
www.kit.edu
KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Institut für Theoretische Informatik

Lehrstuhl für Algorithmik I

Simultaneous Visualization
of Clusterings

Diplomarbeit
von

Jan Christoph Athenstädt

an der Fakultät für Informatik

Gutachter: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Betreuende Mitarbeiter: Dr. Martin Nöllenburg
Dipl.-Inform./Dipl.-Math. Tanja Hartmann

Bearbeitungszeit: 30. November 2012 – 30. Mai 2013

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Karlsruhe, den 30. Mai 2013

(Jan Christoph Athenstädt)

v

Deutsche Zusammenfassung

Es gibt bereits eine Reihe von Publikationen über die Visualisierung von
hierarchischen Clusterungen sowie von überlappenden Teilmengen im All-
gemeinen. Allerdings existieren bisher kaum Ansätze, zwei verschiedene
Clusterungen simultan zu visualisieren. In dieser Diplomarbeit legen wir die
theoretischen Grundlagen für die gleichzeitige Einbettung von zwei oder mehr
Clusterungen.

Nach einer Einleitung stellen wir im 2. Kapitel wichtige Konzepte aus den
Bereichen Graphen und Hypergraphen vor, welche die Grundlage für unsere
Arbeit bilden. Im darauffolgenden Kapitel führen wir Methoden ein, die es
uns ermöglichen, Zusammenhänge zwischen Clusterungen zu modellieren.

Im Hauptteil der Arbeit, dem 4. Kapitel, entwickeln wir eine Klassen-
Hierarchie, die es uns erlaubt, Familien von Clusterungen in Abhängigkeit
von ihrer Einbettbarkeit in die Ebene zu charakterisieren. Für alle bis auf
eine Klasse können wir Beispiele angeben, die zeigen, dass die Klassen der
Hierarchie echte Teilmengen voneinander sind. Außerdem zeigen wir, wie
sich diese Klassen zu bekannten kombinatorischen Problemen verhalten. Für
einige Klassen zeigt sich dadurch die Komplexität des Entscheidungsproblems,
ob eine Instanz zu dieser Klasse gehört oder nicht.

Für eine der Hauptklassen der Hierarchie, die “Strong Embeddability”,
entwickeln wir einen eigenen Beweis um NP-Vollständigkeit zu zeigen. Zur
Vorbereitung des Beweises entwickeln wir eine kombinatorische Beschreibung
von Einbettungen zweier Clusterungen und definieren eindeutige kombinato-
rische Einbettungen analog zu planaren Graphen.

Im 5. Kapitel implementieren wir ein ganzzahliges lineares Programm, das es
uns erlaubt, optimale Einbettungen für zwei weitere NP-vollständige Klassen
zu finden. Außerdem stellen wir einen heuristischen Ansatz vor, der es auch
für größere Instanzen erlaubt, gute Lösungen zu finden.

Abschließend führen wir im 6. Kapitel einige Experimente an zufällig gene-
rierten Instanzen hinsichtlich der Einbettbarkeit von Clusterungen und der
Qualität der Heuristik durch. Zudem wenden wir unsere Methoden im Rah-
men einer Fallstudie an zwei Beispielen an, welche auf Echtweltdaten basieren.

Wir beenden die Arbeit mit einem Fazit und Ideen für weiterführende For-
schung zum Thema.

v

vii

Abstract

While there are a number of approaches for the visualization of hierarchical
clusterings, as well as subsets in general, there exist only few attempts to
visualize different clusterings simultaneously in the same drawing. In this
thesis we lay the theoretical foundations for the simultaneous visualization
of two or more clusterings. We establish a class-hierarchy that allows us to
characterize families of clusterings depending on their embeddability in the
plane and show how these classes relate to known combinatorial problems.
For some of the classes it turns out to be an NP-complete problem to decide
whether an instance belongs to the class or not. We develop and implement an
integer linear program that allows us to find optimal embeddings for two classes
and additionally provide a simple and fast heuristic that allows us to find a
good, yet not always optimal solution. We finally experimentally evaluate
our methods on randomly generated instances regarding the embeddability of
clusterings and the quality of the heuristic. We conclude this work with a case
study in which we apply our methods to two examples based on real-world
data.

vii

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Our Contribution . 3

2. Graphs, Hypergraphs, and More 5
2.1. Graphs, Curves, and Embeddings . 5

2.1.1. Curves in the Plane . 5
2.1.2. Embeddings and Planarity of Graphs 6
2.1.3. Classes of Graphs and Substructures 7

2.2. Hypergraphs and Hypergraph-Planarity . 7
2.2.1. Visualization of Hypergraphs . 8
2.2.2. Zykov-Planarity . 8
2.2.3. Vertex Planarity . 9
2.2.4. The Support of a Hypergraph . 10

2.3. Related Concepts . 10
2.3.1. Venn Diagrams . 10
2.3.2. Euler Diagrams . 11
2.3.3. String Graphs . 11

3. Families of Clusterings 13
3.1. Representation of Multiple Clusterings . 13
3.2. Properties of the Cluster-Graph . 15

4. Simultaneous Embeddability of Clusterings 17
4.1. Weak Embeddability . 18
4.2. Strong Embeddability . 20

4.2.1. Strong Embeddability and the Cluster-Graph 20
4.2.2. Strong Embeddability and Vertex Planarity 23
4.2.3. On Combinatorial and Unique Strong Embeddings 27
4.2.4. Complexity of the Test for Strong Embeddability 33
4.2.5. Single-Intersection and Path-Based Strong Embeddability 39
4.2.6. Cylinder- and Plane-Grid Strong Embeddability 42

4.3. Full Embeddability . 44
4.4. The Hierarchy of Embeddability . 46

5. How to Generate Embeddings 49
5.1. Supports for Fully Embeddable Families of Clusterings 50
5.2. Supports for Non-Fully Embeddable Families of Clusterings 50
5.3. How to Find Grid Representations . 51

5.3.1. A Greedy Heuristic to Find a Grid Representation 52
5.3.2. Integer Linear Programs for Optimal Grid Representations 54

5.3.2.1. Optimal Plane-Grid Representations 54

ix

x Contents

5.3.2.2. Optimal Cylinder-Grid Representations 56

6. Experimental Evaluation of Grid Representations 59
6.1. Embeddability Depending on Grid-Size and -Coverage 59
6.2. Case Studies on Real-World Data Sets . 61

7. Conclusion 65
7.1. Open Problems in the Hierarchy . 66
7.2. Future Work . 66

Appendix 67
A. File Formats . 67
B. Calculating the Number of Bad Crossings in Grid Representations 68
C. Random Clustering Generators . 70
D. Experimental Results . 71

Bibliography 75

x

1. Introduction

In a world of increasing complexity the visualization of data becomes more and more
important. Especially in fields such as data mining and social network analysis, a graphical
representation provides a far more effective way for humans to understand relationships
and find patterns than the raw data in text form would do.

An important technique when it comes to analyzing large multivariate datasets – but
also graphs – is the concept of clustering. A clustering classifies the data points of the
dataset into groups, the clusters, such that each element is contained in exactly one cluster.
Figure 1.1 shows two different clusterings on a set.

C1 = {{A,B,C} , {D,E} , {F,G}}
C2 = {{A} , {B,D,F} , {C} , {E,G}}

CA

E D

B

FG

Figure 1.1.: Two clusterings on the set {A,B,C,D,E, F,G} with a simultaneous
embedding

Usually, clusters are based on the similarity (or connectedness, in the case of a graph) of
the elements in the dataset. Therefore, elements in the same cluster are elements that are
related to each other.

Clusterings can be either intrinsic to the datasets or result from a clustering method.

In an intrinsic clustering, the clusters are implicitly given by one of the dimensions of the
data set. In the example of a data set containing information about a group of people, an
intrinsic clustering could be the birthplace of a person.

Clustering methods in the field of data mining usually try to aggregate points to a cluster
that have a low distance from each other in the multidimensional space of the attributes.
For network analysis, metrics for the connectedness of the nodes can be used to cluster
the nodes into highly connected groups.

However, there often exist multiple intrinsic clusterings of a dataset. And also clustering
methods can provide different results depending on the algorithm or the parameters used.

1

2 1. Introduction

This raises the problem of comparing two different clusterings.

Indices such as the Rand index [Ran71] provide an objective numerical value describing
the similarity of two clusterings, but they provide no information on how single clusters
actually relate to each other.

Contrary to that, textual representations of clusterings as lists or tables provide detailed
information on the containing clusters for every single data point. These representations
are useful for a detailed analysis but fail to provide a general overview of the situation,
even when they are enriched with different colors (see [DCS06]).

In this work we will focus on a visual comparison of clusterings.

We can visualize a single clustering by defining a region in the plane for each cluster and
placing the contained data points of the cluster inside its region. We call this an embedding
of the clustering. When we repeat this for a second clustering, we can compare the two
drawings. However, since the data points might have been placed at different locations,
finding the same point in both drawings can be difficult.

This leads us to our main question: how can we simultaneously embed two different
clusterings in the same drawing?

A visualization of such an embedding would allow an intuitive comparison of the results of
clustering methods. For intrinsic clusterings, it could reveal differences and relationships
between different dimensions of the data. Furthermore, it can help to visually evaluate the
quality of a clustering method compared to a given intrinsic clustering. A simple example
how such an embedding might look like is given in Fig. 1.1.

1.1. Related Work

Previous works on embeddings of multiple sets focus either on a more restricted or a more
general version of our problem.

In the restricted case, multiple clusterings have to be hierarchical. In the general case, the
sets to be embedded are not limited to the structure of a clustering, and an element can
be contained in an arbitrary number of sets.

Examples for works on hierarchical clusterings include approaches for graphs (see [EF97])
and general sets (see e.g. [HY00]). Also embeddings of a single clustering have been
studied in relation with drawings that include edges of graphs. A core concept in this field
is clustered planarity (see [FCE95]).

Visualizations of intersections between subsets in general have first been used by Euler
[EdCCC42] in the 18th century and later been modified and formalized by Venn [Ven80].
In more recent works, these concepts have been refined and extended (see [Cho07] for an
overview). An interesting extension to this topic are spider-diagrams (see e.g. [GHK99])
where a graph is drawn on top of an existing Euler diagram. These diagrams can be used
for logical reasoning systems.

Interesting approaches for embedding a collection of subsets can also be found in literature
on hypergraphs and their planarity (see [KvKS09] for an overview). More practical ap-
proaches such as convex-hull-representations [SAA09], “Bubble Sets” [CPC09], and “Line
Sets” [ARRC11] also aim to highlight general subsets and their relationships.

Nevertheless, all these approaches for embeddings focus either on the special case of hier-
archical clusterings or on subsets in general. When applying the methods for general
representations of subsets induced by clusterings, the structure of the clusterings is not
taken into account. This can result in undesirable intersections between the regions of the
same clustering. To our knowledge, there exist no publications that study embeddings of
subsets for the special case that these are induced by two or more clusterings.

2

1.2. Our Contribution 3

1.2. Our Contribution

In this work we are going to develop the theoretical background for the simultaneous
visualization of two (or more) clusterings. We are going to focus on embeddings of the
clusterings and therewith provide the foundations for drawings that fulfill certain criteria
to increase readability. These criteria mainly focus on avoiding intersections between the
regions of two clusters, especially if these clusters do not share a common vertex.

After an overview of basic principles and definitions that will be of importance for this work
(Chapter 2), we will introduce concepts of modeling the relationships between clusters in
Chapter 3.

In Chapter 4 we focus on different levels of embeddability and how they relate to known
combinatorial problems from other fields. We establish a hierarchy that contains eight
different classes of embeddability. With one exception, we can provide examples that
show that the classes are true subsets of each other and thus prove the strictness of the
hierarchy.

We furthermore examine the complexity of the decision problems whether an instance
belongs to a class in the hierarchy or not. For most classes we can use the results from
related concepts. For a central concept, strong embeddability, this is not possible, and we
thus provide our own proof to show the NP-completeness of the corresponding decision
problem.

In Chapter 5 we provide practical approaches to generate embeddings of two clusterings.
We focus on grid representations of clusterings that are derived from two of the classes
in the hierarchy. The decision problem whether an embedding of this type is optimal is
also NP-complete. We provide an approach to generate such an optimal solution with
an integer linear program. In addition, we develop a fast heuristic that generates an
approximation of the optimal solution.

In the last chapter we conduct experiments with the heuristic on randomly generated
instances of grid representations. We examine the distribution of crossings between clusters
depending on the similarity of the clusterings. We further experimentally evaluate the
results of the heuristic against the optimal solution generated by the integer linear program
and apply our method to two instances that are based on real-world data.

We conclude the work with an overview and an outlook on open problems and future work.

3

2. Graphs, Hypergraphs, and More

In this chapter we present some fundamental concepts that are the basis to the ideas we
will develop in this work. We begin by introducing graphs and their embeddings and then
extend the concept to hypergraphs and some related ideas.

2.1. Graphs, Curves, and Embeddings

Graphs are a fundamental concept used in many areas of mathematics and computer
science. They are used to model networks and to describe the relationship between ele-
ments of a set. We are particularly interested in planar graphs. The book of Nishizeki and
Chiba [NC88] gives a good overview on the theory of planar graphs and related algorithms.
In the following we will briefly discuss the graph-theoretical concepts that are relevant to
this work.

An (undirected) graph G = (V,E) consists of a set of nodes V and a set of edges E, where
an edge e ∈ E is a pair e = {u, v} with u, v ∈ V . We say that u and v are incident
to e and vice versa. Two nodes are adjacent if they are connected by an edge, and two
edges are adjacent if they share a common node. A path from v1 to vn, v1, vn ∈ V in
G is an alternating sequence v1, e1, v2 . . . vn−1, en−1, vn of edges and nodes in G, where
ei = {vi, vi+1} and the nodes v2 . . . vn are distinct. The length of a path is the number of
edges in the path. A path from v1 to vn is called circle if v1 = vn. A graph is connected
if there exists a path between any two nodes u and v in V .

A graph is simple if it does not contain any parallel edges and loops (circles of length one).
Unless explicitly stated, all graphs in this work are assumed to be simple. If a graph is
not simple, we call it a multigraph.

We are going to introduce embeddings of graphs in the plane. In order to do this, we first
need to define curves in the plane:

2.1.1. Curves in the Plane

A curve γ in the plane is a continuous map γ : I → R2 from an interval I = [a, b] ⊂ R to
the plane R2. The points γ(a) and γ(b) are called the endpoints of the curve.

A curve is simple if it does not have any internal self-intersections:

∀x, y ∈ I \ {a, b} : γ(x) = γ(y)⇒ x = y

5

6 2. Graphs, Hypergraphs, and More

A curve is closed if both of its endpoints are mapped to the same point:

γ(a) = γ(b)

A curve Ca in the plane is homeomorphic to another curve Cb if there exists a continuous
bijection from the points in Ca to the points Cb, whose inverse is also continuous.

A Jordan curve J is a simple closed curve in the plane, i.e., a non-self-intersecting, con-
tinuous loop. It is homeomorphic to a circle in the plane. The Jordan theorem [Jor87],
proved in 1887, states that every Jordan curve divides R2 into a bounded and an un-
bounded region. We define int(J) and ext(J), respectively, to describe the subsets of R2

corresponding to these regions. We will also use the intuitive notions of inside and outside
of the curve. To remain consistent with some later definitions, we define in this work that
the points on the curve J itself belong to the inside int(J), i.e., int(J) = R2\ext(J).

A set of Jordan curves J = {J1, . . . , Jn} divides the plane into a set of disjoint regions
R(J). Mathematically, we can define the regions as follows:

R(J) := {X1 ∩X2 ∩ . . . ∩Xn | Xi ∈ {int(Ji), ext(Ji)}}

For a region R ∈ R in the plane, we denote by comp(R) := {R1, . . . Rn} the set of the
(path-) connected components of the region. These are the subsets of the region, for which
there exists a curve C between any two points in the subset such that C lies completely
within the subset.

We define the external region ext(J) ⊂ R2 of the set of Jordan curves as the, not necessarily
connected, region that lies on the outside of all Jordan curves:

ext(J) =
⋂
J∈J

ext(J)

In later chapters when it comes to embeddings of clusterings we will refer to the faces
F (J) of a set of Jordan curves J . These are simply the connected components of the
external region:

F (J) = comp(ext(J))

2.1.2. Embeddings and Planarity of Graphs

An embedding Π(G) = (P (V), C(E)) of a graph G = (V,E) in the plane consists of a set
of points P (V) with a point p(v) ∈ R2 for every node v ∈ V and a set of simple curves
C(E) ⊂ R2 with a curve c(e) for every edge e = {u, v}. The endpoints of c(e) correspond
to the points p(v) and p(u) of the incident nodes u and v.

A graph G is planar if it has a planar embedding where all edges are disjoint except for
their endpoints. It is possible to determine in linear time if a graph is planar: Hopcroft
and Tarjan [HT74] proposed the first efficient algorithm in 1974. The curves in planar
embeddings divide the plane into regions that are called the faces of the embedding. A
node or an edge is incident to a face if it lies on its boundary, and two faces are adjacent
if they are incident to a common edge.

Let Π(G) be a planar embedding ofG and F the set of faces. The dual graphG∗ = (V ∗, E∗)
that is induced by Π(G) has a node vf in V ∗ for each face f in F and an edge between
two nodes vf1 , vf2 if the corresponding faces f1, f2 ∈ F of Π(G) are adjacent.

A combinatorial planar embedding Πc(G) of a planar graph G = (V,E) is a rotation
system, i.e., a cyclic order πv = [e1, . . . en] of the incident edges of every node v ∈ V that

6

2.2. Hypergraphs and Hypergraph-Planarity 7

induces a planar embedding. Two planar embeddings of G are equivalent if they induce
the same combinatorial planar embedding. A graph G has a unique planar embedding if all
embeddings of G are equivalent, i.e., if there exists only one rotation system that induces
a planar drawing.

A subdivision G′ of a graph G is a graph, where one or more edges of G have been replaced
by a path via newly added nodes.

A graph is 3-vertex-connected (or just 3-connected) if the graph is still connected after any
two nodes are removed.

A graph has a unique planar embedding if it is a subdivision of a 3-connected planar graph
(See [NC88], Theorem 1.1).

2.1.3. Classes of Graphs and Substructures

A graph T = (V,E) is a tree if it is connected and has no circles. All trees are planar. A
tree has exactly |V | − 1 edges and any planar embedding of a tree has only one face. A
graph consisting of multiple trees is a forest.

The induced subgraph G[W] of a subset W ⊂ V of the nodes of a graph G = (V,E) is
the graph G[W] = (W,E′) where E′ = {{u, v} ∈ E | u ∈W ∧ v ∈W} is the subset of the
edges with both endpoints in W .

A graph is called k-partite if there exists a partition of its nodes into k disjoint sets, such
that no two adjacent nodes are in the same set. For k = 2 we also use the term bipartite.
If V = Va ∪ Vb and Va ∩ Vb = ∅, we use the notation G = (Va, Vb, E) for a bipartite graph
on the partitions Va and Vb.

A k-clique in a graph is a set of k nodes that induce a subgraph in which all nodes are
pairwise connected. We call a graph with k nodes complete if it is a k-clique. We write Kk

for the complete graph with k nodes. The complete graph with five nodes, K5 is one of the
two fundamental non-planar graphs. The other one is K3,3, the complete bipartite graph
on two sets of three nodes each. Complete bipartite means that each node is connected to
all nodes in the other partition.

A node is in the k-core of G if it is connected to at least k nodes that are also in the k-core.
Thus the k-core is the subgraph of G that remains after successive removal of nodes of
degree less than k.

2.2. Hypergraphs and Hypergraph-Planarity

A hypergraph is a generalization of the concept of graphs, where edges are not limited to
connect exactly two nodes, but are allowed to link an arbitrary set of vertices. Referring
to the book from Berge [Ber89], we give the following formal definition:

Let 2V be the power set of V . A hypergraph H = (V,S) consists of a set of vertices V
and a set S of hyperedges, which are non-empty subsets of V that cover all vertices in V :

S ⊆ 2V ,
⋃
S∈S

S = V

We call v ∈ V incident to S ∈ S (and vice versa) if V ∈ S. The degree dH(v) of a vertex
v ∈ V is defined as the number of edges incident to v: dH(v) = |{S ∈ S | v ∈ S}|

If all vertices in the hypergraph H have the same degree k, we call H k-regular. The
hypergraph H is complete if the set of hyperedges corresponds to the power set of the
vertices (S = 2V), and linear if every pair of sets shares at most one vertex.

7

8 2. Graphs, Hypergraphs, and More

For the visualization of hypergraphs, it is often useful to aggregate vertices that share the
same hyperedges to a single vertex. Mäkinen [Mäk90] has defined a binary equivalence
relation: two vertices u, v ∈ V are equivalent if they are incident to the same set of
hyperedges. The condensation H ′ of a hypergraph H is the hypergraph that results if we
identify equivalent vertices with one representing vertex from each equivalence class. We
will call a hypergraph condensed if it is equal to its condensation.

In the literature on graph-theory the terms vertex and node are usually used interchange-
ably. In this work however, we will try to maintain a nomenclature, in which we use the
term node for an element that is part of an ordinary graph. The term vertex is reserved
for elements in sets, such as the elements of a hypergraph. This will hopefully make it
easier to distinguish between the two concepts in some of the later proofs.

2.2.1. Visualization of Hypergraphs

There are multiple ways to visualize a hypergraph. The most common methods are the
subset standard and the edge standard [Mäk90].

In the edge standard, hyperedges are drawn as a set of curves, called bunches, such that
two curves in the same bunch are overlapping in the area close to their common vertex
(Fig. 2.1(a)). The subset standard encloses vertices within a hyperedge by a Jordan curve
(Fig. 2.1(b)). The latter method of visualizing the relationships between sets is related to
the concept of Venn- and Euler-diagrams (See Section 2.3.1 and 2.3.2). In this work we
will refer to drawings in the subset standard as embeddings.

a

b

c

d
ef

(a)

a

b

c

d
ef

(b)

Figure 2.1.: The visualization of a hypergraph in the edge- and in the subset-standard.
The example was taken from [Mäk90]

The known concept of planarity for graphs does not transfer to hypergraphs in a straight
forward way and scientific literature provides multiple definitions of planarity for hyper-
graphs. We will now introduce the two concepts that are relevant for this work.

2.2.2. Zykov-Planarity

In Zykov’s concept of planarity [Zyk74], hyperedges are represented as faces of a subdivision
of the plane with the vertices placed on their boundaries. A graph is Zykov planar if there
exists such a subdivision, in which every vertex lies on the boundary of all the faces of its
incident hyperedges.

Formally, a hypergraph H = (V,S) is Zykov-planar if there exists a planar embedding
Π(GM) of a multigraph GM = (V,EM) with the set of vertices of H as nodes and a set of
faces FM , such that:

8

2.2. Hypergraphs and Hypergraph-Planarity 9

• every hyperedge Si ∈ S can be mapped to a face fi ∈ FM

• every v ∈ Si is incident to fi

Figure 2.2 shows an example of such an embedding for an example-hypergraph1.

u6
u5

u4

u3

u2

u8

u1

u7

x8

x9
x10

x2

x1

x3

x4

x7

x5

x6

V = {x1, . . . x10}
S ={

u1 = {x1, x2, x8}
u2 = {x1, x3}
u3 = {x3, x4, x7}
u4 = {x6, x7, x8}
u5 = {x5, x6}
u6 = {x7}
u7 = {x1, x2, x8}
u8 = {}
}

Figure 2.2.: An embedding of GM that shows the Zykov-planarity of the example-
hypergraph H. This example is taken from Zykov’s original paper [Zyk74]

Zykov planarity is a true generalization of planarity for ordinary graphs: an ordinary graph
viewed as a hypergraph is Zykov planar if and only if it is planar in the ordinary sense.

