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Deutsche Zusammenfassung

Die Diplomarbeit beschäftigt sich mit der automatischen Generierung von Layouts von
Argumentkarten. Diese stellen Argumente einzelner Texte oder ganzer Debatten sowie
deren Beziehungen zueinander als Graphstruktur dar und finden hauptsächlich innerhalb
der Geisteswissenschaft ihre Anwendung.

Am Anfang der Arbeit steht eine empirische Analyse der graphentheoretischen Eigen-
schaften von Argumentkarten. Ein hoher Prozentsatz derer Zusammenhangskomponenten
ist azyklisch und planar. Die verbleibenden Zusammenhangskomponenten können durch
das Entfernen weniger Kanten in einen azyklischen und planaren Graphen überführt wer-
den. Auf diese Analyse aufbauend definieren wir den grundlegenden Zeichenstil sowie
Nebenbedingungen und Optimierungsziele für Layouts von Argumentkarten. Aufgrund
der Azyklizität der Eingabedaten fällt die Wahl hierbei auf orthogonale Aufwärtszeich-
nungen. Die Knoten des Graphen werden als Boxen uniformer Breite gezeichnet, während
die Höhe von dem zugehörigen Label abhängt. Zu minimieren sind dabei die Kreuzungs-
und Knickzahl, die Gesamtkantenlänge sowie die Distanz von Quellen und Senken zur
äußeren Facette.

Das Hauptergebnis dieser Arbeit ist ein auf dem Topology-Shape-Metrics-Framework auf-
bauender Algorithmus, der die gewünschten Layouts berechnet. Hierfür definieren wir die
drei Schritte Topology, Shape und Metrics formal, untersuchen sie einzeln in Bezug auf
ihre Komplexität und geben Algorithmen zu deren Lösung an. Im Topology-Schritt opti-
mieren wir sowohl die Anzahl der Kreuzung als auch die Distanz von Quellen und Senken
zur äußeren Facette. Dabei erzwingen wir, dass alle Kanten aufwärtsgerichtet sind. Im
darauf folgenden Shape-Schritt weisen wir den Kanten 90◦-Knicke zu. Dabei kann eine
einzelne Kante höchstens vier Knicke erhalten. Zuletzt wird im Metrics-Schritt die Höhe
und anschließend die Breite der Layouts minimiert.
Der Topology- und Metrics-Schritt erweisen sich als NP-vollständig, während wir für den
Shape-Schritt die NP-Vollständigkeit nur vermuten können. Aus diesen Gründen werden
die wichtigsten Schritte der Layoutberechnung heuristisch gelöst. In einer anschließenden
Untersuchung der berechneten Layouts konnte gezeigt werden, dass die Optimierungskri-
terien hinreichend gut minimiert werden. Darüber hinaus überzeugen diese Layouts auch
aufgrund ihrer Ästhetik und der übersichtlichen Struktur.

Während des Shape-Schrittes unterteilen wir die Zeichenfläche in disjunkte Spalten. Diesen
werden dann einzelne oder mehrere Knoten und Kanten zugeteilt. Daher bezeichnen wir
die auf diese Weise berechneten Layouts als Spalten-basiert. Dies ist jedoch nicht zu
verwechseln mit Ebenen-basierten Layouts, wie sie mit der Sugiyama-Methode berech-
net werden können. Während Ebenen-basierten Layouts eine topologische Ordnung der
Knoten zugrunde liegt, Kanten also nur von höheren zu niedrigeren Ebenen verlaufen,
existiert eine solche Beschränkung bei Spalten-basierten Layouts nicht. Dadurch wird die
Positionierung mehrerer flacher Boxen neben einer hohen ermöglicht. Die Layouts wirken
somit besonders kompakt.
Des Weiteren weisen wir die Knoten und Kanten so den disjunkten Spalten zu, dass für
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jeden Knoten gilt, dass die ihm zugewiesene Spalte sowohl der Median der Spalten seiner
eingehenden Kanten als auch der Median der Spalten seiner ausgehenden Kanten ist.
Dadurch zeichnen sich die Layouts durch einen hohen Grad an Symmetrie aus, der sich
wiederum positiv auf ihre Ästhetik auswirkt.
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1. Introduction

Over the last decades graphs have become a well-known and widely used modelling tech-
nique for objects and the relationships among them. Not only within computer science but
across all fields of science – even within the humanities – data is represented by graphs.
In most cases the work with graphs is computer-assisted but not fully automatic, i.e. the
user still needs to get an overview of the graph’s internal structure. This turns out to be
a challenging and long-lasting task as the number of nodes and edges often is large, e.g.
in the context of social networks or data structures [FMF+01].
Thus, there is a significant need for computer-supported perception of data represented
by graphs. This need resulted in an own branch of research within the algorithmic com-
munity: graph drawing. A lot of work has been spent on this topic and there is a variety
of algorithms dealing with different input graphs or having different constraints on the
layout that they compute: orthogonal drawings of planar graphs with maximum degree
four [Tam87], upward drawings of DAGs [STT81], symmetric drawings of series-parallel
digraphs [HEH04] – just to name a few.

In this work we cover the problem of visualising argument maps. Argument maps present
the arguments given in a debate or a book together with two binary relations among
them, i.e. support and attack. Thus, argument maps can be regarded as graphs. They
originate from argumentation theory but are used in many more fields like philosophy
and politics [Bet10]. We have the chance to work with real-life data having access to 51
argument maps. This has two major advantages: (i) we can define the desired layout
style with respect to these input instances and (ii) we can evaluate our algorithm using
real-world data.
In a layout of an argument map the arguments are drawn as boxes that have uniform width
and are labelled by a short summary of the argument. The support and attack relations
are drawn as green and red arrows, respectively. There are several constraints on layouts
of argument maps. The most important ones are, that the edges are orthogonal and that
they are directed downwards. Drawings in which all edges have the same directions are
called upward drawings in the graph drawing community. For the sake of compatibility we
use the upward terminology as well. Nevertheless, we draw all edges such that they are
directed downwards.
Sinks and sources are exit and entry points of argument maps and need to be found quickly
by the user. Therefore, we require that above a source and below a sink no other box is
positioned.
While fulfilling these constraints we optimise the following four criteria:
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2 1. Introduction

• Number of edge crossings

• Number of bends

• Total edge length

• Distance of sinks and sources to the external face

In a series of experimental studies Purchase et al. found out that minimising the number
of edge crossings and the number of bends improves human perception of graph draw-
ings [PCJ96, PCJ97, Pur97]. Furthermore, we want to minimise the total edge length as
thereby the layout becomes compact. These optimisation goals are frequently used when
drawing graphs [ET88]. The last optimisation criterion is specific to layouts of argument
maps and is closely related to the constraint that above a source and below sink no other
box may be positioned. Despite this constraint there can run edges above a source or below
a sink. We measure the distance to the external face by the minimum number of crossings
a downward directed edge starting at the sink or ending at the source, respectively, needs
to create in order to reach the external face.

Additionally, the algorithm we present enforces two further properties: (i) It computes so-
called column based layouts. In a column based layout the canvas is divided into disjoint
columns of uniform width that corresponds to the uniform width of the boxes. The boxes
and edges are then assigned to these columns. Thereby, vertical edge segments always
run within a column, whereas horizontal edge segments can span over several columns.
Due to the columns the final layouts have a clear look which is exemplified in Figure 1.1a.
We emphasise that column based layouts are not to be confused with layered layouts as
computed using the famous Sugiyama method [STT81]. Layered layouts are based on a
topological order of the nodes. Edges may be only direct from a higher layer to a lower
one (see Figure 1.1b). For column based layouts we do not have such a restriction and,
therefore, we can position two shallow boxes beside a single high box (see Figure 1.1a).
(ii) Our algorithm furthermore satisfies a property which we denote by local symmetry,
i.e. for each node v the column assigned to v is the median of the columns assigned to the
incoming edges of v as well as the median of its outgoing edges. Because of local symmetry
the resulting layouts have a clear and well-structured look [LNS85].

(a) A column based layout of an argument map. (b) A layer based layout of an argument map.

Figure 1.1: A layer based and a column based layout of an argument map.
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3

The already mentioned algorithm is based on the topology-shape-metrics framework that
originally was invented by Tamassia [Tam87] in 1987. The name topology-shape-metrics
approach was introduced by Tollis et al. in 1998 [TDET98]. The key idea behind the
framework is that reducing the number of crossings is the most important aesthetic crite-
rion and, therefore, it is minimised in the first step without regarding any other criteria.
Thereby, an embedding of the input graph is computed. If the graph is non-planar, the
crossings are replaced by dummy nodes having degree four. The planarisation together
with its embedding is denoted by topology. In general the topology is fixed throughout the
remaining steps of the framework.
In the second step the shape of the final layout is optimised with respect to the fixed
topology. Shape denotes the assignment of bends to edges and the angle of these bends.
For orthogonal edges there are only two types of bends – 90◦ bends to the left and 90◦

bends to the right.
Finally, in the metrics step the edge lengths and node dimensions are computed. Usually,
the goal of this step is to minimise the total edge length.
Each of the three steps of the topology-shape-metrics framework can be treated individ-
ually. In this work we minimise the number of crossings as well as the distance of sinks
and sources to the external face in the topology step while preserving that all edges are
directed upwards. Therefor, we use the layer-free upward crossing minimisation heuristic
recently published by Chimani et al. [CGMW10].
For the shape step we suggest a set of algorithms. None of them minimises the number of
bends to the optimum, but we can give an upper bound for the number of created bends.
All algorithms have in common that they compute a column assignment of the nodes and
edges of the input graph. First, we present an algorithm that assigns at most two bends
per edge as long as the graph is planar. However, this algorithm is only of theoretical
interest as the resulting layouts are confusing. For layouts of argument maps we use an al-
gorithm that is based on a graph drawing technique by Biedl and Kant [BK94]. Using this
algorithm the resulting layouts have at most four bends per edge independent of whether
the graph is planar or non-planar. Note that due to the column assignment the topology
computed in the first step can be relaxed again, i.e. the edge crossings are not determined
anymore.
This is of advantage when the total edge length is minimised in the last step of the topology-
shape-metrics framework. For a given column assignment we first minimise vertical edge
length and, afterwards, compact the width of the layouts. We present two approaches for
vertical edge length minimisation. A network flow first arbitrarily fixes a topology that is
compatible with the column assignment and then computes the optimal solution subject
to the fixed topology. Furthermore, we present a greedy approach that can exploit the
open choices concerning the topology. The subsequent width compaction is based on a
network flow idea.

We analyse the computational complexity of each of the steps that our algorithm per-
forms. The upward crossing minimisation in the topology step is already known to be
NP-complete, because checking upon upward planarity is NP-complete [GT94, GT02].
However, for specific parameter sets our approach can be reduced to upward crossing
minimisation of an s-t-graph. Since the test upon upward planarity can be performed
efficiently for s-t-graphs [BDMT98], we prove that upward crossing minimisation remains
NP-complete for s-t-graphs.
We guess that bend minimisation is NP-complete as well. However, we cannot offer a
proof of this conjecture.
Furthermore, we show that vertical edge length minimisation for a given column assign-
ment is NP-complete. In contrast, the subsequent width compaction can be solved opti-
mally in polynomial time.
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4 1. Introduction

1.1 Outline

This work is structured as follows: In the subsequent section we give an overview about
the related work. In Chapter 2 we introduce the reader to argument maps and analyse
the graph-theoretic properties of a set of 51 argument maps. Afterwards, we define the
drawing style of argument maps and present the corresponding formal problem statement
along with complexity considerations in Chapter 3. In Chapter 4 we discuss a preliminary
approach to this problem based on integer linear programming. This approach played an
important role while we formulated the problem statement but is not efficient enough for
the daily use. Therefore, we present an efficient algorithm building upon the topology-
shape-metrics framework in Chapter 5. We discuss the final layouts in Chapter 6 before
concluding this work in Chapter 7.

1.2 Related Work

As already mentioned, a lot of work has been invested within the field of graph drawing.
In this section we give a short overview of the related work and present some of the most
important results.

As at the beginning of this work the desired layout was not formally specified the question
how to characterise a good layout arose. In the mid-nineties Purchase et al. performed a
series of empirical studies testing how different formal criteria affect the aesthetic of graph
layouts [PCJ96, PCJ97, Pur97]. The criteria they examined are minimising edge crossings,
minimising bends, maximising symmetry, maximising the minimum angle between edges
and fixing edges and nodes to an orthogonal grid. They concluded that minimising arc
crossings has the most important effect on human perception. Furthermore, minimising
bends and maximising symmetry improve perception as well. However, maximising the
minimum angle and introducing an orthogonal grid have no statistically relevant effect.

In 1987 in his seminal paper Tamassia introduced a new approach to the field of graph
drawing that inspired many other researchers to adapt and extend his approach. The
innovation was to use network flows in order to compute layouts of graphs. His algorithm
efficiently embeds a planar graph with a fixed combinatorial embedding and a maximum
vertex degree of four on an orthogonal grid with the minimum number of bends [Tam87].
This algorithm can be seen as one of the first three-phase-methods for orthogonal graph
drawing as later described by Biedl et al. [BMT97]. The three phases are (i) fixing
a planar embedding, (ii) computing an orthogonal description and (iii) compaction of
the layout. The term topology-shape-metrics framework was introduced by Tollis et al.
in 1998 [TDET98].
The restrictions to the input data of Tamassia’s algorithm are quite strong. However,
there are extensions of his algorithm that can deal with graphs with no restriction on the
maximum degree by replacing the vertices with boxes such that several edges can attach to
the box on each side [FK95]. Eiglsperger et al. transformed the network flow approach to
integer linear programs and thereby gave the opportunity to incorporate every constraint
on the layout that can be formulated as a set of linear inequalities [EFK00].

As we find out in Chapter 2 that argument maps are close to directed acyclic graphs (DAGs)
the famous visualisation method by Sugiyama et al. [STT81] is important in this context.
They presented an approach to visualise hierarchical system structures. This approach
consists of three steps: (i) layer assignment, (ii) determining relative positions within each
layer to reduce edge crossings and (iii) positioning the vertices and edges. For each of the
steps there are several ways how to perform it. Therefore, this approach can be seen as a
general framework that can easily be modified. However, it has one drawback that none of
the further developments could overcome: Choosing a wrong layer assignment in step (i)
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1.2. Related Work 5

can require many edge crossings in step (ii) which would not be necessary, if another layer
assignment had been chosen (see Figure 5.1 on Page 48 for an example).
Having this problem in mind Chimani et al. recently developed an approach to layer-
free upward crossing minimisation [CGMW10]. This approach adapts the planarisation
approach by Batini et al. [BTT84] which is the most successful heuristic for minimising
crossings in undirected graphs [GM04] to upward crossing minimisation of directed graphs.
In a follow-up paper they included this approach in the Sugiyama framework [CGMW11].
After the crossing minimisation they compute a layering of the nodes that is compatible
with the given topology and then assign coordinates to the nodes and edges, i.e. they
replace the first two steps of the Sugiyama framework with the layer-free upward crossing
minimisation method. In contrast to Chimani et al. we integrate the layer-free upward
crossing minimisation method into the topology-shape-metrics framework.

The drawing of argument maps has some similarities to layout UML class diagrams. In
UML class diagrams there are two types of edges: (i) generalisations and (ii) associations.
Mostly, the generalisations are required to be drawn upward, whereas the associations can
be directed in any direction. There are approaches that extend the Sugiyama approach
to UML class diagrams by first drawing the directed edges using the classical Sugiyama
framework and afterwards routing the associations [See97].
Eiglsperger et al. introduced the concept of mixed-upward planarity and developed algo-
rithms for the creation of mixed-upward drawings [Eig03, EKS03, EEK03]. However, their
heuristic for upward edge insertion is still based on a layering of the graph and, therefore,
has the same drawback as the Sugiyama framework.

5





2. Input Characterisation

In this chapter we introduce the reader to the field of argument maps – what they are
used for and how they are constructed. Furthermore, we analyse their graph-theoretic
properties. The goal of this analysis is to characterise graph-theoretic properties that are
special to the domain of argument maps. These are the properties we will later try to
exploit in two ways: On the one hand we can use it for the specification of the layout
we want to compute, e.g. for acyclic graphs we can consider upward drawings. On the
other hand we can try to exploit the gathered information in terms of efficiency of the
algorithm that computes the specified layout, e.g. some problems are NP-complete for
general graphs but can efficiently be solved for special classes of graphs.

First we formally define argument maps in Section 2.1. Afterwards, in Section 2.2 we
briefly give summaries of the three sources that build the empirical basis for the following
analysis. On the one hand these sources differ in the purpose of the argument maps and
on the other hand in the experience of the creator in dealing with argument maps. In
Section 2.3 we list the analysis methods we use and depict the collected data in form of
several diagrams.

2.1 Argument Maps

In this section we first give an overview about the terminology used in the context of
argument maps including formal definitions of the terms argument, thesis, support, attack
and argument map. Thereby, we show how argument maps are associated with graphs.
Afterwards, we discuss the use cases of argument maps and present a simple example.

Definition 2.1 (Argument). An argument is a propositional formula of the form:

premise1 ∧ . . . ∧ premisen =⇒ conclusion

We assume that an argument is deductively valid.

Definition 2.2 (Thesis). A thesis is a single term in the propositional logic:

thesis

Arguments and theses will form singular entities in argument maps and can be in a sup-
porting or mitigating relation.

7



8 2. Input Characterisation

Definition 2.3 (Support). Support is a binary relation on the set of arguments and
theses. In general this relation is asymmetric. A supporting relation can exist between
two arguments or between a thesis and an argument. There is a support from argument A1

to argument A2 if the conclusion of A1 is logically equivalent to one of the premises of A2.
If A1 (or A2) is a thesis instead of an argument the term thesis needs to be equivalent to
a premise of A2 (the conclusion of A1).

Definition 2.4 (Attack). Attack is defined analogously to support. Instead of logical
equivalence we require logical antivalence.

Basing on Definition 2.1-2.4 we can now define argument maps:

Definition 2.5 (Argument Map). An argument map consists of a set V of arguments
and theses and the two relations Asupport, Aattack ⊆ V × V .

Obviously, an argument map can be interpreted as a graph structure G = (V,A) where
A = Asupport ∪ Aattack. Arguments and theses form the nodes of G, whereas supports or
attacks between them are represented by directed edges.

When the graph representing an argument is drawn, the nodes are drawn as rectangular
boxes containing a summary of the argument. Supporting edges are drawn as green ar-
rows, whereas mitigating edges are red. In Figure 2.1 we show a rather small example of a
layouted argument map. In this work we do neither distinguish between theses and argu-
ments nor between supporting and attacking edges when computing layouts for argument
maps. However, in Chapter 7 we show, that this distinction could be part of future work.

