tion hierarchies and practical algorithms to construct these contraction hierarchies.
These findings seem to be the first results on the performance of contraction hierarch-
ies that do not depend on the edge lengths of the underlying graph. In Chapter 3.4, we
subsequently compared our findings to previous work of Abraham et al. [AFGW10;
ADFGW11] that incorporates the edge lengths of the underlying graph and argued
that our approach does not perform worse if the edge lengths are only sufficiently
ill-behaved. Moreover, these considerations also led to a a lower bound on a parameter
called highway dimension in terms of pathwidth. Finally, in Chapter 4 we considered
the problem of locally modifying contraction hierarchies. We obtained a complete
description of the effect of swapping the relative order of the endpoints of specific
arcs that may serve as a solid foundation for postprocessing contraction hierarchies.
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OpenQuestions
The interrelation between filled graphs, elimination trees and contraction hierarchies
we described in Chapter 3 raises more questions than can be answered in a single thesis.
We investigated the implications only for a single heuristic for finding elimination
trees of low height. However, there are other algorithms with other characteristics
that might perform better in practise or theory. Moreover, there also remains one
conceptual problem with all of our results concerned with the performance of distance
queries. Although we deduced upper bounds on the search space size in contraction
hierarchies, we were not able to find a satisfactory answer to the question of how
search space size relates to the running time of distance queries. This is certainly
a difficult question and an answer may involve modifications to both our model of
contraction hierarchies or the actual query.

Furthermore, we were not concerned at all with the problem of minimising the
space consumption of contraction hierarchies – an important issue when deploying
mobile applications. As already indicated in Chapter 3.1, there is a vast amount of
research and hands-on experience concerned with the equivalent problem for filled
graphs. Our model of contraction hierarchies allows the transfer of this knowledge to
contraction hierarchies – an endeavour we have just begun.

The upper bound on pathwidth in terms of highway dimension that we have proven
in Chapter 3.4 also raises some questions. On the one hand, further investigation of
the relation between pathwidth and highway dimension seems to be a worthwhile
project. On the other hand, highway dimension is not only related to contraction
hierarchies but to several other speedup techniques for Dijkstra’s algorithm. It is not
known whether any other speedup technique relates to the pathwidth or treewidth
of the underlying graph. Any answer to these questions would greatly add to our
understanding of road networks, for both highway dimension and speedup techniques
are specifically targeted at road networks while pathwidth and treewidth are studied
extensively and quite well understood.

However, there are also more specific questions to be answered. As already indic-
ated at the end of Chapter 3.1, the investigation of the gap between maximum search
space size and elimination tree height is an interesting and open problem. Bounding
this gap would imply the existence of approximation algorithms for contraction hier-
archies with optimal maximum search space size on a variety of graphs. Related to
this question is the problem of finding lower bounds on the maximum search space
size in contraction hierarchies. Last but not least, an actual implementation and ex-
perimental evaluation of our algorithms would also add to our understanding of the
existing heuristics currently in use. To this end, we point out that the recent prac-
tical algorithm to compute balanced separators in road networks due to Delling et al.
[DGRW11] facilitates the practical computation of nested dissection orders. Further-
more, postprocessing existing contraction hierarchies based on our investigations of
tame pairs and their swapping presented in Chapter 4 and experimentally developing
strong local optimality criteria also seems to be a project that might pay off in the
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end.





Index of Notation

The following is an alphabetically sorted list of the most frequently used symbols
including short explanations and pointers to their definition. If there is more than
one definition, all of them are listed.