Walsh [Wal75] showed the following relationship between Zykov-planarity and the plana-
rity of bipartite graphs:

A hypergraph H = (V,S) is Zykov planar if and only if there exists a planar bipartite
graph Gb(H) = (V, V (S), Eb), such that:

• V (S) contains a node v(S) for every hyperedge in S

• Eb contains an edge between a node v ∈ V and v(S) ∈ V (S) if v is incident to S:

Ep =
{
e = {v, v(S)} | v ∈ S

}
We call Gb(H) the bipartite map of H.

It is thus possible to test in linear time (regarding the number of vertices) if a hypergraph
H is Zykov planar: we just have to test if its bipartite map Gb is planar.

2.2.3. Vertex Planarity

Johnson and Pollak [JP87] described two other concepts for planarity of hypergraphs:
hyperedge planarity and vertex planarity. We will limit this overview to vertex planarity,
which turned out to be the more intuitive and – for our purposes – more useful approach.

A hypergraph H = (V,S) is representable by a vertex-based Venn diagram2 if there exists
a planar embedding Π(G) of a graph G = (W,E) with faces F and a one-to-one mapping

1The example was taken from Zykov’s original paper [Zyk74]. Note that, contrary to our definition, Zykov
allows empty hyperedges (u8) and singletons (x9 and x10 are not incident to any hyperedge)

2Note that this concept is based on a definition of Venn diagrams that allows empty regions. They
correspond rather to Euler diagrams and are not to be confounded with the concept of Venn diagrams
we are going to define later in this work (Section 2.3.1).

9

10 2. Graphs, Hypergraphs, and More

Φ : V → F from V to F such that for every hyperedge S ∈ S the union of the faces Φ(S)
corresponding to the vertices in S is an interior-connected region of the plane.

A hypergraph is vertex planar if it can be represented by a vertex-based Venn diagram.

Vertex planarity also is a true generalization of the known planarity concept: a graph is
planar in the ordinary sense if and only if it is vertex planar when viewed as a hypergraph.

However, vertex planarity is less strict than Zykov planarity: if a hypergraph is Zykov-
planar, then it is vertex planar. Yet, not every vertex planar hypergraph is Zykov planar.

Unfortunately, the test for vertex planarity is NP-complete, as shown by Johnson and
Pollack [JP87].

The concept of vertex planarity naturally leads to the definition of the support of a hy-
pergraph:

2.2.4. The Support of a Hypergraph

To make the definition of vertex planarity easier to handle, Kaufmann et al. [KvKS09]
propose the following concept:

A graph Gp = (V,Ep) is a support of a hypergraph H = (V,S) if for every S ∈ S the
subgraph G[S] = (S,ES) of G that is induced by the vertices in S is connected.

A hypergraph has a planar support Gp if and only if it is vertex planar: Gp is a subgraph
of the dual graph of the vertex-based Venn diagram G = (W,E) we defined earlier.

This means that testing if a hypergraph has a planar support is also NP-complete. Buchin
et al. [BvKM+10] showed that the problem remains NP-complete even when it is limited
to the decision whether a hypergraph has a 2-outerplanar support.

However, there exist polynomial time algorithms to test if a hypergraph has a planar
support that is a path, a tree or a cycle. (See [BvKM+10] for an overview.) Verroust-
Blondet and Viaud [VBV04] show that every hypergraph with less than nine hyperedges is
vertex planar and thus has a planar support. Brandes et al. [BCPS11a] found a polynomial-
time method to decide whether a hypergraph has a support that is a cactus (see the paper
for a definition of cactus-graphs).

2.3. Related Concepts

Stirling C. Chow gives an overview of related concepts to hypergraphs in Chapter 2 of his
dissertation [Cho07]. We will now briefly discuss the most relevant concepts for this work.

2.3.1. Venn Diagrams

A Venn diagram is a method to visualize the relationships between sets and was first
introduced by John Venn in 1880 [Ven80]. It represents a set through a Jordan curve in
the plane and intersections between sets as intersections between the insides of the curves.
The definition requires that all possible intersections between the sets have a non-empty
region in the plane. Thus, a Venn diagram of n sets divides the plane into 2n different
regions. Regions that represent empty sets can be shaded in gray.

Venn diagrams are well studied, and Venn himself proved in his original article that there
exists a Venn diagram for any number of sets. Unfortunately, any visualization of a Venn
diagram of more than 4 sets becomes very complex. Also, for the types of hypergraphs
we are going to study, only a small fraction of the intersections is going to be non-empty.
This leads to the related concept of Euler diagrams.

10

2.3. Related Concepts 11

2.3.2. Euler Diagrams

Leonard Euler first used the diagrams that are named after him in his “Lettres a une
princesse d’Allemagne” [EdCCC42], first published in 1768. Euler diagrams are a gene-
ralization of Venn diagrams, allowing empty regions. Since Euler did not give a formal
definition, there exist different formal definitions in scientific literature. We will use the
definition from the article by Chow and Ruskey [CR04]:

A set of Jordan curves J forms an Euler diagram if every non-empty region R ∈ R(J) is
connected.

An Euler diagram (and by extension a Venn diagram) is called simple if a maximum of
two Jordan curves intersect at any given point.

2.3.3. String Graphs

String graphs were first used by Benzer [Ben59] and Sinden [Sin66] in works on genetic
structures and layout of thin film transistors, respectively. Ehrlich et al. [EET76] later
formalized the concept:

A graph G = (V,E) is a string graph if there exists a curve in the plane for every node,
such that two curves intersect if and only if their corresponding nodes are connected.

A representation R = {R(v), v ∈ V } of G is a collection of curves in the plane with
R(v) ∩R(u) 6= ∅ if and only if {u, v} ∈ E.

Every planar graph is a string graph. If a graph G′ = (V ′, E′) is constructed from a graph
G = (V,E) by subdividing every edge, G′ is a string graph if and only if G is planar.

Until rather recently it was not even clear if the problem whether an arbitrary graph is
a string graph is decidable. Finally, Pach and Tóth [PT02] and Schaefer and S̆tefankovic̆
[Su04] independently proved an exponential upper bound for the number of crossings, and
shortly afterwards, Schaefer et al. showed the NP-completeness [SSu03].

In 2009, Chalopin and Gonçalves [CG09] proved Scheinerman’s conjecture [Sch84] that
every planar graph has a representation as a string graph with straight line segments as
curves.

A graph has a 1-string representation if it is a string graph, where each pair of strings is
allowed to intersect at most once [CGO10].

For our work, we are particularly interested in a special kind of string graphs:

A bipartite graph G = (Va, Vb, E) has a grid representation if the nodes in Va can be
represented as horizontal and the nodes in Vb as vertical disjoint line segments in the
plane, such that two line segments intersect if and only if their corresponding nodes are
connected. We call such graphs grid intersection graphs.

The concept of grid intersection graphs has first been introduced by Hartman et al. [HNZ91].
They also showed that every planar bipartite graph is a grid intersection graph. Kratochv́ıl
showed that the problem to decide if an arbitrary bipartite graph is a grid intersection
graph is NP-complete [Kra94].

In a subsequent paper in cooperation with Przytycka [KP96], Kratochv́ıl examines grid
intersection graphs on the annulus and torus. In both cases the problem of deciding
whether a graph is a grid intersection graph remains NP-complete. In the following we
will refer to the grid intersection graph on the annulus as cylindrical grid intersection
graph.

11

3. Families of Clusterings

We will now define concepts for describing the relationships between clusters from different
clusterings on the same set. Before we do that, we provide a formal definition of clusterings:

A clustering C = {C1 . . . Cn} on a set of vertices V is a collection of n sets Cj ⊆ V, j =
1, . . . , n. We call C strict partitioning clustering if each vertex belongs to exactly one
cluster:

n⋃
i=1

Ci = V

Ci ∩ Cj = ∅, 1 ≤ i < j ≤ n

In the following chapters all clusterings are assumed to be strict partitioning clusterings.

From now on let V be a set of vertices and F = (Ci)i≤k a family of k mutually different
clusterings on V . To simplify future definitions, we will often just talk about a family of
clusterings F without explicitly mentioning the set V . The clusterings implicitly describe
V as the union of all clusters.

3.1. Representation of Multiple Clusterings

We begin by defining the cluster-graph that helps us to model relationships between multi-
ple clusterings. In Section 3.2 we will provide a complete characterization of the properties
of cluster-graphs.

Definition 1 (Cluster-Graph) The cluster-graph GF = (VF , EF) of F has a corre-
sponding node v(C) ∈ VF for each cluster C ∈

⋃
C∈F
C.

Two nodes v(Ca), v(Cb) ∈ VF are connected by an edge in EF if the two corresponding
clusters Ca and Cb have at least one vertex v ∈ V in common:

EF =
{
e = {v(Ca), v(Cb)} | Ca ∩ Cb 6= ∅

}
Figure 3.1 shows an example of a set with two clusterings and the corresponding cluster-
graph.

An alternative way to model the structure of multiple clusterings on a set is by representing
it as a hypergraph:

13

14 3. Families of Clusterings

v1 v2

v3 v4

v5 v6

v7 v8

v9 v10

v11 v12

v13 v14

v16v15

C2,1

C2,2

C2,3 C2,4

C2,5

C1,1

C1,2

C1,3
C1,4

(a)

C1,1

C2,1

C2,2

C2,3

C1,2

C1,4C1,3 C2,5

C2,4

(b)

Figure 3.1.: An embedding of two different clusterings on a set and the resulting cluster-
graph

Definition 2 (Corresponding Hypergraph) The corresponding hypergraph HF = (V,SF)
of F is the hypergraph on the set of vertices V that uses the union of the clusters from all
clusterings in F as hyperedges:

SF =
⋃
C∈F
C

Every corresponding hypergraph HF is k-regular, since every vertex is connected to ex-
actly k hyperedges. For two clusterings the condensed hypergraph H ′F is also linear. In
the following chapters it will be useful to adapt the concept of a support to families of
clusterings:

Definition 3 (Support of a Family of Clusterings) A graph Gp = (V,Ep) is a sup-
port of F if it is a support for the corresponding hypergraph HF .

In order to be able to make statements about such supports, we will often refer to supports
that are minimal:

Definition 4 (Minimal Support) A support Gp = (V,Ep) of F is minimal if no edge in
Ep can be removed without destroying the support-property. We call a support G′p = (V,E′p)
of F a minimalization of a non-minimal support Gp = (V,Ep) of F if G′p is minimal and
E′p ⊂ Ep.

Minimal supports have an interesting property in the case of two clusterings that we will
be using later to generate embeddings from supports:

Proposition 1 If F = {C1, C2} consists of two clusterings, the induced subgraph Gp[C] of
every cluster C in a minimal support Gp of F is a tree.

14

3.2. Properties of the Cluster-Graph 15

Proof

Suppose there exists a cluster Ca in a minimal support Gp, such that Gp[Ca] is not a tree.
Without loss of generality, let Ca be a cluster in the clustering C1. There exists thus a circle
in Ca. Let C ⊆ Ca be the vertices on the circle. Let now Cb ∈ C2 be an arbitrary cluster
in the other clustering that shares a vertex with C. There are two possibilities: either C
is completely contained in Cb or Cb contains only a subset of C. In the first case we can
remove an arbitrary edge from the circle without loosing the connectedness-property of
Gp[Ca] and Gp[Cb]. Thus, Gp is not minimal. In the second case there exists a vertex u
with u ∈ C and u ∈ Cb that has an edge e = {u, v} to a vertex v ∈ C with v 6∈ Cb. We can
remove e without destroying the connectedness of the support in any of the three involved
clusters. Thus, Gp can not be a minimal support either. This is a contradiction to the
initial assumption. 2

The intersection graph between the sets of a hypergraph, which we refer to as cluster-
graph, is also called line-graph or representive graph in literature [Ber89]. See [MM99] for
an extensive overview on the theory of intersection graphs.

3.2. Properties of the Cluster-Graph

In this section we will focus on the properties of cluster-graphs. Before we examine their
structure, we define the following concept:

Definition 5 (k-Clique-Graph) A graph G = (V,E) is a k-clique-graph1 if it consists
only of k-cliques. That is, for every edge {u, v} ∈ E there exists a k-clique K ⊂ V with
u, v ∈ K.

Now we can completely characterize cluster-graphs with the following two theorems:

Theorem 1 The cluster-graph GF = (VF , EF) of a family of k clusterings F = (Ci)i≤k
on a set V is k-partite and a k-clique-graph.

Proof

Let us assume that the cluster-graph GF = (VF , EF) is not k-partite. Then there are at
most k − 1 disjoint sets in GF . This means that there must be at least one clustering
C ∈ F , whose set of corresponding nodes V (C) ⊂ VF in the cluster-graph is not disjoint.
Thus, there exist two nodes v(Ca), v(Cb) ∈ V (C) that are connected by an edge e =
{v(Ca), v(Cb)}. By the definition of the cluster-graph the edge e implies that Ca and Cb

share a common vertex: Ca ∩ Cb 6= ∅. Since Ca and Cb belong to the same clustering,
C can not be a strict partitioning clustering. This is a contradiction to our definition of
clusterings.

Let e = {v(Ca), v(Cb)} ∈ EF be an edge in the cluster-graph. Thus, there exists a vertex
v ∈ V with v ∈ Ca and v ∈ Cb. Since all k clusterings in F are strict partitioning
clusterings, v is in exactly one cluster of every clustering: ∀C ∈ F : ∃!C ∈ C : v ∈ C.
Thus, there are k clusters sharing v as a common vertex, requiring that their corresponding
nodes in the cluster-graph are pairwise connected: they form a clique in GF . Thus, every
edge is in a k-clique and GF a k-clique-graph. 2

Theorem 2 For every k-partite k-clique-graph G = (W,E) there exists a family of k
clusterings F = (Ci)i≤k on a set V , such that G is the cluster-graph of the clusterings in
F .
1Note that this definition is not coherent with the definition in [RS69] where a clique-graph is an

intersection-graph between cliques of another graph

15

16 3. Families of Clusterings

Proof (by construction)

We construct V and the corresponding clusterings {C1, . . . , Ck} as follows:

SinceG is k-partite, we can color the nodes inW in k different colors, one for each partition.
We construct a clustering Ci for every color i, containing a corresponding cluster Cw ∈ Ci
for every node w ∈W of color i. We now create a vertex vK ∈ V for every k-clique K ⊆W
in G. For every node w ∈ K in the clique we add the vertex vK to the corresponding cluster
Cw.

Since every k-clique K has exactly one node of every color (due to the k-partiteness),
every vertex vK ∈ V is placed in exactly one cluster in every clustering. We have thus
constructed a set of strict partitioning clusterings. Since every edge in G is part of a
k-clique, we have covered all edges in our construction and thus all intersections between
clusters. When reversing the construction and generating the cluster-graph of F , we get
exactly G. 2

Due to its construction, every family of clusterings F has exactly one cluster-graph GF .
However, a cluster-graph GF can correspond to several different families of clusterings.
Figure 3.2 gives an example: The 3-clique v5 in the middle of the cluster-graph (Fig. 3.2(a))
does not necessarily imply a vertex in the underlying set since every edge of the clique is
already covered by another 3-clique. This allows the two different underlying sets shown
in Fig. 3.2(b) and Fig. 3.2(c).

v1 v2

v3 v4

v5

(a)

v1 v2

v3 v4

(b)

v1 v2

v3 v4

v5

(c)

Figure 3.2.: A 3-partite cluster-graph and two different possible underlying sets. Vertices
of the underlying set are drawn in the center of their corresponding 3-clique
of the cluster-graph

Since every edge in a graph induces a 2-clique, every bipartite graph is a 2-partite 2-clique-
graph. Thus, Theorem 2 implies the following corollary:

Corollary 1 Every bipartite graph G = (Va, Vb, E) is a cluster-graph of a family of two
clusterings.

16

4. Simultaneous Embeddability of
Clusterings

In this chapter we define different classes of embeddability for families of clusterings. We
show how these classes relate to planarity of hypergraphs and the other concepts presented
in Chapter 2 and examine their complexity.

We start by formally defining the general concept of an embedding for multiple clusterings.
Once again, let F = (Ci)i≤k be a family of k clusterings on a set V .

Definition 6 (Embeddings) Given F and V , we define a set of Jordan curves J (F) in
the plane that contains a curve J(C) for every cluster C ∈

⋃
C∈F
C. We further define a set

of points P (V) ⊂ R2 that contains a point p(v) in the plane for every vertex v ∈ V . We
call Γ = (J (F), P (V)) an embedding of F if the curve of every cluster encloses exactly
the points of its contained vertices:

v ∈ C ⇔ p(v) ∈ int(J(C))

An embedding of F corresponds to a drawing of the corresponding hypergraph HF in the
subset standard. We will now extend the notion of faces of a set of Jordan curves to em-
beddings. This definition will be useful later when it comes to introducing a combinatorial
description of embeddings.

Definition 7 (Faces of Embeddings) The faces F (Γ) of an embedding Γ = (J (F), P (V))
of a family of clusterings F are the faces of the Jordan curves of the embedding:

F (Γ) := F (J (F)) = comp(ext(J (F)))

We say that a cluster C ∈
⋃
C∈F
C is incident to a face f ∈ F (Γ) if the face is bounded by

the Jordan curve J(C) of the cluster.

In the following sections we will introduce various restrictions for the curves of embeddings.
This eventually leads us to a hierarchy of embeddability (Section 4.4).

17

18 4. Simultaneous Embeddability of Clusterings

4.1. Weak Embeddability

We start with the weakest concept of embeddability. Let Γ = (J (F), P (V)) be an embed-
ding of F .

Definition 8 (Weak Embeddings) The embedding Γ = (J (F), P (V)) is a weak em-
bedding (WE) if the insides of all curves corresponding to clusters of the same clustering
are pairwise disjoint:

Ci, Cj ∈ C ⇒ int(J(Ci)) ∩ int(J(Cj)) = ∅

We call F weakly embeddable if there exists a weak embedding for F .

The disjointness-property of weak embeddings is a step towards improving the readability.
It also corresponds to the nature of a strict partitioning clustering. We will now show
that this restriction is no real constraint since every family of clusterings F has a weak
embedding.

Theorem 3 Every family of clusterings F = (Ci)i≤k is weakly embeddable.

Before we prove the theorem, we will define a useful concept that we will also apply in
later proofs:

Definition 9 (Enclosing Curves) Let Π(T) = (P (V), C(E)) be a planar embedding of
a tree T = (V,E) in a plane. We call a Jordan curve JT an enclosing curve with distance
d to Π(T) if the curves C(E) lie in the inside of JT and the distance between JT and the
curves is d:

C(E) ⊂ int(JT)

∀p ∈ JT : ∃q ∈ C(E) : ‖p− q‖ = d

∀p ∈ JT , q ∈ C(E) : ‖p− q‖ ≥ d

d T

J

Figure 4.1.: An enclosing curve JT with distance d to an embedding of a tree T

Figure 4.1 gives an example of an enclosing curve. Since any planar embedding of a tree
only has one face, we can always find an enclosing curve if we choose d small enough. This
gives us a tool to prove Theorem 3 and several other statements in the upcoming sections
of this work.

18

4.1. Weak Embeddability 19

Proof of Theorem 3

We place all vertices in V at arbitrary – but distinct – locations in the plane. For every
cluster Ci of a clustering C we create an arbitrary spanning tree Ti = (Ci, Ei) with the
vertices in Ci as nodes. The union of these trees forms a forest F = (V,E) with the vertices
of V as nodes. The forest F has |V | − |C| − 1 edges, is planar and has no circles. Thus,
there is only one face in any planar embedding. Therefore, F can be embedded by keeping
the locations of the vertices fixed and by drawing the edges of every Ti as disjoint simple
curves in the plane. Let d be the minimal distance between the curves from two different
trees Ti, Tj ∈ F and ε < 1

2d. We can now generate an enclosing Jordan curve J(Ci) for
every Ci ∈ C with a distance of 1

2d − ε to the plane curves of Ti. Thus, all clusters in C
are represented by Jordan curves that have a minimum distance of 2ε from each other,
guaranteeing their disjointness. The same procedure can be repeated independently for
every clustering F by keeping the vertices fixed. We end up with a weak embedding. 2

Example

Let V = {v1, . . . , v10} be a set and C = {C1, C2, C3} a clustering with C1 = {v1, . . . v6},
C2 = {v7, v8, v9} and C3 = {v10}.

Figure 4.2 shows a spanning tree for each cluster and a planar embedding of the resulting
forest in the plane. The minimal distance d between the curves dictates the maximal
thickness of the surrounding Jordan curves. The same construction can be performed
independently for each clustering of V and results in a weak embedding of F . Note that
the spanning trees correspond to a minimal planar support of F . We will be reusing this
technique to generate embeddings from supports in the next sections.

v1 v2

v5
v7

v6

v4v10

v3

v8

v9

d

1
2d− ε

Figure 4.2.: An example how to construct the Jordan curves of clusters from a support
that consists of spanning trees

In a weak embedding, the clusters of every clustering are embedded independently. This
can result in a curve of one clustering intersecting a curve of another clustering, even if
their corresponding clusters do not share a common vertex. Figure 4.3 shows such an
intersection: the green cluster on the lower right is cut by an orange cluster, even though
they do not share a common vertex. In order to avoid such cuts, we are going to define a
stronger form of embeddability in the next section. However, as we will show later, it is
impossible for the two clusterings in Fig. 4.3 to be drawn without such an intersection.

For the case of weak embeddings of two clusterings, we can also make the following observa-
tion about the regions of the Jordan curves of the embedding: Every region R ∈ R(J (F))
is of one of the following three types. It is in the inside of either zero, one or two curves.

In the first case it is a subset of the external region of the curves and therefore does not
contain a vertex. In the second case it is also empty since no vertex is contained only in one

19

20 4. Simultaneous Embeddability of Clusterings

(a) (b)

Figure 4.3.: A weak embedding of a family of two clusterings whose cluster-graph corre-
sponds to a K5 with subdivided edges

cluster. Only in the third case it can contain a vertex. In the class of embeddability that
we are now going to introduce, such a region has to contain a vertex in every connected
component.

4.2. Strong Embeddability

We will now introduce a stricter concept of embeddability called strong embeddability. In
this concept clusters from different clusterings are not allowed to intersect in an arbitrary
way but have to share a common vertex in the areas of intersection:

Definition 10 (Strong Embeddings) The embedding Γ = (J (F), P (V)) is a strong
embedding (SE) if it is a weak embedding and every connected component of an intersection
of the insides of any two curves J(Ca), J(Cb) ∈ J (F) contains a vertex:

∀Ca, Cb ∈
⋃
C∈F
C : ∀Ri ∈ comp(int(J(Ca)) ∩ int(J(Cb))) : ∃v ∈ V : p(v) ∈ Ri

We call F strongly embeddable if there exists a strong embedding for F .

In the first section of this chapter, Section 4.2.1, we will look at the relationship of the
cluster-graph to string graphs in the case of a strongly embeddable family of clusterings.
We will then show how the concept of the 2-core of the cluster-graph allows us to simplify
strong embeddings of two clusterings. In the next section, Section 4.2.2, we will show
that for the case of two clusterings, strong embeddability is equivalent to vertex planarity.
In Section 4.2.3 we will introduce a combinatorial description for strong embeddings and
show that some families of two clusterings have unique strong embeddings.