The approach to visualise arguments in an argument map originates from argumentation
theory but is used as a tool in vast fields of other domains like philosophy in general,
education and politics. In the academic context they are most frequently used in order
to represent the arguments that are given in one or in several texts. However, they are
applied in order to visualise whole debates as well, e.g. in a political context. There even
have been experiments in live reconstruction of debates, e.g. during a party conference of
the German party Bündnis 90/Die Grünen the audience could observe the argument map
representing the discussion that emerged among them on a large screen. For more detailed
information about argument maps we refer the reader to the book “Theorie dialektischer
Strukturen” by Betz [Bet10].

The reconstruction of debates using argument maps is supported by a tool called argunet1.
However, this tool does not supply any layout techniques. The user needs to place the
boxes on his own and edges are modelled as straight lines connecting the centre points of
two boxes. Especially the straight line constraint on edges imposes a restriction on the size
of the argument maps, because maps get confusing if the number of arguments increases.
Furthermore, it is time consuming to manually create a good layout. Creating the layout
of the poster mentioned in the paragraph about “The Moral Controversy about Climate
Engineering” in the next section was an effort of several hours. Therefore, we would like
to give an algorithmic support for the layout of argument maps. Before we come to the
algorithms, we turn towards the properties that distinguish argument maps from general
graphs. In order to analyse these properties, we gathered realistic input data from three
sources. Their description is the content of the following section.

2.2 Sources

In this section we present the three sources that supply the input data we use for the
analysis in the subsequent section.

1See http://www.argunet.org

8
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2.3. Analysis 9

Figure 2.1: A simple argument map.

The Moral Controversy about Climate Engineering

A reconstruction of the controversy about research into, development and implementation
of Climate Engineering-technologies. This reconstruction consists of six argument maps.
The first five represent only parts of the whole controversy. These five maps are then com-
posed into one big map representing the whole controversy. This map has been manually
layouted by Betz and Cacean for a poster [BC11].

Philosophisches Argumentieren I

A set of reconstructions that have been created during a course given by Betz at the Free
University of Berlin during the winter term 2007/20082. Between the weekly sessions the
students created argument maps representing the arguments given in a philosophical text
and presented them to their fellow students in the next session.

René Descartes: Meditationen über die Grundlagen der Philosophie

A collection of 34 argument maps consisting of 4 up to 31 arguments. These maps have
been reconstructed from the meditations by Descartes [Des08]. Each meditation is covered
by a set of several argument maps. These maps have been used by Betz during the
lecture “René Descartes: Meditationen über die Grundlagen der Philosophie” he gave at
the University of Stuttgart in winter term 2008/20093.

In total the three sources supply 51 argument maps. Together they form a small but sound
sample whose analysis is the subject of the following section.

2.3 Analysis

After presenting the sources of the argument maps in the foregoing section we now turn
towards their analysis. In this section we discuss our analysis methods and apply them to
the supplied argument maps. Thereby, we focus on the pure graph structure corresponding

2See http://myvv.fu-berlin.de/vorlesungsverzeichnis/myvvq.php?dozent=betz&keyword=

&lvnummer=&kommentar=1&fachbereich=007001001001001001&semester=WS0708
3See http://www.uni-stuttgart.de/philo/index.php?id=375&no_cache=1&tx_ttnews%5Btt_news%5D=

734&cHash=94989b0c1092b61dc4cdf3ca98b5a80f
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10 2. Input Characterisation

to an argument map and do not distinguish between arguments and theses as different
types of nodes or support and attack as different types of edges.

The first property we analyse is the size of the argument maps measured in terms of the
number of nodes. The vast majority of argument maps turned out to be of modest size,
i.e. 96% of the argument maps consist of at most 40 nodes and 78% have at most 20 nodes
(see Figure 2.2a). As most layout algorithms compute the layouts of each connected com-
ponent of a graph separately, we also examined their size. Within this analysis we focused
on weakly connected components, i.e. the arc directions do not matter when determin-
ing connectivity. Over all argument maps there were 123 weakly connected components.
Roughly the half of them are singletons, meaning that they consist of a single node. Fur-
thermore, 93% of all components consist of at most 20 nodes. See Figure 2.2b for more
information on the size of connected components. We will later take a closer look on the
connected components and examine whether they belong to some special classes of graphs
like trees or s-t-graphs.
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(a) Broken down by graph size.
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(b) Broken down by component size.

Figure 2.2: Distribution of the size of argument maps.

We also consider the density of the graphs, i.e. the ratio of the number of edges to the
number of nodes. Again, argument maps show a pretty simple structure as can be seen in
Figure 2.3. The number of edges appears to be linear with respect to the number of nodes
with a factor of proportionality between 0.7 and 1.3. There are some exceptions having
less or even no edges at all.

Now, we investigate the degree distribution of the argument map. Figure 2.4 shows the
degree distribution over all 51 argument maps. Only little nodes have a degree greater
than five and a degree between one and three is most common.

We now turn to the already mentioned analysis whether the connected components belong
to some specific graph classes. We consider the following eight classes of graphs:

• s-t-graphs

• series-parallel graphs

• singletons

• rooted trees

• trees

• acyclic graphs

• planar graphs

• simple graphs

10
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Figure 2.3: Density of argument maps.
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Figure 2.4: Degree distribution over all argument maps.

We plot the results in Figure 2.5a. All components are simple and 96% and 95% are
planar or acyclic, respectively. At the first glance one might find the high percentage
of trees and rooted trees remarkable as well. But taking into consideration that roughly
half of all components are singletons the percentage of non-singleton trees and rooted
trees decreases to 24% and 13%, respectively. Thus, we cannot focus on the properties
of trees, rooted trees, series parallel graphs and s-t-graphs. Instead, we take a closer
look on planarity and acyclicity. In Figure 2.5b we again plot the percentage of planar
components and acyclic components and additionally the percentage of components that
are both, planar and acyclic, which is 93%.

As there are some components that are not planar or not acyclic we will investigate their
distance to planarity or acyclicity. The distance measure we use here is the number of
edges one needs to delete in order to get a planar or acyclic graph, respectively. In
the case of acyclicity such a set of edges is denoted by feedback arc set ; in the case of
planarity this problem is called maximum planar subgraph problem. Both, finding a min-
imum feedback arc set and a maximum planar subgraph are NP-complete problems as
shown by Karp [Kar72] and Garey and Johnson [GJ79], respectively. For our analysis we
used the heuristics implemented in the methods y.algo.Cycles.findCycleEdges() and

11
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Figure 2.5: Analysis of the components of argument maps.

y.layout.planar.GT.createPlanarization() of the yFiles library4.
As can be seen in Figure 2.6 the connected components are very close to acyclicity or
planarity, respectively. Thus, it is perfectly legitimate to apply a special treatment to the
edges prohibiting acyclicity or planarity in order to gain acyclic and planar input data.
We will come back to this point in the context of the layout algorithm in Chapter 5.
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Figure 2.6: Examination of cyclic and non-planar components.

We conclude that argument maps have a pretty simple structure. The components of an
argument map usually have at most 40 nodes and are of maximum degree 5. Furthermore,
the components usually are planar and acyclic. If they are not planar, they are close to
a planar subgraph, i.e. one need to delete only few edges in order to gain planarity. The
same holds for acyclicity.

4See http://www.yworks.com
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3. Problem Description

In the previous chapter we described argument maps and analysed their graph-theoretic
properties. In this chapter we shift the focus to layouts of argument maps. In Section 3.1
we define the basic drawing style, whereas we discuss the properties a layout of an argument
map needs to fulfil in Section 3.2. Together with the optimisation goals, which we describe
in Section 3.3, we carve out the formal problem statement Argument Map in Section 3.4.
We close this chapter with complexity considerations of two subproblems of Argument
Map and two closely related problems in Section 3.5.

3.1 Basic Drawing Style

In this section we define the basic drawing style of the desired layouts. First, all boxes
need to be of uniform width w. The heights of the boxes can differ from each other and
depend on the size of the label describing the corresponding argument. Thus, we prescribe
the height h(bi) for each box bi.
We require that the edges are routed orthogonally, i.e. each edge consists of an alternating
sequence of horizontal and vertical edge segments.
Furthermore, all edges need to be drawn upwards. In the context of orthogonal edges
this means that no edge segment is directed downwards. Note that we use the term
upward drawing for compatibility reasons with the vocabulary used in the graph drawing
community. However, all figures of argument maps are downward drawings as this is the
preferred drawing style for argument maps. Edges enter their targets at the top and leave
their sources at the bottom. Ports on the left or right side of a box are not allowed.
In the following section we discuss minor properties layouts of argument maps shall satisfy.

3.2 Properties of Layouts of Argument Maps

In this section we focus on minor properties we require for a layout of an argument map.
These are minimum spacing between boxes and edges, alignment of boxes, grouping and
free sources and sinks.

We require five different types of spacing constraints (see Figure 3.1). As shown in Fig-
ure 3.1a we require a minimum horizontal or vertical distance sboxbox between each pair of
boxes. Furthermore, edges need to have a minimum distance sedgebox to boxes (see Fig-
ure 3.1b) and the edge ports must be at least sportcorner units distanced from the corners of the
incident box (see Figure 3.1c). The last type of constraint concerns the distances between

13



14 3. Problem Description

two segments of different edges. We require minimum distances between two parallel edge
segments (see Figure 3.1d). If two edges have a common source or target the distance
shall be at least sedgeedge and otherwise the distance must be at least ŝedgeedge. By using these two
different minimum spacings we enable edge bundling. Note that the spacing constraints on
edge segments do not forbid edge crossings as the constraints are only required for parallel
edge segments.

sbox
box

(a) Spacing between
boxes.

sedge
box

(b) Spacing between an
edge and a box.

sport
corner

(c) Spacing between the
ports of a box and its
corners.

sedge
edgeŝedge

edge

(d) Spacing between
two edges.

Figure 3.1: Illustration of the five types of spacing constraints.

When looking at a single argument, it is important that its predecessors can be found
quickly. In order to give them a unifying look, we require the predecessors of each box
to be vertically aligned at their bottom as shown in Figure 3.2a. In general this is not
possible: Let p1 and p2 be two predecessors of a box b. If there is a directed path from p1
to p2 (or vice versa) the alignment of p1 and p2 conflicts the upward drawing constraints
(see Figure 3.2b). Therefore, we only require vertical alignment of so called immediate
predecessors. A node p is an immediate predecessor of b if there exists an edge (p, b) and
(p, b) is the only directed path from p to b.
However, restricting to immediate predecessors does not fully resolve the problem with
directed paths between aligned predecessors. Consider a box that is a predecessor of two
boxes, like Box 2 in Figure 3.2c. Box 2 should be aligned with Box 1 as they have a
common successor and for the same reason it should be aligned with Box 3. However, we
cannot align all three boxes together as there exists a directed path from Box 3 to Box 1.
However, we can use the groups {1, 2} and {3} or {1} and {2, 3}. In such a situation we
allow to resolve the conflict arbitrarily by choosing one possible grouping for alignment.
Furthermore, we require alignment of all sinks.

(a) The predecessors of a box need to be aligned. (b) In general alignment is
not possible.

(c) The groups of aligned boxes are not well-defined.

Figure 3.2: Alignment of boxes.

The user can provide some information about how boxes shall be grouped in the layout.
Such a grouping can visualise semantics, e.g. common authorship. Each grouping is related

14



3.3. Optimisation Goals for Layouts of Argument Maps 15

with a grouping box. A grouping box is a rectangular region in the drawing which contains
the boxes that shall be grouped and no other one. Edges that are not adjacent to any
box in the grouping box may not cut through the grouping box. See Figure 3.3 for a
simple example: The Boxes 2-5 are grouped by the blue grouping box. Boxes 1 and 6 may
not be positioned in the grouping box. Furthermore, edge (1, 6) may not cut through the
grouping box as it is not adjacent to any box within it. Note that a grouping box can be
used for a further grouping, i.e. we allow nested groupings as well.

The information about all groupings can be stored in a tree T that consists of two types of
nodes, singleton nodes and grouping nodes. The singleton nodes need to be the leafs of T ,
whereas the grouping nodes can only be inner nodes. For each node of the argument map
there is exactly one corresponding singleton node in T . The number of grouping nodes
is equivalent to the number of groupings that shall be enforced in the final layout. For
each grouping node g in T the boxes that are children of g shall be enforced to be in one
grouping box. In the most simple case the root is a grouping node and all singleton nodes
are direct children of the root, i.e. no grouping is enforced at all.

Figure 3.3: A grouping box (blue region) of four boxes.

The sources of an argument map are an entry point into the flow of the argumentation,
whereas the sinks are exit points. Therefore, these boxes need to be found quickly. Thus,
we require that above a source there is no other box and, the other way round, below a
sink should be no other box. We denote this property by free sources and sinks.

3.3 Optimisation Goals for Layouts of Argument Maps

In the foregoing section we discussed the desired minor properties that extend the basic
drawing style defined in Section 3.1. In this section we come to the optimisation goals. We
present four optimisation criteria that we aim to minimise. Three of them are optimisation
goals that are typical to graph drawing, whereas the fourth one is special to layouts of
argument maps. We will use these optimisation goals in order to define the cost function
in the formal problem statement Argument Map in Section 3.4.

As common in the field of graph drawing we want to minimise the number of crossings as
well as the number of bends. Purchase et al. have shown in a series of user studies that the
number of crossings in a layout has the most important impact on human perception among
a set of different aesthetic criteria for graph drawing [PCJ96, Pur97, PCJ97]. Furthermore,
they showed that reducing the number of bends increases the readability as well.
Furthermore, we minimise the total edge length, i.e. the sum over all edge lengths. This
yields compact layouts with little free space [FMF+01].

15



16 3. Problem Description

The last optimisation goal we pursue is specific to layouts of argument maps and we
denote it by total source/sink distance minimisation. The sources of an argument map
are an entry point into the flow of the argumentation, whereas the sinks are exit points.
Therefore, these boxes need to be found quickly. In Section 3.2 we already demanded that
above a source and below a sink should be no other box. However, there can be edges. We
further want the sources and sinks to be layouted close to the external face of the layout.
The goal is to minimise the distance between a source or sink and the external face.
Let ti be a sink and f0 the external face of the layout. We define the sink distance of ti as
the minimum number of crossings an imaginary upward directed edge starting at ti needs
in order to reach the external face f0. In Figure 3.4 we show that the sink distance does
not correspond to the shortest path from the face of ti to f0 in the dual graph. We cannot
route the imaginary edge along this shortest path to the external face as it would conflict
with the upward drawing constraint.
Analogously, we define the source distance of a source si as the number of necessary
crossings of an imaginary edge starting somewhere in the external face f0 and ending at si.
The total source/sink distance is the sum of all source distances and all sink distances in
a graph.

ti

Figure 3.4: The shortest path in the dual graph (blue dotted) has length 3, whereas the
imaginary edge (red dashed) needs at least 4 crossings in order to reach the
external face f0.

After defining the basic drawing style, stating further constraints a layout needs to satisfy
and discussing the optimisation goals we are now ready to give a formal problem statement
in the following section.

3.4 The Problem Argument Map

In this section we introduce the formal problem statement Argument Map. Argument
Map wraps up the properties described in Section 3.2 and the optimisation goals presented
in Section 3.3:

Instance: A DAG G = (V,A), each vertex is associated with an integer height h(v),
a uniform integer box width w, a tree T defining the grouping boxes, a set of spacing
constraints, four real parameters α, β, γ, δ ≥ 0 and one real number k.
Question: Does there exist a layout of G that satisfies the requirements described in
Section 3.2 and optimises the criteria presented in Section 3.3 such that the following
inequality holds:

α ·#edge crossings + β ·#bends + γ · total edge length + δ · total source/sink distance ≤ k

16



3.5. Complexity Considerations 17

Obviously, this problem statement is a quite complex one and it is not surprising that Ar-
gument Map is NP-complete. Therefore, we analyse the complexity of two subproblems
of Argument Map and two closely related problems in the next section.

3.5 Complexity Considerations

In this section we firstly analyse two subproblems of Argument Map where the optimisa-
tion is restricted to bend minimisation and crossing minimisation, respectively, and prove
NP-completeness for them in Section 3.5.1 and Section 3.5.2. Afterwards, we examine the
complexity of two problems that are closely related to Argument Map. In Section 3.5.3
we show NP-completeness of Rectilinear Upward Drawing and in Section 3.5.4 we
prove that Directed Visibility Representation is NP-complete.

3.5.1 Argument Map is NP-complete for β > 0 and α = γ = δ = 0

In this section we show that Argument Map is already NP-complete if we restrict to
bend minimisation:

Theorem 1. Argument Map is NP-complete for β > 0 and α = γ = δ = 0.

We prove Theorem 1 by reduction from 3-Partition, which Garey and Johnson defined
in their famous book about complexity theory published in 1979 as follows [GJ79]:

Instance: A finite set A of 3m elements, a bound B ∈ Z+ and a “size” s(a) ∈ Z+ for
each a ∈ A, such that each s(a) satisfies B/4 < s(a) < B/2 and such that the equation∑

a∈A s(a) = mB holds.
Question: Can A be partitioned into m disjoint sets S1, S2, . . . , Sm such that for 1 ≤ i ≤
m the equation

∑
a∈Si

s(a) = B holds? (Note that the above constraints on the item sizes
imply that every such Si must contain exactly three elements from A.)

Garey and Johnson proved that this problem is not only NP-complete but NP-complete
in the strong sense as well. This means that 3-Partition remains NP-complete if the
numeric values encoded in the input data are polynomially bounded by the length of the
input.

While transforming a 3-Partition instance to an Argument Map instance we basically
construct gadgets of three types: (i) a frame with dimensions depending on mB, (ii)
one number gadget for each ai ∈ A and (iii) two synchroniser gadgets that synchronise
the number gadgets. The basic idea of the transformation is that a rectangular frame is
separated into m cells. Each of these cells will represent one of the sets Si in the solution
of the 3-Partition instance. The dimensions of the frame are rigid as long as no bends
are introduced to the edges belonging to the frame. As already mentioned, there are |A|
number gadgets – each representing an element ai ∈ A. The number gadgets consist of
a head, a linear chain and a foot. The head is only one box wide, whereas the width of
the foot is ai. While the head and foot are rigid, the linear chain of a number gadget
is flexible, i.e. the head and foot can move relative to each other. We will restrict to
three number gadgets per cell and to a total width of at most B boxes for the foots of
the three number gadgets in each cell. In order to enforce these constraints we need two
synchronisers. One of them synchronises the heads of the number gadgets together with
a part of the frame, whereas the other one synchronises the foots. In Figure 3.5 we depict
this prove schematically. In this figure as well as in the remaining part of this section, we
use the 3-Partition instance A = {2, 2, 2, 2, 3, 3}, B = 7 as an example.
For the constructed Argument Map instance we use the following minimum spacing
constraints: sboxbox = 40, sedgeedge = ŝedgeedge = 5, sedgebox = 20 and sportcorner = 20. Furthermore, we
require a uniform box width w = 135.
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18 3. Problem Description
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Figure 3.5: Schema of the Argument Map instance corresponding to the 3-Partition
instance A = {2, 2, 2, 2, 3, 3}, B = 7. The synchronisers are missing.