A
α A bijective map α : V → [n] assigning number to the

vertices V of some graph G.
p. 15

Av The arcs of the graph G = (V ,A) after contraction of a
single vertex v .

p. 13

Ai The arcs of the graph G = (V ,A) after contraction of
the first (i − 1) vertices as specified by an order α on its
vertices.

p. 15

A∧
α The arcs of a contraction hierarchy Ḡα or Gα whose

target vertex lies above its source vertex.
p. 19, 23

A∨
α The arcs of a contraction hierarchy Ḡα or Gα whose

target vertex lies below its source vertex.
p. 19, 23

B
B∧
α The arcs of a weak contraction hierarchy Hα whose

target vertex lies above its source vertex.
p. 38

B∨
α The arcs of a weak contraction hierarchy Hα or whose

target vertex lies below its source vertex.
p. 38

D
distG(s , t) Distance between vertices u and v in a weighted

graph G.
p. 5

dist∧G (u,v) The length of a shortest path from u to v in Ḡ∧
α or G∧

α . p. 19, 23
dist∨G (u,v) The length of a shortest path from u to v in Ḡ∨

α or G∨
α . p. 19, 23

dist∧H (u ,v) Distance between vertices u and v in the weak contrac-
tion hierarchy H∧

α .
p. 39

dist∨H (u ,v) Distance between vertices u and v in the weak contrac-
tion hierarchy H∨

α .
p. 39
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G
∗G The undirected graph obtained from a directed graph G

by forgetting the direction of all the arcs ofG.
p. 52

G(v) The graph G after contraction of a single vertex v . p. 13
G(i) The graphG after contraction of the first (i − 1) vertices

as specified by an order α on its vertices.
p. 15

Ḡα = (Ḡ∧
α , Ḡ

∨
α ) The contraction hierarchy of G with respect to the or-

der α as defined by Geisberger. The graph Ḡ∧
α contains

those arcs of Ḡα that point upwards, while Ḡ∨
α consists

of the arcs pointing downwards.

p. 19

Gα = (G∧
α ,G

∨
α ) The contraction hierarchy of G with respect to the or-

der α . The graph G∧
α contains those arcs that point

upwards, whileG∨
α consists of the arcs pointing down-

wards.

p. 23

Gα Chordal graph associated with an undirected graph G
and an order α on its vertices by means of the elimina-
tion game.

p. 52

H
Hα = (H∧

α ,H
∨
α ) A pair of digraphs H∧

α and H∨
α containing A∧

α and A∨
α

and satisfying some compatibility conditions.
p. 38

ht(Gα ) Height of the elimination tree associated with an undir-
ected graph G and an order α on its vertices.

p. 55

ht(G) Minimum height among all elimination trees of a fixed,
undirected graph G = (V , E).

p. 55

L
lenG(uv) Length of the arc uv in a weighted digraph G. p. 5
lenαG(uv) Length of the arc uv in the contraction hierarchy Gα

of G.
p. 19, 23

lenαH (uv) Length of the arc uv in the weak contraction hier-
archy Hα of G.

p. 39

M
Mα The unique maximal weak contraction hierarchy of a

digraph G with respect to a fixed order α .
p. 45

N
[n] The set of integers {1, 2, . . . ,n} linearly ordered by the

usual less than or equal relation “≤”.
p. 15
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P
Pα (s , t) Set of vertices that are above s or above t and that addi-

tionally lie on a shortest path from s to t .
p. 21

R
R(v ,G) Set of vertices from which a vertex v is reachable in a

directed acyclic graph G.
p. 34

#R(v ,G) Number of vertices from which a vertex v is reachable
in a directed acyclic graph G.

p. 35

S
S(v ,G) Set of vertices that are reachable from a vertex v in a

directed acyclic graph G.
p. 34

#S(v ,G) Number of vertices that are reachable from a vertex v
in a directed acyclic graph G.

p. 35

#S(G) Arithmetic mean of the search space sizes of all vertices
in a directed acyclic graph G.

p. 35

Smax(Gα ) Maximum search space size among all vertices in a fixed
contraction hierarchy Gα .

p. 35

Savg(Gα ) Sum of the unidirectional average search space
sizes #S(G∧

α ) and #S(G∨
α ) of the contraction hier-

archy Gα = (G∧
α ,G

∨
α ).