These definitions are a prerequisite for the proof in Section 4.2.4 where we show the
NP-completeness of the test for strong embeddability of two clusterings. Finally, in Sec-
tions 4.2.5 and 4.2.6, we will introduce some subclasses of strong embeddability.

4.2.1. Strong Embeddability and the Cluster-Graph

We will begin this section by showing how strong embeddings relate to string graphs:

Lemma 1 If F is strongly embeddable, then the cluster-graph GF is a string graph.

20

4.2. Strong Embeddability 21

Proof

Let Γ = (J (F), P (V)) be a strong embedding of F . Two clusters Ci, Cj share a common
vertex if and only if int(J(Ci))∩int(J(Cj)) 6= ∅. We will have to construct a string (curve)
Si for every Ci such that Si ∩ Sj 6= ∅ if and only if the corresponding clusters Ci and Cj

share a common vertex. In order to do this, we fill the inside of every Jordan curve Ji
with a spiral Si. Such a spiral always exists since every Jordan curve is homeomorphic to
a circle, and we can use the same transformation for the circle to transform the spiral (see
Fig. 4.4 for an illustration). If the spiral Si is dense enough, every object in the interior
of Ji is intersected by Si. Thus, if the insides of Ci and Cj overlap, the spirals Si and Sj
intersect. 2

Note that the reverse is not true since there exist string graphs that require a high number
of intersections between strings and do not correspond to a family of clusterings.

(a) (b)

Figure 4.4.: The transformation from Jordan-curves into strings. This is the same set of
clusters as in Fig. 3.2

As mentioned in Section 2.3.3, a graph is not a string graph if it results from a non-planar
graph by subdividing every edge. In combination with Lemma 1 this leads to the following
corollary:

Corollary 2 If the cluster-graph Gp of F is a graph that results from a non-planar graph
by subdividing every edge, F is not strongly embeddable.

Since k-clique-graphs with k > 2 can not have this property, the corollary is only relevant
for families of two clusterings. Additionally, the clusters of one family are only allowed
to share vertices with a maximum of two different clusters from the other family. Despite
these restrictions, Corollary 2 allows us to prove that there exists no planar embedding
for the clusterings in Fig. 4.3: since the cluster-graph is a K5 with subdivided edges and
the K5 is non-planar, there exists no strong embedding for the family of clusters shown in
Fig. 4.3.

For the rest of this section, and also in the following sections, we are going to focus
on families of two clusterings. This limitation allows us to characterize embeddings by
their faces, draw a connection between strong embeddability and vertex planarity and
eventually prove the complexity of the decision problem whether two clusterings have a
strong embedding or not. It also seems that for practical purposes, visualizations of more
than two clusterings at a time are difficult to interpret. Even simple examples like the one
in Fig. 4.4(a) show that it is hard for the human perception to distinguish between more
than two intersecting curves.

21

22 4. Simultaneous Embeddability of Clusterings

From now on, let F = {C1, C2} be a family of two clusterings on the set of vertices V . In
the following we will show that some clusters are not affecting the strong embeddability.

Definition 11 (Singletons) We call a cluster Ca ∈ Ci a singleton if it is a subset of a
cluster in the other clustering Cj:

Ca ∈ Ci singleton :⇔ ∃Cb ∈ Cj , i 6= j : Ca ⊆ Cb

In the cluster-graph GF a singleton corresponds to a node v of degree d(v) = 1. We call
such a node a leaf. If we remove a leaf v and its adjacent edge e from the cluster-graph,
we might create a new leaf: a node that was adjacent to e and one other edge. If we
sucessively remove all leaves in the cluster-graph, we end up with its 2-core. This leads to
the following definition:

Definition 12 (Reduced Families of Clusters) We call F reduced if its cluster-graph
has no leaves. If F is not reduced, we can reduce it by successively removing all singletons
and the vertices they contain. We call the resulting family FR the reduction of F .

Thus, a family of clusterings F is reduced if its cluster-graph GF corresponds to its proper
2-core. With the example in Fig. 4.5 we show the reduction process of a family of two
clusterings: In the first step we can remove the clusters C1,1, C2,4 and C1,6. Now we
can remove C1,5. This makes C2,3 a singleton that we can also remove. In a last step
we can remove C1,4. Now there are no more singletons in the family of clusterings, and
the remaining clusters form a reduced family of clusterings. Note that the remaining
cluster-graph is the 2-core of the old cluster-graph.

C1,2

C1,4

C1,5

C2,1 C2,2

C1,3

C1,1

C2,3

C1,6

C2,4

(a)

C1,1 C2,1

C1,2

C1,3

C2,2 C1,4 C2,3

C1,5

C1,6

C2,4

(b)

Figure 4.5.: A family of clusterings and the corresponding cluster-graph. After the reduc-
tion only the clusters C1,2, C1,3, C2,1 and C2,2 will remain.

We will now show that it suffices to examine the reduction of a family of clusterings if we
want to test it for strong embeddability. From now on let FR be the reduction of F .

Lemma 2 F is strongly embeddable if and only if FR is strongly embeddable.

22

4.2. Strong Embeddability 23

In order to prove the Lemma, we first have to prove the following proposition:

Proposition 2 In a reduced strong embedding FR, every cluster is incident to at least one
face.

Proof

Since FR is reduced, there exists no cluster that is completely contained in another cluster.
This also means that every cluster Ci shares vertices with at least two clusters Cj , Ck from
the other clustering. Because Cj and Ck are in the same clustering, the insides of their
Jordan curves J(Cj) and J(Ck) are disjoint. Thus, the curve J(Ci) that intersects both
J(Cj) and J(Ck) has to cross the region on the outside of J(Cj) and J(Ck) which is the
external region ext(J (FR)). 2

Proof of Lemma 2 (by construction)

If F has a strong embedding Γ, we can create an embedding ΓR of FR by successively
removing Jordan curves that belong to the singletons in J (F). We can now just remove
the vertices that were contained in the singletons and keep the rest of the embedding. The
embedding ΓR is still a strong embedding since we did not create any new intersections
between Jordan curves.

Let now ΓR be a strong embedding of FR. Let without loss of generality Ci be the clustering
from which the last cluster has been removed in the reduction process from F to FR. Let
further be Ca ∈ Ci the removed cluster and Cb ∈ Cj the cluster that contained Ca.

According to Proposition 2, Cb is incident to a face f ∈ F (ΓR). We draw a Jordan curve
J(Ca) whose inside is intersected by J(Cb) in the area where J(Cb) is incident to f . Thus,
J(Ca) lies both in f and in the inside of Cb. We place the common vertex of Ca and Cb

into the region formed by the intersection of int(J(Ca)) and int(J(Cb)).

Since J(Ca) is partly placed in f , the embedding upholds the property that every curve
is incident to a face. The placement of the vertices in the area of intersections further
guarantees that the embedding is still strong. We can thus continue to add curves and
their contained vertices for the other clusters that have been removed in the same way.
As long as we proceed in the reverse order of their removal, we can go on until we have
constructed a strong embedding Γ of F . 2

According to Lemma 2, we can add or remove singletons in any family of two clusterings
without affecting the strong embeddability. The lemma allows us to focus on reduced
strong embeddings in the following sections without loss of generality. In the next section
we will examine the relationship between strong embeddability and vertex planarity.

4.2.2. Strong Embeddability and Vertex Planarity

In this section, we will show that strong embeddability of a family of two clusterings F is
equivalent to the vertex planarity of the corresponding hypergraph HF . We will use the
equivalence of F to its reduction FR showed in Lemma 2 as a starting point for our proof.
Table 4.1 illustrates the chain of equivalences that lead to our proof.

We already proved Lemma 2. Before we prove the remaining two lemmata, we introduce
two concepts that facilitate the description of strong embeddings for two clusterings.

The first concept – proper strong embeddings – standardizes the intersections between
the Jordan curves. The second concept – condensed strong embeddings – simplifies the
treatment of equivalent vertices.

23

24 4. Simultaneous Embeddability of Clusterings

HF vertex planar
Theorem 4⇔ F strongly embeddable

Lemma 3m m Lemma 2

HFR
vertex planar ⇔

Lemma 4

FR on VR strongly embeddable

Table 4.1.: The equivalence relationships leading to the proof of Theorem 4

The definition of a strong embedding still gives us a lot of freedom in the choice of the
Jordan curves. We will therefore establish a concept to simplify embeddings that makes
them more accessible for human interpretation and formal description. We start by defining
unnecessary crossings of Jordan curves:

Definition 13 (Unnecessary Crossings) Two Jordan curves J(Ca) and J(Cb) in a
strong embedding Γ = (J (F), P (V)) of F have an unnecessary crossing if there exists
a connected component Ri of a region R ∈ R(J) in the embedding that is only bounded by
the two curves and that does not contain a vertex.

There exist two types of unnecessary crossings: The first type induces a component of a
region that lies in the inside of one curve and in the outside of the other (See Fig. 4.6(a)).
The second type induces a face of the embedding that is bounded only by the curves of
the clusters (See Fig. 4.6(b)). Note that a third case – the component being in the inside
of both curves – can not occur since – due to the definition of a strong embedding – this
component has to contain a vertex.

Definition 14 (Proper Strong Embeddings) A strong embedding Γ is proper if its
Jordan curves do not induce any unnecessary crossings.

(a) (b)

Figure 4.6.: The two types of unnecessary crossings

(a) (b)

Figure 4.7.: How unnecessary crossings can be avoided in a proper strong embedding

It is easy to see that the properness-property is no real restriction: Unnecessary crossings
can be avoided by changing the shape of the Jordan curves. Figure 4.7 shows how both
types of unnecessary crossings can be avoided. This proves the following proposition:

24

4.2. Strong Embeddability 25

Proposition 3 We can transform every strong embedding into a proper strong embedding.

Now that we have simplified the curves of strong embeddings, we are going to introduce
the second simplification that allows us to only look at one representing vertex for each
connected component of a region:

Definition 15 (Condensed Strong Embeddings) A strong embedding Γ =(J (F), P (V))
is condensed if every connected component of a region R ∈ R(J (F)) contains at most one
vertex.

Note that a condensed embedding does not necessarily correspond to a condensed cor-
responding hypergraph. The condensation of a hypergraph only contains one vertex for
every equivalence class. In the case of embeddings, it is possible that the intersection
between two curves has more than one connected component, requiring equivalent vertices
to be placed in each connected component. In Section 4.2.5, we will show that there are
hypergraphs that lose the property of strong embeddability if they are condensed.

If a strong embedding is not condensed, we can condense it by choosing one representing
vertex for each component of a region and by associating equivalent vertices in the same
component region with it. Such an embedding can be expanded again if necessary. The
equivalent vertices within the connected components also do not have an influence on the
existence of a planar support: we can just add or remove such a vertex v in any planar
support by adding an edge {u, v} to the representing vertex u or contracting an edge {u, v}
to remove v.

From now on we will – without loss of generality – assume that every embedding Γ is
proper and condensed.

Now we can move on to the next step to the proof of Theorem 4 and show that the vertex
planarity of the corresponding hypergraph of a clustering is not affected by the process of
reduction.

Lemma 3 The corresponding hypergraph HF of F is vertex planar if and only if the
corresponding hypergraph HFR

of the reduction FR is vertex planar.

Proof

If HF is vertex planar, it has a planar support Gp(HF). We can create a planar support
Gp(HFR

) for HFR
as follows: We successively select a vertex v that is contained in a

singleton and contract one of its incident edges {u, v}, associating the resulting vertex
with the vertex u. This does not destroy the planarity and removes the vertices and edges
that belong to singletons from the support. We thus end up with a support for HFR

,
showing that HFR

is still vertex planar.

If HFR
is vertex planar, it has a planar support Gp(HFR

). We now add the nodes of the
singletons to Gp(HFR

), connecting them to an arbitrary node v of their containing cluster.
We proceed like this until we have a support Gp(HF) for HF . The graph Gp(HF) is planar
since we only added trees to Gp(HFR

) that are connected at their root v. These trees can
be embedded in any face that is incident to v without creating any crossings. Thus, HF
is vertex planar. 2

Now we will show the last of the three lemmata that lead to the proof of the central
theorem of this section:

Lemma 4 A reduced family of two strict partitioning clusterings F = {C1, C2} is strongly
embeddable if and only if its corresponding hypergraph HF is vertex planar.

25

26 4. Simultaneous Embeddability of Clusterings

Proof (by construction)

Let HF be vertex planar and Gp = (V,Ep) a minimal planar support for HF . We take a
planar embedding Π(Gp) of Gp = (V,Ep) and denote by d the minimal distance between
two curves of the embedding outside of the immediate neighborhood of an incident vertex.
The positions P (V) of the vertices are the positions of the nodes in Π(Gp). For an ε < 1

2d
we create an enclosing Jordan curve J(Ci) with a distance of 1

2d− ε around each subgraph
(tree) that is induced by a cluster Ci. All Jordan curves have a minimal distance of 2ε
from each other except in areas around a vertex where they intersect. Since therefore
every area where curves intersect contains a vertex, we have created a strong embedding
Γ(Gp) = (J (F), P (V)).

In order to show the other direction, let Γ′ = (J (F ′), P (V ′)) be a strong embedding of
F . Without loss of generality, let Γ′ be proper and condensed. Thus, every intersection
of the insides of two curves contains exactly one vertex, and every vertex is located in a
connected component of a region that is bounded by at least two Jordan curves.

Starting at an arbitrary point, we walk around every Jordan curve J(C) ∈ J (F). Every
time we encounter a crossing with another Jordan curve J(C ′), we connect the vertex in the
intersection of the insides of J(C) and J(C ′) with the vertex from the last intersection we
encountered. Since F is reduced and condensed, all vertices are covered by this procedure.
The result is a planar multigraph Gm(Γ) with an embedding Π(Gm(Γ)). We generate a
graph Gp(Γ) by removing the multiedges of Gm(Γ). The graph Gp is a support of F since
– due to the construction – the subgraph induced by every cluster is connected. 2

Figure 4.8.: The creation of an induced support from a reduced strong embedding

Now we have all the tools to prove the following main theorem on the relationship between
strong embeddability and vertex planarity.

Theorem 4 A family of two strict partitioning clusterings F = {C1, C2} is strongly em-
beddable if and only if its corresponding hypergraph HF is vertex planar.

Proof

Let the family of clusterings FR on VR be the reduction of F , and HFR
the corresponding

hypergraph of FR. We will now use the lemmata we introduced in this section to prove
the theorem:

The hypergraph HF is vertex planar if and only if HFR
is vertex planar (Lemma 3). The

hypergraph HFR
is vertex planar if and only if FR on VR is strongly embeddable (Lemma 4)

and FR on VR is strongly embeddable if and only if F is strongly embeddable (Lemma 2).
This proves the theorem. 2

The diagram in Table 4.1 we showed at the beginning of this section illustrates how the
equivalence relations from the lemmata lead to the equivalence in the theorem.

We are going to reuse the technique from Lemma 4 for generating supports from embed-
dings and vice versa. We therefore make the following definition:

26

4.2. Strong Embeddability 27

Definition 16 (Induced Strong Embeddings and Supports) An embedding Γ(Gp)
of F is induced by a minimal planar support Gp of F if it was generated from an embedding
Π(Gp) in the way described in the proof of Lemma 4.

A support Gp(Γ) of a reduced family of two clusterings F is induced by a proper strong
embedding Γ of F if it was created as described in the proof of Lemma 4.

As stated in Section 2.3.3, it is NP-complete to decide if an arbitrary hypergraph is
vertex planar or not. In Section 4.2.4 we will show that this also holds for corresponding
hypergraphs of clusterings and thus for the test whether a family of clusterings is strongly
embeddable. Before we can prove this, we will examine combinatorial and unique strong
embeddings in the following section.

4.2.3. On Combinatorial and Unique Strong Embeddings

The characteristics of embeddings of two clusterings, especially the fact that their corre-
sponding hypergraph is 2-regular, allow us to develop a formal description of embeddings.
In this section we will introduce a concept that is similar to the combinatorial embeddings
of graphs with the difference that faces are not bounded by edges but by hyperedges that
correspond to clusters. This tool will help us to define embeddings that are unique in a
sense that any two embeddings can be transformed into each other by a homeomorphic
transformation of the Jordan curves.

In the following let F = {C1, C2} be a family of two reduced strict partitioning clusterings
on a set of vertices V . We can limit our examinations to reduced families of clusterings
without loss of generality since according to Lemma 2, this has no influence on the strong
embeddability. We start by defining a combinatorial strong embedding by a circular orde-
ring of the clusters around a face:

Definition 17 (Combinatorial Strong Embeddings) A combinatorial strong embed-
ding Γc = Φ(F) of F is given by a set Φ of cyclical orderings φ1 . . . φm of clusters that
induce faces f1 . . . fm by describing the ordering of their adjacent clusters.

A strong embedding of a reduced family of clusterings has thus exactly one corresponding
combinatorial strong embedding, while a combinatorial strong embedding can induce many
different strong embeddings with slight variations of the Jordan curves. We call these
embeddings equivalent:

Definition 18 (Equivalent Strong Embeddings) Two proper strong embeddings Γa

and Γb of F are equivalent if the cyclical ordering of the Jordan curves around the faces
induces the same corresponding combinatorial strong embedding.

Now that we have established classes of equivalent embeddings, the question arises if there
exist families of clusterings that have a unique strong embedding.

Definition 19 (Unique Strong Embeddings) The family of clusterings F has a uni-
que strong embedding if all proper strong embeddings of F are equivalent.

Before we can prove that families of clusterings with unique strong embeddings actually
exist, we need some tools to facilitate the argumentation in the proof. We will now
show that an induced support of an embedding can always induce an embedding that is
equivalent to the original one.

27

28 4. Simultaneous Embeddability of Clusterings

Lemma 5 Let Γ be a proper, condensed embedding of the reduced family of clusterings F
and G′p(Γ) a minimalization of the support Gp(Γ) that is induced by Γ. There exists an
embedding Γ(G′p(Γ)) that is induced by G′p(Γ) and that is equivalent to Γ.

Proof

The faces of the embedding Π of Gp(Γ) that resulted in the creation of Gp(Γ) are either
faces induced by a circle in a cluster or faces that have a corresponding face in Γ (see
Fig. 4.8). When we successively remove edges to generate a minimalization of Gp(Γ), the
circles in the clusters are removed by removing an edge. The remaining minimal support
G′p(Γ) (we keep the same embedding) has exactly one face for every face of Γ. When
we create an embedding of the clusterings that is induced by the support Γ(G′p(Γ)) while
keeping its embedding, the faces remain the same and are incident to the enclosing Jordan
curves of the same clusters. 2

From this lemma we can deduce the following corollary:

Corollary 3 For every proper condensed embedding Γ of F there exists a minimal support
Gp that induces an embedding Γ(Gp) that is equivalent to Γ.

This means that every possible combinatorial strong embedding of F is induced by a
support of F . Since F is strongly embeddable if and only if it has a planar support, we
can conclude that:

Corollary 4 F has a unique strong embedding if and only if all strong embeddings Γ(Gp)
induced by every minimal planar support Gp of F are equivalent.

Now we can construct families of clusterings that have a unique strong embedding. We
start with a basic construction that we can later flexibly extend when it comes to proving
a complexity result and giving counterexamples.

grid cell

separator
clusters

connector
clusters

crossing
clusters

Figure 4.9.: A grid-shaped family of clusterings F#

Definition 20 (Grid-Shaped Families of Clusterings) A reduced family of two clu-
sterings F# is grid-shaped if both clusterings contain only three types of clusters: crossing
clusters, separator clusters, and connector clusters. A separator cluster and a connector

28

4.2. Strong Embeddability 29

cluster contain exactly two vertices. A connector cluster shares one vertex with a crossing
cluster and one with a separator cluster. A separator cluster shares one vertex with a
connector cluster and one vertex with another separator cluster. A crossing cluster con-
tains either two, three or four vertices that it shares with connector clusters from the other
clustering.

Thus, in a grid-shaped family of clusterings, crossing clusters are connected with each
other by a chain of four clusters: two connector clusters on the outside of the chain and
two separator clusters in the middle.

Since only clusters from different clusterings can have a common vertex, the clusters from
both clusterings alternate and every chain contains a separator cluster from each clustering.

Figure 4.9 is an example of a grid-shaped family of clusterings. Note that in this figure,
as well as in the examples that follow, the grid we use is of rectangular structure. The
definition would also allow other shapes of grids, but for reasons of clarity we use this
special case of a grid structure. To describe the structure of the grid, we introduce a
corresponding grid graph:

Definition 21 (Corresponding Grid Graph) The corresponding grid graph G#(F#)
of a grid-shaped family of clusterings F# has a corresponding node for each crossing cluster
of F# and an edge between two nodes if the corresponding crossing clusters are connected
by a chain of separator and connector clusters.

With this tool we can now make the following statement about grid-shaped families of
clusterings.

Lemma 6 A grid-shaped family of clusterings F# has a unique strong embedding if its
corresponding grid graph is a subdivision of a 3-connected planar graph.

Proof

We prove the lemma by showing that every minimal support Gp of F# has a unique strong
embedding Π(Gp) and that the embeddings Γ(Gp) of the clusterings that are induced by
the supports are all equivalent.

The separator clusters, containing only two vertices, have a unique support: an edge
between the two. The same holds for the connector clusters. A chain of separating and
connector clusters can thus be treated as a subdivided edge in any support.

A crossing cluster with three vertices allows only the three possible minimal supports
shown in Fig. 4.10(a). Figure 4.10(b) shows that the embeddings induced by all three
possibilities are equivalent (all faces are incident to the connector cluster).

The same holds for a crossing clusters with four vertices. All possible supports are either
a rotation or a reflection of one of the supports shown in Fig. 4.10(c). And all supports
induce equivalent embeddings (Fig. 4.10(d)).

Since the corresponding grid graph is a subdivision of a 3-connected planar graph, all
possible supports are also subdivisions of 3-connected graphs. Thus they have a unique
strong embedding, and since the embedding of every support induces an embedding of F#

that is equivalent to all other embeddings, F# has a unique strong embedding. 2

Now that we have constructed families of clusterings with unique strong embeddings, we
can extend our grid-shaped families to more interesting constructions. These allow us

29

30 4. Simultaneous Embeddability of Clusterings

(a) (b) (c) (d)

Figure 4.10.: The different possibilities for a support of a crossing cluster of three or four
clusters in F# and the induced clusterings

to construct gadgets for our upcoming proof of the hardness of strong embeddability. We
extend the grid by laying additional clusters on top of the grid. The construction is inspired
by the “Noodle-Forcing Lemma” of a recent paper by Chaplick et al. on “Bend-Bounded
Path Intersection Graphs” [CJKV12]. The authors also use the concept of fixing certain
structures (“sausages, noodles, and waffles”) on a “grill” to give them a fixed embedding.
Yet they deal with string graphs and construct their grid differently than we do.

Before we can properly define such grid-augmenting families of clusterings, we give the
following definition of binary separator trees. It helps us to determine clusters in the grid
with which the additional clusters can share nodes with.

Definition 22 (Binary Separator Tree) A binary separator tree is a subset of the se-
parator clusters of one clustering of a grid-shaped family of clusterings F# = {C1, C2} that
we can construct as follows:

Let G∗#(F#) be the dual graph to the corresponding grid graph of F# and T ∗ be a subgraph
of G∗#(F#) that is a binary tree. Let T ⊂ C1 ∪ C2 be the set of clusters that induce the
dual edges of T ∗ in the construction of the corresponding grid graph. A subset of T that
consists of all separator clusters of one of the clusterings is called binary separator tree.