The Frame

Figure 3.5 already depicts the frame schematically. It basically has a rectangular shape
and is separated into m cells. The top-right corner of each cell is occupied by a couple of
blocks (we will define this term later). We now describe in detail, how the frame depicted
in Figure 3.6 is constructed.

First we describe the construction of the upper border – the construction of the lower
border is analogue. On the upper border we have two layers of boxes, P = {p1, . . . , pmB+1}
and Q = {q1, . . . , qmB} where P is the upper layer and Q the lower one. Layer P contains
mB + 1 boxes, whereas Q contains mB boxes. We add two edges from pi to qi and
three edges from pi+1 to qi for i ∈ {1, . . . ,mB}. Since each pair pi and pi+1 are shared
predecessors of qi, they need to be aligned. Thus, all boxes in P need to be aligned.
Assume that the edges between P and Q are not bent. Due to the spacing constraints
between the ports and the corner of the boxes (sportcorner) and the spacing constraints between
the duplicate edges (sedgeedge), the boxes in P and the boxes in Q need to have a horizontal
distance of at most 40 to each other. However, all boxes in P are side by side and, therefore,
the horizontal distance between them must be at least sboxbox = 40. Thus, the boxes in P
are horizontally rigid as long as no bends are added, i.e. the x-coordinate of one box
determines the x-coordinates of all other boxes. This property is conveyed to the boxes
in Q, i.e. for the whole upper border. Due to analogy the lower border is horizontally
rigid as well.
Furthermore, there exist m + 1 edges starting at the upper layer of the upper border
and ending at the lower layer of the lower border. For i from 0 to m, they connect the
(i · B + 1)-th boxes of those layers with each other. Thereby, the inside of the frame is
separated into m cells of uniform width B. These cells correspond to the m sets Si in the
solution of the 3-Partition instance.
Each cell contains B− 3 blocks that are attached to the upper border. A block consists of
two boxes that are connected with as many edges as possible with respect to the spacing
constraints, i.e. 19 edges. Thus, the two boxes of a block are horizontally rigid as well.

18



3.5. Complexity Considerations 19

The B−3 blocks are attached to the B−3 rightmost boxes of the lower layer of the upper
border. Again, we use 19 edges to connect the blocks to the upper border and, thereby,
make this connection horizontally rigid as well.

Now, we turn towards the left and the right border of the frame. The vertical borders
consist of one grouping box each. In each grouping box there are three boxes which are
connected by edges such that their vertical order is fixed. We denote these boxes from
top to bottom by `i and ri for i ∈ {1, 2, 3}. The boxes `1 and r1 are connected with the
upper border, whereas `3 and r3 are connected to the lower border. Furthermore, there
are the two edges (`1, r2) and (r1, `2). These edges enforce that `1 and r1 are aligned. The
boxes `3 and r3 need to be aligned as well, because they are predecessors of nodes in the
lower layer of the lower border. Thus, the two grouping boxes are of exactly the same
height.
Since the source and target of the edges (`1, r2) and (r1, `2) lie in different grouping boxes
that are layouted side by side, each of these edges will be bent at least two times. Thus,
in total the minimum bend count of the frame is 4.

Figure 3.6: The frame for the 3-Partition instance A = {2, 2, 2, 2, 3, 3}, B = 7.

The Number Gadgets

We construct one number gadget for each ai ∈ A. A number gadget consists of three parts
that are vertically ordered. We denote the first part by head, the second one by linear
chain and the last one by foot. Only the foot depends on the value of ai. The head and
the foot are horizontally rigid, whereas the linear chain is horizontally flexible. We will
now present the three parts in detail. Note that the last box of part one (two) is the same
as the first box of part two (three).

The head is a block like the other B − 3 blocks belonging to each cell of the frame.
The linear chain consists of 2 · d2/3 · Be + 1 boxes. We denote these boxes by cj . For j

19



20 3. Problem Description

being odd we add three edges from cj to cj+1, whereas we add two edges for even values
of j. This part can either be layouted in a vertical manner like in Figure 3.7a or with a
horizontal shift as depicted in Figure 3.7b. We measure the horizontal shift in the number
of boxes that fit into the gap we introduced by shifting. Due to the spacing constraints, the
maximum possible shift is d2/3 ·Be. Note that a maximum shift of d2/3 ·Be is sufficient,
because the number gadget in a cell that corresponds to the biggest number can always
be layouted as the right most number gadget in the cell.
The foot consists of ai blocks which are attached to a triangle-shaped horizontally rigid
connector. The connector consists of 2 · (ai − 1) layers of which the `th layer contains
b(` + 1)/2c boxes. The single box in the first layer is the last box of the linear chain.
The ai − 1 boxes in the last layer are connected to the blocks. We add edges between
neighbouring layers such that the connector becomes rigid.
Furthermore, we enforce alignment of the lower boxes of the ai blocks by adding further
ai − 1 boxes and adding edges from the lower boxes of the blocks to these boxes. Thus,
the spacing constraint sboxbox enforces a minimum width of the lower boxes of the blocks and,
thereby, of the whole foot. In contrary the spacing constraint sportcorner enforces a maximum
width. We have chosen the spacing constraints such that these two bounds are equal, i.e.
the foot is horizontally rigid.

(a) The number gadget for a = 3. (b) The number gadget for a = 2
shifted to the right by 2.

Figure 3.7: The number gadget.

20



3.5. Complexity Considerations 21

The Synchroniser Gadgets

So far, we constructed a frame having m cells of width B and one number gadget for
each ai ∈ A. It remains to model the following two constraints: (i) there are exactly three
number gadgets per cell and (ii) the three numbers corresponding to the three number
gadgets in a cell sum up to B. In order to enforce these constraints, we add two synchro-
niser gadgets. We position one of them in the grouping box on the right side of the frame
and another one on the left side. We replace the edge (r2, r3) by two edges. One of them
goes from r2 to the right synchroniser gadget and the other one from the synchroniser
gadget to r3. Thus, the synchroniser gadget needs to be positioned between r2 and r3.
Analogously, we position the left synchroniser gadget. Later, we will connect each number
gadget to both synchroniser. Thus, the number gadgets need to be positioned between
the two grouping boxes, i.e. the number gadgets need to lie inside a cell of the frame. We
connect them in such a way that constraint (i) and (ii) are enforced.

The purpose of a synchroniser gadget is to force a couple of blocks to have an overlapping
y-range due to the upward drawing constraint. At first, we remove one of the 19 edges of
each block. Instead we add one edge going from the top of each block to the synchroniser
gadget and one edge from the synchroniser gadget to the bottom of each block. Then
the synchroniser gadget defines a horizontal lines which needs to be crossed by all edges
belonging to the blocks. We depict this situation in Figure 3.8a for the most simple case
of a synchroniser gadget – a single box.

In order to synchronise r blocks, the synchroniser gadget needs an in- and out-degree
of r, respectively. Thus, a single box serves only up to r ≤ 19. However, for r > 19 we
can extend the synchroniser gadget by adding four boxes. We add edges from two new
boxes to the single box and edges from the single box to the remaining two new boxes.
Then, the synchroniser gadget has both, an in-degree and an out-degree, of ≤ 38 (see
Figure 3.8b). If r > 38 holds, we can extend the synchroniser gadget by adding further
boxes (see Figure 3.8b) and so on.

Now, we can enforce constraint (i) and (ii). We let the right synchroniser gadget syn-
chronise the heads of all number gadgets as well as the B − 3 blocks in each cell. Thus,
the heads of the number gadgets are forced into the three free slots of each cell and con-
straint (i) is satisfied. The left synchroniser gadget synchronises all the blocks in the foots
of the number gadgets. This enforces, that the sum of the numbers corresponding to the
number gadgets in one cell is at most B, i.e. constraint (ii).

Since the synchronisers are placed inside grouping boxes and the synchronised blocks are
not in these grouping box, the edges connecting the blocks and the synchroniser gadgets
need to be bent two times. Thus, the two synchroniser gadgets together contribute 8mB
bends to a proper layout.

The Complete Transformation

In Figure 3.9 we depict the transformed 3-Partition instance for the example instance
A = {2, 2, 2, 2, 3, 3}, B = 7. The question is whether this instance can be layouted with at
most k = 4+8mB bends. Since we need at least 4 bends for the frame and 8mB bends for
the synchronisation, this is the minimum required number of bends. If and only if there
is a layout with exactly k bends, the original 3-Partition instance is solvable. We can
reconstruct its solution by simply checking which number gadget lies in which cell of the
frame and building up the sets Si.

The remaining step of the proof is to show that the described transformation is polyno-
mial in time. Therefore, we only need to bound the number of boxes created during the
transformation. As the in- and out-degree of each box is at most 19 due to the spacing
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22 3. Problem Description

(a) The most simple synchro-
niser gadget – a single box
– and three synchronised
blocks. The red dashed
horizontal line needs to
be crossed by all edges
belonging to the synchro-
nised blocks.

(b) The synchroniser gadget
for 19 < mB ≤ 38.

(c) The synchroniser gadget
for 38 < mB ≤ 57.

Figure 3.8: The synchroniser gadget.

constraints the number of created edges is linear in the number of created boxes. We
bound the number of boxes for the three constructed gadget types separately: (i) the
frame, (ii) the number gadgets and (iii) the synchroniser gadgets.

(i) The upper and lower border of the frame consist of 2mB+1 boxes each. The grouping
boxes on the right and the left side contain 3 boxes each. Furthermore, there are
B− 3 blocks in each cell which. As each summand is linear in mB the number of all
boxes in the frame is linear in mB as well.

(ii) There are 3m number gadgets each containing a block in the head and a linear chain
of 2 · d2/3 ·Be+ 1 boxes. We further need to bound the number of boxes in the foot.
There are ai blocks and a connector containing ai ·(ai−1) boxes. Note that ai < B/2
holds. Since each summand is in O(m2B2), the number of boxes contributed by the
number gadgets is a quadratic function in mB.

(iii) The number of boxes needed for the synchroniser gadgets that synchronise mB blocks
is quadratic in mB as well.

Summing up all the terms we gain a function that is polynomial in mB. Since 3-Partition
is NP-complete in the strong sense, it is still NP-complete if restricted to instances with
B being polynomial in m. Thus, the presented transformation is polynomial in m as well
and, therefore, Argument Map with β > 0 and α = γ = δ = 0 is NP-hard. As it is easy
to see that Argument Map ∈ NP, we conclude that Argument Map with β > 0 and
α = γ = δ = 0 is NP-complete.

3.5.2 Argument Map is NP-complete for α > 0 and β = γ = δ = 0

After we analysed the aspect of bend minimisation in the foregoing section, we now turn
towards crossing minimisation and prove the following theorem:

Theorem 2. Argument Map is NP-complete for α > 0 and β = γ = δ = 0.

We reduce the problem Upward Planarity Testing to this restricted version of Ar-
gument Map. Upward Planarity Testing is defined as follows:

Instance: A DAG G = (V,A).
Question: Does there exist an upward drawing of G such that no pair of edges cross?
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Figure 3.9: A 3-Partition instance (A = {2, 2, 2, 2, 3, 3}, B = 7) transformed to a Argu-
ment Map instance (rotated counterclockwise by 90 degrees).
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Garg and Tamassia proved that Upward Planarity Testing is NP-complete [GT94,
GT02]. The transformation from an Upward Planarity Testing instance to an Argu-
ment Map instance is simple. Let G denote the input graph of an Upward Planarity
Testing instance. We simply use G as input for the Argument Map instance. Further-
more, we set all box dimensions and all minimum spacings to zero and require no grouping.
We assign α with an arbitrary positive value set and β = γ = δ = 0. Furthermore, we
set k = 0, i.e. we are looking for a layout free of crossings. Obviously, this transformation
is polynomial. We now need to show, that the Argument Map instance has a solution
if and only if G has an upward planar drawing.

It is easy to see, that G has an upward planar drawing, if the Argument Map instance
can be solved. The solution of the Argument Map instance needs to satisfy the upward
drawing constraint. Furthermore, since α > 0 and k = 0, it is planar. Thus, the solution
of the Argument Map instance is an upward planar layout of G.
Furthermore, we need to show that an upward planar drawing of G can be transformed
to a solution of the corresponding Argument Map instance such that no crossings are
added. Firstly, we modify the drawing of G by adding edges. We add edges from all sinks
that lie in an internal face to the sink of the corresponding face. Analogously, we add
edges from the face’s source to the sources that lie within this face. Thereby, we gain an
s-t-graph. Then, we can apply Algorithm 4 which we will introduce in Section 5.3.2. This
algorithm assigns bends to the edges and fixes the x-coordinates of the boxes. Afterwards,
we need to compute the y-coordinates according to a topological ordering of the s-t-graph.
We ensure the alignment by moving nodes upward or downward. As last step, we delete
the edges we added in order to get an s-t-graph. The resulting layout is still crossing-free
and satisfies all properties required in Argument Map.

Thus, the Argument Map instance has a solution if and only if G is upward planar and,
therefore, Argument Map is NP-complete for α > 0 and β = γ = δ = 0.

3.5.3 Rectilinear Upward Drawing

In this section we show that a very basic graph drawing problem that is closely related to
Argument Map is alreadyNP-complete. The problem is whether a DAG with maximum
degree 4 has a rectilinear upward drawing, i.e. it can be layouted on a orthogonal grid
without bends such that no edge is directed downwards. Firstly, we introduce this problem
formally and denote it by Rectilinear Upward Drawing:

Instance: A DAG G = (V,A) with maximum degree 4.
Question: Can G be embedded on an orthogonal grid such that no edge is bent and no
edge is directed downwards?

Formann et al. discussed the same problem without the restriction on the edge directions.
We denote their version by Rectilinear Drawing. They showed that Rectilinear
Drawing is NP-complete by reduction from 3-SAT [FHH+90]. We firstly introduce the
reader to the proof by Formann et al. and then modify it in order to prove the following
theorem:

Theorem 3. Rectilinear Upward Drawing is NP-complete.

In the following, we cite the proof by Formann et al. We transform a 3-SAT instance in
three steps to a Rectilinear Drawing instance. Let S be an instance of 3-SAT with
the variables {x1, . . . , xn} and the clauses {c1, . . . , ck}. At first, we build up a skeleton
with the shape of a lying L. The skeleton consists of two sequences of rectangular faces –
one horizontal sequence of n+ 1 faces and one vertical sequence having k+ 1 faces. These
two sequences are connected by another rectangular face that builds the corner of the L.
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We attach a node for each xi to the horizontal arm of the L and connect a node per ci to
the vertical arm. The skeleton is depicted in Figure 3.10a. Note that up to mirrorings,
stretchings and rotations the depicted layout is the only valid layout of the skeleton. In
the following we assume that the skeleton is oriented as shown in Figure 3.10a.
For each xi we add a tower gadget that is shown in Figure 3.10b. The tower gadget consists
of two parallel sequences of rectangular faces. We attach k nodes to each side of the tower
and denote them by xi,1, . . . , xi,k and xi,1, . . . , xi,k, respectively. The topology of the tower
gadget enforces that all positive literals are on one side and all negated literals are on the
other one. Since we connect the tower gadget and the skeleton only by a single edge, the
tower gadget can be flipped vertically. The truth value of the corresponding variable xi
is determined by which literals are on which side. If the positive literals are on the right
side, then xi is interpreted to be true and otherwise, it needs to be false.
Up to now, it is not encoded which literal belongs to which clause. For each clause cj we
connect the node cj with the nodes corresponding to the literals in the clause, e.g. for
cj = {xk, xl, xm} we connect cj with xk,j , xl,j and xm,j via an edge chain of length three.
As shown in Figures 3.10c-3.10e there are three possibilities how an edge can be attached
to the node cj . The edge chains leaving cj upwards or downwards can reach the right and
the left hand side of a tower. However, the edge chain leaving cj rightwards can only reach
the right side of a tower. Thereby, we enforce that at least one of the three literals per
clause evaluates to true.
Thus, if a valid layout has been computed, the solution of the 3-SAT instance can easily
be reconstructed by looking at the orientation of the towers.

x1 x2 xn
c1

c2

ck

(a) The skeleton.

xi

xi,1

xi,2

xi,k

xi,1

xi,2

xi,k

(b) The tower of xi.

xi,jxi,j

cj

(c) Clause cj and the left side of
the tower of xi are connected.

xi,jxi,j

cj

(d) Clause cj and the left side of
the tower of xi are connected.

xi,jxi,j

cj

(e) Clause cj and the right side of
the tower of xi are connected.

Figure 3.10: Illustration of the proof by Formann et al.

We now modify the proof by Formann et al. such that it holds for Rectilinear Upward
Drawing as well. Therefore, we need to assign a direction to each edge such that the
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resulting graph remains acyclic. Furthermore, all drawings representing a valid solution of
the 3-SAT instance need to be upward drawings. For the skeleton and the towers this can
be done without problems as can be seen in Figures 3.11a and 3.11b. Problems arise when
directing the edges in the edge chains connecting the nodes cj and the associated literals.
As the first edges of these edge chains may be attached at the top or at the bottom of cj
each direction assignment would conflict with the upward drawing constraint. Therefore,
we attach the nodes cj to the skeleton by using two edges instead of one. Now, this
connection is attached to the top of cj , i.e. the edge chains connecting the clauses and the
literals can be attached at either the left, the bottom or the right of the nodes cj . The
possible edge chains after this modification are shown in Figures 3.11c-3.11e.
These modifications are sufficient in order to prove NP-completeness of Rectilinear
Upward Drawing.

x1 x2 xn
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(a) The skeleton.

xi

xi,1

xi,2

xi,k

xi,1

xi,2

xi,k

(b) The tower of xi.

xi,jxi,j

cj

(c) Clause cj and the left side of
the tower of xi are connected.

xi,jxi,j

cj

(d) Clause cj and the left side of
the tower of xi are connected.

xi,jxi,j

cj

(e) Clause cj and the right side of
the tower of xi are connected.

Figure 3.11: Illustration of the modified proof.

3.5.4 Directed Visibility Representation

In the previous section we discussed whether the problem of embedding a DAG with maxi-
mum degree 4 in a rectilinear way such that no edge is directed downwards isNP-complete.
In this section we consider a closely related problem using the visibility representation.
When using the visibility representation, we draw nodes as horizontal lines and there exists
an edge between two nodes, if and only if a vertical line can be drawn between two nodes
such that no other node is crossed. We denote this problem by Directed Visibility
Representation:

Instance: A DAG G = (V,A).
Question: Does there exist a drawing of G in the visibility representation such that all
edges are directed upwards?
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Theorem 4. Directed Visibility Representation is NP-complete.