p. 37

Smax(G) Minimum of Smax(G , α) among all contraction hierarch-
ies Gα of a given graph G.

p. 35

scd(uw) Measure of how many nested shortcuts are below a
given arc uw of a contraction hierarchy Gα .

p. 25

sup(uw) Pair uv and vw of arcs that exist for any shortcut uw of
a contraction hierarchy Gα .

p. 25

T
T (Gα ) Rooted subtree of the filled graph Gα associated with

an undirected graph G and an order α on its vertices.
p. 55

T = (X, E) Decomposition of a graph G into a tree with nodes X
and edges E, such that each node X ∈ X is a subset of
the vertices ofG whose removal separates some specific
subgraph of G.

p. 62

Tquery Running time of the distance query Algorithm 2.3 in a
given contraction hierarchy Gα .

p. 35

V
Vv The vertices of the graph G = (V ,A) after contraction

of a single vertex v .
p. 13
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Vi The vertices of the graph G = (V ,A) after contraction
of the first (i − 1) vertices as specified by an order α on
its vertices.

p. 15



Bibliography

[AD96] Lyudmil Aleksandrov and Hristo Djidjev. Linear Algorithms for Par-
titioning Embedded Graphs of Bounded Genus. In: SIAM Journal on
Discrete Mathematics 9.1 (1996), pp. 129–150.

[ADFGW11] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg and
Renato F. Werneck. VC-Dimension and Shortest Path Algorithms.
In: ICALP (1). Ed. by Luca Aceto, Monika Henzinger and Jiri Sgall.
Vol. 6755. Lecture Notes in Computer Science. Springer, 2011, pp. 690–
699.

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg and Renato F.
Werneck. A Hub-Based Labeling Algorithm for Shortest Paths in Road
Networks. In: SEA. Ed. by Panos M. Pardalos and Steffen Rebennack.
Vol. 6630. Lecture Notes in Computer Science. Springer, 2011, pp. 230–
241.

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg and Renato F.
Werneck. Hierarchical Hub Labelings for Shortest Paths. In: ESA. Ed.
by Leah Epstein and Paolo Ferragina. Vol. 7501. Lecture Notes in
Computer Science. Springer, 2012, pp. 24–35.

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg and Renato F. Wer-
neck. Highway Dimension, Shortest Paths, and Provably Efficient Al-
gorithms. In: SODA. Ed. by Moses Charikar. SIAM, 2010, pp. 782–
793.

[AGU72] Alfred V. Aho, Michael R. Garey and Jeffrey D. Ullman.The Transitive
Reduction of a Directed Graph. In: SIAM Journal on Computing 1.2
(1972), pp. 131–137.

[AH94] Bengt Aspvall and Pinar Heggernes. Finding minimum height elimin-
ation trees for interval graphs in polynomial time. In: BIT Numerical
Mathematics 34.4 (1994), pp. 484–509.

[AMOT90] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin and Robert E.
Tarjan. Faster Algorithms for the Shortest Path Problem. In: Journal of
the ACM 37.2 (1990), pp. 213–223.



112 Bibliography

[BBRW12] Reinhard Bauer, Moritz Baum, Ignaz Rutter and Dorothea Wagner.
On the Complexity of Partitioning Graphs for Arc-Flags. In:ATMOS. Ed.
by Daniel Delling and Leo Liberti. Vol. 25. OASICS. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2012, pp. 71–82.

[BCKKW10] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug and
Dorothea Wagner. Preprocessing Speed-Up Techniques Is Hard. In:
CIAC. Ed. by Tiziana Calamoneri and Josep Díaz. Vol. 6078. Lecture
Notes in Computer Science. Springer, 2010, pp. 359–370.