With its set of separating clusters, a binary separator tree basically describes a binary tree
of neighboring grid cells in a grid-shaped family of clusterings. With this concept, we can
define a very versatile class of families of clusterings that are augmentations of grid-shaped
families and that still have unique strong embeddings.

Definition 23 A grid-augmenting family F of two clusterings on a set V is a grid-shaped
family F# of two clusterings on a set V ′ with a unique embedding that has been extended
by some additional vertices and clusters containig these vertices. We call these additional
clusters augmenting clusters.

Every augmenting cluster C is only allowed to share vertices with separator clusters of the
other clustering. These separator clusters have to be placed around a grid cell in one of
the ways shown in Fig. 4.11:

30

4.2. Strong Embeddability 31

• C enters and leaves a cell by sharing a vertex with two of its separator clusters (See
Fig. 4.11(a) and 4.11(b))

• C branches in a cell by sharing a vertex with three of its separator clusters (See
Fig. 4.11(c))

• C crosses another augmenting cluster C ′ in a cell by sharing a vertex with two se-
parator clusters on opposite sides of the cell – diagonally to C ′ – and by sharing a
common vertex with C ′ for each cell in which they cross (See Fig. 4.11(d))

• C ends at a cell by sharing just one vertex with a separator cluster of that cell (See
Fig. 4.11(e)). Multiple (mutually distinct) clusters can end at the same cell.

Additionally, all separator clusters that share nodes with an augmenting cluster have to
form a binary separator tree in F#.

(a) (b) (c)

(d) (e)

Figure 4.11.: The different possibilities for clusters in a grid-augmenting family of two
clusters F

We will now prove the following theorem:

Theorem 5 Every grid-augmenting family of two clusterings F has a unique strong em-
bedding.

Proof

In the proof we will go over all possibilities how a cluster can be embedded in a grid
cell shown in Fig. 4.11. According to Lemma 6, every support of a grid-shaped family of
clusterings whose corresponding grid graph is 3-connected has a unique strong embedding.

31

32 4. Simultaneous Embeddability of Clusterings

The embedding of the support of the underlying grid does not change in the augmentation
since we only add edges (or subdivisions if a node is added to a separator cluster) to a
graph with a unique embedding. We will show that every minimal planar support Gp

of the grid augmentation F still has a unique strong embedding and that the induced
embeddings of every support are equivalent.

When adding a new augmenting cluster Ca that shares a common vertex with a separator
cluster Cs, there are two main possibilities: either the cluster ends in this vertex, i.e., it
only shares common vertices with the separator clusters of one of the adjacent cells of Cs

(Fig. 4.11(e)), or the cluster passes through the separator cluster, sharing one or more
common vertices with both adjacent cells of Cs.

In the first case, Cs can be regarded as equivalent to a crossing cluster that shares vertices
with three other clusters (Fig. 4.10(b)). We have shown that in this case, all possible mini-
mal supports are locally 3-connected and induce equivalent embeddings of the clusterings.

In the other case, we have the augmenting cluster sharing vertices with other separator
clusters in the two neighboring cells (e.g. Fig. 4.11(a) and 4.11(b)). In this case, due to
fixed embedding of the grid, the only option for a planar support is to have a path in the
separator cluster and a path in the augmenting cluster which are crossing in the common
vertex of the augmenting cluster with the separator cluster.

When two augmenting clusters cross in a cell (Fig. 4.11(d)), there is also just one way
to create a support: adding an edge from the vertex in the middle to the vertices in the
separating clusters. Any other support would violate planarity. Especially a placement of
the common vertex of the two augmenting clusters into another grid cell would cause one
of the clusters to induce a support that is disconnected.

When a cluster shares a vertex with three separating clusters of a cell (Fig. 4.11(c)), there
are three different ways to create a minimal planar support. Figure 4.12 shows that no
matter which embedding we choose, the faces of the corresponding embeddings of F are
bounded by the same clusters in the same order, and thus the embeddings are equivalent.

f1

f2

f3

(a)

f1

f2

f3

(b)

f2

f3
f1

(c)

Figure 4.12.: The different possibilities for a support if a cluster shares vertices with three
separating clusters of a cell

Due to the property of the binary separator tree, the induced subgraph of the augmenting
clusters does not contain a circle. Thus, there is no possible choice for an edge to be
removed. Since in all of the cases we discussed, we only added edges to a support that is
already a subdivision of a 3-connected graph, all possible supports of F remain subdivisions
of 3-connected graphs and therefore have fixed embeddings. Furthermore, we showed that

32

4.2. Strong Embeddability 33

all possible induced embeddings of F are equivalent and hence that F has a unique strong
embedding. 2

We will also establish a schematized method of drawing grid-augmenting families of clu-
sters. Since the grid only serves as a helping structure, we do not draw every single
cluster but only the general structure of the corresponding grid graph. See Fig. 4.13 for
an example.

(a) (b)

(c) (d)

Figure 4.13.: Two grid-augmenting families of clusters and their schematized drawings

4.2.4. Complexity of the Test for Strong Embeddability

As stated in Chapter 2, it is an NP-complete problem to decide if an arbitrary hypergraph
is vertex planar. In this section we will show that this also holds for the special kind of
hypergraphs that are induced by a family of two clusterings. We define our decision
problem as follows:

Problem 1 (k-CSE) The decision problem k-Clusterings-Strong-Embeddability
(k-CSE) is the following: Is a family F = (Ci)i≤k of k clusterings strongly embeddable or
not.

In this section, we will prove the NP-completeness of k-CSE for the case of two clusterings
(k = 2). This implies the NP-completeness for k > 2 since an instance of 2-CSE can be

33

34 4. Simultaneous Embeddability of Clusterings

transformed into an instance of k-CSE by simply adding k − 2 trivial clusterings that
contain only one cluster comprising all vertices.

Additionally, due to the equivalence of vertex planarity to strong embeddability for two
clusterings, our results show the NP-completeness of the check for vertex planarity in
2-regular hypergraphs. Since we can extend a 2-regular hypergraph to a k-regular hyper-
graph by adding k − 2 trivial hyperedges, the results imply the NP-completeness of the
check for vertex planarity in k-regular hypergraphs for k > 2.

Our proof has been inspired by the proof by Buchin et al. [BvKM+10], showing the NP-
completeness of finding a planar support for 2-outerplanar hypergraphs by reducing it to
3-SAT. Unfortunately, their proof – as well as the original proof for the hardness of vertex
planarity by Johnson and Pollak [JP87] – does not work for the corresponding hypergraphs
of clusterings that we are examining. Both proofs require certain vertices to be incident
to more than two hyperedges. Contrary to that, the following proof also works for this
special class of hypergraphs induced by clusterings:

Theorem 6 2-CSE is NP-complete.

Proof

It is easy to check if a given embedding Γ = (J (F), P (V)) of a family of two clusterings
F fulfills the criteria for strong embeddability: Since in this case, strong embeddability is
equivalent to the vertex-planarity of the corresponding hypergraph, we just have to check
whether a given graph is a planar support of F . Since this can be done in polynomial
time, k-CSE is in NP.

To show that the problem is NP-complete, we perform a polynomial reduction from
Planar-Monotone-3-Sat. We first briefly review the history of NP-complete SAT-
problems leading to our problem:

3-SAT

An instance of 3-Sat consists of a set U = {x1, . . . , xn} of n Boolean variables and a
formula C = C1∧C2∧ . . .∧Cm in conjunctive normal form defined over U . Each clause Ci,
1 < i < m is a disjunction of not more than three literals from the variables in U . 3-Sat
is one of “Karp’s 21 NP-complete problems” [Kar72]. It is thus NP-complete to decide
whether there exists an assignment to the variables in U that fulfills all clauses in C.

MONOTONE-3-SAT

Monotone-3-Sat is a specialization of 3-Sat where all clauses in C are monotone. A
clause is monotone if it consists either of only positive or of only negative literals. Garey
and Johnson [GJ79] showed that Monotone-3-Sat is NP-complete.

PLANAR-3-SAT

An instance of Planar-3-Sat is an instance of 3-Sat whose corresponding graph is planar.
The corresponding graph of a formula C in conjunctive normal form is defined as G = (C ∪
U , E) where E = {(xi, Cj) | xi ∈ Cj ∨ xi ∈ Cj}. Lichtenstein [Lic82] proved that Planar-
3-Sat is NP-complete as well. Knuth and Raghunathan [KR92] showed that the problem
stays NP-complete if it is limited to problems that have a rectilinear representation, i.e.,
the nodes corresponding to the variables are ordered, aligned horizontally and connected
to their neighbors in the ordering. Clauses are located either above or below the line of
variables and connected by rectangular edges without crossings. The graph in Fig. 4.14(a)
is an example of a rectilinear representation.

34

4.2. Strong Embeddability 35

PLANAR-MONOTONE-3-SAT

De Berg and Khosravi [dBK09] showed that Planar-3-Sat stays NP-complete if it is
restricted to instances with only monotone clauses that have a rectilinear representation
where all clauses containing negative literals are embedded on one side of the variables
and all clauses containing positive literals are embedded on the other side. This problem
is called Planar-Monotone-3-Sat. The example in Fig. 4.14(a) together with the
adjoining clauses forms an instance of Planar-Monotone-3-Sat: all clauses above the
variables only consist of positive literals, whereas all clauses below the variables only
consist of negative literals. Note that the clause C1 consists only of two distinct variables.
The double-occurrence of variables in clauses is not excluded in the definition of Planar-
Monotone-3-Sat, and we will take this case into account in our proof.

We will now show how to perform a reduction from Planar-Monotone-3-Sat to 2-CSE
in polynomial time.

In our reduction we construct a family of clusterings that has a unique embedding for
most of its clusters. The clusters whose embedding is not unique can only cross a certain
face of the embedding if no cluster from the other color crosses this face. This face will
represent a variable, and the crossing of a cluster of a color represents an assignment of
this variable. If and only if there exists a fulfilling assignment of the variables, we can find
a strong embedding in which no two clusters intersect without a common vertex. We now
show how we can construct such a family of clusterings.

We begin by constructing a grid-augmenting family F of two clusterings in the way shown
in the schematized drawing of Fig. 4.14(b). The grid has an upper and a lower half, each
consisting of one row for each cluster. The two halves are separated by another row of
larger cells: each cell in this row represents a variable and stretches over ci columns if the
variable xi is contained in ci clauses. We will call these cells variable cells. Obviously, the
corresponding grid graph is 3-connected, and we thus have a unique strong embedding of
the grid-shaped family of clusterings.

For each clause Ci we add two augmenting clusters to the grid: a cluster Ca
i in the

upper half and a cluster Cb
i in the lower half. The ordering of the clusters in the rows

corresponds to the vertical ordering of their edges in the planar rectilinear representation.
We use orange clusters for the clauses consisting of negative literals and green clusters
for the clauses that consist of positive literals. In the upper half, the orange clusters are
placed in the outer rows, in the lower half in the inner rows, close to the variable cells.
The clusters have an E-shape with their arms ending in the cells of the variables of their
corresponding clause. Due to the planarity of the rectilinear representation of the clauses,
clusters of the same color can be embedded without intersections in the grid. We add a
common vertex in a cell if two clusters of different colors intersect. The green clusters all
end in the upper right and lower left, the orange clusters in the upper left and lower right
of the variable cells. They keep the same relative ordering among clusters of their own
color that is induced by the ordering of the edges in the planar embedding of the instance
of Planar-Monotone-3-Sat.

If a variable is contained twice in a clause, we only create one arm ending in the cell of the
variable (See cluster Ca

1 and Cb
1). Otherwise, the same cluster would have two endpoints

in the corresponding variable cell and the embedding would not be unique anymore.

Lemma 6 guarantees that F has a unique strong embedding, and the two clusterings in F
can be constructed in polynomial time since there are at most 6 ·m2 +m grid cells where
m is the number of clauses.

We are now going to modify F to a family of clusterings F ′ by combining the two clusters
Ca
i and Cb

i of each clause to a single cluster Ci (See Fig. 4.14(c)). This destroys the property

35

36 4. Simultaneous Embeddability of Clusterings

x1 x2 x3 x4 x5 x6

C1

C2

C3

C4

C5

C6

C7

C1 = (x1 ∨ x1 ∨ x2)
C2 = (x2 ∨ x3 ∨ x5)
C3 = (x3 ∨ x4 ∨ x5)
C4 = (x2 ∨ x5 ∨ x6)
C5 = (x2 ∨ x3 ∨ x4)
C6 = (x2 ∨ x4 ∨ x6)
C7 = (x1 ∨ x2 ∨ x6)

(a)

Ca
1

Ca
4

Ca
2

Ca
3

Ca
7

Ca
6

Ca
5

Cb
1

Cb
4

Cb
2

Cb
7

Cb
6

Cb
5

Cb
3

x1 x2 x3 x4 x5 x6

(b)

C1

C4

C2

C3

C7

C6

C5

(c)

Figure 4.14.: The construction of a grid-augmented family F of two clusterings from an in-
stance of Planar-Monotone-3-Sat and a planar support in the combined
case F ′

36

4.2. Strong Embeddability 37

of uniqueness of the embedding. Now the embedding is strong if the induced support for
every cluster is a connected tree. Therefore, in a strong embedding a combined cluster is
cut at two different places in order to induce a minimal support. These places for the cuts
are the only degree of freedom we have in an embedding of F ′. Even though the embedding
is no longer unique, the combination of the clusters allows us to make the following claim:

The family of clusterings F ′ is strongly embeddable if and only if the corresponding instance
of Planar-Monotone-3-Sat is satisfiable.

If the instance is satisfiable, there exists a satisfying assignment to the variables. We create
a support for F ′ by adding edges in the variable cells connecting the green clusters if the
variable is true and connecting the orange clusters if the variable is false. Since every
clause contains at least one literal that evaluates to true, the upper and lower half of the
cluster can be connected through the cell of the variable whose literal evaluates to true.
No two clusters cross in a variable cell since every variable can be either true or false,
i.e., crossed only by green or orange clusters, respectively.

Figure 4.14(c) shows a planar support for the clusterings that corresponds to the following
satisfying assignment of the variables: x1 = true, x2 = true, x3 = true, x4 = false,
x5 = true and x6 = false. Note that for reasons of clarity, the support in this example
is not minimal: a minimal support would not allow circles within the subgraph induced by
the augmenting clusters. Yet, any minimalization would obviously still induce a fulfilling
assignment of the variables.

The other direction of the proof requires more thought:

If F ′ is strongly embeddable, there exists a planar support Gp for F ′ that is induced by a
strong embedding Γ′. Thus, for every cluster Ci there exists a path in its induced subgraph
Gp[Ci] of Gp between any vertex in the upper half and any vertex in the lower half of the
grid. Since the grid has a unique strong embedding, the path must cross at least one of the
variable cells. It obviously can not leave the variable cell while crossing it since it does not
share any vertex with the adjacent clusters of the cell besides the two separator clusters
through which it crosses.

We will from now on use the notion of a cluster Ci crossing a grid cell g in Γ′ if in the
embedding of the induced support Gp of Γ an edge of Gp[Ci] would be placed within the
corresponding face of the cell. We call a vertex v a free vertex if it is shared by two of
the augmenting clusters in F . We call a strong embedding Γ∗ of F ′ a canonical strong
embedding of F ′ if all free vertices are placed in the same grid cell as in the unique strong
embedding Γ of F . We call the position of a free vertex in the canonical strong embedding
its original position. A canonical embedding means in particular that no free vertices are
placed inside a variable cell.

In the case of a canonical strong embedding, each variable cell is crossed by clusters
of at most one color, and we have found a fulfilling assignment of the variables in the
corresponding instance of Planar-Monotone-3-Sat: a variable is set to true if its cell
is crossed by green clusters, false if its cell is crossed by orange clusters, and its value is
not relevant if its cell is not crossed at all.

However, since the embedding is not unique anymore, we can not guarantee that a planar
support induces a canonical strong embedding. It could be the case that there exists a
strong embedding in which one or more of the free vertices are actually placed inside of a
variable cell. In that case we can not deduce an assignment of the variables anymore.

Luckily, we can show that if there exists a strong embedding Γ′ of F ′, we can transform it
into a canonical strong embedding Γ∗.

37

38 4. Simultaneous Embeddability of Clusterings

We will first show the principal proceeding for moving a single free vertex from a variable
cell in Γ′ back into its original cell as given in the canonical strong embedding. We then
show that this method also works if there are multiple vertices in a variable cell.

Let us assume that an orange cluster Ci and a green cluster Cj share a common free vertex
v that is placed in the variable cell xk in the strong embedding Γ′. Since in the canonical
strong embedding all common vertices of Ci and Cj were placed in grid cells of the upper
or the lower half (see Fig. 4.14(b)), the original position of v is in one of these grid cells.
Let this grid cell be g and let, without loss of generality, g be a cell in the upper half of
the grid.

Since Γ′ is a strong embedding, Ci and Cj do not cross in g since a crossing between Ci

and Cj would require the vertex v to be placed in g. Thus, the placement of v in a cell
other than g results in either the orange cluster Ci or the green cluster Cj being cut in the
cell. Without loss of generality, let the cluster that is cut be Cj . Thus, the green cluster
Cj does not cross g anymore.

Since Γ′ is a strong embedding, there must be a support Gp despite the cut in which the
induced subgraph Gp[Cj] is connected. In particular, there must be a path in Gp[Cj] that
connects the two vertices that Cj shares with the separator clusters of g (note that these
vertices are not explicitly shown in the schematized drawings). Due to the placement of
the augmenting clusters, this path has to pass through the lower half of the grid and back,
crossing two variable cells. Thus, there exists another variable cell xl besides xk that is
crossed by an edge of Gp[Cj]. Therefore, Cj does not need the connection through xk,
and we can create another strong embedding, moving v back in g. In this embedding, the
green cluster Cj is cut in the variable cell xk instead of g.

We have just explained how we can move a single vertex from a variable cell in Γ′ back
to its original position given by the canonical embedding. But – since the free vertices
are not independent – how can we guarantee that we can always move all free vertices
of a variable cell back to their original positions? We will now show that we can do this
successively with all vertices in a variable cell. In order to do that, we introduce the notion
of determined color of a variable cell and then show that every cell can have at most one
determined color.

If a variable cell xk in Γ′ is crossed by a cluster Ci and Ci does not cross any other variable
cell, we call the color of Ci a determined color of xk. We call Ci a cluster that determines
the color of xk.

Since a cluster Ci that determines the color of a variable cell xk does not cross any other
variable cell, it can not be the cluster that is cut when one of its contained free vertices
is misplaced. Otherwise its induced subgraph Gp[Ci] would be disconnected. Thus Ci

is required to cross the variable cell xk, no matter which free vertices we move. On the
other hand, all clusters that are not determining the color can be cut in xk if we move
their contained vertices to their original cell since they have a second connection between
their upper and lower halves through another variable cell. If there is a color that is not
a determined color of xk, we can move the contained free vertices of all clusters of that
color in xk back to their original position.

Now we just have to show that a variable cell can never have two different determined
colors:

Let us assume that the cell xk has two different determined colors. This would require the
cell xk being crossed by a determining orange cluster Ci and a determining green cluster
Cj . This means that for both Ci and Cj , the only connection between their upper and
their lower part is through the cell xk. Due to their intersection in xk, the two clusters

38

4.2. Strong Embeddability 39

also have to share a common free vertex v that is placed in xk. Let g be the original grid
cell of v in which Ci and Cj intersect in the canonical embedding. The removal of v from
g requires a cut in one of the two clusters. Since none of the two has another connection
between its upper and its lower half, the cut means that one of the subgraphs Gp[Ci] and
Gp[Cj] in the support is not connected. This is a contradiction to the initial condition of
Γ′ being a strong embedding.

Thus, in every strong embedding every variable cell can have at most one determined
color. We can therefore pick an arbitrary variable cell and successively move all vertices
back to their original positions from the canonical embedding. Note that some of the
other cells that were undetermined before might now have a determined color. Yet, as we
showed in the example of moving a single vertex, the resulting embedding remains a strong
embedding. We can thus perform this operation for all variable cells that contain vertices
in an arbitrary ordering and end up with a canonical strong embedding Γ∗ which gives
us a fulfilling assignment of the variables. Thus, the corresponding instance of Planar-
Monotone-3-Sat is satisfiable if and only if there exists a strong embedding of F ′. 2

As mentioned at the beginning of this section, we can draw the following two corollaries
from Theorem 6:

Corollary 5 k-CSE is NP-complete for k ≥ 2.

Corollary 6 The test for vertex-planarity of a hypergraph remains NP-complete for k-
regular hypergraphs with k ≥ 2.

In the next two sections, we are going to introduce subclasses of strong embeddability that
require additional constraints.

4.2.5. Single-Intersection and Path-Based Strong Embeddability

For the subclasses of strong embeddability in this section, we will go back to an arbitrary
number of clusterings: let Γ = (J (F), P (V)) be an embedding of a family of k strict
partitioning clusterings F = (Ci)i≤k on a set V .

The embeddings of the following class require that equivalent vertices are placed in the
same region:

Definition 24 (Single-Intersection Strong Embeddings) An embedding Γ of a fa-
mily of k clusterings F = (Ci)i≤k is a single-intersection strong embedding (SISE) if it is
a strong embedding and for every pair of clusters Ca, Cb ∈

⋃
C∈F
C the intersection between

the insides of J(Ca) and J(Cb) is a connected region:

|comp(int(J(Ca)) ∩ int(J(Cb)))| = 1

We call F single-intersection strongly embeddable if there exists a single-intersection
strong embedding for F .

This restriction corresponds to the definition of Euler diagrams (Section 2.3.2) when li-
miting the connectedness-property to the regions that actually contain a vertex: In an
Euler diagram every region has to be connected, whereas in a single-intersection strong
embedding only the regions containing a vertex (i.e., regions in the inside of k curves)
have to be connected. We can characterize single-intersection strong embeddings by the
condensation of the corresponding hypergraph:

Theorem 7 If F contains only two clusterings, it is single-intersection strongly embed-
dable if and only if the condensation H ′F of the corresponding hypergraph HF = (V,S) is
vertex planar.

39

40 4. Simultaneous Embeddability of Clusterings

Proof

In a single-intersection strong embedding of F all equivalent vertices are placed in the same
connected component of their region. We can thus remove all but one representing vertex
for each region and still have a strong embedding of two families of clusterings F ′. Their
corresponding hypergraph is the condensation H ′F of HF since any two clusters share at
most one vertex, and H ′F is vertex planar since the clusterings have a strong embedding.

Let V be the underlying set of vertices of F . If the condensation H ′F of the corresponding
hypergraph HF is vertex planar, there exists a strong embedding Γ′ of a family of cluste-
rings F ′ that corresponds to the hypergraph H ′F . Let V ′ ⊆ V be the underlying set of F ′.
The difference between F ′ and F is only the underlying set; their cluster-graphs are the
same. We can therefore just place the additional vertices from V that are not in V ′ into
the regions of their representing vertex in Γ′ and end up with a strong embedding Γ of F .
2

Now we will show that this class is a true subclass of the strongly embeddable families of
clusterings:

Lemma 7 There exists a family of two clusterings F = {C1, C2} on a set V that is not
single-intersection strongly embeddable.

Proof

We use the counterexample in Fig. 4.13(a). The grid structure enforces a unique strong
embedding of the clusterings. In this embedding the two augmenting clusters have two
points of intersection that require the two equivalent common vertices of the two clusters.
2

It is still an open question whether the test for single-intersection strong embeddability
is also NP-complete. Since our proof for strong embeddability in the last section uses
multiple intersections between clusterings, we can not apply it to this problem.