We prove Theorem 4 by showing that it is equivalent to an NP-complete problem. Di Bat-
tista and Tamassia showed that a graph admits a directed visibility representation, if and
only if it admits an upward planar drawing [DT88]. Thus, Directed Visibility Rep-
resentation turns out to be equivalent to the problem Upward Planarity Testing
of which Garg and Tamassia proved that it is NP-complete [GT94, GT02]. Thus, Di-
rected Visibility Representation is NP-complete. However, Bertolazzi et al. found
a polynomial algorithm if the embedding of G is fixed [BDLM94].

3.6 Concluding Remarks

In this chapter we presented the formal problem statement Argument Map and discussed
the constraints on layouts of argument maps as well as the pursued optimisation goals. In
the remaining part of this work we present two approaches to automatic layout of argument
maps: (i) an ILP-based approach and (ii) a topology-shape-metrics approach.

ILP Approach

In a first phase we modelled the layout computation as ILP problem. The advantage of
ILPs is that one can easily add or omit a single type of constraints. Thereby, we could
test a variety of different layouts with only little effort. Having first automatic layouts
at hand it is easier to specify the constraints and optimisation goals of a layout. Thus,
the ILP approach was an important step during the requirements definition. As the ILP
approach was developed in an early phase of this work and some requirements came up
later it is not complete with respect to the properties in Section 3.2 and the optimisation
goals in Section 3.3. Furthermore, it is not made for practical use due to efficiency reasons.
Running on a low-level computer of an end-user the computation times would exceed any
feasible values.

Topology-Shape-Metrics Approach

After defining the requirements using the ILP approach we turned towards an approach
that yields an efficient algorithm yielding good results. We thereby build on the well
known topology-shape-metrics framework of which we give an overview in Section 5.1. We
dedicate one of the Sections 5.2-5.4 to each of the three steps in the framework. Within
this framework we only heuristically optimise the mentioned criteria. Nevertheless, we get
resulting layouts of a high quality. In Chapter 6 we discuss these layouts and identify
possibilities for further improvements.
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4. ILP Approach

The first algorithm we present for layouts of argument maps is based on an integer linear
program (ILP). The main advantage of ILPs is that they are modular. One can easily
add more constraints to the ILP or omit existing ones, i.e. one can easily modify which
properties of the layout shall be enforced and which criteria are to be optimised. Therefore,
the ILP approach was important for carving out the formal problem statement Argument
Map (see Section 3.4). Since the ILP approach was developed in an early phase of this
work and some requirements came up later, it is not complete with respect to the properties
in Section 3.2 and the optimisation goals in Section 3.3.
Furthermore, this approach is not efficient enough for practical use. For small instances
up to 15 nodes, optimal solutions can be computed within a feasible time. For larger
instances a feasible solution is found in most cases. However, the ILP solver does not
terminate with the optimal solution within the given time. Thus, we were not able to
compute gold standard layouts for all argument maps. Nevertheless, the computed layouts
give an impression of the different constraints that should be taken into the formal problem
statement.

In Section 4.1 we describe how to build an ILP for a given argument map and, afterwards,
discuss the generated layouts in Section 4.2. We conclude this chapter with a discussion
how the missing properties and optimisation goals can be added to the ILP in Section 4.3.

4.1 ILP Construction

In this section we describe the construction of an ILP instance for a given argument map.
Firstly, we discuss some preliminaries to the construction. Then we describe how some
of the properties stated in Section 3.2 can be modelled as linear inequalities. However,
we do not model all of them – alignment of predecessors as well as free sources and sinks
are missing. Furthermore, we do not distinguish between the two minimum spacings sedgeedge

and ŝedgeedge between a pair of edges. The same holds for the optimisation goals described in
Section 3.3. In this approach we only optimise the total edge length and the number of
bends.
Furthermore, we restrict the edges to have at most four bends. In Section 5.3.1 we show
that two bends per edge are sufficient. Nevertheless, we allow four bends, because layouts
with four bends per edge are easier to perceive. Additionally, to the properties described
in Section 3.2 we enforce a maximum layout size and so called “path layout”.
After describing all constraints of the ILP we present the target function that is to be
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minimised. We, furthermore, improve the performance of the ILP solver by giving an
initial solution.

Preliminaries

In the ILP approach we model all boxes and edges using points. A point p is a tuple
of two coordinates p.x and p.y. These ILP variables are integer variables. Thereby, we
simulate the embedding on a grid. Note that the coordinate system is oriented as usual in
computer drawing applications – the y-axis points downwards. Beside the integer variables
representing the coordinates, there are many binary variables in the domain {0, 1}. We
interpret 0 as false and 1 as true.

Throughout the ILP we use the concept of relative positions from one point on the grid
to another one. By a relative position we denote a set of four binary variables. They are
named upwards, downwards, rightwards and leftwards. We denote the relative position
from point p to point q by rp(p, q). Obviously, this may introduce semantically equivalent
variables if we work with the relative positions from p to q as well as from q to p. In this
case we add equality constraints for semantically equivalent variables. Note that due to
relative positions the coordinates of p and q are not related with the variables of rp(p, q).
Since the minimum distances between a pair of points depends on the type of graphical
item the points belong to, we will later come back to this point.

The Boxes

Each box b is represented by two points b↖ and b↘, which form the top left and the
bottom right corner of the rectangle that represents the box. The vertical and horizontal
distances between b↖ and b↘ are fixed according to the dimensions of b specified in the
input data by the following two constraints:

b↘.x− b↖.x = w

b↘.y− b↖.y = h(b)

In order to forbid overlapping of boxes we use the relative positions. Here, we describe how
to enforce disjointness for a pair of boxes b and c. We can express the relative positions
of the two boxes b and c using the relative positions rp(b↖, c↘) and rp(b↘, c↖). For
example, box b is right of c if rp(b↖, c↘).leftwards = 1. For disjointness of b and c we
need the constraint that b is to at least one side of c which is expressed in the following
constraint:

rp(b↖, c↘).leftwards + rp(b↖, c↘).upwards +

rp(b↘, c↖).rightwards + rp(b↘, c↖).downwards ≥ 1

As already mentioned in the paragraph about relative positions this constraint does not
yet enforce the boxes to be disjoint. We furthermore need a constraint that relates the
relative positions rp(b↖, c↘) and rp(b↘, c↖) with the coordinates of the four points b↖,
b↘, c↖ and c↘:

rp(b↖, c↘).leftwards = 1 =⇒ b↖.x ≥ c↘.x + sboxbox (4.1)

rp(b↖, c↘).upwards = 1 =⇒ b↖.y ≥ c↘.y + sboxbox (4.2)

rp(b↘, c↖).rightwards = 1 =⇒ b↘.x + sboxbox ≤ c↖.x (4.3)

rp(b↘, c↖).downwards = 1 =⇒ b↘.y + sboxbox ≤ c↖.y (4.4)

Note that it is sufficient to use an implication in these four constraints, because we force
one of the four variables on the left hand sides to be assigned with 1. To enforce equivalence
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between the left hand and the right hand sides would work as well. However, then the
transformation to linear inequalities would be more complicated. We show how the four
constraints can be formulated as a linear inequality by using rp(b↖, c↘).leftwards as
an example:

b↖.x− c↘.x− MAX · rp(b↖, c↘).leftwards ≥ −MAX + sboxbox

Hereby, MAX is an integer bigger than any other value that might occur in the ILP. In
the case rp(b↖, c↘).leftwards = 1 this inequality evaluates to b↖.x − c↘.x ≥ sboxbox.
Otherwise, it evaluates to b↖.x−c↘.x ≥ −MAX+sboxbox , i.e. b↖.x−c↘.x is unconstrained.

The Edges

We model the edges as a sequence of six points on the grid. The first point is located on
the boundary of the source box, whereas the last point is on the boundary of the target
box. The four points in between represent the bends of the edges, i.e. we restrict the
layouts to have at most four bends per edge. In Section 5.3.1 we show that two bends per
edge are sufficient. Nevertheless, we allow four bends, because layouts with four bends per
edge are easier to perceive. We require that edges are layouted orthogonally and no edge
segment is directed upwards.
In the ILP an edge e is associated with the following variables:

• The six coordinate pairs p(e, i) for i = 0, . . . , 5 representing the start point, the
bends and the target point of e.

• Four binary variables upwards, downwards, rightwards and leftwards per edge
segment s(e, i) for i = 0, . . . , 4 that determine the direction of the corresponding
edge segment.

• One integer variable l(e, i) for i = 0, . . . , 4 per edge segment corresponding to its
length.

• One binary variable b(e, i) for i = 0, . . . , 3 per possible bend, i.e. for the four points
p(e, 1), . . . , p(e, 4). These variable are used for counting the bends.

Since the edges shall be layouted orthogonally we have some redundancy in the above
mentioned variables. We restrict the edge segments to alternate between vertical and
horizontal such that the first segment is a vertical one. Thus, we can set the direction of
edge segments 0, 2 and 4 to downwards as no upward directed segments are allowed and
the directions of segments 1 and 3 are either leftwards or rightwards.

∀i ∈ {0, 2, 4} : s(e, i).downwards = 1

∀i ∈ {0, 2, 4} : s(e, i).upwards = s(e, i).leftwards = s(e, i).rightwards = 0

∀i ∈ {1, 3} : s(e, i).leftwards + s(e, i).rightwards = 1

∀i ∈ {1, 3} : s(e, i).upwards = s(e, i).downwards = 0

Furthermore, we need to relate the directions of the edge segments with the coordinates
of the incident points. Therefore, we need the following two sets of constraints:

∀i ∈ {0, 2, 4} : p(e, i + 1).y ≥ p(e, i).y

∀i ∈ {0, 2, 4} : p(e, i + 1).x = p(e, i).x

∀i ∈ {1, 3} : p(e, i).y = p(e, i + 1).y

∀i ∈ {1, 3} : s(e, i).rightwards = 1 =⇒ p(e, i + 1).x ≥ p(e, i).x

∀i ∈ {1, 3} : s(e, i).leftwards = 1 =⇒ p(e, i).x ≥ p(e, i + 1).x
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Since the edge segments s(e, i) for i = 0, 2, 4 are directed downwards we can directly
impose constraints on the coordinates of the incident points. They need to have the same
x-coordinate and the y-coordinate of p(e, i + 1) must be greater than or equal to the
y-coordinate of p(e, i). Thus, edge segments may have zero length.
For the edge segments s(e, i) for i = 1, 3 we only know that they are horizontal and do
not know whether they are directed rightwards or leftwards. Thus, we can directly enforce
equal y-coordinates of the incident points. However, we constrain their x-coordinates de-
pending on s(e, i).rightwards and s(e, i).leftwards by the last two constraints. These
constraints are an implication with an inequality as implicature. We have already seen how
to formulate this type of constraint as linear inequality in the context of non-overlapping
boxes.

As already mentioned, we require the end points of edges to be on the border of the source
or target box, respectively. Incoming edges attach at the top of the box and outgoing
edges attach at the bottom. Let s be the box corresponding to the source of edge e and
let t be its target box. For the y-coordinates of the first and last point we use two simple
constraints:

p(e, 0).y = s↘.y

p(e, 5).y = t↖.y

However, the x-coordinates are not fixed. They may vary in the x-range of the corre-
sponding box. The minimum distance sportcorner between the port and the corner of the box
is required:

s↖.x + sportcorner ≤ p(e, 0).x ≤ s↘.x− sportcorner

t↖.x + sportcorner ≤ p(e, 5).x ≤ t↘.x− sportcorner

We do not discuss the variables l(e, i) and b(e, i) right now but postpone their discussion
to the paragraphs “Total Edge Length Minimisation” and “Bend Minimisation”.

Downward Arcs

According to the constraints presented in the foregoing paragraph, the target of an edge can
only be positioned below the source of the edge. This is due to the following constraints:

• No upward directed edge segments are allowed.

• The first and the last segment of an edge are directed downwards.

However, additionally constraining the relative position of two boxes that are connected
via an edge turned out to improve the performance of the ILP approach. For each edge e =
(s, t) we add the following constraint:

rp(s↘, t↖).downwards = 1

Overlapping of Edges and Boxes

In order to avoid edges that cut through boxes we need two types of constraints: (i) edge
points may not be inside boxes and (ii) the points incident to an edge segment may not
be on opposite sides of a box.
Constraint (i): The concept of how to avoid that an edge point p(e, i) is inside of a box b

is already familiar to the reader:

rp(p(e, i), b↖).downwards + rp(p(e, i), b↖).rightwards +

rp(p(e, i), b↘).upwards + rp(p(e, i), b↘).leftwards ≥ 1
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Furthermore, we need the spacing constraints for each direction. They enforce a distance
of at least sedgebox between the edge point and the border of box. For example, we present
the downwards case:

rp(p(e, i), b↖).downwards = 1 =⇒ b↖.y ≥ p(e, i).y + sedgebox

Constraint (ii): Up to now it is possible that two edge points lie on opposite sides of a box
and the segment connecting them cuts through the box. We now formulate constraints
such that a vertical edge segment that starts above a box needs to end above this box as
well. We do not treat vertical segments that start below a box. Since they are directed
downward they cannot cut through this box.
For horizontal segments we enforce the following: If a segment starts on the left (right)
side of a box, then it needs to end on the left (right) side of this box as well. Thus, the
segment cannot cut through the box.

∀i ∈ {0, 2, 4} : (rp(p(e, i), b↖).downwards = 1 ∧
rp(p(e, i), b↖).rightwards = 0 ∧
rp(p(e, i), b↘).leftwards = 0) =⇒ rp(p(e, i + 1), b↖).downwards = 1

∀i ∈ {1, 3} : (rp(p(e, i), b↘).leftwards = 1 ∧
rp(p(e, i), b↖).downwards = 0 ∧
rp(p(e, i), b↘).upwards = 0) =⇒ rp(p(e, i + 1), b↘).leftwards = 1

∀i ∈ {1, 3} : (rp(p(e, i), b↖).rightwards = 1 ∧
rp(p(e, i), b↖).downwards = 0 ∧
rp(p(e, i), b↘).upwards = 0) =⇒ rp(p(e, i + 1), b↖).rightwards = 1

These constraints are all of the same type:

a = 1 ∧ b = 0 ∧ c = 0 =⇒ d = 1

We reformulate them as linear inequality in the following way:

d− a + b + c ≥ 0

We do not need to add disjointness constraints for all pairs of edges and boxes. Due to
the vertical ordering implied by the edge directions some pairs of edges and boxes cannot
overlap. Therefore, we first compute the transitive hull of the partial ordering represented
by the edges using the Floyd-Warshall-algorithm. Afterwards we can easily check whether
an edge and a box might overlap. We only add disjointness constraints between a box and
an edge if the box is in the ordering neither before the edge’s source nor after the edge’s
target.

Overlapping of Edges

To avoid overlapping of edges is the most complex set of constraints we use in the ILP
approach. In this paragraph we describe how to avoid overlapping between two edges e

and f. At first, we introduce the relative positions between each pair of points where one
point belongs to e and the other one to f. For each relative position we add the constraint
that at least one of the binary variables is true:

∀i, j ∈ {0, . . . , 5} : rp(p(e, i), p(f, j)).upwards +

rp(p(e, i), p(f, j)).downwards +

rp(p(e, i), p(f, j)).rightwards +

rp(p(e, i), p(f, j)).leftwards ≥ 1
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Again, we need the spacing constraints in order to relate the relative positions with the
real coordinates. In this approach we do not distinguish the different kinds of spacing
between a pair of edges described in Section 3.2 but use sedgeedge as minimum spacing between
all pairs of edges. For example, we present the downwards case:

rp(p(e, i), p(f, j)).downwards = 1 =⇒ p(f, j).y ≥ p(e, i).y + sedgeedge

Since the edge segments are orthogonally a lot of these binary variables are redundant.
For a vertical (horizontal) segment the incident points have always the same horizontal
(vertical) relative position to all other points:

∀i ∈ {0, 2, 4}, j ∈ {0, . . . , 5} : rp(p(e, i), p(f, j)).leftwards

= rp(p(e, i + 1), p(f, j)).leftwards

∀i ∈ {0, 2, 4}, j ∈ {0, . . . , 5} : rp(p(e, i), p(f, j)).rightwards

= rp(p(e, i + 1), p(f, j)).rightwards

∀i ∈ {1, 3}, j ∈ {0, . . . , 5} : rp(p(e, i), p(f, j)).downwards

= rp(p(e, i + 1), p(f, j)).downwards

∀i ∈ {1, 3}, j ∈ {0, . . . , 5} : rp(p(e, i), p(f, j)).upwards

= rp(p(e, i + 1), p(f, j)).upwards

Note that we need to add these constraints with e and f being exchanged as well. Finally,
we can add the constraints that no edge point of f lies on an edge segment of e:

∀i ∈ {0, 2, 4}, j ∈ {0, . . . , 5} : rp(p(f, j), p(e, i)).downwards = 1

∨ rp(p(f, j), p(e, i + 1)).upwards = 1

∨ rp(p(f, j), p(e, i)).leftwards = 1

∨ rp(p(f, j), p(e, i)).rightwards = 1

∀i ∈ {1, 3}, j ∈ {0, . . . , 5} : s(e, i).rightwards = 1

=⇒ (rp(p(f, j), p(e, i)).rightwards = 1

∨ rp(p(f, j), p(e, i + 1)).leftwards = 1

∨ rp(p(f, j), p(e, i)).upwards = 1

∨ rp(p(f, j), p(e, i)).downwards = 1)

∀i ∈ {1, 3}, j ∈ {0, . . . , 5} : s(e, i).leftwards = 1

=⇒ (rp(p(f, j), p(e, i)).leftwards = 1

∨ rp(p(f, j), p(e, i + 1)).rightwards = 1

∨ rp(p(f, j), p(e, i)).upwards = 1

∨ rp(p(f, j), p(e, i)).downwards = 1)

Again, we need these constraints as well with exchanged roles of e and f. The second and
third constraint are of a new type we did not handle yet:

a = 1 =⇒ (b = 1 ∨ c = 1 ∨ d = 1 ∨ e = 1)

We transform them to the following linear inequality:

−a + b + c + d + e ≥ 0
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Maximum Layout Size

Additionally to the properties described in Section 3.2, we use constraints for bounding
the maximum layout size which is given by a maximum width and a maximum height.
For boxes we only need to enforce that the bottom right point is inside the rectangle
[0, max_width]× [0, max_height]:

b↘.x ≤ max_width

b↘.y ≤ max_height

In the case of edges we need to distinguish the x- and y-coordinates. For the x-coordinates
we give the bound for all bend points. As the first and the last point are on the boundary
of the source or target box, respectively, their x-coordinate is in the interval [0, max_width]
due to the constraints we just stated.

∀i ∈ {1, . . . , 4} : b(e, i).x ≤ max_width

For the y-coordinates it would be sufficient to bound the y-coordinate of the last point as
it is the point with the highest y-coordinate. However, again the corresponding point is on
the boundary of the edge’s target box and, therefore, it is within the prescribed rectangle.