[BDDW09] Reinhard Bauer, Gianlorenzo D’Angelo, Daniel Delling and Doro-
thea Wagner. The Shortcut Problem - Complexity and Approxima-
tion. In: SOFSEM. Ed. by Mogens Nielsen, Antonín Kucera, Peter
Bro Miltersen, Catuscia Palamidessi, Petr Tuma and Frank D. Valen-
cia. Vol. 5404. Lecture Notes in Computer Science. Springer, 2009,
pp. 105–116.

[BDJKKMT98] Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks,
Dieter Kratsch, Haiko Müller and Zsolt Tuza. Rankings of Graphs. In:
SIAM Journal on Discrete Mathematics 11.1 (1998), pp. 168–181.

[BDSSSW10] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdek-
ker, Dominik Schultes and Dorothea Wagner. Combining hierarch-
ical and goal-directed speed-up techniques for Dijkstra’s algorithm. In:
ACM Journal of Experimental Algorithmics 15 (2010).

[BGKH91] Hans L. Bodlaender, John R. Gilbert, Ton Kloks and Hjálmtyr Haf-
steinsson. Approximating Treewidth, Pathwidth, and Minimum Elim-
ination Tree Height. In: WG. Ed. by Gunther Schmidt and Rudolf
Berghammer. Vol. 570. Lecture Notes in Computer Science. Springer,
1991, pp. 1–12.

[Col09] Tobias Columbus. On the Complexity Of Contraction Hierarchies. Stu-
dent Thesis. Karlsruhe Institute of Technology, Institute for Theoret-
ical Informatics, 2009.

[Der07] Dariusz Dereniowski. Easy and hard instances of arc ranking in direc-
ted graphs. In: Discrete Applied Mathematics 155.18 (2007), pp. 2601–
2611.

[DGJ09] Camil Demetrescu, Andrew V. Goldberg and David S. Johnson. The
Shortest Path Problem: Ninth Dimacs Implementation Challenge. DIMACS
Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, 2009.

[DGRW11] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn and Renato F.
Werneck. Graph Partitioning with Natural Cuts. In: IPDPS. IEEE, 2011,
pp. 1135–1146.



Bibliography 113

[Die06] Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics.
Springer, 2006.

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs.
In: Numerische Mathematik 1.1 (1959), pp. 269–271.

[Dji96] Hristo Djidjev. On-Line Algorithms for Shortest Path Problems on
Planar Digraphs. In: WG. Ed. by Fabrizio d’Amore, Paolo Giulio Fran-
ciosa and Alberto Marchetti-Spaccamela. Vol. 1197. Lecture Notes in
Computer Science. Springer, 1996, pp. 151–165.

[DKKM94] Jitender S. Deogun, Ton Kloks, Dieter Kratsch and Haiko Müller. On
Vertex Ranking for Permutations and Other Graphs. In: STACS. Ed.
by Patrice Enjalbert, Ernst W. Mayr and Klaus W. Wagner. Vol. 775.
Lecture Notes in Computer Science. Springer, 1994, pp. 747–758.

[DKKM99] Jitender S. Deogun, Ton Kloks, Dieter Kratsch and Haiko Müller. On
the Vertex Ranking Problem for Trapezoid, Circular-arc and Other
Graphs. In: Discrete Applied Mathematics 98.1–2 (1999), pp. 39–63.
Revised version of On Vertex Ranking for Permutations and Other
Graphs. In: STACS. Ed. by Patrice Enjalbert, Ernst W. Mayr and Klaus
W. Wagner. Springer, 1994, pp. 747–758.

[DN06] Dariusz Dereniowski and Adam Nadolski. Vertex rankings of chordal
graphs and weighted trees. In: Information Processing Letters 98.3
(2006), pp. 96–100.

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes and Dorothea Wag-
ner. Engineering Route Planning Algorithms. In: Algorithmics of Large
and Complex Networks. Ed. by Jürgen Lerner, Dorothea Wagner and
Katharina Anna Zweig. Vol. 5515. Lecture Notes in Computer Science.
Springer, 2009, pp. 117–139.