The following class of embeddings requires a linear ordering of the vertices in each cluster:

Definition 25 (Path-Based Strong Embeddings) A family of k strict partitioning
clusterings F = (Ci)i≤k is path-based strongly embeddable if its corresponding hyper-
graph HF = (V,S) has a path-based planar support Gp, i.e., for every hyperedge S ∈ S the
induced subgraph Gp [S] of Gp is a path.

We call an embedding that is equivalent to an embedding induced by a path-based planar
support a path-based strong embedding (PBSE).

Brandes et al. [BCPS11b] already defined the concept of path-based supports for arbitrary
hypergraphs. They stated it to be NP-complete by referring to the original proof of the
NP-completeness of vertex planarity by Johnson and Pollak [JP87] that uses a path-based
support. They found a polynomial-time method to find path-based supports that are trees.

However, as for single-intersection strong embeddability, it is still an open question whether
the problem remains NP-complete when limited to the special instances of corresponding
hypergraphs of families clusterings.

Yet, we can show the relationship to string-graphs (see Section 2.3.3 for the definitions):

Theorem 8 A family of two strict partitioning clusterings F = {C1, C2} on a set V is path-
based strongly embeddable if and only if its cluster-graph GF = (VF , EF) is a string-graph
with a representation R = {R(v), v ∈ VF} in which the number of intersections between
two curves R(vi), R(vj) ∈ R that are representing the nodes vi, vj ∈ VF is less than the
number of common vertices of their corresponding clusters Ci, Cj.

40

4.2. Strong Embeddability 41

Proof (by construction)

We first show how to construct a path-based strong embedding Γ = (J (F), P (V)) from
the representation R: We place a vertex v ∈ Ci∩Cj in every point of intersection between
the curves R(vi), R(vj) ∈ R. This is possible since the number of intersections of R(vi)
and R(vj) does not exceed the number of common vertices of Ci and Cj . We then draw
an enclosing curve Ji around each curve R(vi) with a sufficiently small distance, such
that two curves Ji and Jj only intersect in the immediate neighborhood around a vertex
v ∈ Ci ∩ Cj . The result is a condensation of the desired strong embedding. We can now
place the remaining vertices in Ci∩Cj in the intersections between the insides int(Ji) and
int(Jj) of the curves Ji and Jj and end up with a strong embedding Γ.

Let now Γ = (J (F), P (V)) be a path-based strong embedding of F . There exists thus
a path-based support Gp of F . We are now going to modify Gp to a multigraph G′p by
replacing an edge e by n multiedges if e is contained in the induced path of n clusterings.
Obviously, we can still find a planar embedding Π of G′p. We now take all edges on the
path Gp[Ci] that is induced by a cluster Ci and combine them to the simple curve R(vi).
If we use a different multiedge for each induced path, the combination of all curves R(vi)
is a string-representation of the cluster-graph GF with n crossings between two strings if
the corresponding clusters share n vertices. 2

We will refer to such string graphs with a limited number of intersections between strings
as individually bounded intersection string graphs.

Even though it seems that, at least for the case of two clusterings, most families of cluste-
rings are path-based strongly embeddable if they are strongly embeddable, we will show
an example to prove the following lemma:

Lemma 8 There exists a family of two clusterings F = {C1, C2} on a set V that is not
path-based strongly embeddable.

Proof

We use the counterexample in Fig. 4.13(a). Due to the unique strong embedding, the
green augmenting cluster can not have a path-based support. All possible supports for the
green cluster are trees (see also Fig. 4.12 for the possible supports). 2

We also define a class of clusterings that are both single-intersection and path-based stron-
gly embeddable:

Definition 26 (Single-Intersection Path-Based Strong Embeddings) A family of
k strict partitioning clusterings F = (Ci)i≤k on a set V is single-intersection path-based
strongly embeddable if it is single-intersection strongly embeddable and path-based strongly
embeddable. We call an embedding that fulfills both requirements a single-intersection path-
based strong embedding (SIPBSE).

From the two theorems on path-based and single-intersection strong embeddings we can
draw the following corollary:

Corollary 7 A family of k strict partitioning clusterings F = (Ci)i≤k is single-intersection
path-based strongly embeddable if and only if the cluster-graph is in 1-string.

41

42 4. Simultaneous Embeddability of Clusterings

Proof

If the cluster-graph GF is in 1-string, we can generate a single-intersection path-based
strong embedding of F from a string representation of GF by drawing an enclosing curve
around each string as shown in the proof of Theorem 8. Since there exists only one point of
intersection between any two strings, the path-based strong embedding fulfills the criteria
of a single-intersection path-based strong embedding.

If we have a single-intersection path-based strong embedding, we can generate a 1-string
representation of GF by first generating the reduction of the single-intersection path-based
strong embedding. Thus there is at most one common vertex between any two clusters due
to the single-intersection-property. We can then take an arbitrary embedding of a planar
support of the reduction that induces the single-intersection path-based strong embedding
and generate the strings by combining the curves of the edges of the subgraph that is
induced by a cluster. 2

Now we can introduce two special kinds of single-intersection path-based strong embed-
dings. They require that the orderings of clusters on a path in a support are consistent
throughout all clusters. The upcoming two classes are only defined for families of two
clusterings.

4.2.6. Cylinder- and Plane-Grid Strong Embeddability

We now define strong embeddability for the case that the cluster-graph has a grid repre-
sentation both on the cylinder and in the plane:

Definition 27 (Cylinder-Grid Strong Embeddings) A family of two strict partitio-
ning clusterings F = {C1, C2} on a set V is cylinder-grid strongly embeddable if its
cluster-graph has a cylindrical grid representation. An embedding where clusters are drawn
as horizontal and vertical ribbons on a cylinder is called cylinder-grid strong embedding
(CGSE).

Figure 4.15.: A cylinder-grid strong embedding of a family of two clusterings

To transfer the drawing into the plane, the cylinder has to be cut between two clusters.
These clusters have to be drawn as curves around the grid as shown in Figure 4.15.

It is still an open question whether we can visualize every family of clusterings that is
path-based single-intersection strongly embeddable in this way. This is the only remaining
unknown inclusion in our – otherwise strict – hierarchy of embeddability (Section 4.4).

42

4.2. Strong Embeddability 43

If we want to avoid the cuts in the cylinder in order to draw the clusters in the plane,
we can also define an even stricter concept of strong embeddability, the plane-grid strong
embeddability:

Definition 28 (Plane-Grid Strong Embeddings) A family of two strict partitioning
clusterings F = {C1, C2} on a set V is plane-grid strongly embeddable if its cluster-graph
has a grid representation in the plane. An embedding where clusters are drawn as horizontal
and vertical ribbons in the plane is called plane-grid strong embedding (PGSE).

C1,1v1
v2

v3

C2,1 C2,2

v5
v6

v7
v8

C2,3

v4

C1,2

C1,4

C1,3

v9

v10

v11

v12

C2,5 C2,4

v13 v14
v16

v15

Figure 4.16.: A plane-grid strong embedding of two families of clusterings. The clusterings
are the same as in the example from Fig. 3.1

Figure 4.16 shows the example we used in Chapter 3, drawn in a plane-grid strong embed-
ding. Not every graph that is cylinder-grid strongly embeddable is also plane-grid strongly
embeddable. The clusterings in Fig. 4.15 are such an example: The five missing vertices
in the intersection of the clusters make it impossible to draw the clusters in a plane-grid
without violating the requirements for strong embeddability. Since there are only four
sides of a plane-grid, only four of the missing vertices can be placed at the border of the
grid. The fifth missing vertex has to be placed somewhere in the middle of the grid in
all possible permutations of the rows and columns, requiring at least one ribbon to be
wrapped around the cylinder.

A nice advantage of plane-grid embeddings is that they lead directly to a representation
where each cluster can be represented as a convex area. This should further increase the
readability of embeddings.

As stated in Section 2.3.3, it is NP-complete to decide whether a bipartite graph has
a grid representation, both in the plane and on a cylinder. Thus, since every bipartite
graph can be seen as a cluster-graph, the hardness also applies for the test whether two
clusterings have a plane- or cylinder-grid embedding.

We will now generalize the problem from a decision- to an optimization-problem. In order
to do that, we define grid representations of clusterings that are allowed to have crossings
between disjoint clusters.

43

44 4. Simultaneous Embeddability of Clusterings

Definition 29 (Grid Representations of Clusterings) A grid representation1 of two
clusterings in the plane or on the cylinder is a representation of the clusters as horizontal
and vertical ribbons where ribbons are allowed to cross even if their corresponding clusters
do not share a common vertex.

A grid representation can be described entirely by a simple permutation of the clusters of
each clustering. The search for good grid representations naturally leads to the following
definition:

Definition 30 (Bad Crossings and Optimal Grid Representations) A bad crossing
in a cylinder- or plane-grid representation of two clusterings is an intersection between the
ribbons of two clusters that do not contain a common vertex. A cylinder- or plane-grid
representation of two clusterings is optimal if the number of bad crossings is minimal.

Thus, every plane- or cylinder-grid embedding is an optimal plane- or cylinder-grid repre-
sentation (since the number of bad crossings can not be less than zero). More generally,
we can now use two numerical values for families of two clusterings that indicate how well
they can be embedded.

Definition 31 (MinPlaneCrossingNumber and MinCylinderCrossingNumber)
Given two clusterings, the MinPlaneCrossingNumber is the number of bad crossings in an
optimal plane-grid representation and the MinCylinderCrossingNumber the number of bad
crossings in an optimal cylinder-grid representation of the two clusterings.

In the rest of this work, we are going to put an emphasis on grid representations. They
have the advantage that they are easy to describe and to represent. Before we take a
closer look at grid representations, we are going to conclude this chapter by establishing
the final and strictest concept of embeddability and then recapitulate the entire hierarchy
of embeddability.

4.3. Full Embeddability

When looking at the concepts we established so far the question arises whether it is pos-
sible to completely avoid crossings between the insides of clusters, no matter if they have
common vertices or not. We establish this as a requirement for the concept of full embed-
dability. This assures that a cluster is drawn in one piece.

Definition 32 (Full Embeddings) The embedding Γ is a full embedding (FE) if it is
a strong embedding and every two curves share at most two points of intersection:

∀Ca, Cb ∈
⋃
C∈F
C : |J(Ca) ∩ J(Cb)| ≤ 2

We call F fully embeddable if there exists a full embedding for F .

For the case of two clusterings, we can establish the following relationship to Zykov pla-
narity.

Theorem 9 A family of two clusterings F = {C1, C2} on a set V is fully embeddable if
and only if the condensation H ′F = (V,′ S) of the corresponding hypergraph HF = (V,S) is
Zykov planar.

1Please note the different context in which we are now using the term grid representation: A grid repre-
sentation of two clusterings is allowed to have crossings, a grid representation of a bipartite graph not.
The latter corresponds to a grid embedding when viewed as cluster-graph.

44

4.3. Full Embeddability 45

Proof

Let Γ be a full embedding of F . Every region of the embedding lies either in the inside
of two, one or zero Jordan curves. We place a vertex inside the regions that lie in the
insides of two or one curve and connect two vertices if their regions are separated by only
one Jordan curve. The result is a planar bipartite map, and thus the hypergraph is Zykov
planar.

Let HF = (V,S) be Zykov planar. There exists thus a planar embedding of its bipartite
map. We generate a full embedding by drawing an enclosing curve around every star
that consists of the node for a cluster and its neighbors. If we choose the distance of the
enclosing curve small enough, we end up with a full embedding. 2

For the case of two clusterings, we show the following relationship to the planarity of the
cluster-graph.

Theorem 10 A family of two strict partitioning clusterings F = {C1, C2} is fully embed-
dable if and only if the cluster-graph GF is planar.

Proof

We generate a graph Gb by dividing every edge of GF and inserting a node v. Since
GF is planar, Gb is also planar and – due to its construction – a bipartite map of the
corresponding condensed hypergraph H ′F . As described in Section 2.2.2, the existence of
such a bipartite map induces the Zykov-planarity of H ′F . According to Theorem 9, this is
equivalent to the existence of a full embedding of F .

For the other direction, a full embedding of F induces the existence of a bipartite map Gb

for the condensed hypergraph H ′F . From Gb we construct the cluster-graph by replacing
all paths between two nodes that represent clusters with an edge. 2

C1,1

C2,1 C2,2 C2,3

C1,2 C1,3

(a) K3,3 as cluster-graph of F

C1,1

C1,2

C1,3

C2,1 C2,2 C2,3

(b) A strong embedding of F

Figure 4.17.: The complete bipartite graph K3,3 and a strong embedding of two clusterings
F = {C1, C2} induced by K3,3 as cluster-graph. A full embedding of F can
not exist.

Theorem 10 allows us to characterize the smallest non-fully-embeddable clusterings. The
smallest non-planar Graphs are K5 and K3,3. Since K5 is not k-partite, it can not be
directly used as a cluster-graph. (A version of K5 with subdivided edges as clustergraph
is shown earlier in Fig. 4.3.) K3,3 however is already bipartite and can be used as a

45

46 4. Simultaneous Embeddability of Clusterings

cluster-graph. Figure 4.17 shows K3,3 as a cluster-graph and a strong embedding of the
clusterings. A full embedding can not exist.

Furthermore, we can show that the instances of families of two clusterings that are fully
embeddable are a true subset of the instances that are plane-grid strongly embeddable:
As mentioned in Section 2.3.3, Hartman et al. [HNZ91] showed that every planar bipartite
graph has a grid representation in the plane. Since the bipartite cluster-graph of every
fully embeddable family of two clusterings is planar, it has a grid representation. This is
exactly the definition of plane-grid strong embeddability (Definition 28).

Now we can generate an overview of the relationships between the classes we introduced.

4.4. The Hierarchy of Embeddability

FE

PGSE

CGSE
PBSE SISE

SIBPSE

SE

WE

Figure 4.18.: The hierarchy of embeddability for families of two clusterings

After having introduced all classes of embeddability, we will summarize our results in a
hierarchy of embeddability. Figure 4.18 visualizes the relationship between the different
classes for the case of two clusterings. We could show that all classes are true subsets of each
other, with one exception: It is not clear whether there exist embeddings that have a single-
intersection path-based strong embedding but are not cylinder-grid strongly embeddable.
In other words, it is not clear whether single-intersection path-based strong embeddability
is its own class or not. We therefore shaded this class gray in the visualization.

Figure 4.19 shows again the differences between the main classes of weak, strong, and full
embeddings.

For a more detailed overview of all classes, we provide Table 4.2. It summarizes all im-
portant results of this work for the case of two clusterings, regarding the relationship to
other problems and the complexity of the decision problem for each class.

We give references to the corresponding lemmata and theorems if we proved a result in
this work or cite other publications if we use their results. For the inclusions, we refer to
figures that help to visualize the differences between the two classes.

46

4.4. The Hierarchy of Embeddability 47

Full Embeddability

⇔ condensed hypergraph is Zykov planar (Theorem 9)
⇔ cluster-graph is planar (Theorem 10)

linear complexity (planarity test)⋂
Fig. 4.17

Plane-Grid Strong Embeddability

⇔ clustergraph is grid intersection graph in the plane (Def. 28)

NP-complete (see [Kra94])⋂
Fig. 4.15

Cylinder-Grid Strong Embeddability

⇔ clustergraph is grid intersection graph on a cylinder (Def. 27)

NP-complete (see [KP96])⋂
? =

Single-Intersection Path-Based Strong Embeddability

⇔ both single-intersection and path-based strongly embedda-
ble (Definition 26)

⇔ cluster-graph is in 1-string (Corollary 7)

complexity unknown⋂ ⋂
Single-Intersection

Strong Embeddability

⇔ condensation of corresponding hyper-
graph is strongly embeddable (Theo-
rem 7)

complexity unknown

Path-Based

Strong Embeddability

⇔ clustergraph is individually boun-
ded intersection string-graph (Theo-
rem 8)

complexity unknown⋂
Fig. 4.13(a)

⋂
Fig. 4.13(c)

Strong Embeddability

⇒ clustergraph is a string graph (Lemma 1)
⇔ corresponding hypergraph is vertex planar (Theorem 4)

NP-complete (Theorem 6)⋂
Fig. 4.3

Weak Embeddability

⇔ the clusterings have to be strict partitioning (Theorem 3)

exists always

Table 4.2.: An overview of the results from this chapter for the case of two clusterings

47

48 4. Simultaneous Embeddability of Clusterings

CA

E D

B

FG

(a) Weak embedding

CA

E D

B

FG

(b) Strong embedding

C

A

E D

B

FG

(c) Full embedding

Figure 4.19.: A comparison of the three main types of embeddings on the example cluste-
rings from Fig. 1.1

48

5. How to Generate Embeddings

In this chapter we are going to introduce practical approaches for generating embeddings
for families of two clusterings. The main goal is to generate embeddings with as few
intersections as possible between the insides of curves of clusters that do not share a
common vertex.

Since this work focuses on embeddability, we did not put an emphasis on visual appearance
or aesthetic criteria, such as convex shapes of clusters or compactness of the representation.
Instead, we simply generate a layout of a support of the clusterings and draw enclosing
curves around the subgraphs induced by the clusterings.

Thus, the methods presented in this chapter have the goal of finding a support. The
optimum would be to to find a support that is planar, leading to a strong embedding of
the clusterings. If we can not find a planar support, we will try to provide a support
that can be embedded with as few crossings as possible. This is what we refer to as good
support. In order to layout the supports, we used layout algorithms that are included in the
“Open Graph Drawing Framework” (OGDF, see [CGJ+13]). We additionally implemented
a visualization for plane- and cylinder-grid representations. Information on the format of
the input for our implementation can be found in Section A in the Appendix.

For fully embeddable families of clusterings, finding a planar support is easy (Section 5.1).
For a non-fully embeddable family of clusterings however, it is NP-complete to decide
whether there exists a planar support or not (see proof in Section 4.2.4). Yet we are not
only interested in the decision problem but also in the related optimization problem, i.e.,
minimizing crossings in an embedding of a support. Obviously this problem is even harder
since the decision problem is just a special case of the optimization problem.

We were not able to provide a simple method to directly approach this problem besides
random guessing. Yet we developed both a heuristic and an exact method to minimize
crossings in cylinder- and plane-grid representations. With these results, we can either
output the grid representation itself or generate a support that is based on this represen-
tation.

For technical reasons, we add a dummy-node for each cluster to the support that serves
as a placeholder for the label of the cluster. We start with the easy case of generating a
planar support for families of clusterings that are fully embeddable.

49

50 5. How to Generate Embeddings

5.1. Supports for Fully Embeddable Families of Clusterings

Fully embeddable families of clusterings induce a planar graph Gb, the bipartite map
(Section 2.2). We can create a support by connecting equivalent nodes to a chain and
then create an edge from one of the nodes in the equivalence class to the dummy node of
the containing cluster. Figure 5.1 shows a layout of such a support and the corresponding
output of our program for an example instance with 20 vertices1.

(a) A layout of the generated planar support based on a bipartite map

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10v11

v12

v13

v14

v15

v16

v17

v18

v19

C0,0

C0,1 C0,2

C0,3 C0,4

C1,0

C1,1

C1,2

C1,3C1,4C1,5

C1,6

C1,7

C1,8

(b) The resulting full embedding of the family of clusterings

Figure 5.1.: The support and the resulting full embedding of a fully embeddable family of
clusterings generated by our implementation

5.2. Supports for Non-Fully Embeddable Families of Cluste-
rings

If the cluster-graph is not planar, the search for a good support becomes more complicated.
If a cluster contains n vertices, there exist nn−2 different spanning trees that cover the
vertices of the cluster (see Cayley’s formula [Cay89]). Even if we restrict the search space
to path-based supports, we still have n! possible permutations of the n vertices on the
path that forms the support for a cluster.

Due to the NP-completeness result in Section 4.2.4, it is unlikely that there exists a
polynomial-time algorithm for finding a support. For the case of a path-based support,
we did not prove the hardness; yet there is at least no obvious way to tackle the problem.
A brute-force approach that tries all possible combinations is not practicable due to the

1Note that – contrary to the examples in earlier chapters – our method numbers clusterings and clusters
starting with the index 0 instead of 1

50

5.3. How to Find Grid Representations 51

exponential number of possibilities. However, for experiments with smaller examples, we
implemented two random-support generators:

Random Path-Based Support

We generate a random order of all vertices in a cluster and connect them to a path-based
support. We then check if the support is planar and restart with another random order if
it is not.

Random Minimal Support

We use the same principle as for the random path support, but we are generating a random
spanning tree for the vertices in each cluster instead of a random path. We use a simple
algorithm that was proposed by Wilson [Wil96] to generate spanning trees uniformly at
random.

The random methods provide good results for very small instances, especially if the solution
space is large (i.e., there exist many planar supports) and the clusters are rather small.
Figure 5.2 shows embeddings that are induced by a random path support and a random
minimal support for the same example we used earlier.

While it is already not straight-forward to find a heuristic that finds a planar support, the
problem becomes even harder when it comes to generating a good support (i.e., minimize
the crossings). Already the comparison between two given non-planar supports is a hard
problem: Garey and Johnson [GJ83] proved the problem of finding the minimal crossing
number of a graph to be NP-complete. That means that even if we have two non-planar
supports, it is hard to tell which one is better, i.e., which one can be embedded with the
least number of crossings.

We therefore decided to focus on supports that are induced by cylinder-grid represen-
tations. These are easier to describe, and the solution space is covered by all possible
permutations of the rows and columns in the grid.

Cylinder-Grid Induced Support

From a cylinder-grid representation of two clusterings we can generate a support by connec-
ting equivalent nodes to a chain and connect the chains in the order of their appearance in
the ribbon that represents the cluster. For bad crossings we can introduce a dummy-node,
such that the result is a planar graph for which we can again draw our enclosing curves.
This assures that the support has at most k crossings if there exist k crossings in the
cylinder-grid representation. Figure 5.3 shows a plane- and a cylinder-grid representation
of the example-clusterings as well as an embedding based on the support that is induced
by the cylinder-grid representation.

Now the main question is how to find a good or even optimal cylinder-grid representation.
In the following section we will introduce two different approaches for generating grid
representations.

5.3. How to Find Grid Representations

We developed two methods for finding grid representations of two clusterings. As we
showed earlier, the corresponding decision problem isNP-complete. The first approach is a
greedy heuristic that is fast but is not guaranteed to provide an optimal result. The second
approach generates an optimal representation by modeling the problem as an integer linear
program (ILP).

51

52 5. How to Generate Embeddings

v0

v1

v2 v3

v4

v5

v6

v7

v8

v9

v10

v11v12 v13 v14

v15

v16 v17

v18

v19C0,0

C0,1 C0,2

C0,3

C0,4

C1,0

C1,1

C1,2

C1,3 C1,4

C1,5

C1,6

C1,7 C1,8

(a) A strong embedding based on a random path support

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

C0,0

C0,1

C0,2

C0,3

C0,4

C1,0

C1,1

C1,2

C1,3

C1,4

C1,5

C1,6

C1,7

C1,8

(b) A strong embedding based on a random minimal sup-
port

Figure 5.2.: Two strong embeddings based on randomly generated supports

A linear program is an optimization problem where a linear objective function has to be
maximized or minimized under a series of constraints that have to be linear as well (See
[FS58] for an overview). While there exist efficient solutions for the general case, i.e., all
variables can have real values, the problem becomes NP-complete if we limit the solution
space to integer or binary values (see [Pap81]). We are thus transforming oneNP-complete
problem into another. The advantage is that there exist fast solvers for ILP’s that use a
combination of heuristics and exhaustive search in the solution space to solve the problem.
However, there is no guarantee to find such a solution quickly, and running times can
increase exponentially with the size of the problem.