Path Layout

While carving out the formal problem statement, we tested another layout property which
is not part of the problem Argument Map. Let b and c be boxes such that b has a
single outgoing edge e that leads to c. Furthermore, let e be the only incoming edge
of c. We say that b and c together with e form a path. During the development of the
ILP-based algorithm we found out that layouts look more convenient if a path is layouted
as a straight vertical line and the edge ports are centred. Therefore, we add constraints
that enforce equal x-coordinates for the two boxes b and c and requires the connecting
edge to be centred horizontally:

b↖.x = c↖.x

∀i ∈ {0, . . . , 5} : p(e, i).x = b↖.x + bw/2c

Furthermore, we require all inner points to be the same. As we already imposed the
constraints for the x-coordinates we only need to add constraints for equal y-coordinates:

∀i ∈ {2, . . . , 4} : p(e, i).y = p(e, 1).y

Grouping

Grouping of boxes needs only one new type of constraint. Nevertheless, it is a complex
operation as many of the disjointness constraints described above can be disposed after
grouping and some new disjointness constraints need to be added. The new type of con-
straint is that a box b should lie inside a grouping box c:

b↘.x ≤ c↘.x

c↖.x ≤ b↖.x

b↘.y ≤ c↘.y

c↖.y ≤ b↖.y

We now describe how the bounding boxes defined by a tree T (see Section 3.2) can be
enforced in the layout. For each grouping node of T we introduce a new grouping box
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to the ILP. In the following we do not distinguish between a node in the tree and the
corresponding box in the layout. The grouping boxes will not be visible in the final layout
but help to model the grouping of the boxes. For all children bi of a grouping node g

in T we require that the box bi is within the grouping box g by adding the above set of
constraint with b = bi and c = g. Furthermore, we require that all boxes that are not
forced to be in the grouping box do not overlap it. Of course, we then can dispose some
of the box disjointness constraints we already added, i.e. we do not need the disjointness
constraints between all bi and all boxes outside of g anymore.
Additionally, we add disjointness constraints between the grouping box and all edges that
neither have their source nor their sink inside the grouping box. Afterwards, we can dispose
the disjointness constraints between these edges and the boxes inside the grouping box.
Furthermore, we can simplify the constraints for disjointness of edges. We dispose the
disjointness constraints for pairs of edges where one edge has source and sink inside the
grouping box and the other edge has source and sink outside the grouping box.

The grouping feature was introduced for two purposes: (i) it can visualise semantic groups
that exist in the input data and are defined using the input parameter T as described in
Chapter 3 and (ii) it was supposed to speed up the layout computation because it reduces
the number of constraints.
For the case, that the user does not provide a grouping structure T , we present an algorithm
that computes one. The grouping our algorithm computes depends on the articulation
points of the graph. If there is at least one articulation point in the graph one of them is
selected and removed from the graph. Then the graph breaks into at least two connected
components. For each connected component a grouping box is added and afterwards the
components are treated recursively.
An instance might get insolvable if the algorithm uses an articulation point that is part of
a path. Assume, that the articulation point is the source (sink) of a path. Let C denote
the connected component containing the sink (source) of the path after the removal of the
articulation point. If there exists a directed path from C to the articulation point as well
as a directed path from the articulation point to C (as shown in Figure 4.1), then the
articulation point needs to be position to the left or the right of the grouping box of C.
Thus, it cannot be positioned above (below) the sink (source) of the path.
In order to avoid this, the algorithm simply does not use articulation points that are part
of a path. However, the selection of the articulation points is still not fully determined.
Hence, we suggest different strategies to select them. These strategies apply different
centrality measures: (i) highest closeness first [OAS10], (ii) highest node betweenness
first [OAS10], (iii) highest degree first and (iv) lowest degree first. In Section 4.2 we
discuss their empirical impact on the runtime of the ILP solver.

Figure 4.1: Grouping can lead to insolvable instances.
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Total Edge Length Minimisation

For each edge segment of an edge e exists an integer variable l(e, i) for i = 0, . . . , 4
that will be used for measuring the length of the corresponding edge segment. Since we
know the direction of the vertical segments, we can require that l(e, i) equals the absolute
difference of the y-coordinates of the two points defining the segment. For the horizontal
segments we enforce, that the variable l(e, i) is at least as big as the segment length.
Due to the length minimisation l(e, i) will be assigned with the smallest possible value,
i.e. the correct segment length. This simplification improves the performance of the ILP
approach.

∀i ∈ {0, 2, 4} : l(e, i) = p(e, i + 1).y− p(e, i).y

∀i ∈ {1, 3} : l(e, i) ≥ p(e, i + 1).x− p(e, i).x

∀i ∈ {1, 3} : l(e, i) ≥ p(e, i).x− p(e, i + 1).x

For the total edge length minimisation we introduce the variable total_edge_length and
the following constraint:

total_edge_length =
∑
e∈A

4∑
i=0

l(e, i)

Bend Minimisation

Remember that each edge is associated with four binary bend variables b(e, i) for i =
0, . . . , 3 indicating whether a possible bend is indeed a bend. For counting the bends
we assume that before and after each horizontal segment of non-zero length always is a
vertical segment of non-zero length. Then each non-zero length horizontal segment induces
two bends. However, without the assumption of vertical segments of non-zero length this
counting strategy leads to an erroneous number of counted bends. In Figure 4.2a the
actual bend number is 2, whereas we count 4 bends using the strategy mentioned above.
However, this layout looks exactly like the layout in Figure 4.2b where our bend counting
strategy works correctly. Summing up, the bends counted by our counting strategy can
be more than there are actual bends in the layout. However, if too many bends have been
counted, then there is an equivalent layout for that the counting strategy works correctly
for it. Thus, in combination with bend minimisation this counting strategy leads to correct
results. We benefit from a large performance impact in comparison to counting strategies
that count correctly all the time.

length 0

(a) Erroneous counting if the vertical
segment has zero length.

length 0

(b) Correct counting due to bend min-
imisation.

Figure 4.2: How to count bends.

Now, we turn towards the constraints we need in order to implement this counting strategy.

∀i ∈ {1, 3} : p(e, i).x 6= p(e, i + 1).x =⇒ b(e, i) = 1

∀i ∈ {1, 3} : b(e, i) = b(e, i− 1)
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38 4. ILP Approach

The second constraint is already in the form of a linear equation, whereas we need to
transform the first constraint. Therefor, we need two constraints:

1/MAX · (p(e, i).x− p(e, i + 1).x)− b(e, i) ≤ 0

1/MAX · (p(e + 1, i).x− p(e, i).x)− b(e, i) ≤ 0

For bend minimisation we use an additional variable named bend_number which equals to
the sum of all binary variables b(e, i):

bend_number =
∑
e∈E

3∑
i=0

b(e, i)

Target Function

We minimise the following target function:

α · bend_number + γ · total_edge_length

Initial Solution

During the test runs we did along the development of the ILP approach we discovered that
it often takes a long time until the ILP solver finds an initial solution. In order to skip this
step we provide a partial initial solution. In our experiments we gain the best performance
boost if we only provide y-coordinates for both, the boxes and the edge points. The initial
solution is computed as follows: (i) we compute a layering of the boxes and (ii) assign
the y-coordinates to the edge points (see Figure 4.3). The first layer consists of all boxes
with in-degree zero. The (i + 1)-th layer contains all boxes whose predecessors have all
been positioned in one of the first i layers. The distance between two layers depends on
the number of edges leaving the upper layer plus the number of edges entering the lower
layer. Each horizontal edge segment is assigned with one unique grid row in between the
two layers.

Figure 4.3: The provided initial solution.

Initial Solution for Grouped Instances

For complex grouping structures it is already a tough task to compute an initial solution.
We only supply the y-coordinates of the boxes conforming to the same strategy we already
described in the foregoing paragraph. However, this approach does not always give a
valid initial solution. Nevertheless, a provided infeasible initial solution can be detected
quickly by the ILP solver, whereas a feasible initial solution can massively speed up the
computation.
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4.2 Experiments

As software component we use the gurobi optimiser in version 4.6.0. We did the exper-
iments on a 42 core machine where each core is a AMD Opteron Processor 6172 with
2100 MHz and 512 KB cache running SuSE 11.3. Of course, no end user of the algorithms
we present in this work will have such a machine available. However, as already mentioned
the goal of this approach is to get good overview over different layouts.

As test data we used the argument maps from the lecture “René Descartes: Meditationen
über die Grundlagen der Philosophie” described in Section 2.2. For each map we ran five
different configurations: one without grouping and one for each grouping strategy. Each
run took 30 minutes and the intermediate layouts have been tracked. We assigned the
parameters in the target function with α = 10000 and γ = 1.

Instances without Grouping

For eight of the 34 input argument maps the ILP solver proved that it returned the optimal
solution. Furthermore, for six argument maps a valid layout could not be found, because
the graph was cyclic. In Figure 4.4a-4.4d we show some of the computed results. For
all four instances the ILP solver did not come to an end. However, Figure 4.4a and
4.4b look like layouts that are probably close to the optimal solution. In contrast the
layouts in Figure 4.4c and 4.4d show obvious shortcomings. In Figure 4.4c the layout
is still close to the initial solution. The boxes with in-degree zero are still positioned at
the top of the layout even though the total edge length could be minimised by moving
them downward. In Figure 4.4c further shortcomings resulting from the initial solution
are depicted: (i) the long vertical edges that need to span over several layers of the initial
solution and (ii) the topmost edge crossing could be avoided by moving the box “Signale
haben mehrere Quellen” downwards and to the right such that incident edge is routed on
the right side of “Außenwelt verursacht Wahrnehmung”.
Summing up, the computed layouts look very good for instances with less than ca. 20
nodes but have obvious shortcomings for larger instances.

Instances using the Grouping Strategies

The most amazing insight concerning the grouping strategy was that they neither give
benefit in terms of computation time nor in terms of aesthetics. Although the size of the
matrix representing the ILP decreases dramatically due to grouping, the ILP gets harder to
solve. In Table 4.1 we give the number of instances for which a layout has been computed
within the 30 minutes. Using no grouping outperformed all four grouping strategies. Thus,
the grouping approach failed totally. Nevertheless, we present layouts for two instances
in Figure 4.5 and 4.6. Note that different strategies often lead to the same grouping and,
hence, the layouts do not differ from each other. Only the strategy “lowest degree first”
yielded significantly different solutions to the other grouping strategies.

Grouping Number of solved instances

No grouping 28

Highest betweenness first 25

Highest closeness first 24

Highest degree first 25

Lowest degree first 24

Table 4.1: Number of solved instances broken down by grouping strategies.
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4.3 Extending the Approach

As already mentioned this ILP approach does not support all properties and optimisation
goals described in Section 3.2 and Section 3.3, respectively. In this section we discuss how
the remaining properties and goals can be modelled:

Alignment

Two boxes b and c can simply be aligned at their bottom by enforcing equality of the
corresponding y-coordinates.

Free Sources and Sinks

It is easy to require that above a source and below a sink no other box is positioned. We
describe how to enforce free sources. The constraints for free sinks are analog. We use
the relative positions between sources and all other boxes. For each pair of a source s and
another box b we add the following constraint: If b is above s, then it needs to be to either
the right side or the left side of s as well.

Distinguish between sedgeedge and ŝedgeedge

Up to now, we do not distinguish between sedgeedge and ŝedgeedge, i.e. all pairs of edges have the
same minimum spacing. It is easy to modify our approach such that this distinction is
respected. For those pairs of edges that neither have a common source nor sink we simply
replace sedgeedge by ŝedgeedge in the constraints presented in the paragraph “Overlapping Of Edges”.

Edge Crossings

Edge crossings are complex to handle within an ILP. Basically, we need to add a binary
variable for each pair of edge segments that could possibly cross. Depending on the relative
positions of the incident points we can determine whether the two edge segments cross.
Additionally, we introduce a variable that equals to the sum of all those binary variables
and add it to the target function.

Total Source/Sink Distance Minimisation

The minimisation of the total source/sink distance can be reduced to the minimisation of
edge crossings. We add two artificial nodes ŝ and t̂ and add edges from ŝ to all sources and
from all sinks to t̂. The number of crossings on these edges equals the total source/sink
distance. Thus, we count these crossings separately and add their sum to the target
function.

As shown the remaining properties and optimisation goals can easily be added to the
existing ILP approach. We believe that alignment and the distinction between sedgeedge and
ŝedgeedge will have only little impact on the runtime, whereas the two optimisation goals will
drastically increase the runtime of the ILP solver. Therefore, it is not advisable to further
pursue this approach. Instead we turn towards an efficient algorithm for the layout of
argument maps that is based on the topology-shape-metrics framework. This algorithm is
subject of the subsequent chapter.
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(a) Instance D-2.3. (b) Instance D-3.5.

(c) Instance D-2.7. (d) Instance D-6.4.

Figure 4.4: Solutions for instances without grouping.
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(a) Using highest betweenness first, highest close-
ness first or highest degree first.

(b) Using lowest degree first.

Figure 4.5: Solutions for instance D-2.5 with grouping.
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Figure 4.6: Solution for instance D-6.4 using any grouping strategy.
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5. Topology-Shape-Metrics

A frequently used framework for drawing graphs is the so called topology-shape-metrics
framework. It was introduced in 1987 by Tamassia in his seminal paper “On embedding a
graph in the grid with the minimum number of bends” [Tam87]. A decade later, the term
topology-shape-metrics was introduced by Tollis et al. [TDET98].
The framework consist of the three basic steps topology, shape and metrics. The key idea
is that reducing the number of crossings is the most important aesthetic criterion and,
therefore, is minimised in the first step without considering any other criteria. Thereby,
an embedding of the input graph is computed. For non-planar graphs crossings are re-
placed by dummy nodes with degree 4. The planarisation together with its embedding
is called topology. Generally, the topology is fixed throughout the remaining steps of the
algorithm.
In the second step, the shape of the final layout is optimised with respect to the fixed
topology. The shape is the assignment of bends to edges and the angle of these bends.
Usually, the goal of this step is to minimise the number of bends.
Finally, in the step metrics, the edge lengths and node dimensions are computed.
Since each step can be handled individually, topology-shape-metrics can be seen as an
algorithmic framework. It has been intensively studied in the last two decades yield-
ing algorithms for a vast variety of applications including the visualisation of data flow
diagrams [BNT86], database schemes [DDPP02], industrial plant schemes [DPP02] and
UML diagrams [EKS03]. In this work we apply the topology-shape-metrics approach to
argument maps.

Remember that the problem Argument Map is a complex problem. Using the topology-
shape-metrics framework we split up Argument Map into smaller subproblems and either
solve them optimally or apply heuristics if they are NP-hard. In Table 5.1 we show for
each phase of the framework which of the required properties mentioned in Section 3.2
is enforced and which of the optimisation goals described in Section 3.3 is treated. Note
that grouping is not listed in Table 5.1, because we do not treat this property within our
topology-shape-metrics approach. However, this is an interesting topic to pursue for future
work (see Chapter 7).

Our algorithm has two important differences in comparison to the common usage of the
topology-shape-metrics-framework:

• In the first phase we not only minimise the number of crossing but also optimise the
total source/sink distance.
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46 5. Topology-Shape-Metrics

Enforced Properties Treated Goals

Topology Upward Drawing Crossing Minimisation
Total Source/Sink Distance Minimisation

Shape Orthogonal Edges
Port Distribution
Free Sources And Sinks

Bend Minimisation

Metrics Box Dimensions
Spacing Constraints
Alignment

Total Edge Length Minimisation

Table 5.1: An overview of the topology-shape-metrics approach.

• We do not fix the topology computed in the first step. We found out that during the
shape and metrics phase minor changes to the topology can improve the aesthetics
of the final layout. Thereby, we assign higher significance to bend minimisation and
total edge length minimisation than in usual applications of this framework.

The remaining part of this chapter is structured along the topology-shape-metrics frame-
work. In the next section we state some preliminaries. The subsequent sections are each
dedicated to one of the three steps, topology, shape and metrics (Sections 5.2-5.4). Finally,
we give a short summary in Section 5.5.

5.1 Preliminaries

In this section, we present some preliminary work on which the algorithms in the following
three sections are based. In particular, we make the input graph acyclic and transform it
such that there is a unique source and a unique sink.

In the formal problem statement Argument Map we required that the input graph
G = (V,A) is a DAG (see Section 3.4). However, as discussed in Chapter 2 there are
some real input instances that contain cycles. In this section we treat these instances by
reversing the direction of edges in G such that it becomes cycle-free. Such a set of edges
is called a feedback arc set. We denote the resulting graph by Ĝ = (V̂ , Â). Then we apply
the algorithms presented in the following chapters to Ĝ. Afterwards, we convert the layout
of Ĝ to G. For edges that are reverted in Ĝ we simply toggle the position of the arrowhead.
Note that for these edges the upward drawing constraint is not satisfied anymore. Because
of this, we aim to compute a small feedback arc set. However, the problem of finding
a minimum feedback arc set is NP-complete [Kar72]. In our implementation we use a
well-known heuristic suggested by Eades et al. [ELS93], which is implemented in the class
GreedyCycleRemoval of the Open Graph Drawing Framework (OGDF)1. This algorithm
runs in linear time and returns a set of at most |A|/2 − |V |/6 edges such that reversing
their direction results in an acyclic graph Ĝ.

Besides the acyclicity of Ĝ, we further require that it is an s-t-graph. Before describing
how Ĝ is transformed to an s-t-graph, we define the term s-t-graph:

Definition 5.1 (s-t-Graph, s-T -Graph). An s-t-graph is a graph having a single source
and a single sink. An s-T -graph has a single source as well but can have multiple sinks.

We transform Ĝ to an s-t-graph by adding a super source ŝ and a super sink t̂ and
connecting them with all previous sources and sinks, respectively. Note that we do this
independently of whether Ĝ was an s-t-graph before, because the additional edges adjacent

1See http://www.ogdf.net
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to ŝ and t̂ will play a special role in Section 5.2 in order to weight crossing minimisation
and total source/sink distance minimisation. When converting the layout of Ĝ to G we
simply omit ŝ and t̂ as well as all incident edges.

With these preparations we can apply the algorithms presented in Sections 5.2-5.4. In the
following chapter we describe an algorithm that computes a planarisation of Ĝ such that
all edges are directed upwards while heuristically minimising the number of crossings and
the total source/sink distance.