[EG08a] David Eppstein andMichael T. Goodrich. Studying (Non-Planar) Road
Networks Through an Algorithmic Lens. In: CoRR abs/0808.3694 (2008).
Expanded version of Studying (non-planar) road networks through an
algorithmic lens. In: GIS. Ed. by Walid G. Aref, Mohamed F. Mokbel
and Markus Schneider. ACM, 2008, p. 16.

[EG08b] David Eppstein and Michael T. Goodrich. Studying (non-planar) road
networks through an algorithmic lens. In: GIS. Ed. by Walid G. Aref,
Mohamed F. Mokbel and Markus Schneider. ACM, 2008, p. 16.

[FG65] Delbert R. Fulkerson and Oliver A. Gross. Incidence matrices and
interval graphs. In: Pacific Journal of Mathematics 15.3 (1965), pp. 835–
855.



114 Bibliography

[FHL05] Uriel Feige, Mohammad T. Hajiaghayi and James R. Lee. Improved
approximation algorithms for minimum-weight vertex separators. In:
STOC. Ed. byHarold N. Gabow and Ronald Fagin. ACM, 2005, pp. 563–
572.

[FT87] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. In: Journal of the
ACM 34.3 (1987), pp. 596–615.

[Gei07] Robert Geisberger. Contraction Hierarchies: Faster and Simpler Hier-
archical Routing in Road Networks. Diploma Thesis. Universität Karls-
ruhe, Institute for Theoretical Informatics, 2007.

[Geo73] Alan George. Nested Dissection of a Regular Finite Element Mesh. In:
SIAM Journal on Numerical Analysis 10.2 (1973), pp. 345–363.

[GHT84] John R. Gilbert, Joan P. Hutchinson and Robert E. Tarjan. A Separator
Theorem for Graphs of Bounded Genus. In: Journal of Algorithms 5.3
(1984), pp. 391–407.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes and Daniel Del-
ling. Contraction Hierarchies: Faster and Simpler Hierarchical Routing
in Road Networks. In: WEA. Ed. by Catherine C. McGeoch. Vol. 5038.
Lecture Notes in Computer Science. Springer, 2008, pp. 319–333.

[GSSV12] Robert Geisberger, Peter Sanders, Dominik Schultes and Christian
Vetter. Exact Routing in Large Road Networks Using Contraction Hier-
archies. In: Transportation Science 46.3 (2012), pp. 388–404.

[GT86] John R. Gilbert and Robert E. Tarjan.The analysis of a nested dissection
algorithm. In: Numerische Mathematik 50.4 (1986), pp. 377–404.

[Heg06] Pinar Heggernes. Minimal triangulations of graphs: A survey. In: Dis-
crete Mathematics 306.3 (2006), pp. 297–317.

[Heg92] Pinar Heggernes.Minimizing Fill-in Size and Elimination Tree Height
in Parallel Cholesky Factorization. Master’s Thesis. University of Ber-
gen, Department of Informatics, 1992.

[HP08] Pinar Heggernes and Barry W. Peyton. Fast computation of minimal
fill inside a given elimination ordering. In: SIAM Journal on Matrix
Analysis and Applications 30.4 (2008), pp. 1424–1444.

[HPS07] Chung-Hsien Hsu, Sheng-Lung Peng and Chong-Hui Shi. Construct-
ing a minimum height elimination tree of a tree in linear time. In:
Information Sciences 177.12 (2007), pp. 2473–2479.

[IRV88] Ananth V. Iyer, H. Donald Ratliff and Gopalakrishnan Vijayan. Op-
timal node ranking of trees. In: Information Processing Letters 28.5
(1988), pp. 225–229.



Bibliography 115

[KR10] Ken-ichi Kawarabayashi and Bruce A. Reed. A Separator Theorem in
Minor-Closed Classes. In: FOCS. IEEE Computer Society, 2010, pp. 153–
162.