5.3.1. A Greedy Heuristic to Find a Grid Representation

In our heuristic we start with a grid representation induced by an arbitrary permutation
of the rows and columns. We then alternatingly swap two random rows or columns until
we reach the maximal number of iterations or find a representation without bad crossings.
If the swapping increased the number of bad crossings, we undo the swap, otherwise we
keep the new grid representation. This method works with both cylinder- and plane-grid

52

5.3. How to Find Grid Representations 53

C0,2

C0,1

C0,0

C0,3

C0,4

C1,7 C1,1 C1,2 C1,3 C1,4 C1,5 C1,6 C1,0 C1,8

v5 v10 v8

v16 v12 v9

v2 v6 v3 v11

v7 v14

v0 v18 v1 v4

v13

v15 v17 v19

(a) An optimal plane-grid representation

C0,0

C0,1

C0,2

C0,3

C0,4

C1,0 C1,1 C1,2 C1,3 C1,4 C1,5 C1,6 C1,7 C1,8

v3 v2 v6 v11

v12 v9 v16

v10 v5 v8

v7 v14

v19 v0 v18 v1 v4

v13

v15 v17

(b) An optimal cylinder-grid representation

v0

v1

v2v3

v4

v5

v6

v7

v8v9

v10 v11

v12

v13

v14 v15

v16

v17

v18

v19 C0,0

C0,1

C0,2

C0,3

C0,4 C1,0

C1,1

C1,2

C1,3

C1,4

C1,5

C1,6

C1,7 C1,8

(c) A strong embedding based on the support that
was induced by the cylinder-grid representation
above

Figure 5.3.: Two grid representations and a strong embedding based on a cylinder-grid
induced support

representations, depending on the function currentCrossingNum() used to calculate the
number of crossings. The pseudocode in Algorithm 1 describes the heuristic.

Algorithm 1: Greedy Heuristic for finding a grid representation

Input : two clusterings C0, C1 ; number of maximal iterations m
Output: a grid representation
generate initial grid representation
minCrossings ← currentCrossingNum()
while m > 0 AND minCrossings > 0 do

if isEven(m) then swapTwoRandomRows()
else swapTwoRandomCols()
if minCrossings < currentCrossingNum() then undoSwapping()
else minCrossings ← currentCrossingNum()
m← m− 1

The methods for calculating the number of bad crossings for plane- and cylinder-grid
representations can be found in Section B of the Appendix.

In the following two sections we introduce two integer linear programs for finding optimal
plane- and cylinder-grid representations. In Section 6.1 we will compare results of the
greedy approach with exact solutions from the integer linear programs.

53

54 5. How to Generate Embeddings

5.3.2. Integer Linear Programs for Optimal Grid Representations

The following two integer linear programs (ILP) allow to calculate an optimal solution of
the MinCylinderCrossingNumber- and the MinPlaneCrossingNumber-problem. We begin
with the easier case of plane-grid representations.

5.3.2.1. Optimal Plane-Grid Representations

Let CA and CB be the two clusterings and n = |CA| and m = |CB| be their sizes. We
will assume that we draw the clusters in CA vertically (as columns) and the clusters in
CB horizontally (as rows). We use the prefixes A and B to indicate whether an index in a
variable corresponds to the first or the second clustering. We call the crossings between
the clusters grid cells. A grid cell is empty if the two clusters that cross in the cell do not
share a common vertex.

The Variables

We generate binary variables AiInPosx (for 0 ≤ i < n and 0 ≤ x < n) and binary variables
BjInPosy (for 0 ≤ j < m and 0 ≤ y < m) that indicate – if set to 1 – that the cluster i of
CA is in position x of the rows and that the cluster j of CB is in position y of the columns.

We further generate integer variables AiPos (for 0 ≤ i < n) and BjPos (for 0 ≤ j < m)
that indicate the row and column indices of the clusters for both clusterings.

For every cluster, we generate boundaries AiFirstNonZero and AiLastNonZero (for 0 ≤
i < n) for the clusters in the first clustering and BjFirstNonZero and BjLastNonZero (for
0 ≤ j < m) for the clusters in the second clustering. The boundaries indicate the position
of the first and the last grid cell that is not empty in the row or column of the cluster.

For every pair of clusters Ci ∈ CA and Cj ∈ CB that does not contain a common vertex,
we also generate the following binary boundary-indicator-variables:

AiBjGreaterThanFirstNonZeroA

AiBjSmallerThanLastNonZeroA

AiBjGreaterThanFirstNonZeroB

AiBjSmallerThanLastNonZeroB

(for 0 ≤ i < n and 0 ≤ j < m if Ci does not share a vertex with Cj)

They indicate whether the position of the empty grid cell is greater or smaller than the
boundaries in the corresponding columns or rows.

We also create a binary variable AiBjHasBadCrossing (for 0 ≤ i < n and 0 ≤ j < m) for
every empty grid cell. This variable will be set to true if the empty cell lies within the
boundaries of both containing clusters, inducing a bad crossing.

The Constraints

In order to guarantee that every position is only taken by one cluster, we introduce the
following conditions for the two clusterings:

n∑
i=0

AiInPosx = 1 (for 0 ≤ x < n)

m∑
j=0

BjInPosy = 1 (for 0 ≤ y < m)

54

5.3. How to Find Grid Representations 55

We also have to make sure that every cluster is in exactly one position:

n∑
x=0

AiInPosx = 1 (for 0 ≤ i < n)

m∑
y=0

BjInPosy = 1 (for 0 ≤ j < m)

Since only one of the binary variables can be 1, we can calculate the integer-positions as
follows:

AiPos =
n∑

x=0

x · AiInPosx (for 0 ≤ i < n)

BjPos =

m∑
y=0

y · BjInPosy (for 0 ≤ j < m)

We now make sure that the boundaries are valid by establishing the following conditions
for every pair of clusters that contains a common vertex:

AiFirstNonZero ≤ BjPos

AiLastNonZero ≥ BjPos

BjFirstNonZero ≤ AiPos

BjLastNonZero ≥ AiPos

(for 0 ≤ i < n and 0 ≤ j < m if Ci shares a vertex with Cj)

For the remaining pairs of clusters that do not contain a common vertex, we compare
their positions to the boundaries and set the binary boundary-indicator-variable to true
(1) if the condition is fulfilled. The “Big-M”-method (see [GNS09]) forces the indicator-
variable to be equal to 1, in the case that the condition is greater than zero. Otherwise,
the indicator-variable can be 0. From now on we choose an M that is large enough, for
example M := max(n,m) + 1.

BjPos− AiFirstNonZero−M · AiBjGreaterThanFirstNonZeroA ≤ −1

AiLastNonZero− BjPos−M · AiBjSmallerThanLastNonZeroA ≤ −1

AiPos− BjFirstNonZero−M · AiBjGreaterThanFirstNonZeroB ≤ −1

BjLastNonZero− AiPos−M · AiBjSmallerThanLastNonZeroB ≤ −1

(for 0 ≤ i < n and 0 ≤ j < m if Ci does not share a vertex with Cj)

Now we can calculate the indicator-variable that shows whether there exists a bad crossing
in an empty grid cell. If all four boundary-indicator-variables are 1, the empty grid cell
lies in the crossing of two ribbons, and the HasBadCrossing-variable has to be 1 in order
to fulfill the equation. If one or more of the boundary-indicator-variables are 0, the cell
lies outside of at least one of the ribbons and can be set to 0.

AiBjGreaterThanFirstNonZeroA + AiBjSmallerThanLastNonZeroA

+AiBjGreaterThanFirstNonZeroB + AiBjSmallerThanLastNonZeroB

−AiBjHasBadCrossing ≤ 3

(for 0 ≤ i < n and 0 ≤ j < m if Ci does not share a vertex with Cj)

55

56 5. How to Generate Embeddings

The Objective Function

The objective is simple: minimize the number of bad crossings:

minimize
∑

Ci∩Cj=∅

AiBjHasBadCrossing

(for Ci ∈ CA and Cj ∈ CB, 0 ≤ i < n and 0 ≤ j < m)

Proposition 4 There exists a solution of value k for the ILP if and only if there exists a
plane-grid representation of the two clusterings with k bad crossings.

Proof

Let us assume that there exists a solution of the ILP with value k. When transferring the
permutations of the rows and columns to a plane-grid representation, we can draw the
ribbons according to the boundaries induced by the solution of the ILP. The calculation
of the indices of the boundaries guarantees that every non-empty crossing lies between
the boundaries of its corresponding row or column and that we thus end up with a valid
representation. Due to the construction of the ILP, every bad crossing in the grid repre-
sentation augments the solution by 1. Thus, there exists a plane-grid representation with
at most k bad crossings.

Assuming we have a grid representation with k crossings. We can transfer the indices of
the rows and columns as well as the boundaries of the ribbons to the ILP. Due to the
construction of the ILP, we can set all HasBadCrossing-variables for empty grid cells that
do not induce a bad crossing to 0. Thus the solution of the ILP corresponds to the number
of bad crossings. 2

5.3.2.2. Optimal Cylinder-Grid Representations

For the case of a cylinder-grid representation, the program becomes a bit more complex
since we have to take into account that rows or columns wrap behind the cylinder. We
modeled this wrapping by setting the upper limit of a ribbon smaller than its lower limit.
In the following we show how the linear program above can be modified and extended to
allow wrapped rows or columns.

The Variables

Additionally to the variables used for the linear program in the section above, we introduce
the following new variables:

For every pair of clusters Ci ∈ CA and Cj ∈ CB that contain a common vertex, we add
four boundary-indicator-variables variables that – contrary to the ones we added for the
clusters without a common vertex – indicate if the corresponding grid cell lies outside of
the boundaries:

AiBjSmallerThanFirstNonZeroA

AiBjGreaterThanLastNonZeroA

AiBjSmallerThanFirstNonZeroB

AiBjGreaterThanLastNonZeroB

(for 0 ≤ i < n and 0 ≤ j < m if Ci shares a vertex with Cj)

For every pair of clusters that does not contain a common vertex, we additionally generate
the following binary variables to indicate whether they are within the boundaries of the

56

5.3. How to Find Grid Representations 57

ribbon in a row or column, respectively: AiBjWithinBoundsA and AiBjWithinBoundsB (for
0 ≤ i < n and 0 ≤ j < m if Ci does not share a vertex with Cj)

We also declare the binary variables AiIsWrapped (for 0 ≤ i < n) and BjIsWrapped (for
0 ≤ j < m) that indicate if a row or column is wrapped, i.e., runs behind the cylinder and
reenters the grid from the other side.

Finally, we introduce the two binary variables RowsAreWrapped and ColsAreWrapped that
indicate if there exist one or more rows or cols that are wrapped.

The Constraints

We use the same inequalities as above to describe the positions of the clusters and to
generate the boundary-indicator-variables for the empty grid cells.

However, we do not generate the boundaries for the clusters directly anymore: We now
use the boundary-indicator-variables for the non-empty grid cells:

AiBjSmallerThanFirstNonZeroA + AiBjGreaterThanLastNonZeroA− AiIsWrapped = 0

AiBjSmallerThanFirstNonZeroB + AiBjGreaterThanLastNonZeroB− BjIsWrapped = 0

(for 0 ≤ i < n and 0 ≤ j < m if Ci shares a vertex with Cj)

If a row or column is not wrapped, every non-empty cell lies inside of both boundaries of
the cluster. Thus, both boundary-indicator-variables are equal to 0 (due to the inverted
indicators for non-empty grid cells). If a row is wrapped, it lies inside of exactly one of
the boundaries, and the other indicator-variable is 1, fulfilling the equation.

To generate the actual boundary-variables, we introduce the following constraints:

AiFirstNonZero− BjPos−M · AiBjSmallerThanFirstNonZeroA ≤ 0

BjPos− AiLastNonZero−M · AiBjGreaterThanLastNonZeroA ≤ 0

BjFirstNonZero− AiPos−M · AiBjSmallerThanFirstNonZeroB ≤ 0

AiPos− BjLastNonZero−M · AiBjGreaterThanLastNonZeroB ≤ 0

(for 0 ≤ i < n and 0 ≤ j < m if Ci shares a vertex with Cj)

They guarantee that the boundary-indicator-variables of the non-empty cells are set to 1 if
they lie outside of the corresponding boundary and therewith implicitly set the boundary.

We now have to set the indicator-variable whether a row or a column is wrapped. The
following construction guarantees that the indicator-variable is set to 1 if and only if the
upper boundary is smaller than the lower boundary.

AiFirstNonZero− AiLastNonZero−M · AiIsWrapped ≤ 0 (for 0 ≤ i < n)

AiFirstNonZero− AiLastNonZero−M · AiIsWrapped ≥ 1−M (for 0 ≤ i < n)

BjFirstNonZero− BjLastNonZero−M · BjIsWrapped ≤ 0 (for 0 ≤ j < m)

BjFirstNonZero− BjLastNonZero−M · BjIsWrapped ≥ 1−M (for 0 ≤ j < m)

We check whether an empty cell lies within the boundaries as follows:

AiBjGreaterThanFirstNonZeroA + AiBjSmallerThanLastNonZeroA+

AiIsWrapped− AiBjWithinBoundsA ≤ 1

AiBjGreaterThanFirstNonZeroB + AiBjSmallerThanLastNonZeroB+

BjIsWrapped− AiBjWithinBoundsB ≤ 1

(for 0 ≤ i < n and 0 ≤ j < m if Ci does not share a vertex with Cj)

57

58 5. How to Generate Embeddings

If the row or column is wrapped, one true boundary-indicator-variable is sufficient for the
cell to lie in the cluster, otherwise, both boundary-indicator-variables have to be 1. The
within-bounds indicator-variable can thus only be 0 if the empty grid cell does not lie
within the boundaries of the ribbon.

To check if there exists a bad crossing between the two clusters, we set the following
conditions:

AiBjWithinBoundsA + AiBjWithinBoundsB− AiBjHasBadCrossing ≤ 1

(for 0 ≤ i < n and 0 ≤ j < m if Ci does not share a vertex with Cj)

If an empty cell lies within the boundaries of both a horizontal and a vertical cluster, it
indicates a crossing of two clusters without a common vertex.

Now we just have to make sure that it is forbidden to have wrapped rows and columns at
the same time:

n∑
i=0

AiIsWrapped−M · RowsAreWrapped ≤ 0

m∑
j=0

BjIsWrapped−M · ColsAreWrapped ≤ 0

RowsAreWrapped + ColsAreWrapped ≤ 1

Note that if we do not add this condition, the linear program calculates the minimal
number of crossings in a grid representation on a torus instead of a cylinder.

The Objective Function

The objective remains the same: minimize the number of bad crossings:

minimize
∑

Ci∩Cj=∅

AiBjHasBadCrossing

(for Ci ∈ CA and Cj ∈ CB, 0 ≤ i < n and 0 ≤ j < m)

Proposition 5 There exists a solution of value k for the ILP if and only if there exists a
cylinder-grid representation of the two clusterings with k bad crossings.

Proof

Let us assume that there exists a solution of the ILP with value k. When transferring the
permutations of the rows and columns to a cylinder-grid representation, we can draw the
ribbons according to the boundaries induced by the solution of the ILP. For the ribbons
that are indicated as wrapped, we draw the ribbons in two parts. The implicit generation
of the indices of the boundaries guarantees that every non-empty crossing lies between the
boundaries of its corresponding row or column in the non-wrapped case and above or below
one of the boundaries in the wrapped case. We thus end up with a valid representation.
Due to the construction of the ILP, every bad crossing in the grid representation augments
the solution by 1. Thus, there exists a plane-grid representation with at most k bad
crossings.

Assuming we have a grid representation with k crossings. We can transfer the indices of
the rows and columns as well as the boundaries of the ribbons to the ILP. Due to the
construction of the ILP, we can set all HasBadCrossing-variables for empty grid cells that
do not induce a bad crossing to 0. Thus the solution of the ILP corresponds to the number
of bad crossings in the cylinder-grid representation. 2

In the next chapter, we are going to compare the exact results from the linear program to
the results we obtained from the heuristic.

58

6. Experimental Evaluation of Grid
Representations

We conducted a series of experiments regarding plane-grid representations of randomly
generated clusterings (Section 6.1) and also applied our methods to real-world data (Sec-
tion 6.2).

For the random data, we used a total of 1900 test instances for which we generated cylinder-
and plane-grid representations and examined the number of crossings needed in the repre-
sentation. Regarding the size of the instances, we speak of a grid size of n×m if the sizes
of the clusterings are n and m, respectively.

Besides the grid size, the main factor that influences how many crossings are needed in a
grid representation is the grid coverage of non-empty grid cells. That is the relative number
of pairs of clusters that share a common vertex. We thus talk about a grid coverage of x
percent if x percent of the grid cells contain a vertex. The grid coverage is a measure on
how similar the clusterings are. The higher the grid coverage, the higher the distribution
of the vertices of a cluster among different clusters in the other clustering. The coverage
corresponds to the number of edges in the cluster-graph divided by the number of edges
in the complete bipartite graph Kn,m.

Our test instances were generated by adding vertices to random pairs of clusters in the
two clusterings until we reach the desired grid coverage. The pseudocode for this method
can be found in Algorithm 5 in Section C of the Appendix.

The test instances consisted of grids of sizes 10×10, 10×15, 15×15, 15×20, and 20×20.
For each size we generated 20 instances for each grid coverage from 5 to 95 percent at
intervals of 5 percentage points.

6.1. Embeddability Depending on Grid-Size and -Coverage

We first examine how the number of crossings in grid representations is influenced by the
number of clusters and the grid coverage. Since plane-grid representations are a special
case of cylinder-grid representations, the latter should have lower crossing numbers. We
further expected an increase of crossings with the grid size, simply because there are more
possibilities for crossings. Another assumption was that the number of crossings increases
with the coverage up to a certain extend and then decreases again, since at a coverage of
100 percent, there exists a complete grid as trivial solution without bad crossings.

59

60 6. Experimental Evaluation of Grid Representations

Due to very high running times of the ILP for the larger instances, it was not possible to
generate exact solutions for grid sizes larger than 10×10. The following statistics are thus
based on the results of the heuristic. Nevertheless, as we will see later, we can make the
assumption that the distribution of the crossings in the exact solution would have a similar
shape. For all experiments, we set a maximum of 100,000 iterations for the heuristic. This
led to running times of seconds even on larger grids.

0

10

20

30

40

50

60

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

9
5
%

A
ve

ra
ge

 N
u

m
b

e
r

o
f

C
ro

ss
in

gs

Grid Coverage

Plane-Grid Representation

0

10

20

30

40

50

60

5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

9
5
%

Grid Coverage

Cylinder-Grid Representation

20x20

15x20

15x15

10x15

10x10

Figure 6.1.: The average number of crossings in the grid representations generated by the
heuristic depending on the grid coverage

The diagrams in Fig. 6.1 show the development of the average crossing numbers of plane-
and cylinder-grid representations of different sizes, depending on the grid coverage. All
values are results of the heuristic and therefore not optimal. Nevertheless, we can see that
the highest numbers of crossings occur around grid coverages between 40 and 65 percent.
As expected, the number of crossings in the cylinder-grid representations is smaller than
in the plane-grid representations. The diagrams also show that the number of crossings
increases fast with the size of the grid. This reduces the likelihood of finding a planar
support through a cylinder-grid representation for these instances. In the 10 × 10 case,
the heuristic almost always found a cylinder-based embedding without crossings. In the
20 × 20 case, this is only true for grid coverages below 15 percent or over 90 percent. Of
all instances, we measured the maximal number of 50 crossings on the cylinder-grid and
60 crossings in the plane-grid at 50 percent grid coverage in the 20× 20 grid.

Now the question arises in how far the distribution of the crossing numbers generated by
the heuristic correlates with the distribution of an exact solution generated by the ILP.
Unfortunately we had to limit our test setting for the ILP to plane-grid representations of
size 10×10. For larger grids or cylinder-grid representations, the optimization process with
the Gurobi-LP-Solver [Inc13] often exceeded the time limit of 48 hours on our test-machine
(2x Dual-Core Intel XeonTME5-430 CPU (2,66 GHz) with 32 GB RAM).

In the case of the 10×10 grid however, we could calculate all optimal plane-grid represen-
tations within a reasonable timespan. Yet there was a huge variation in the times needed
to solve the ILP, even between instances of the same size and grid coverage. Table D.3 in
the Appendix shows the running times of Gurobi in the standard configuration on the test
machine for these instances.

For the 10 × 10 cases that we examined, Fig. 6.2 shows the average number of crossings
in the results of the heuristic compared to the optimal solution by the ILP. The raw data
of this experiment containing the crossing number for every single instance can be found
in Section D of the Appendix.

In more than 70 percent of these cases, the result of the heuristic corresponds to the exact
solution. When taking all instances into account, the average crossing number was by 0.36

60

6.2. Case Studies on Real-World Data Sets 61

0

0.5

1

1.5

2

2.5

3

30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

A
ve

ra
ge

 N
u

m
b

e
r

o
f

C
ro

ss
in

gs

Grid Coverage

Heuristic

Exact Solution (ILP)

Figure 6.2.: The average crossing numbers of the representations of a 10×10 grid generated
by the heuristic and the exact solution, depending on the grid coverage

higher than the exact solution. When limited to the cases where the heuristic did not
provide an optimal solution, the number of crossings of the heuristic was on average 1.24
higher than the optimal solution. Since in the 10×10 case the distribution of the numbers
of crossings of the heuristic seems to follow the distribution of the exact solution, it is
reasonable to assume that this would be also the case for the larger instances we examined
earlier.

In seven instances of the 10 × 10 grid, we did not find a cylinder-grid representation
without crossings with the ILP. These instances would be potential candidates for an
example that cylinder-grid strong embeddability is not equal to single-intersection path-
based strong embeddability. Yet, at least at a first examination, there was no obvious
way to find a path-based support with single-intersections for these instances. Since we
did not implement an exact solution for the test of single-intersection path-based strong
embeddability, this inclusion in the hierarchy remains open.

6.2. Case Studies on Real-World Data Sets

Besides the purely randomly generated data from the section above, we applied our method
to various real-world datasets. It turned out that in general the two compared clusterings
were both cylinder- and plane-grid strongly embeddable. This is probably due to the fact
that most clusterings we compared had not more than 10 clusters and were rather similar,
resulting in a low grid coverage. In the following we will discuss the results of our methods
on two real-world examples.

Figure 6.3 shows a comparison between two clustering methods for graphs. The graph is
a network that models co-appearance of characters in the chapters of Victor Hugo’s “Les
Misérables” [Hug87]. It is part of Knuth’s “Stanford GraphBase” (see [Knu93]) and has 77
vertices and 254 edges.

The first clustering method (orange clusters) is based on the modularity of the graph,
a quality measure for clusterings proposed by Newman (see [New06]). The modularity
describes the fraction of edges within clusters of the graph minus the expected fraction of
edges in the same clusters of a network with the same node-degrees that would be created
at random. We examine the clustering with the maximum modularity as calculated with
the ILP approach in [BDG+08].

The second clustering (green clusters) is based on predominantly connected communi-
ties that have been generated as “overlay clusterings” with the framework described in
[HHW13].

61

62 6. Experimental Evaluation of Grid Representations

C1,12

C0,10

C0,0

C0,12

C0,24

C0,26

C1,26

C1,27

C1,51 C1,56 C1,73

C1,24

C1,29

C1,32

C0,46

C1,1

C1,28

Figure 6.3.: The optimal modularity clustering (orange) compared with the overlay cluste-
ring (green) on the “Les Miserables” graph

Since in this example we are only going to do a quantitative analysis, we can ignore the
underlying graph structure. Yet for future work on this topic, it would be interesting to
evaluate methods of combining the representation of the clusterings with a drawing of the
graph.