5.2 Topology

In this section we deal with the first step of the trinomial topology-shape-metrics frame-
work. As we already applied the techniques described in Section 5.1 we assume to have
an s-t-graph Ĝ as input data. We denote the unique source by ŝ and the unique sink
by t̂. Note that Ĝ may be non-planar. Therefore, we cannot directly compute an up-
ward planar embedding of it. Instead, we pursue two goals, namely crossing minimisation
and total source/sink distance minimisation. We offer the possibility to weight these two
criteria by using two parameters. As upward crossing minimisation by itself is already
NP-complete [GT94, GT02], we build on a heuristic approach called “layer-free upward
crossing minimization” by Chimani et al. [CGMW10]. The outcome is a so called upward
planar representation:

Definition 5.2 (Upward Planar Representation). Given a DAG G = (V,A), an upward
planar representation U of G is an upward planar graph U = (VU , AU ) in which edge
crossings are replaced by crossing dummies together with an upward planar embedding Γ
and a designated external face f0. The set VU is a super set of V that additionally contains
the crossing dummies. The arcs a ∈ A are either elements of AU as well or correspond to
a path p in U . The inner nodes of such a path p are crossing dummies, whereas the source
and target node of p correspond to the source and target of a, respectively.

The motivation for layer-free upward crossing minimisation originates from the shortcom-
ings of the traditional Sugiyama framework [STT81]. This approach consists of three steps
of which each step can be solved individually. Although this framework has been invented
in 1981, it is still state-of-the-art in drawing DAGs. The three steps are:

(i) Layer assignment: The nodes are assigned to layers such that the target of each
edge is in a layer below its source’s layer. If an edge spans multiple layers it is split
into several edges such that each segment connects neighbouring layers.

(ii) Crossing reduction: The order of the nodes within a layer is changed such that
the number of edge crossings is minimised.

(iii) Coordinate assignment: Final coordinates are assigned to the nodes as well as to
bend-points of the edges.

The shortcoming of this framework is that computing an unfortunate layering of the nodes
in step (i) can enforce crossings in step (ii) which would not be necessary if another layering
was chosen. We cite an illustrating example by Chimani et al. in Figure 5.1.

In order to circumvent this shortcoming of the Sugiyama framework Chimani et al. de-
veloped an upward crossing minimisation method that works without a prescribed layer
assignment of the nodes. We use their technique in order to minimise both, the crossings
and the total source/sink distance.

The remaining part of this section is structured as follows: In Section 5.2.1 we discuss the
complexity of upward crossing minimisation of s-t-graphs. Afterwards, we describe the
algorithm by Chimani et al. in Section 5.2.2 and discuss how their approach can be used
to compute a layout of an argument map in Section 5.2.3.
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(a) Using this layering the nine crossings
cannot be avoided.

(b) Using another layering the crossing
number can be reduced to zero.

Figure 5.1: An unfortunate layering leads to crossings that are unnecessary if another
layering is chosen.

5.2.1 Complexity Considerations

While planarity of arbitrary graphs can be tested efficiently, testing upward planarity is
NP-complete for general graphs [GT94, GT02]. Therefore, upward crossing minimisation
is NP-complete as well. However, for s-T -graphs the test for upward planarity can be done
in polynomial time [BDMT98], and thus upward crossing minimisation might be efficiently
solvable for s-T -graphs. Remember that the definition of Argument Map includes the
four parameters α, β, γ and δ which weight the four optimisation goals number of cross-
ings, number of bends, total edge length and total source/sink distance, respectively. For
parameter choices that satisfy α = δ the approach we will present in this chapter reduces
to upward crossing minimisation of an s-t-graph. Therefore, we investigate this problem
in the remaining part of this section. We first give a formal definition of this problem and
denote it by s-t-Upward Crossing Minimisation:

Instance: An s-t-graph G = (V,A) and an integer k ≥ 0.
Question: Does there exist an upward drawing of G in the plane with at most k edge
crossings?

Garey and Johnson proved that crossing minimisation in general undirected graphs is NP-
complete [GJ83]. By slightly modifying their proof, we show that s-t-Upward Crossing
Minimisation is NP-complete as well.

In their proof Garey and Johnson reduce Bipartite Crossing Number to the crossing
minimisation problem. The problem Bipartite Crossing Number is known under a
variety of names. Eades et al. refer to it as Left Optimal Drawing [EMW86] and it is
often denoted by 2-Layer Crossing Minimisation:

Instance: A connected bipartite graph G = (V1 ∪ V2, E) and an integer k ≥ 0.
Question: Can G be embedded in a unit square such that all vertices of V1 are on the
northern boundary, all vertices in V2 are on the southern boundary, all edges are within
the square and there are at most k crossings?

They transform a given Bipartite Crossing Number instance to an instance of the
crossing minimisation by constructing the graph G′ = (V ′, E ∪ E1 ∪ E2 ∪ E3), where

V ′ = V1 ∪ V2 ∪ {u0, w0},
E1 = {3k + 1 copies of {u0, u} : u ∈ V1},
E2 = {3k + 1 copies of {w0, w} : w ∈ V2},
E3 = {3k + 1 copies of {u0, w0}}.
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Obviously, this reduction can be performed in polynomial time. Then, they show that the
Bipartite Crossing Number instance has a solution if and only if G′ has a drawing
with at most k crossings. One direction of this claim is easy to prove. Having a drawing
of the Bipartite Crossing Number instance, we can easily extend it to a drawing of G′

by adding the missing edges (see Figure 5.2a). The other direction is harder to prove.
Garey and Johnson give a sequence of normalisation steps that transform a valid drawing
of G′ to a drawing that is topologically equivalent to the drawing depicted in Figure 5.2a.
For details on these normalisation steps we refer the reader to the work by Garey and
Johnson [GJ83]. Having such a drawing at hand, a solution of the Bipartite Crossing
Number instance can be constructed by simply removing the additional edges in E1, E2

and E3.

(a) Graph G′ from the proof by Garey and
Johnson.

(b) The directed version of G′ used in our
modified proof.

Figure 5.2: Illustration of the NP-completeness proof of s-t-Upward Crossing Min-
imisation.

We now modify the proof by Garey and Johnson such that we can prove, that s-t-Upward
Crossing Minimisation is NP-complete. First, we assign directions to the edges in G′

such that it is a DAG. To this end, we direct all edges such that they point upwards in
Figure 5.2a. Since G was restricted to be connected by the Bipartite Crossing Number
definition, the resulting graph (see Figure 5.2b) is an s-t-graph. Thus, we transformed the
Bipartite Crossing Number instance to an s-t-Upward Crossing Minimisation
instance. Again the following equivalence holds: The Bipartite Crossing Number
instance has a solution if and only if G′ has an upward drawing with at most k crossings.
We can directly carry over the proof of this equivalence from the work by Garey and
Johnson [GJ83]. Thus, s-t-Upward Crossing Minimisation is NP-complete as well.

5.2.2 Layer-Free Upward Crossing Minimisation

Recently, Chimani et al. presented a heuristical way to compute an upward drawing of
a DAG such that the number of crossing is small. They came back to the idea of the
planarisation approach, which is a frequently and successfully used heuristic for crossings
minimisation in undirected graphs [BTT84, GM04]. This approach can be divided into
two steps: (i) a large planar subgraph is computed and embedded and (ii) the remaining
edges are reinserted. During the insertion of edges, the created crossings are replaced by
nodes of degree four. These nodes are denoted by dummy crossings. Thus, the result is
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a planar representation of the original graph. In this section we describe the details of
these two steps in the context of layer-free upward crossing minimisation. For technical
reasons Chimani et al. assume that the input graph is an s-T -graph, i.e. a graph with a
unique source and multiple sinks. If there are several sources, a super source ŝ is added
and connected to all sources. During the crossing minimisation the crossings on the edges
adjacent to ŝ are not counted, i.e. only the number of crossings in the original graph is
minimised. The following three paragraphs cite the work by Chimani et al. [CGMW10] –
the definitions and lemmas are directly carried over.

A Feasible Upward Planar Subgraph

The goal of the whole method is to compute an upward planar representation U of a
DAG G = (V,A) with few crossing dummies. In this paragraph we focus on the computa-
tion of an upward planar subgraph of G and an embedding of it. We denote the upward
planar subgraph by U = (V,A′) and its embedding by Γ. Note that we cannot choose any
upward planar of subgraph of G. There might be subgraphs that do not admit the remain-
ing edges to be reinserted in an upward drawing style (see Figure 5.4a). Subgraphs that
allow such a reinsertion of the missing edges are called feasible upward planar subgraphs
(see Definition 5.5). Before we can discuss feasibility of U , we need to introduce the terms
upward insertion path and upward insertion sequence:

Definition 5.3 (Upward Insertion Path). An upward insertion path p1 with respect to
some edge e1 = (x1, y1) ∈ A\A′ is an ordered list of edges a1, . . . , aκ ∈ U such that
the graph U1 obtained from realising p1 is upward planar. The realisation works as fol-
lows: we split the edges a1, . . . , aκ obtaining the dummy nodes d1, . . . , dκ, and add the
edges (x1, d1), (d1, d2), . . . , (dκ, y1) representing e1.
Let Γ1 be an upward planar embedding of U1. We say Γ1 induces an upward planar em-
bedding Γ of U , which is obtained by reversing the realisation procedure while maintaining
the embedding.

Definition 5.4 (Upward Insertion Sequence). An upward insertion sequence is a sequence
of k upward insertion paths of the edges that are in A\A′ . Thereby, the first edge in the
sequence is inserted into U – introducing dummy nodes – which results in an upward-planar
graph U1. The second edge is then inserted into U1, etc. After realising all insertion paths,
we hence obtain a final upward planar graph Uk, which is a planarised representation of G.

Now, we are ready to define feasibility of an upward planar subgraph U as the possibility
to reinsert all remaining edges such that we gain an upward planar representation U of G:

Definition 5.5 (Feasible Upward Planar Subgraph and Embedding). An upward planar
subgraph U of G is feasible iff there exists an upward insertion sequence. An upward planar
embedding Γ of a feasible upward planar subgraph U is feasible iff there exists an upward
insertion sequence such that Γk induces Γ.

We omit the algorithm for computing a feasible upward planar subgraph by Chimani et al.
but present our own approach in Section 5.2.3. However, it is important to note that the
feasible upward planar subgraph Chimani et al. use is an s-T -graph and since the insertion
of an edge cannot introduce a second source, all Ui are s-T -graphs as well.
As shown in Figure 5.4a not all upward planar subgraphs of G are feasible. Thus, there
is a need for a characterisation of feasibility such that an upward planar subgraph can
efficiently be tested upon feasibility. Therefore, Chimani et al. introduce the merge graph
which is acyclic if and only if there exists an upward insertion sequence.
The definition of the merge graph uses the term sink-switch. A sink-switch of a face f of
an upward planar embedding Γ is defined as a node v that is incident to f but has no
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outgoing edge incident to f (see Figure 5.3). Since U is an s-T -graph, for each face there
is a unique sink-switch that has to be drawn above all other sink-switches. We denote this
sink switch by top sink-switch. Since the preferred drawing style for argument maps have
downward directed edges, the top sink-switch is the bottommost sink-switch in Figure 5.3.

Figure 5.3: A face and its sink-switches.

Now, we are able to define the merge graph as introduced by Chimani et al.:

Definition 5.6 (Merge Graph). Let U be an upward planar subgraph of G and Γ an upward
planar embedding of U . The merge graph M(Γ) of U with respect to Γ is constructed as
follows:

1. Start with M(Γ) as a copy of G.

2. For each internal face f of Γ add an arc from each non-top sink-switch of f to the
top sink-switch of f . We call these edges sink arcs.

Lemma 5.1 characterises feasibility of an upward planar graph and its embedding in terms
of acyclicity of the corresponding merge graph. This lemma is the crucial point of layer-free
upward crossing minimisation and is as well important in the context of edge reinsertion.
See Chimani et al. for the proof [CGMW10].

Lemma 5.1 (Feasibility Lemma). The merge graph M(Γ) is acyclic if and only if there
exists an upward insertion sequence such that the resulting graph is upward planar.

(a) Not all upward
planar subgraphs
are feasible.
The red dashed
edge cannot be
inserted.

⇒ ⇒

(b) The given graph (left) and a feasible upward planar subgraph (middle) of
it. All edges have cost 1. After one edge has been inserted cost minimal
(right) the other one cannot be inserted anymore.

Figure 5.4: Problems in the context of edge insertion.
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Reinserting Edges

After a feasible upward planar subgraph has been computed, the remaining edges are in-
serted one by one. For the insertion of a single edge Chimani et al. use a routing network
that offers the possibility to assign costs to all edges in the feasible upward planar subgraph
and to the already reinserted edges. Crossing an edge costs the amount that is assigned
to the crossed edge. The edge that is to be reinserted is routed such that the sum of the
costs of the crossed edges is minimised. Chimani et al. assign costs 1 to all edges – except
the edges adjacent to ŝ, which are assigned with cost 0. Thus, only crossings of original
edges are counted.
However, as can be seen in Figure 5.4b the cost minimal insertion of an edge ei can make
further edge insertions impossible. According to Chimani et al., one needs to check the
merge graph M(Γi) corresponding to the intermediate graph Ui and its upward planar
embedding Γi upon acyclicity. However, we disagree on this point: The merge graph does
not respect the upward insertion paths of the already inserted edges. We illustrate this
using Figure 5.4b. After the first edge has been reinserted yielding U1 and Γ1 (rightmost
picture) the merge graph M(Γ1) equals to the original graph G (leftmost picture). Al-
though this graph is acyclic, there is no possibility to reinsert the second edge into U1 such
that it is directed upwards.
However, we can fix this mistake by modifying the definition of a merge graph:

Definition 5.7 (Merge Graph (Corrected Version)). Let Ui be a planarised upward sub-
graph of G and Γi an upward planar embedding of Ui. The merge graph M(Γi) of Ui with
respect to Γi is constructed as follows:

1. Start with M(Γi) as a copy of Ui.

2. Add the missing edges ei+1, . . . , ek ∈ G to M(Γi).

3. For each internal face f of Γi add a sink arc from each non-top sink-switch of f to
the top sink-switch of f .

As long as Ui is an upward planar subgraph of G the two definitions Definition 5.6 and 5.7
are equal. However, Definition 5.7 can also be applied in the context of edge reinsertion.
All the proofs presented in the work by Chimani et al. [CGMW10] are still correct if using
Definition 5.7 instead of Definition 5.6.

We return to the reinsertion of an edge ei. If after the insertion (our modified version
of) the merge graph M(Γi) contains a cycle, the edge insertion is undone and the edge is
routed by using a simple heuristic. This heuristic, has no guarantee on the optimality, i.e.
the number of crossed edges, but yields an intermediate graph Ui and an upward planar
embedding Γi such that the merge graph M(Γi) is acyclic.
Chimani et al. conducted experiments that revealed that the heuristic edge insertion is
used in far below 1% of edge insertions. Thus, for a fixed feasible upward planar subgraph
and a fixed ordering of the remaining edges the resulting upward planar representation is
very close to the cost-minimal solution.

Runtime and Space Analysis

Chimani et al. present an algorithm that computes a feasible upward planar subgraph in
O(|A|2) time. The algorithm for cost minimal insertion of an edge ai runs in O(|V | + r)
time, where r is the number of edges to insert after ai, whereas the heuristic runs in
O(|V |2 + r|V |) time. Note that these time complexities are not affected by our correction
of the definition of the merge graph.
Chimani et al. further prove that the routing network used for the reinsertion of the first
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edge has O(|V |) nodes and edges. For further edge insertions the routing network has
O(|V |+ #crossing dummies) nodes and edges.

Chimani et al. suggest to randomise the algorithm for the computation of the feasible
upward planar subgraph and the order in which the remaining edges are reinserted. Among
several runs the crossing minimal (not cost minimal!) upward planar representation is
chosen as the overall result.

5.2.3 Modifications for Argument Maps

The layer-free upward crossing minimisation approach by Chimani et al. as described in
the previous section only serves for crossing minimisation. However, for the computation
of argument map layouts we want to minimise both, the number crossings as well as the
total source/sink distance. Furthermore, we want to weight these two optimisation goals
against each other by using the two parameters α and δ in Argument Map. To this
end, we model the total source/sink distance in terms of the number of crossings. When
constructing the routing network for edge reinsertion we distinguish between two types of
edges and assign the costs α and δ, respectively, in order to weight the two optimisation
goals against each other.

In Section 5.1 we already removed cycles in G and added a super source ŝ as well as a
super sink t̂. We denote the resulting graph by Ĝ. Now, we first compute a feasible upward
planar subgraph U of Ĝ that contains all edges adjacent to ŝ and t̂ and an upward planar
embedding Γ of U such that ŝ and t̂ are on the outer face. We compute such a feasible
upward planar subgraph as follows:
We start with U containing only the edges adjacent to ŝ and t̂. The neighbours of ŝ,
ŝ itself and t̂ are marked as visited. Afterwards, we start directed depth first searches
at all neighbours of ŝ. We add the encountered edges to U if the target has not been
marked as visited yet. These depth-first searches can be performed in O(|V̂ |+ |Â|) time.
We will use this intermediate subgraph U in order to construct a large feasible upward
planar subgraph by trying to reinsert the remaining edges. Beforehand, we prove that U
is already a feasible upward planar subgraph in the following lemma:

Lemma 5.2. The subgraph U of Ĝ is a feasible upward planar subgraph.

Proof. Obviously, the subgraph U is an upward planar s-T -graph, because of its construc-
tion via a sequence of depth-first searches. All internal faces have the super sink t̂ as
sink. Thus, when constructing the merge graph M(Γ) for an embedding Γ of U , we start
with G and only add edges that end at the super sink t̂. Thus, the edge insertions cannot
create a cycle inM(Γ). Using Lemma 5.1 we conclude that U is a feasible upward planar
subgraph.

After computing the intermediate feasible upward planar subgraph U , we try to enlarge it
in terms of the number of contained edges. To this end, we treat the edges of Â that are
not in U one by one. We add them to U and check whether it remains a feasible upward
planar subgraph. Otherwise, the edge insertion is undone. After treating all remaining
edges we have a large feasible upward planar subgraph U of Ĝ.
We now discuss the time complexity of the feasible upward planar subgraph computation.
We already stated that the depth-first searches run in O(|V̂ | + |Â|) time. Furthermore,
there are O(|Â|) edges to reinsert. For each edge we perform one upward planarity check
in O(|V̂ |) time [BDMT98] and one check upon acyclicity in O(|V̂ | + |Â|) time. Since Ĝ
is connected, O(|V̂ |) ⊆ O(|Â|) holds. Thus, the feasible upward planar subgraph can be
computed in O(|Â|2) and O(|Â|) space.
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After computing a feasible upward planar subgraph, we assign costs to all its edges. We
distinguish between two types of edges. The edges incident to the super source ŝ or the
super sink t̂ have cost δ. All other edges are assigned cost α. Then, we reinsert the missing
edges.

Using this approach, we optimise two summands of the cost function stated in Section 3.4:

α ·#edge crossings + [. . .+] δ · total source/sink distance

To see that we optimise the summand α · #edge crossings is easy: Each original edge
of G has cost α such that crossing it increases the total cost by α. The optimisation
of δ · total source/sink distance is modelled by the edges adjacent to ŝ and t̂. Since ŝ and t̂
are on the outer face of the embedding Γ of U these are the imaginary edges we mentioned
in Section 3.3. As we assign cost δ to each edge adjacent to ŝ or t̂, the costs induced by
these crossings equals to δ · total source/sink distance.