[KT99] Jan Kratochvíl and Zsolt Tuza. Rankings of Directed Graphs. In: SIAM
Journal on Discrete Mathematics 12.3 (1999), pp. 374–384.

[Liu90] Joseph W. H. Liu. The role of elimination trees in sparse factorization.
In: SIAM Journal on Matrix Analysis and Applications 11.1 (1990),
pp. 134–172.

[LT79] Richard J. Lipton and Robert E. Tarjan.A SeparatorTheorem for Planar
Graphs. In: SIAM Journal on Applied Mathematics 36.2 (1979), pp. 177–
189.

[Mad67] Wolfgang Mader. Homomorphieeigenschaften und mittlere Kantendi-
chte von Graphen. In: Mathematische Annalen 174 (4 1967), pp. 265–
268.

[MS12] Shay Mozes and Christian Sommer. Exact distance oracles for planar
graphs. In: SODA. Ed. by Yuval Rabani. SIAM, 2012, pp. 209–222.

[Par61] Seymour V. Parter. The Use of Linear Graphs in Gauss Elimination. In:
SIAM Reviews 3.2 (1961), pp. 119–130.

[Pey01] Barry W. Peyton. Minimal Orderings Revisited. In: SIAM Journal on
Matrix Analysis and Applications 23.1 (2001), pp. 271–294.

[Pot88] Alex Pothen. The Complexity of Optimal Elimination Trees. Technical
Report CS-88-13. Pennsylvania State University, 1988.

[RT78] Donald J. Rose and Robert E. Tarjan. Algorithmic Aspects of Vertex
Elimination on Directed Graphs. In: SIAM Journal on Applied Math-
ematics 34.1 (1978), pp. 176–197.

[RW09] Bruce A. Reed and David R. Wood. A linear-time algorithm to find
a separator in a graph excluding a minor. In: ACM Transactions on
Algorithms 5.4 (2009).

[Sch82] Robert Schreiber. A New Implementation of Sparse Gaussian Elim-
ination. In: ACM Transactions on Mathematical Software 8.3 (1982),
pp. 256–276.

[Sch89] Alejandro A. Schäffer. Optimal Node Ranking of Trees in Linear Time.
In: Information Processing Letters 33.2 (1989), pp. 91–96.

[Sim88] Klaus Simon.An Improved Algorithm for Transitive Closure on Acyclic
Digraphs. In: Theoretical Computer Science 58 (1988), pp. 325–346.

[Som12] Christian Sommer. Shortest-Path Queries in Static Networks. Sub-
mitted to ACM Computing Surveys. 2012.



116 Bibliography

[Tho03] Mikkel Thorup. Integer priority queues with decrease key in constant
time and the single source shortest paths problem. In: STOC. Ed. by
Lawrence L. Larmore and Michel X. Goemans. ACM, 2003, pp. 149–
158.

[Tho99] Mikkel Thorup. Undirected Single-Source Shortest Paths with Positive
Integer Weights in Linear Time. In: Journal of the ACM 46.3 (1999),
pp. 362–394.

[Yan81] Mihalis Yannakakis. Computing the Minimum Fill-In is NP-Complete.
In: SIAM Journal on Algebraic and Discrete Methods 2.1 (1981), pp. 77–
79.


	Introduction
	Preliminaries and Notation
	Modelling Contraction Hierarchies
	Algorithmic Approach to Contraction Hierarchies
	Formal Approach to Contraction Hierarchies
	Contraction Hierarchies and Shortest Paths
	Weak Contraction Hierarchies

	Upper Bounds on Search Space Size via Nested Dissection
	Contraction Hierarchies and Filled Graphs
	Nested Dissection
	Nested Dissection in Graphs with O(n)-Separators
	Nested Dissection and Highway Dimension

	Local Modification of Contraction Hierarchies
	Constitutive Pairs
	Tame Pairs
	Swapping of Tame Pairs

	Conclusion
	Index of Notation
	Bibliography