The plane-grid representation of the two clusterings reveals that both clustering methods
set similar cuts between the clusters but have differences in the number of divisions. The
11 clusters of the green clusterings are mostly contained in the six clusters of the orange
clustering. The only exceptions are an outlier in C1,12 and the aggregation of a major
part of C0,26 with C0,46 in the orange clustering yielding to the big cluster C1,56 in the
green clustering. The high percentage of overlapping clusters results in a rather low grid-
coverage, making it easy to find a grid representation.

With the next example we will show how the graphical representation can help us to eva-
luate the quality of clustering methods that are not based on graphs. We visualize the
results of clustering methods in comparison to the intrinsic clustering of the data. The
dataset we used is the “Pen-Based Recognition of Handwritten Digits Data Set” by Alpay-
din and Alimoglu that is part of the “UCI Machine Learning Repository” (see [BL13]). It
consists of 10992 writing samples of the digits from 0 to 9 from 44 different writers. The
samples have been normalized and reduced to eight 2D-coordinates that are spaced equi-
distantly on the trajectory of the pen. We thus have 16 different parameters (eight times
two dimensions). The intrinsic clustering of the data are the digits that were originally
drawn.

We clustered the dataset with the WEKA framework (see [HFH+09]) using two different
clustering methods that are common choices in many areas of data mining.

The first method we used is k-means. It was first proposed by Steinhaus (see [Ste56]) and
is based on the minimization of the sum of squared distances within k clusters. We set the
value k to the number of 10 desired clusters (since the intrinsic clustering also contains 10
different digits).

The second method was the more recent DBSCAN (see [EKSX96]) with ε = 0.45 and

62

6.2. Case Studies on Real-World Data Sets 63

minPts = 30 as parameters. The result were 9 clusters and 657 values that were marked
as noise.

The two plane-grid visualizations in Figure 6.4 show the results of the clustering methods
compared to the intrinsic clustering of the data.

The orange clusters are in both cases the intrinsic clustering, i.e., the digit that was actually
drawn. The green clusters are the result of the clustering algorithm. Since the scale of the
generated PDF was too small to distinguish single data points, we highlighted the areas
in the figure that contain data points in white.

For the DBSCAN-case, the rightmost green cluster is the aggregation of all data points
that were labeled as noise.

The two visualizations allow to evaluate how well the digits were recognized by the two
clustering methods. The visualization shows that in general, DBSCAN provided a better
approximation to the original clustering. As a simple indicator for this statement, we can
look at the grid coverages of the clusterings. The grid coverage is 46 percent in the case of
k-means versus 21 percent in the case of DBSCAN without taking into account the noise-
cluster and 29 percent with the noise-cluster. An optimal clustering, i.e., a clustering that
corresponds to the class code, would have a grid coverage of 10 percent.

Yet the representation conveys a lot more information. We can see how well single digits
were recognized and which digits were often mistakingly classified in the same cluster.

Both algorithms did well on recognizing the digits 6 and 0. In the case of k-means, there
are few outliers in both directions, indicating that a few 6s and 0s have been recognized
as different digits and that a few different digits have been falsely classified as 6s and 0s.

For DBSCAN, we can even say that the clustering algorithm was able to segment the
digits 6, 0 and also 8 without a fault, although in the case of 8, the majority of the data
points was dumped as noise. Quite well worked the segmentation for 4, with only a couple
instances put in the same cluster with 5s and 9s.

Interesting is also the fact that many 1s, 2s and 7s are put in a common cluster in both
cases, probably due to the similarity of their shape. The same is true for 5s and 9s that
share a common cluster in the DBSCAN case, while in the k-means clustering, the 5s share
a cluster with a big part of the 8s and also with the 1s.

This example shows the general benefits of a simultaneous visualization of two different
clusterings. Already our simple drawings of rather experimental character without focus
on readability allow us to examine how the clusterings are related to each other. Even for
rather large datasets like this one, we can get a good overview at a first glance but can
also examine the data down to the level of single data points to examine their belonging
to the different clusters.

Yet the example also reveals potential for improvement: The grid representation has many
characteristics of a table, and for now, a lot of the drawing area is used up by empty space
between or within the clusters. It would be interesting to explore methods of compactifying
the drawing in a post-processing step. For large instances like the one we examined, it
would also be a nice feature to draw the size of the areas of intersection between two
clusters equivalent to the number of common vertices.

63

64 6. Experimental Evaluation of Grid Representations

(a) k-means (green) compared with the intrinsic clustering (orange)

(b) DBSCAN (green) compared with the intrinsic clustering (orange)

Figure 6.4.: The intrinsic clustering of the “Pen-Digits” data set compared with the results
of k-means and DBSCAN

64

7. Conclusion

In this work we established the theoretical foundations for embedding two (or more) dif-
ferent clusterings and examined practical approaches to generate such embeddings for the
case of two clusterings.

We established a hierarchy of eight embeddability classes for two clusterings. For all but
one of these classes we could provide examples that show that they are true subsets of their
containing class. There are big differences between the classes regarding the complexity
of deciding whether two clusterings belong to the class or not.

The simplest form of an embedding, a weak embedding, exists always. The strictest class of
embeddability, full embeddability, can be checked in linear time. Regarding the classes in
between, we could show NP-completeness for the central concept of strong embeddability.
For the two classes of grid embeddings in the plane and on a cylinder, NP-completeness
is implied by the equivalence to grid-intersection graphs. For the remaining three classes,
the complexity of the decision problem is still unknown.

An implicit result of our proof of NP-completeness for strong embeddability is the NP-
completeness of deciding vertex planarity for 2-regular hypergraphs.

Despite the hardness of some of the problems, our practical results allow us to generate
embeddings of two clusterings for the grid-based classes of embeddability. The focus on
grid representations provides a simple way to describe and generate embeddings. We have
the choice between an exact but potentially slow solution with an integer linear program or
a fast approximation with a heuristical approach which is preferrable for large instances.

By minimizing crossings between disjoint clusters in the grid, we try to find a strong
embedding and otherwise provide a weak embedding with a low number of such crossings.
Our experiments suggest that the embeddability mainly depends on the similarity of the
clusterings as expressed by their grid coverage. This means that for typical real-world
instances with a low grid coverage, the chances of finding a strong embedding are quite
good.

A by-product of the integer linear programs is an ILP-approach that decides whether a
graph is a grid intersection graph in the plane, on the annulus or (with a slight modification)
on the torus.

65

66 7. Conclusion

7.1. Open Problems in the Hierarchy

The main question that is still open in the hierarchy is whether single-intersection path-
based strong embeddability is equivalent to cylinder-grid strong embeddability or not. It
seems obvious that there exist more possible single-intersection strong embeddings for a
given instance than cylinder-grid strong embeddings. Yet we did not find a counterexample
that proves cylinder-grid strong embeddability to be a proper subset of single-intersection
path-based strong embeddability.

Another open problem is the complexity of deciding whether there exists a single-intersection,
a path-based or a single-intersection path-based strong embedding. Our proof for the NP-
completeness of strong embeddability testing in general uses non-path-based clusters and
multiple intersections between clusters and is therefore not applicable.

7.2. Future Work

In order to use our theoretical results for the generation of well-readable graphical re-
presentations based on embeddings, the next step would be to optimize some aesthetical
criteria of the output. One approach to increase readability could be to limit the extent
of clusters and to draw the curves in convex shapes.

Since clusterings often occur in graphs and networks, it would be nice to visualize the
clusterings in combination with the network. This could be realized with a force-based
approach that layouts the subgraph induced by equivalent vertices within the clusters.
In parallel, clusters could be placed according to forces of edges between their contained
nodes while respecting the embedding.

In our current plane-grid representations, layouts with low grid coverages take up a lot
more space than necessary. It would be interesting to investigate methods for making the
layouts more compact. This could be achieved in a post-processing step. Especially if
we would allow multiple clusters to be placed in the same row or column if they do not
overlap horizontally or vertically, we could optimize the space used for the representation.

Another interesting feature for grid representations would be to fix the order of one of the
two clusterings. This could be used if the fixed clustering is an ordered set and we want
to keep that order in the grid for the clarity of the representation.

In terms of the heuristic we developed, there is certainly a lot of room for improvement.
Since we start with only one ordering and then follow a greedy approach, it is quite likely to
get stuck in a local minimum for the crossing number. Ideas for improvement of the method
would be to start multiple runs with different initial orderings and additionally allow row-
or column-swaps that generate a higher crossing number with a certain probability. This
approach would be based on the ideas of Simulated Annealing (see [KGV83]).

Last but not least, a next step could be to extend the work to families of three or more
clusterings, both from the theoretical and practical point of view. It would be an interesting
challenge to generate readable drawings of more than two clusters.

66

Appendix

A. File Formats

The ascii-file format we use to describe a clustering is simple: Every line represents a
vertex and contains an integer that represents the cluster-ID of the vertex. Figure A.1
gives an example of two clusterings on a set of twenty vertices.

4
4
0
0
4
2
0
3
2
1
2
0
1
4
3
4
1
4
4
4

(a) clustering0.txt

3
5
5
0
5
7
6
4
8
2
3
8
1
5
5
6
7
6
4
0

(b) clustering1.txt

Figure A.1.: The input files for the two clusterings shown in Fig. 5.1

67

68 7. Conclusion

B. Calculating the Number of Bad Crossings in Grid Repre-
sentations

When we calculate the number of bad crossings, we use a check-matrix representing the
grid. The value in the matrix is set to 0 if no ribbon covers the cell, to 1 if one ribbon
covers the cell and to 2 if two ribbons intersect in the cell. We then just count the number
of empty grid cells with value 2 in the check matrix. The functions firstNonEmpty() and
lastNonEmpty() return the first or last non-empty grid cell in the given row or column.

The following algorithm calculates the number of bad crossings in a plane-grid represen-
tation:

Algorithm 2: currentCrossingNumPlane()

Input : grid representation G of two clusterings
Output: number of bad crossings in G when viewed as plane-grid
numCrossings ← 0
generate check matrix M
initialize M with 0s
foreach row i in G do

foreach cell j in row i do
if firstNonEmpty(i) ≤ j ≤ lastNonEmpty(i) then

M(i, j)←M(i, j) + 1

foreach column j in G do
foreach cell i in column j do

if firstNonEmpty(j) ≤ i ≤ lastNonEmpty(j) then
M(i, j)←M(i, j) + 1

foreach cell (i, j) in G do
if M(i, j) = 2 AND isEmpty(G(i, j)) then

numCrossings ← numCrossings +1

For cylinder-grid representations, we use the following, slightly more complicated algo-
rithm. We calculate the number of bad crossings for the cases that rows or columns wrap
around the cylinder separately and then choose the case that induces the lowest number of
bad crossings. The function findBiggestBreak() finds the largest connected section of grid
cells that would cause bad crossings if the ribbon of the cluster would cross this section.
This is where we set the cut for the ribbon. The cylindrical structure can lead to the value
firstNonEmpty() being higher than lastNonEmpty(), indicating that the row or column is
wrapped. Algorithm 3 shows the process.

68

B. Calculating the Number of Bad Crossings in Grid Representations 69

Algorithm 3: currentCrossingNumCylinder()

Input : grid representation G of two clusterings
Output: number of bad crossings in G when viewed as cylinder-grid
numCrossingsRowWrap ← 0
numCrossingsColWrap ← 0
generate check matrix Mr

generate check matrix Mc

initialize Mr and Mc with 0s
foreach column j in G do

foreach cell i in column j do
if firstNonEmpty(j) ≤ i ≤ lastNonEmpty(j) then

Mr(i, j)←Mr(i, j) + 1

foreach row i in G do
firstNonEmpty(i) = findBiggestBreak(i).end
lastNonEmpty(i) = findBiggestBreak(i).start
foreach cell j in row i do

if firstNonEmpty(i) < lastNonEmpty(i) then
if firstNonEmpty(i) ≤ j ≤ lastNonEmpty(i) then

Mr(i, j)←Mr(i, j) + 1

else
if firstNonEmpty(i) ≤ j OR j ≤ lastNonEmpty(i) then

Mr(i, j)←Mr(i, j) + 1

foreach cell (i, j) in G do
if Mr(i, j) = 2 AND isEmpty(G(i, j)) then

numCrossingsRowWrap ← numCrossingsRowWrap +1

foreach row i in G do
foreach cell j in row i do

if firstNonEmpty(i) ≤ j ≤ lastNonEmpty(i) then
Mc(i, j)←Mc(i, j) + 1

foreach column j in G do
firstNonEmpty(j) = findBiggestBreak(j).end
lastNonEmpty(j) = findBiggestBreak(j).start
foreach cell i in column j do

if firstNonEmpty(j) < lastNonEmpty(j) then
if firstNonEmpty(j) ≤ i ≤ lastNonEmpty(j) then

Mc(i, j)←Mc(i, j) + 1

else
if firstNonEmpty(j) ≤ i OR i ≤ lastNonEmpty(j) then

Mc(i, j)←Mc(i, j) + 1

foreach cell (i, j) in G do
if Mc(i, j) = 2 AND isEmpty(G(i, j)) then

numCrossingsColWrap ← numCrossingsColWrap +1

return max(numCrossingsRowWrap, numCrossingsColWrap)

69

70 7. Conclusion

C. Random Clustering Generators

The following two algorithms show how we generated clusterings at random for experi-
ments. Algorithm 4 takes a number of vertices and adds them randomly to clusters of the
two clusterings. Algorithm 5 takes a desired grid-coverage as input and then adds exactly
one common vertex to random pairs of clusters until the grid-coverage is reached.

Algorithm 4: randomClusteringsNumVertices()

Input : number of vertices n,
number of clusters in clusterings numClusters1, numClusters2

Output: two random cluster-files file1, file2
while n > 0 do

file1.addRandomNumber(0, numClusters1− 1)
file2.addRandomNumber(0, numClusters2− 1)
n← n− 1

Algorithm 5: randomClusteringsGridCoverage()

Input : grid coverage c,
number of clusters in clusterings numClusters1, numClusters2

Output: two random cluster-files file1, file2
generate check matrix M of size numClusters1× numClusters2
initialize M with 0’s
numVertices ← c · numClusters1 · numClusters2
while numV ertices > 0 do

repeat
rand1 ← randomNumber(0, numClusters1)
rand2 ← randomNumber(0, numClusters2)

until M(rand1, rand2) = 0
file1.add(rand1)
file2.add(rand2)
M(rand1, rand2)← 1
numV ertices← numV ertices− 1

70

D. Experimental Results 71

D. Experimental Results

The following tables show the raw data from our experiments regarding the quality of the
heuristic for plane-grid representations on the 10 × 10 grid. Table D.1 shows the best
crossing number found by the heuristic for the twenty test instances of each grid-coverage,
Table D.2 the exact solution found by the integer linear program. The running times of
the ILP for the instances on our test machine are listed in Table D.3.

30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

#01 0 0 1 1 1 1 2 1 2 2 0 2 1 1

#02 0 0 1 0 0 2 5 1 0 1 2 0 2 1

#03 0 0 0 1 2 4 2 2 3 1 1 2 0 0

#04 0 0 0 0 3 3 2 1 1 1 0 1 0 1

#05 0 0 1 0 1 2 2 2 3 1 2 1 0 0

#06 0 0 1 0 4 3 2 4 2 2 1 2 0 0

#07 0 0 1 0 1 2 1 4 1 3 3 1 0 0

#08 0 0 0 0 1 2 2 1 3 1 0 2 0 1

#09 0 0 1 1 0 4 2 3 2 1 3 1 0 0

#10 0 0 1 0 2 2 2 1 0 1 2 0 1 1

#11 0 0 0 0 1 1 3 1 2 3 1 2 1 0

#12 0 0 0 1 1 5 2 2 1 1 0 2 1 0

#13 0 0 0 0 2 2 3 2 1 2 0 0 1 0

#14 0 0 0 2 1 4 3 2 0 2 2 0 2 0

#15 0 0 1 1 3 0 2 1 0 1 1 1 1 1

#16 0 0 1 0 1 3 1 3 3 3 1 3 0 0

#17 0 0 0 1 1 2 1 2 0 2 1 0 1 0

#18 0 0 0 2 1 3 2 3 0 1 1 2 0 0

#19 0 1 1 1 1 0 3 2 3 2 0 1 0 0

#20 0 0 1 0 1 3 2 1 2 2 2 2 0 0

Average 0 0.05 0.55 0.55 1.4 2.4 2.2 1.95 1.45 1.65 1.15 1.25 0.55 0.3

Table D.1.: Crossing numbers in plane-grid representations calculated by the heuristic

71

72 7. Conclusion

30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

#01 0 0 1 0 0 1 1 1 1 2 0 2 1 1

#02 0 0 0 0 0 1 2 1 0 1 2 0 2 1

#03 0 0 0 1 2 2 1 1 3 1 1 2 0 0

#04 0 0 0 0 1 1 0 1 0 1 0 1 0 1

#05 0 0 0 0 0 1 0 2 3 1 2 1 0 0

#06 0 0 0 0 1 2 1 3 2 2 1 2 0 0

#07 0 0 0 0 0 1 1 1 1 3 3 1 0 0

#08 0 0 0 0 0 2 0 0 3 1 0 2 0 1

#09 0 0 0 0 0 3 2 2 1 1 3 1 0 0

#10 0 0 1 0 1 1 2 1 0 1 1 0 1 1

#11 0 0 0 0 0 1 2 1 1 3 1 1 1 0

#12 0 0 0 1 0 3 2 2 1 0 0 2 1 0

#13 0 0 0 0 2 0 2 1 1 2 0 0 1 0

#14 0 0 0 1 0 2 3 1 0 0 2 0 2 0

#15 0 0 1 1 1 0 1 0 0 0 1 1 1 1

#16 0 0 0 0 0 2 1 1 1 2 1 3 0 0

#17 0 0 0 1 0 1 1 2 0 1 1 0 1 0

#18 0 0 0 2 0 2 1 2 0 0 1 2 0 0

#19 0 0 0 0 0 0 2 2 2 1 0 1 0 0

#20 0 0 0 0 0 1 2 1 2 2 1 2 0 0

Average 0 0 0.15 0.35 0.4 1.35 1.35 1.3 1.1 1.25 1.05 1.2 0.55 0.3

Table D.2.: Exact crossing numbers in plane-grid representations calculated by the integer
linear program

72

D. Experimental Results 73

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

8
5
%

9
0
%

9
5
%

#
0
1

0
.1
9

0
.1
3

2
8
.1
5

2
3
.6
4

4
.1
0

6
2
.3
4

9
.8
7

5
.9
1

8
.2
1

1
1
.0
2

0
.9
7

5
.1
9

4
6
.9
9

1
3
.7
0

#
0
2

0
.4
6

0
.4
0

5
.5
2

0
.4
8

1
.7
1

2
4
.8
8

3
2
.8
9

8
.6
9

1
.9
5

4
.3
2

7
.8
9

0
.4
9

4
.5
0

5
.3
5

#
0
3

0
.0
9

1
.9
1

0
.4
8

3
7
.5
6

4
9
.4
5

6
9
.1
8

5
.1
1

5
.9
9

1
7
.8
6

2
.6
2

2
.9
1

5
.8
3

0
.5
8

0
.0
2

#
0
4

0
.0
9

0
.4
7

1
.9
4

2
.4
9

2
9
.9
6

1
6
.4
0

1
9
.8
3

1
1
.9
9

1
.0
9

3
.4
6

0
.1
8

2
7
.5
2

0
.0
3

2
1
.3
9

#
0
5

0
.5
1

1
.3
9

1
2
.8
3

1
.4
0

2
.6
5

1
3
.2
8

8
.4
3

2
0
.7
0

1
7
.2
2

1
.7
9

8
.1
9

2
.6
1

0
.0
8

0
.0
3

#
0
6

0
.3
2

5
.7
5

2
.7
8

5
.3
2

2
9
.1
0

2
0
.8
8

1
3
.8
7

4
2
.4
3

9
.6
0

1
1
.4
6

3
.0
5

4
.8
2

0
.0
3

0
.0
1

#
0
7

0
.1
4

4
.1
4

1
.7
8

0
.4
7

3
.0
8

8
.4
6

8
.2
2

1
3
.5
6

7
.3
6

1
1
.8
6

1
0
.9
3

6
4
4
8
.7
3

0
.0
2

0
.0
4

#
0
8

0
.5
0

1
.0
1

5
.0
9

2
.9
8

9
.1
7

2
8
.5
9

5
.3
6

0
.7
3

2
2
.7
9

2
.5
6

2
.2
1

4
.6
9

0
.1
0

9
.3
7

#
0
9

0
.1
4

1
.0
9

4
.7
0

2
.5
8

2
.3
0

3
5
.6
5

2
5
.6
3

1
5
.1
9

7
.0
7

4
.8
8

9
.4
1

4
2
2
.7
0

0
.1
0

0
.0
4

#
1
0

4
.5
4

0
.6
4

5
9
.9
8

2
.6
1

1
5
.5
3

4
0
.7
8

1
5
.3
9

5
.7
2

1
.6
0

3
.6
6

3
.6
8

1
.1
7

2
3
.0
4

8
.8
6

#
1
1

0
.2
0

2
.5
9

0
.5
5

1
.9
7

3
.1
9

1
0
.2
1

2
2
.5
6

7
.6
4

2
2
.4
3

1
3
.0
2

2
.8
1

2
.9
4

1
2
2
.6
6

0
.0
2

#
1
2

0
.7
1

3
.1
2

2
.6
0

1
5
.1
6

1
1
.7
0

7
3
.2
7

1
7
.9
4

2
0
.9
5

9
7
.1
5

1
.4
5

0
.1
8

6
.2
8

9
1
.3
0

0
.0
4

#
1
3

0
.6
7

3
.0
6

1
.7
9

1
.2
3

7
8
.0
6

1
.8
8

2
7
.2
7

1
5
.7
1

5
.4
1

1
0
.6
6

1
.0
9

0
.0
9

2
3
0
9
.2
3

0
.0
1

#
1
4

2
.9
5

3
.9
6

4
.0
2

2
7
.3
1

2
.1
6

3
8
.8
4

6
3
.8
1

6
.6
4

4
.0
1

3
.6
4

5
.8
8

0
.3
1

1
.8
6

0
.0
2

#
1
5

0
.5
0

1
.4
3

2
9
.6
8

3
4
3
.0
9

2
9
.9
1

3
.7
4

1
3
.1
6

2
.6
5

1
.1
4

0
.4
9

2
.6
5

2
4
4
.9
0

1
.3
0

5
.7
8

#
1
6

0
.6
3

1
.4
6

3
.1
2

4
.3
0

4
.1
3

4
4
.6
4

8
.5
2

7
.2
1

5
.9
8

1
4
.6
1

5
.1
0

3
.6
5

0
.0
8

0
.0
5

#
1
7

0
.0
6

3
.2
6

0
.2
3

2
1
.1
3

6
.6
7

1
1
.4
3

8
.5
5

1
3
.0
3

2
.1
2

3
.3
9

3
.4
5

0
.1
7

1
9
9
3
.7
5

0
.0
4

#
1
8

0
.4
9

0
.4
8

4
.0
7

8
6
.8
0

3
.0
2

2
0
.6
1

1
0
.7
6

1
8
.3
6

1
.8
3

1
.2
3

3
.6
5

3
.5
3

0
.0
8

0
.0
4

#
1
9

0
.1
5

5
.1
5

6
.1
9

1
3
.6
4

1
0
.2
8

5
.4
2

2
4
.1
9

2
8
.5
5

1
9
.9
9

9
6
.7
4

0
.7
1

2
8
9
.4
4

0
.0
2

0
.0
2

#
2
0

0
.6
1

1
.7
8

1
1
.0
0

3
.5
8

5
.5
3

9
.0
0

2
9
.5
4

5
.4
8

6
.0
8

7
.8
6

2
.1
3

3
.8
4

0
.1
2

0
.0
2

A
v
er
a
g
e

0
.7
0

2
.1
6

9
.3
3

2
9
.8
9

1
5
.0
9

2
6
.9
7

1
8
.5
5

1
2
.8
6

1
3
.0
4

1
0
.5
4

3
.8
5

3
7
3
.9
5

2
2
9
.7
9

3
.2
4

T
a
b
le

D
.3

.:
R

u
n
n

in
g

ti
m

es
of

th
e

in
te

ge
r

li
n

ea
r

p
ro

gr
am

on
ou

r
te

st
m

ac
h
in

e

73

Bibliography

[ARRC11] B. Alper, N. H. Riche, G. Ramos, and M Czerwinski: Design study of linesets,
a novel set visualization technique. IEEE Transactions on Visualization and
Computer Graphics, 17(12):2259–2267, 2011. http://dx.doi.org/10.1109/
TVCG.2011.186.