As already mentioned in the last section, layer-free upward crossing minimisation is open
for randomisation. We randomise it at two points: (i) For the construction of the feasible
upward planar subgraph we randomise the order in which we visit the outgoing edges
during the depth-first searches. Furthermore, we randomise the order of insertion of edges
that are not in the initial feasible upward planar subgraph. (ii) We randomise the order
in which the missing edges are routed.

In this section we described how an upward planar representation U of Ĝ can be com-
puted such that the number of crossings and the total source/sink distance is heuristically
minimised. In the following section we will present three techniques how to calculate the
shape of Ĝ, i.e. the bends on each edge, if an upward planar representation is given. In
Section 5.4 we then compute the length of each edge segment and come to a final layout
of an argument map.

5.3 Shape

In this section we explain the second step of the topology-shape-metrics framework, i.e.
how to compute the shape of a layout if an upward planar representation U of Ĝ is given.
In this context shape denotes the number of bends on each edge and their bend directions.
Since we deal with orthogonal edges, we only allow 90◦ bends to the left or to the right.
We present three algorithms for shape computation. All algorithms have in common that
they lead to column-based layouts. This means that the canvas is separated into disjoint
columns that are as broad as the boxes. Nodes and edges are later positioned within these
columns. Thereby, vertical edge segments run within a column, whereas the horizontal
edge segments span over several columns.
An edge with two bends consists of two vertical segments which are necessarily positioned
in the source’s and the target’s column, respectively. Thus, as long as we deal with 2-bend
shapes, it is sufficient to assign the nodes to columns. However, edges having four bends
consist of three vertical segments and hence we need to determine where to position the
middle vertical segment. To this end, we assign the edge, i.e. the middle vertical segment,
to a column as well. The three algorithms presented in this section compute such a column
assignments for the nodes (and edges) of the respective input graph:

Definition 5.8 (Column Assignment). In the case of 2-bend shapes, a column assignment
of a DAG G = (V,A) is a mapping col : V → Z which assigns each node vi ∈ V to a
column col(vi). If dealing with 4-bend shapes col : V ∪ A → Z assigns nodes and edges
of G to columns.
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Note that a column assignment already induces the shape, i.e. which edges contain bends
to which direction. In the metrics steps we will realise the computed column assignment,
i.e. we compute a layout that respects the column assignment:

Definition 5.9 (Realisation of a Column Assignment). Let L be a valid layout of a
DAG G = (V,A), i.e. L satisfies all constraints listed in the formal problem statement
Argument Map. Layout L is a realisation of a column assignment col, if we can divide
the canvas into disjoint columns of uniform width and number the columns from left to
right such that each node vi ∈ V (and edge ej ∈ A) is positioned within column col(vi)
(and col(ej), respectively).

Now, we give a short introduction to the three algorithms for shape computation:

2-Bend Shape

The first algorithm computes layouts of an upward planar representation U . These layouts
have at most two bends per edge of U . Thus, if an edge a ∈ Â is in U represented by a
path p of length `(p), then there are at most 2 · `(p) bends on a. This algorithm draws the
graph face by face and has linear time complexity. However, as the resulting layouts look
confusing, this algorithm is only of theoretical interest.

4-Bend Shape

The second algorithm takes up the idea of Biedl and Kant how to draw a graph with
few bends in linear time and adapts it to orthogonal upward drawings [BK94]. Again,
we compute a layout for an upward planar representation U . Thus, the upper bound of
at most four bends per edge only holds for the edges of U . An arc a ∈ Â that is in U
represented by a path p has at most 4 · `(p) bends. Although the computed layouts are
better than the 2-bend drawings, they are still not good enough for practical use: Edges
that are split by crossings dummies have many bends and, thus, they are hard to trace
with the eyes. We only present this algorithm, because it forms the base for the third
algorithm we developed.

4-Bend Shape with Topology Modifications

The third approach is similar to the second one but directly computes a shape of Ĝ
instead of the upward planar representation U . Thereby, it does not fully respect the
given upward planar representation. It only respects the left to right order of outgoing at
each node vi ∈ V̂ prescribed by U . Thereby, the given topology is relaxed in some points,
i.e. the edge crossings are not fixed anymore but can move to other edges. The resulting
layouts have at most four bends per edge of Ĝ and can be computed in linear time.

The remainder of this section is structured as follows: In Sections 5.3.1-5.3.3 we present
the three shape algorithms. We conclude this section with a comparison of them in Sec-
tion 5.3.4.

5.3.1 2-Bend Shape

In this section we present an algorithm that computes the shape of an upward planar
representation U face by face from left to right. Initially, we draw the edges on the
leftmost path from ŝ to t̂. Afterwards, we handle the faces of U one by one from left
to right. When treating a face, we only need to draw its right contour, because its left
contour is already drawn. The algorithm basically consists of two steps: (i) computation
of the face insertion order and (ii) assignment of the nodes to columns. The following two
paragraphs are dedicated to these two steps.
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The Face Insertion Order

Before describing how to compute the face insertion order, we need to introduce the term
contour :

Definition 5.10 (Contour). Given an upward planar representation U and a face f of U
the left (right) contour of f is the path from f ’s source to its sink that needs to be layouted
on the left (right) side of the face due to the edge order prescribed by U . Note that the
source and the sink of a face are neither part of its left nor of its right contour.

The algorithm for computing the shape processes the faces of U from left to right, i.e. a
face fi can only be treated if all faces adjacent via edges on the fi’s left contour have been
handled before. Beside this left-right property the face order needs to fulfil the top-down
property as well – the top-down property prescribes, that for each node v the faces having
v as sink are handled before the faces of which v is the source. For the computation of
such an order, we construct an auxiliary graph D. A topological order of the nodes in D
will imply an order of the faces that satisfies both, the left-right property as well as the
top-down property.
The graph D is the combination of Dlr = (Vlr, Elr) enforcing the left-right property and
Dtd = (Vtd, Etd) which ensures the top-down property. In the following, we describe the
construction of Dlr and Dtd. Let Dlr = (Vlr, Elr) be the dual graph of U and direct all
dual edges such that the sources are on the left side of the primal edge and the targets are
on the right side, i.e. the edges are directed rightwards. Let v0 be the dual node of the
external face of U and remove all incoming edges of v0.
For the construction of Dtd we start with Vtd = Vlr, Etd = ∅ and add a node c(v) for each
node v of U that is source of at least one face and sink of at least one face. We build
up Etd by inserting edges from c(v) to the dual nodes of all faces of which v is the source.
Analogously, we add edges from the dual nodes of faces of which v is the sink to c(v).
Obviously, Dlr and Dtd enforce the left-right property and the top-down property, respec-
tively. The auxiliary graph D is the union of Dlr and Dtd graphs and hence enforces both
properties. In Figure 5.5a we depict D for a simple upward planar representation U .
After the construction of D we compute a topological order of its nodes. Such an order
exists if and only if D is acyclic. As shown in Lemma 5.3 graph D is acyclic and, thus,
such an order can be computed. We then transform the order of the nodes of D to a
face order of U which fulfils both, the left-right property and the top-down property. For
pseudocode see Algorithm 1. Note that the construction of D as well as the computation
of the topological order, can be implemented to run in O(|VU |) time as we are dealing with
planar graphs.

Lemma 5.3. The graph D is acyclic.

Proof. In this proof, we assume that D contains a cycle C and then construct a directed
cut C ′ containing an edge of C. Thereby, we deduce a contradiction, because an edge of
a cycle cannot be part of a directed cut.
We denote the cycle in D by C. Since the two graphs Dlr and Dtd are acyclic, C contains
edges from both sets, Elr and Etd. Then there exists a subpath (x, c(vi), y) of C with
x, y ∈ Vlr, Vtd and c(vi) ∈ Vtd. We now construct the directed cut C ′ in D which contains
edge (x, c(vi)). For the construction of C ′ we first compute a borderline path p in U which
is depicted in Figure 5.5b. Starting at c(vi) we traverse U to the top always taking the
rightmost incoming edge. Analogously, we traverse U to the bottom by always choosing
the leftmost outgoing edge. Let C ′ contain all edges in D that are dual to edges on p.
Furthermore, p can contain nodes vj that have a correspondence c(vj) in Dtd. Let C ′

contain the incoming edges of these c(vj) as well. It is easy to see that the sources of all
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edges in C ′ are on the same side, i.e. C ′ is a directed cut. Thus, no edge in C ′ can belong
to a cycle in D which contradicts to (x, c(vi)) ∈ C.

(a) Graph D (round nodes and solid edges)
used for the computation of the face or-
der of U (rectangular nodes and dotted
edges).

(b) The borderline path p (red dashed) for
the subpath (x, c(vi), y) (black solid) of
cycle C.

Figure 5.5: The graph D and a borderline path in U .

Algorithm 1: Face Order

Input : Upward planar representation U
Output: Left to right order of the internal faces f1, . . . , fk

1 D ← dual graph of U
2 Direct all edges in D rightwards
3 v0 ← the dual node of the outer face of U
4 Remove all incoming edges of v0
5 For v node of U , v is source of at least one face and sink of at least one face do
6 Add new node c(v) to D
7 For f face of U such that v is source of f do
8 Add edge from c(v) to the dual node of f
9 For f face of U such that v is sink of f do

10 Add edge from the dual node of f to c(v)

11 v0, . . . , vl ← topological order of the nodes of D
12 k ← 1
13 For i from 1 to l do
14 If vi is the dual node of a face in U
15 fk ← primal face of vi
16 k ← k + 1

Column Assignment of the Nodes

Having computed the face insertion order, we start to draw the upward planar represen-
tation U . Initially, we assign ŝ, t̂ and all nodes on the left contour of the external face
to column 0. Then, we treat the faces according to the computed order. When treating
a face fi we only need to draw the right contour. Due to the left-right property, the left
contour has already been drawn in an earlier iteration. We now distinguish two cases
depending on the number of nodes on the right contour of fi: In Case (a) there is at least
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one node on the right contour of fi. In this case, we assign all nodes on the right contour
to column i.
However, consider Case (b), i.e. that the right contour of fi is a single edge. Furthermore,
assume, that the nodes on the left contour, the source and the sink of fi are all assigned
to the same column. The remaining edge cannot be inserted with two bends as it needs to
start and end in the same column but must circumvent the nodes in between, i.e. it would
require four bends. Thus, we move the sink of fi to column i, which has been empty up
to now.
It is not obvious, that the movement of a sink in Case (b) does not introduce overlapping
of edges or of edges and boxes to the final layout. In the following paragraph we show
that the column assignments computed by Algorithm 2 can be realised in terms of Defini-
tion 5.9.
After all faces have been processed, the algorithm terminates and returns the column as-
signment of the nodes. We present the pseudocode of this method as Algorithm 2. Since
the number of faces and edges of a planar graph is linear in the number of its nodes, Algo-
rithm 2 runs in O(|VU |). As already discussed Algorithm 1 has the same time complexity.
Thus, the 2-bend shape as a whole can be computed in linear time.

Algorithm 2: 2-Bend Column Assignment

Input : Upward planar representation U ,
Face order f1, . . . , fk computed by Algorithm 1

Output: Column assignment for each node of U
// Initialisation

1 col(ŝ)← 0

2 col(t̂)← 0
3 f0 ← external face of U
4 For v on the left contour of f0 do
5 col(v)← 0

// Process faces and assign the nodes to columns

6 For i from 1 to k do
7 If right contour of fi contains at least one node // Case (a)

8 For v on the right contour of fi do
9 col(v)← i

10 Else // Case (b)

11 s← sink of fi
12 col(s)← i

Correctness

In this paragraph we show that column assignments computed by Algorithm 2 can be used
in order to compute a final layout of U , i.e. the column assignment can be realised.

As long as all faces of U have at least one node on the right contour, i.e. Case (b) in
Algorithm 2 does never occur, the column assignment can easily be realised by using an
s-t-ordering of the nodes in U in order to compute the y-coordinates of the boxes (see
Lemma 5.4 for details).
However, if Case (b) occurs during the execution of Algorithm 2, i.e. we move the sink of
a face fi to the right, it is not obvious anymore that the computed column assignment can
be realised. In Lemma 5.4 we show that this is possible as long as the y-coordinates of the
nodes of U correspond to a right-first s-t-order. Such an order is computed by Algorithm 3
which traverses U using a right-first depth-first search, i.e. the outgoing edges of each node
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are treated from right to left. Since each node is visited as often as there are incoming
edges and as U is planar the runtime of this algorithm is linear in |VU |.

Algorithm 3: Vertical Order

Input : Upward planar representation U
Output: Vertical order v0, . . . , vn−1 of the nodes of U

1 S ← stack containing source of U
2 i← 0
3 while S not empty do
4 n← S.top()
5 If n is not marked
6 If all predecessors of v are marked
7 Mark v
8 vi ← n
9 i← i+ 1

10 Else
11 S.pop()
12 Continue

13 If there is a next right most successor n′ of v
14 S.push(n′)
15 Else
16 S.pop()

Lemma 5.4. The column assignments computed by Algorithm 2 can be realised.

Proof. Since the x-coordinates of the boxes are already induced by the column assignment,
we only need to discuss the computation of the y-coordinates in this proof.

First, assume that all faces fi, i = 0, . . . , k have at least one node on the right contour.
Thus, Case (b) in Algorithm 2 does never occur. Then, the vertical arrangement of the
nodes necessarily corresponds to an s-t-ordering of the nodes in U in order to preserve the
upward drawing constraint. The edges can easily be routed such that they do not overlap
each other or cut through boxes by drawing the horizontal segment of the first (last) edge
on the right contour as high (low) as possible. All other edges can be drawn as straight
lines. Figure 5.6a shows such a layout.

If in Algorithm 2 Case (b) occurs, we need to show, that after the movement of the sink
the column assignment can still be completed to a valid layout where no edges overlap
each other or cut through boxes. Firstly, consider the outgoing edges of the sink. Because
of the top-down property at most one outgoing edge of the sink can already be processed
at this time. This edge can easily be routed by drawing its horizontal segment as high as
possible.
Now, consider the incoming edges of the moved sink. Note that for each of these edges
the source is assigned to a column with an index less than i, i.e. all incoming edges
have a horizontal segment that is directed rightwards. Consider a single incoming edge e.
Let fl(e) be the face to the left side of e. We denote the set of nodes on the left contour
of fl(e) by Nl(e). Analogously, we define fr(e) and Nr(e). In order to be able to draw the
incoming edges for each incoming edge e the following property needs to hold: The nodes
in Nl(e) must be positioned below the nodes in Nr(e) (see Figure 5.6b for illustration). A
right-first s-t-order satisfies this property.
We conclude that the column assignments computed by Algorithm 2 can be realised.
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(a) Case (b) does never occur. (b) Case (b) occur es two times.

Figure 5.6: Realisations of the 2-bend shape column assignment.

The realisations of the column assignments computed by Algorithm 2 do not fulfil our
expectations concerning the aesthetics of layout. Figure 5.6 shows that the successors of a
node are not evenly distributed to its left and right side, but most outgoing edges bend to
the right. Therefore, we do not use this algorithm for the computation of argument map
layouts but present it because of its bound of two bends per edge in U .

2-Bend Drawings are not Bend Minimal

As seen in the foregoing section for each upward planar representation U there exists a
layout with at most two bends per edge in the upward planar representation. In this
section we show that these layouts are not bend minimal in the global sense, i.e. the
total number of bends can be decreased by allowing more than two bends per edge. In
Figure 5.7a we show a layout with at most two bends per edge. Among the layouts with
at most two bends per edge this one is bend minimal. However, there exists a layout with
less bends in total but this layout requires four bends on two edges. This layout is depicted
in Figure 5.7b. We conclude that restricting to two bends per edges conflicts with global
bend minimisation.

(a) At most two bends per edge. (b) Bend minimal layout.

Figure 5.7: Layouts having only two bends per edge are not bend minimal.

5.3.2 4-Bend Shape

In this section we present an algorithm that computes a shape of an upward planar rep-
resentation U such that there are at most four bends per edge. Since we allow four bends
per edge, the resulting column assignment assigns both, nodes and edges, to columns.
We take up the idea by Biedl and Kant how to draw a graph with few bends [BK94] and
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adapt it to orthogonal upward planar drawings of DAGs. This algorithm runs in linear
time as well but is fundamentally different to the 2-bend shape algorithm presented in the
previous section. Instead of treating the faces of U one by one, we now handle the nodes
of U according to an s-t-order. In contrast to Section 5.3.2 this time the s-t-order has no
significance for the final layout – we only treat the nodes according to this order. Thus,
we start with the super source ŝ and assign it to column 0. Afterwards, we assign the
outgoing edges of ŝ according to the left to right order prescribed by U such that they are
evenly distributed to the left and right of column 0.
The invariant of this algorithm is that all incoming edges of vi are already assigned to
columns, when treating vi itself. Then we assign vi to column m – the column of the
median incoming edge – and assign the outgoing edges of vi to columns. However, the
columns to the left and right of m are possibly already occupied by other edges. Therefore,
we shift all columns left (right) of m to the left (right) such that there are out-degree(vi)
empty columns which can be assigned with the outgoing edges of vi according to the left
to right order prescribed by the upward planar representation U . Thus, in contrast to the
2-bend shape, we evenly distribute the outgoing edges of vi to the left and right of the
column assigned to vi. After all nodes have been treated the algorithm terminates and
returns the column assignment for nodes and edges. For pseudocode see Algorithm 4.

Since we assign nodes and edges to columns, each edge can contain at most two horizontal
edge segments – one spanning from the source’s column to the edge’s column and one
spanning from the edge’s column to the target’s column. Thus, there are at most four
bends per edge.

Lemma 5.5. The column assignment computed by Algorithm 4 induces at most four bends
per edge of the upward planar representation U .

Furthermore, Algorithm 4 positions the nodes and edges such that incoming and outgoing
edges of each node vi are symmetrically distributed to the columns left and right of the
column assigned to vi. Thus, the resulting layouts stand out due to a high degree of
symmetry. We denote this property by local symmetry.

Lemma 5.6. In a column assignment col computed by Algorithm 4 for each node vi ∈ V̂
the column col(vi) is the median of the columns assigned to the incoming edges of vi as
well as the median of the columns assigned to its outgoing edges.

Again, we prove that the computed column assignments are realisable:

Lemma 5.7. The column assignments computed by Algorithm 4 can be realised.