[BCPS11a] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry: Blocks of hyper-
graphs: applied to hypergraphs and outerplanarity. In Proceedings of the 21st
international conference on Combinatorial Algorithms, IWOCA’10, pages
201–211, 2011. http://dx.doi.org/10.1007/978-3-642-19222-7_21.

[BCPS11b] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry: Path-based supports
for hypergraphs. In Proceedings of the 21st international conference on Com-
binatorial Algorithms, IWOCA’10, pages 20–33, 2011. http://dx.doi.org/

10.1007/978-3-642-19222-7_3.

[BDG+08] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer, Z. Nikoloski,
and D. Wagner: On modularity clustering. IEEE Transactions on Knowledge
and Data Engineering, 20(2):172–188, 2008. http://dx.doi.org/10.1109/

TKDE.2007.190689.

[Ben59] S. Benzer: On the topology of the genetic fine structure. Proceedings of the
National Academy of Sciences of the United States of America, 45(11):1607–
1620, 1959. http://dx.doi.org/10.1073/pnas.45.11.1607.

[Ber89] C. Berge: Hypergraphs: Combinatorics of Finite Sets. North-Holland Mathe-
matical Library. North Holland, 1989. http://books.google.de/books?id=
jEyfse-EKf8C.

[BL13] K. Bache and M. Lichman: UCI machine learning repository, 2013. http:

//archive.ics.uci.edu/ml.

[BvKM+10] K. Buchin, M. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek: On
planar supports for hypergraphs. In Proceedings of the 17th international
conference on Graph Drawing, GD’09, pages 345–356, 2010. http://dx.

doi.org/10.1007/978-3-642-11805-0_33.

[Cay89] A. Cayley: A theorem on trees. Quarterly Journal of Mathematics, 23:376–
378, 1889. http://dx.doi.org/10.1017/CBO9780511703799.010.

[CG09] J. Chalopin and D. Gonçalves: Every planar graph is the intersection graph
of segments in the plane: extended abstract. In Proceedings of the 41st annual
ACM symposium on Theory of Computing, STOC ’09, pages 631–638, 2009.
http://dx.doi.org/10.1145/1536414.1536500.

[CGJ+13] M. Chimani, C. Gutwenger, M. Jünger, K. Klein, P. Mutzel, and M. Schulz.:
The open graph drawing framework, 2013. http://www.ogdf.net/.

75

http://dx.doi.org/10.1109/TVCG.2011.186
http://dx.doi.org/10.1109/TVCG.2011.186
http://dx.doi.org/10.1007/978-3-642-19222-7_21
http://dx.doi.org/10.1007/978-3-642-19222-7_3
http://dx.doi.org/10.1007/978-3-642-19222-7_3
http://dx.doi.org/10.1109/TKDE.2007.190689
http://dx.doi.org/10.1109/TKDE.2007.190689
http://dx.doi.org/10.1073/pnas.45.11.1607
http://books.google.de/books?id=jEyfse-EKf8C
http://books.google.de/books?id=jEyfse-EKf8C
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/978-3-642-11805-0_33
http://dx.doi.org/10.1007/978-3-642-11805-0_33
http://dx.doi.org/10.1017/CBO9780511703799.010
http://dx.doi.org/10.1145/1536414.1536500
http://www.ogdf.net/

76 Bibliography

[CGO10] J. Chalopin, D. Gonçalves, and P. Ochem: Planar graphs have 1-string
representations. Discrete & Computational Geometry, 43:626–647, 2010.
http://dx.doi.org/10.1007/s00454-009-9196-9.

[Cho07] S. C. Chow: Generating and drawing area-proportional Euler and Venn dia-
grams. PhD thesis, University of Victoria, 2007. http://portal.acm.org/

citation.cfm?id=1414778.

[CJKV12] S. Chaplick, V. Jeĺınek, J. Kratochv́ıl, and T. Vyskocil: Bend-bounded path in-
tersection graphs: Sausages, noodles, and waffles on a grill. Graph-Theoretic
Concepts in Computer Science, 7551:274–285, 2012. http://dx.doi.org/

10.1007/978-3-642-34611-8_28.

[CPC09] C. Collins, G. Penn, and S. Carpendale: Bubble sets: Revealing set re-
lations with isocontours over existing visualizations. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1009–1016, 2009. http:

//dx.doi.org/10.1109/TVCG.2009.122.

[CR04] S. C. Chow and F. Ruskey: Drawing area-proportional venn and euler dia-
grams. In Proceedings of the 11th international conference on Graph Drawing,
volume 2912 of GD’03, pages 466–477, 2004. http://dx.doi.org/10.1007/
978-3-540-24595-7_44.

[dBK09] M. de Berg and A. Khosravi: Finding perfect auto-partitions is NP-hard.
In Abstracts of the 25th European Workshop on Computational Geome-
try, pages 255–258, 2009. http://www.win.tue.nl/~Akhosrav/papers/

auto-part-EWCG.pdf.

[DCS06] N. Durand, B. Crémilleux, and E. Suzuki: Visualizing transactional data with
multiple clusterings for knowledge discovery. In Foundations of Intelligent
Systems, volume 4203 of Lecture Notes in Computer Science, pages 47–57.
2006. http://dx.doi.org/10.1007/11875604_7.

[EdCCC42] L. Euler, J. A. N. de Caritat Condorcet, and A. A. Cournot: Lettres de
L. Euler à une princesse d’Allemagne sur divers sujets de physique et de
philosophie. Number 1 in Lettres de L. Euler à une princesse d’Allemagne
sur divers sujets de physique et de philosophie. Hachette, 1842. http:

//books.google.de/books?id=1QsLAAAAMAAJ.

[EET76] G. Ehrlich, S. Even, and R. E. Tarjan: Intersection graphs of curves in the
plane. Journal of Combinatorial Theory, Series B, 21(1):8 – 20, 1976. http:

//dx.doi.org/10.1016/0095-8956(76)90022-8.

[EF97] P. Eades and Q. W. Feng: Multilevel visualization of clustered graphs. In
Proceedings of the Symposium on Graph Drawing, GD ’96, pages 101–112,
1997. http://dx.doi.org/10.1007/3-540-62495-3_41.

[EKSX96] M. Ester, H. P. Kriegel, J. Sander, and X. Xu: A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining,
KDD-96, pages 226–231, 1996. http://www.aaai.org/Library/KDD/1996/

kdd96-037.php.

[FCE95] Q. W. Feng, R. F. Cohen, and P. Eades: Planarity for clustered graphs. In
Algorithms - ESA ’95, volume 979 of Lecture Notes in Computer Science,
pages 213–226. 1995. http://dx.doi.org/10.1007/3-540-60313-1_145.

[FS58] R. O. Ferguson and L. F. Sargent: Linear programming. McGraw-Hill, 1958.
http://books.google.de/books?id=4RlVAAAAMAAJ.

76

http://dx.doi.org/10.1007/s00454-009-9196-9
http://portal.acm.org/citation.cfm?id=1414778
http://portal.acm.org/citation.cfm?id=1414778
http://dx.doi.org/10.1007/978-3-642-34611-8_28
http://dx.doi.org/10.1007/978-3-642-34611-8_28
http://dx.doi.org/10.1109/TVCG.2009.122
http://dx.doi.org/10.1109/TVCG.2009.122
http://dx.doi.org/10.1007/978-3-540-24595-7_44
http://dx.doi.org/10.1007/978-3-540-24595-7_44
http://www.win.tue.nl/~Akhosrav/papers/auto-part-EWCG.pdf
http://www.win.tue.nl/~Akhosrav/papers/auto-part-EWCG.pdf
http://dx.doi.org/10.1007/11875604_7
http://books.google.de/books?id=1QsLAAAAMAAJ
http://books.google.de/books?id=1QsLAAAAMAAJ
http://dx.doi.org/10.1016/0095-8956(76)90022-8
http://dx.doi.org/10.1016/0095-8956(76)90022-8
http://dx.doi.org/10.1007/3-540-62495-3_41
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://dx.doi.org/10.1007/3-540-60313-1_145
http://books.google.de/books?id=4RlVAAAAMAAJ

Bibliography 77

[GHK99] J. Gil, J. Howse, and S. Kent: Formalizing spider diagrams. In Proceedings
of the IEEE Symposium on Visual Languages, pages 130–137, 1999. http:

//dx.doi.org/10.1109/VL.1999.795884.

[GJ79] M. R. Garey and D. S. Johnson: Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979. http:

//books.google.de/books?id=fjxGAQAAIAAJ.

[GJ83] M. R. Garey and D. S. Johnson: Crossing number is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 4(3):312–316, 1983. http://dx.
doi.org/10.1137/0604033.

[GNS09] I. Griva, S. Nash, and A. Sofer: Linear and Nonliner Optimization, 2nd
Edition. Society for Industrial and Applied Mathematics, 2009. http:

//books.google.de/books?id=uOJ-Vg1BnKgC.

[HFH+09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten:
The weka data mining software: an update. SIGKDD Explorations Newslet-
ter, 11(1):10–18, 2009. http://doi.acm.org/10.1145/1656274.1656278.

[HHW13] M. Hamann, T. Hartmann, and D. Wagner: Hierarchies of predominantly
connected communities. In Proceedings of the 13th International Symposium
on Algorithms and Data Structures (WADS’13), Lecture Notes in Computer
Science, 2013. http://arxiv.org/abs/1305.0757, (to appear).

[HNZ91] I. B. A. Hartman, I. Newman, and R. Ziv: On grid intersection graphs.
Discrete Mathematics, 87(1):41–52, 1991. http://dx.doi.org/10.1016/

0012-365X(91)90069-E.

[HT74] J. Hopcroft and R. E. Tarjan: Efficient planarity testing. Journal of the
ACM (JACM), 21(4):549–568, 1974. http://dx.doi.org/10.1145/321850.
321852.

[Hug87] V. Hugo: Les Misérables. Les Misérables. T.Y. Crowell & Company, 1887.
http://books.google.de/books?id=XdwPAAAAYAAJ.

[HY00] D. Harel and G. Yashchin: An algorithm for blob hierarchy layout. In Proceed-
ings of the working conference on Advanced visual interfaces, AVI ’00, pages
29–40, 2000. http://dx.doi.org/10.1145/345513.345240.

[Inc13] Gurobi Optimization Inc.: Gurobi optimizer reference manual, 2013. http:

//www.gurobi.com.

[Jor87] C. Jordan: Cours d’analyse de l’École polytechnique. Number 3 in Cours
d’analyse de l’École polytechnique. Gauthier-Villars et fils, 1887. http://

books.google.de/books?id=cx0PAAAAIAAJ.

[JP87] D. S. Johnson and H. O. Pollak: Hypergraph planarity and the complexity
of drawing venn diagrams. Journal of Graph Theory, 11(3):309–325, 1987.
http://dx.doi.org/10.1002/jgt.3190110306.

[Kar72] R. M. Karp: Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103. Plenum Press, 1972. http://dx.

doi.org/10.1007/978-3-540-68279-0_8.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi: Optimization by simulated
annealing. Science, 220(4598):671–680, 1983. http://dx.doi.org/10.1126/
science.220.4598.671.

77

http://dx.doi.org/10.1109/VL.1999.795884
http://dx.doi.org/10.1109/VL.1999.795884
http://books.google.de/books?id=fjxGAQAAIAAJ
http://books.google.de/books?id=fjxGAQAAIAAJ
http://dx.doi.org/10.1137/0604033
http://dx.doi.org/10.1137/0604033
http://books.google.de/books?id=uOJ-Vg1BnKgC
http://books.google.de/books?id=uOJ-Vg1BnKgC
http://doi.acm.org/10.1145/1656274.1656278
http://arxiv.org/abs/1305.0757
http://dx.doi.org/10.1016/0012-365X(91)90069-E
http://dx.doi.org/10.1016/0012-365X(91)90069-E
http://dx.doi.org/10.1145/321850.321852
http://dx.doi.org/10.1145/321850.321852
http://books.google.de/books?id=XdwPAAAAYAAJ
http://dx.doi.org/10.1145/345513.345240
http://www.gurobi.com
http://www.gurobi.com
http://books.google.de/books?id=cx0PAAAAIAAJ
http://books.google.de/books?id=cx0PAAAAIAAJ
http://dx.doi.org/10.1002/jgt.3190110306
http://dx.doi.org/10.1007/978-3-540-68279-0_8
http://dx.doi.org/10.1007/978-3-540-68279-0_8
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671

78 Bibliography

[Knu93] D. E. Knuth: The Stanford GraphBase: a platform for combinatorial comput-
ing. ACM, 1993. http://books.google.de/books?id=BdTUPQAACAAJ.

[KP96] J. Kratochv́ıl and T. M. Przytycka: Grid intersection and box intersection
graphs on surfaces (extended abstract). In Proceedings of the Symposium
on Graph Drawing, GD ’95, pages 365–372, 1996. http://dx.doi.org/10.

1007/BFb0021820.

[KR92] D. E. Knuth and A. Raghunathan: The problem of compatible representatives.
SIAM Journal on Discrete Mathematics, 5(3):422–427, 1992. http://dx.

doi.org/10.1137/0405033.

[Kra94] J. Kratochv́ıl: A special planar satisfiability problem and a consequence of
its NP-completeness. Discrete Applied Mathematics, 52(3):233–252, 1994.
http://dx.doi.org/10.1016/0166-218X(94)90143-0.

[KvKS09] M. Kaufmann, M. van Kreveld, and B. Speckmann: Subdivision drawings of
hypergraphs. In Graph Drawing, pages 396–407. 2009. http://dx.doi.org/

10.1007/978-3-642-00219-9_39.

[Lic82] D. Lichtenstein: Planar formulae and their uses. SIAM Journal on Comput-
ing, 11(2):329–343, 1982. http://dx.doi.org/10.1137/0211025.

[Mäk90] E. Mäkinen: How to draw a hypergraph. International Journal of Com-
puter Mathematics, 34(3-4):177–185, 1990. http://dx.doi.org/10.1080/

00207169008803875.

[MM99] T. A. McKee and F. R. McMorris: Topics in Intersection Graph Theory.
SIAM Monographs on Discrete Mathematics and Applications. SIAM, 1999.
http://books.google.de/books?id=2E10MLGRjFUC.

[NC88] T. Nishizeki and N. Chiba: Planar Graphs: Theory and Algorithms. North-
Holland Mathematics Studies. Elsevier Science, 1988. http://books.

google.de/books?id=clMoNmX-x6MC.

[New06] M. E. J. Newman: Modularity and community structure in networks. Pro-
ceedings of the National Academy of Sciences, 103(23):8577–8582, 2006.
http://dx.doi.org/10.1073/pnas.0601602103.

[Pap81] C. H. Papadimitriou: On the complexity of integer programming. Journal
of the ACM, 28(4):765–768, 1981. http://dx.doi.org/10.1145/322276.

322287.

[PT02] J. Pach and G. Tóth: Recognizing string graphs is decidable, 2002. http:

//dx.doi.org/10.1007/3-540-45848-4_20.

[Ran71] W. M. Rand: Objective criteria for the evaluation of clustering methods. Jour-
nal of the American Statistical Association, 66(336):846–850, 1971. http:

//dx.doi.org/10.1080/01621459.1971.10482356.

[RS69] F. S. Roberts and J. H. Spencer: A Characterization of Clique Graphs. Mem-
orandum (Rand Corporation). Rand Corporation, 1969. http://books.

google.fr/books?id=tRpvGQAACAAJ.

[SAA09] P. Simonetto, D. Auber, and D. Archambault: Fully automatic visualisation
of overlapping sets. In Proceedings of the 11th Eurographics / IEEE - VGTC
conference on Visualization, EuroVis’09, pages 967–974, 2009. http://dx.

doi.org/10.1111/j.1467-8659.2009.01452.x.

78

http://books.google.de/books?id=BdTUPQAACAAJ
http://dx.doi.org/10.1007/BFb0021820
http://dx.doi.org/10.1007/BFb0021820
http://dx.doi.org/10.1137/0405033
http://dx.doi.org/10.1137/0405033
http://dx.doi.org/10.1016/0166-218X(94)90143-0
http://dx.doi.org/10.1007/978-3-642-00219-9_39
http://dx.doi.org/10.1007/978-3-642-00219-9_39
http://dx.doi.org/10.1137/0211025
http://dx.doi.org/10.1080/00207169008803875
http://dx.doi.org/10.1080/00207169008803875
http://books.google.de/books?id=2E10MLGRjFUC
http://books.google.de/books?id=clMoNmX-x6MC
http://books.google.de/books?id=clMoNmX-x6MC
http://dx.doi.org/10.1073/pnas.0601602103
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1145/322276.322287
http://dx.doi.org/10.1007/3-540-45848-4_20
http://dx.doi.org/10.1007/3-540-45848-4_20
http://dx.doi.org/10.1080/01621459.1971.10482356
http://dx.doi.org/10.1080/01621459.1971.10482356
http://books.google.fr/books?id=tRpvGQAACAAJ
http://books.google.fr/books?id=tRpvGQAACAAJ
http://dx.doi.org/10.1111/j.1467-8659.2009.01452.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01452.x

Bibliography 79

[Sch84] E. R. Scheinerman: Intersection Classes and Multiple Intersection Parameters
of Graphs. Princeton University, 1984. http://books.google.de/books?

id=KpQEGwAACAAJ.

[Sin66] F. W. Sinden: Topology of thin film RC-circuits. Bell System Technical Jour-
nal, 45:1639–1662, 1966. http://archive.org/details/bstj45-9-1639.

[SSu03] M. Schaefer, E. Sedgwick, and D. S̆tefankovic̆: Recognizing string graphs in
NP. Journal of Computer and System Sciences, 67(2):365–380, 2003. http:
//dx.doi.org/10.1016/S0022-0000(03)00045-X.

[Ste56] H. Steinhaus: Sur la division des corps matériels en parties. Bulletin of the
Polish Academy of Sciences, Cl. III. 4, pages 801–804, 1956.

[Su04] M. Schaefer and D. S̆tefankovic̆: Decidability of string graphs. Journal of
Computer and System Sciences, 68(2):319–334, 2004. http://dx.doi.org/

10.1016/j.jcss.2003.07.002.

[VBV04] A. Verroust-Blondet and M. L. Viaud: Results on hypergraph planarity, 2004.
http://hal.inria.fr/inria-00389591, (Unpublished manuscript).

[Ven80] J. Venn: On the diagrammatic and mechanical representation of propositions
and reasonings. Philosophical Magazine Series 5, 10(59):1–18, 1880. http:

//dx.doi.org/10.1080/14786448008626877.

[Wal75] T. R. S. Walsh: Hypermaps versus bipartite maps. Journal of Combinato-
rial Theory, Series B, 18(2):155–163, 1975. http://dx.doi.org/10.1016/

0095-8956(75)90042-8.

[Wil96] D. B. Wilson: Generating random spanning trees more quickly than the cover
time. In Proceedings of the 28th annual ACM symposium on Theory of
Computing, STOC ’96, pages 296–303, 1996. http://dx.doi.org/10.1145/
237814.237880.

[Zyk74] A. A. Zykov: Hypergraphs. Russian Mathematical Surveys, 29(6):89–156,
1974. http://dx.doi.org/10.1070/RM1974v029n06ABEH001303.

79

http://books.google.de/books?id=KpQEGwAACAAJ
http://books.google.de/books?id=KpQEGwAACAAJ
http://archive.org/details/bstj45-9-1639
http://dx.doi.org/10.1016/S0022-0000(03)00045-X
http://dx.doi.org/10.1016/S0022-0000(03)00045-X
http://dx.doi.org/10.1016/j.jcss.2003.07.002
http://dx.doi.org/10.1016/j.jcss.2003.07.002
http://hal.inria.fr/inria-00389591
http://dx.doi.org/10.1080/14786448008626877
http://dx.doi.org/10.1080/14786448008626877
http://dx.doi.org/10.1016/0095-8956(75)90042-8
http://dx.doi.org/10.1016/0095-8956(75)90042-8
http://dx.doi.org/10.1145/237814.237880
http://dx.doi.org/10.1145/237814.237880
http://dx.doi.org/10.1070/RM1974v029n06ABEH001303

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Our Contribution

	2 Graphs, Hypergraphs, and More
	2.1 Graphs, Curves, and Embeddings
	2.1.1 Curves in the Plane
	2.1.2 Embeddings and Planarity of Graphs
	2.1.3 Classes of Graphs and Substructures

	2.2 Hypergraphs and Hypergraph-Planarity
	2.2.1 Visualization of Hypergraphs
	2.2.2 Zykov-Planarity
	2.2.3 Vertex Planarity
	2.2.4 The Support of a Hypergraph

	2.3 Related Concepts
	2.3.1 Venn Diagrams
	2.3.2 Euler Diagrams
	2.3.3 String Graphs

	3 Families of Clusterings
	3.1 Representation of Multiple Clusterings
	3.2 Properties of the Cluster-Graph

	4 Simultaneous Embeddability of Clusterings
	4.1 Weak Embeddability
	4.2 Strong Embeddability
	4.2.1 Strong Embeddability and the Cluster-Graph
	4.2.2 Strong Embeddability and Vertex Planarity
	4.2.3 On Combinatorial and Unique Strong Embeddings
	4.2.4 Complexity of the Test for Strong Embeddability
	4.2.5 Single-Intersection and Path-Based Strong Embeddability
	4.2.6 Cylinder- and Plane-Grid Strong Embeddability

	4.3 Full Embeddability
	4.4 The Hierarchy of Embeddability

	5 How to Generate Embeddings
	5.1 Supports for Fully Embeddable Families of Clusterings
	5.2 Supports for Non-Fully Embeddable Families of Clusterings
	5.3 How to Find Grid Representations
	5.3.1 A Greedy Heuristic to Find a Grid Representation
	5.3.2 Integer Linear Programs for Optimal Grid Representations
	5.3.2.1 Optimal Plane-Grid Representations
	5.3.2.2 Optimal Cylinder-Grid Representations

	6 Experimental Evaluation of Grid Representations
	6.1 Embeddability Depending on Grid-Size and -Coverage
	6.2 Case Studies on Real-World Data Sets

	7 Conclusion
	7.1 Open Problems in the Hierarchy
	7.2 Future Work

	Appendix
	A File Formats
	B Calculating the Number of Bad Crossings in Grid Representations
	C Random Clustering Generators
	D Experimental Results

	Bibliography