Proof. A layout of U can be constructed inductively during the execution of Algorithm 4.
Since the x-coordinates are fixed by the column assignment, we only need to cope with
the y-coordinates.
Initially, we set the y-coordinate of ŝ to 0 and draw the first vertical and horizontal
segments belonging to the outgoing edges of ŝ as high as possible.
When treating vi we draw the middle vertical segments of all incoming edges of vi such that
they reach farther down than any other edge or box in the intermediate layout. Then we
append the second horizontal segments of these edges and position the box vi. Afterwards,
we draw the first vertical and horizontal segment of the outgoing edges of vi as high as
possible. We present such a realisation in Figure 5.8.

Furthermore, we prove that a realisations of a column assignments of an upward planar
representation U that is computed by Algorithm 4 is upward planar:
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Lemma 5.8. The realisations of the column assignments of an upward planar represen-
tation U that are computed by Algorithm 4 are upward planar layouts.

Proof. Again, we present an inductive proof. When positioning vi and drawing the first
segments of the outgoing edges, we cannot add crossings to the layout, because we shifted
all other boxes and edges to the left and right, respectively. Thus, we draw the outgoing
edges in an empty region.
Note that the left-to-right order of the incoming edges of a node vi that is induced by
the column assignment coincides with the left to right order prescribed by U . Thus, when
treating vi we can draw the remaining segments of the incoming edges without introducing
crossings. Since this holds for all vi the realisation of the column assignments computed
by Algorithm 4 are upward planar layouts.

Algorithm 4: 4-Bend Column Assignment

Input : Upward planar representation U ,
s-t-order v0, . . . , vn−1 of the nodes in U

Output: Column assignment for each node and each edge of U
1 For i from 0 to n− 1 do
2 I ← column indices assigned to incoming edges of vi
3 m← median of I
4 col(vi)← m
5 Shift Left(U ,m, bout-degree(vi)/2c)
6 Shift Right(U ,m, b(out-degree(vi)− 1)/2c)
7 j ← m− bout-degree(vi)/2c
8 For outgoing edge e of vi from left to right do
9 col(e)← j

10 j ← j + 1

Figure 5.8: A layouted that is based on the 4-bend shape algorithms (the small square
node is a crossing dummy).
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Runtime Analysis

Algorithm 4 requires an s-t-order of the nodes in U as input. Such an order can be
computed in linear time [ET76, ET77, Bra02]. The time complexity of Algorithm 4 itself
depends on the implementation of the two methods Shift Left and Shift Right, which are
called |VU | times.
In a greedy implementation each box and each edge would be assigned with a column
index. When calling Shift Left or Shift Right each box and edge needs to be checked and
possibly modified. Thus, the two methods would run in O(|VU |+ |AU |) = O(|VU |) yielding
an overall runtime of O(|VU |2) of Algorithm 4.
Biedl and Kant explain how the time complexity of their approach can easily be reduced
to O(|VU |) [BK94]. They represent the columns by a doubly linked list. Each box and edge
has a pointer to the column to which it is assigned. Since the position at which the new
columns shall be inserted are known, Shift Left and Shift Right can then be implemented
in constant time.
Nevertheless, we need to be careful about the computation of the median of the incoming
edges in Line 3. The column indices that are assigned to the incoming edges of vi induce
an order of these edges. The upward planar representation U prescribes an order of these
edges as well. Since U is planar, these two orders are equal. Thus, we can select the
median m without taking the assigned columns into considerations. The computation
only considers the edge order prescribed by U and, therefore, can be done in constant
time.
Thus, Algorithm 4 can be implemented as an O(|VU | + |AU |)-algorithm, which equals
to O(|VU |), because U is planar.

5.3.3 4-Bend Shape with Topology Modifications

In the last section we described how to compute a column assignment of nodes and edges of
an upward planar representation U . However, for an edge e ∈ Â and p its representing path
in U , the number of bends on e is bounded by 4·`(p), where `(p) is the number of edges on p.
This can lead to inelegant layouts, because edges with many bends are hard to trace with
the eyes. To this end, we now present an algorithm that computes a column assignment
for Ĝ such that all edges in Â have at most four bends, i.e. the bound on the number
of bends is independent of the topology computed in Section 5.2. Basically, we apply the
same technique as in Section 5.3.2. However, Ĝ contains no information about the left to
right order of the outgoing edges of a node. Instead, this order is taken from an upward
planar representation U of Ĝ. For edges ei ∈ Â that have a direct correspondence e′i ∈ AU ,

we use the ordering index of e′i that is prescribed by U . However, there are edges ei of Ĝ
that have no direct correspondence in U , because they are split into several edges due to
crossing dummies. Then ei is represented by a path p ∈ U . In this case we consider the
ordering index of the first edge on p. For pseudocode see Algorithm 5.

Lemmas 5.5-5.7 – stated in the context of Algorithm 4 – hold for Algorithm 5 with the
same argumentation as in the previous section. Putting them together, we can prove the
following theorem:

Theorem 5. The column assignments computed by Algorithm 5 are locally symmetric and
can be realised in layouts that have at most four bends per edge of Ĝ.

Note, that for an upward planar representation U containing no crossing dummies, the two
algorithms presented in this and in the previous section are the same. Since the realisations
of the column assignments computed by 4 are upward planar (see Lemma 5.8), the following
lemma holds:
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Lemma 5.9. If the upward planar representation U contains no crossing dummies, the
realisations of the column assignments computed by Algorithm 5 are upward planar as well.

Since we do not respect the whole upward planar representation in Algorithm 5 anymore,
we relax the topology which we computed in the first step. We exemplify this in Fig-
ure 5.9. It depicts a realisation of the column assignment computed by Algorithm 5. It
is the same input instance as in Figure 5.8. However, the edge crossings in Figure 5.9 do
not correspond to the crossing dummies in Figure 5.8. In fact there is one crossing more
than there have been crossing dummies. Nevertheless, Figure 5.9 looks clearer and more
well-arranged than Figure 5.8.
In particular, the column assignments computed by Algorithm 5 can be realised in layouts
that have different topologies. We illustrate this in Figure 5.10. In Figure 5.10a we present
an upward planar representation U of a graph. We compute a shape for this upward pla-
nar representation using Algorithm 5. The resulting column assignment can be realised in
layouts that differ in their topology (see Figure 5.10b).
Due to the same reason a source whose edge to ŝ contains no crossing dummy in U can
move to an internal face again. Figure 5.11 illustrates such a situation. In Figure 5.11a we
depict the upward planar representation of a graph. Note that “Source” is on the external
face of the final layout. However, in Figure 5.11b, which shows a realisation of a column
assignment computed by Algorithm 5, “Source” is positioned in an internal face.
Because of the relaxation of the topology, the final layout can have a higher number of
crossings or total source/sink distance than the topology computed in Section 5.2. In
Chapter 6 we analyse this increment empirically. In contrast, we can exploit the relax-
ation when minimising the vertical edge length in the metrics step in order to gain more
compact layouts. Thus, by relaxing the topology, we increase the significance of total
edge length minimisation in comparison to crossing number and total source/sink distance
minimisation.

Algorithm 5: Pseudo 4-Bend Column Assignment

Input : Graph Ĝ, Upward planar representation U ,
s-t-order v0, . . . , vn−1 of the nodes of Ĝ

Output: Column assignment for each node and each edge of Ĝ

1 For i from 0 to n− 1 do
2 I ← column indices assigned to incoming edges of vi
3 m← median of I
4 col(vi)← m

5 Shift Left(Ĝ,m, bout-degree(vi)/2c)
6 Shift Right(Ĝ,m, b(out-degree(vi)− 1)/2c)
7 j ← m− bout-degree(vi)/2c
8 For outgoing edge e of vi from left to right according to U do
9 col(e)← j

10 j ← j + 1

Runtime and Space Analysis

Although Algorithm 5 and Algorithm 4 are closely related, we cannot directly carry over
the runtime analysis. The crucial difference lies in the computation of the median incoming
edge in Line 3. In the context of Algorithm 4 we computed the shape of an upward planar
representation, i.e. of a planar graph. Then, the order of the incoming edges of a node vi
that is induced by the column indices assigned to these edges coincides with the order that
is prescribed by the upward planar representation.
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Figure 5.9: A layout that is based on the pseudo 4-bend shape algorithms.

(a) The topology computed in
Section 5.2.

(b) The shape computed by Algorithm 5 relaxes this topology.
The edge crossing represented by the crossing dummy is not
fixed anymore.

Figure 5.10: The shape computed by Algorithm 5 relaxes the topology computed in Sec-
tion 5.2.

However, Algorithm 5 does not compute the shape of a planar graph. In Figure 5.8 and
Figure 5.9 we exemplify that these two orders are different. We denote the unique node
having in-degree two by v. In Figure 5.8, which shows the upward planar representation
the edge that is split by the crossing dummy is the rightmost incoming edge of v. In a
realisation of the column assignment computed by Algorithm 5 (see Figure 5.9) this edge
is the leftmost incoming edge of v.
Thus, we need to consider the columns that are assigned to the incoming edges of vi in
order to compute their median m in Line 3. The median m can simply be computed using
O(in-degree(vi)) operations [BFP+73]. We sum up over all iterations:

n−1∑
i=0

in-degree(vi) = |Â|

Thus, Algorithm 5 runs in O(|V̂ |+ |Â|) = O(|Â|) time.
Of course, we need O(|V̂ |+|Â|) space in order to store the assigned columns. Furthermore,
we need O(b) space in order to store the doubly linked listed that represents the columns.
Thus, in total Algorithm 5 needs O(|V̂ |+ |Â|+ b) = O(|Â|) space.
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(a) The topology computed in Section 5.2.
“Sink” is on the external face.

(b) Using the pseudo 4-bend shape algo-
rithm “Sink” can move to an internal
face again.

Figure 5.11: The pseudo 4-bend shape algorithm can move sources and sinks to internal
faces.

5.3.4 Comparison

In the foregoing sections we described three different approaches how to compute the shape
for a given upward planar representation U in either O(|VU |) or O(|Â|) time. The actual
goal we should optimise is bend minimisation (see Section 3.3). Note that none of the
three algorithms minimises the number of bends to the optimum but all have an upper
bound for the number of bends that are created. In Table 5.2 we oppose these bounds to
each other. The 2-bend shape algorithm as well as the 4-bend shape algorithm operate on
the upward planar representation U itself. Thus, the bounds in Table 5.2 are the product
of the maximum number of bends per edge times the number of edges in U .
In contrast the 4-bend shape with topology modifications have at most 4 · |Â| bends, i.e.
the bound is independent of the computed upward planar representation U . Because of
this and because of the promising clearness and aesthetic of the 4-bend shapes, we decided
to use 4-bend shapes with topology modifications for the shape phase of the topology-
shape-metrics framework.

Shape Algorithm Runtime Number Of Bends

2-Bend Drawings O(|VU |) ≤ 2 · |AU |
4-Bend Drawings O(|VU |) ≤ 4 · |AU |
4-Bend Drawings With Topology Modifications O(|Â|) ≤ 4 · |Â|

Table 5.2: Comparison of the three shape algorithms.

5.4 Metrics

In the last phase of the topology-shape-metrics approach, we compute the final coordinates
of boxes and edges and, thereby, minimise the total edge length. The topology that we
originally computed in Section 5.2 has no influence on this step. Instead, we only rely on
the column assignment computed by Algorithm 5 in Section 5.3.3.
First we minimise the vertical edge length, i.e. the length of the vertical edge segments.
We offer two approaches for this in Section 5.4.1. Afterwards, we minimise the horizontal
edge length in Section 5.4.2. The horizontal compaction consists of two steps: (i) the
treatment of so-called bows and (ii) the actual compaction of the width.
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Note that during this process we do not drop the columns introduced while computing
the shape. All operations are performed with respect to these columns such that the final
layout is column based.

5.4.1 Vertical Edge Length Minimisation

In this section we minimise the vertical edge length, i.e. the sum of the lengths of all vertical
edge segments. We denote this problem by Vertical Edge Length Minimisation and
define it as follows:

Instance: An s-t-graph Ĝ = (V̂ , Â), a column assignment for each box n ∈ V̂ and each
edge e ∈ Â, a set of spacing constraints and an integer k ≥ 0.
Question: Is it possible to assign y-coordinates to the boxes and edges of Ĝ such that
the resulting layout is valid and the vertical edge length is at most k?

Note that the resulting column assignment of Algorithm 5 is an instance of Vertical
Edge Length Minimisation. In this section, we prove that Vertical Edge Length
Minimisation is NP-complete. Afterwards, we give an overview about two heuristic
approaches that minimise vertical edge length for a given shape. The first one is mainly of
theoretical interest, because it is complicated to implement. Therefore, we suggest another
one – a greedy approach – as well. We use the greedy approach in our implementation in
order to minimise vertical edge length.

• Network Flow: In the original version of the topology-shape-metrics approach
and in many papers basing upon Tamassia’s work the final coordinate assignment is
inspired by a network flow [Tam87]. We adapt this idea and show how the lengths of
the vertical edges can be minimised while the constraints on box dimensions, spacing
constraints and alignment of predecessors are enforced. However, this approach has
a significant drawback, namely, for the construction of the network we need a fixed
topology. Algorithm 5 relaxes the topology computed in Section 5.2 and does not
fix a new one. Therefore, we need to select one of the possible topologies before the
construction of the network. Choosing the wrong one can require unnecessary edge
length. However, we have no strategy to select a good one.

• Greedy approach: The second approach we present is a simple greedy heuristic.
In a first step we compute the groups of boxes that need to be aligned at the bottom.
Afterwards, we assign y-coordinates to each group. This approach cannot guarantee
any optimality for the computed layouts. However, the open decisions concerning
the topology are decided one by one along the edge length compaction. Using this
approach, we compute y-coordinates that lead to good looking final layouts.

The remainder of this section is structured as follows. In Section 5.4.1.1 we present the
NP-completeness proof of Vertical Edge Length Minimisation. Afterwards, we
discuss the network flow approach and the greedy approach in Section 5.4.1.2 and 5.4.1.3.

5.4.1.1 Complexity Considerations

We prove NP-completeness of Vertical Edge Length Minimisation by reduction
from 3-Partition (see Section 3.5.1 for its definition):

Theorem 6. Vertical Edge Length Minimisation is NP-complete.

The reduction is similar to the reduction from 3-Partition to Argument Map we de-
scribed in Section 3.5.1. Again, we use the 3-Partition instance A = {2, 2, 2, 2, 3, 3} and
B = 7 as example.
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For the Vertical Edge Length Minimisation instance we use the following minimum
spacing constraints: sboxbox = 40, sedgebox = 20, ŝedgeedge = 20, sedgeedge = 5 and sportcorner = 20. Further-
more, we require a uniform box width w = 135. For transforming a 3-Partition instance
to a Vertical Edge Length Minimisation instance we basically construct gadgets of
two types: (i) a frame with height of ca. mB and width of ca. |A| and (ii) one number
gadget for each a ∈ A. The frame is horizontally separated into m cells of height B. Again,
these cells represent the sets Si in the solution of the 3-Partition instance. The number
gadgets are connected to the top and the bottom of the frame such that moving them up
and down is a cost neutral operation. Some boxes of each number gadget are assigned to a
single column. The cumulative height of these boxes represent the value of the correspond-
ing element a ∈ A. Since a part of each number gadget is in the shared column, they need
to be vertically ordered and cannot overlap each other. Furthermore, we force the number
into the cells of the frame. Otherwise, i.e. in the case that an edge separating two cells
crosses a number gadget, the total vertical edge length would increase due to the internal
construction of number gadgets and due to the spacing constraints. If a solution of the
Argument Map instance is found, we can simply reconstruct the 3-Partition solution
by checking which number gadget lies within which cell. In the following we describe the
construction of the frame and the number gadgets in detail.

The Frame

In Figure 5.12 we depict the frame for the instance A = {2, 2, 2, 2, 3, 3}, B = 7. The frame
consists of |A|+ 3 columns which we denote by ci for i = 1, . . . , |A|+ 3. Edges going from
the leftmost to the rightmost column separate the whole frame into cells which correspond
to the sets Si in the solution of the 3-Partition instance. Therefore, there are m boxes
of the height H = 20 ·B+100 · (B−3)+160 as well as two boxes of height 40 in column c1
and c|A|+3. There are edges among them such that their vertical order is fixed to: a
small box, m high boxes, a small box. Furthermore, there is an edge from the i-th box in
column c1 to the (i+ 1)-th box in column c|A|+3. The horizontal edge segments spanning
over the columns c2, . . . , c|A|+2 separate the frame into the cells which correspond to the
sets Si. Therefore, we denote them by separating edges.
Column c2 is not occupied by the frame. Parts of the number gadgets will later be assigned
to this column. Columns c3, . . . , c|A|+2 contain two boxes of height 40. At first, we assume
that in each column one of the two boxes is above the highest separating edge and the
other one is below the lowest separating edge. The number gadgets will be connected to
these boxes. Therefore, we call them anchors.

The Number Gadgets

For each ai ∈ A we add a number gadget to the Vertical Edge Length Minimisation
instance. We depict the number gadget together with two anchors in Figure 5.13. A num-
ber gadget consists of ai + (ai − 1) boxes and is assigned to two columns. Each of these
boxes has height 20. There are ai boxes in column c2 and ai − 1 boxes in column ci+2.
The first and the last box of the number gadget in column c2 are connected to the anchors
in column ci+2.
Note that the drawings of the number gadgets in Figure 5.13 are minimal with respect to
the vertical edge length. In a valid solution of the Vertical Edge Length Minimisa-
tion instance the number gadgets need to be drawn in this way.
Since we assume that the anchors in column ci+2 are fixed, moving the number gadget
upwards or downwards is cost neutral, because the sum of the vertical edge lengths on the
two edges incident to the anchors remains unchanged.
Note that there are no edges between the number gadgets, i.e. their vertical ordering is
not constrained. However, they cannot overlap, because all number gadgets occupy space
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Figure 5.12: The frame of the Vertical Edge Length Minimisation instance for the
3-Partition instance A = {2, 2, 2, 2, 3, 3}, B = 7.
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in column c2. Number gadget ai occupies 20 · ai + 100 · (ai − 1) + 40 vertical units of
column c2. Summing up over the height of three number gadgets whose corresponding
numbers sum up to B and taking the spacing between them into consideration, we can
explain the height H of the boxes in column c1 and c|A|+3.
Now consider a horizontal edge segment that separates the frame into cells. If this edge
segment lies above or below the number gadget, it crosses only one vertical edge. However,
if it cuts through the number gadget, it crosses two edges.

c2 c3 c2 c3 c4

(a) The number gadget for
a = 2 and the anchors
are one column apart.

(b) The number gadget for a = 3 and
the anchors are two columns apart.

Figure 5.13: Two number gadgets for a = 2 and a = 3.

We are almost done with the transformation to the Vertical Edge Length Minimisa-
tion instance. Three things are missing: (i) the instance is not an s-t-graph yet, (ii) the
assignment of edges to columns and (iii) we did not compute k. For (i) we simply add
a super source and a super sink to column c1 and connect them with all other sources
and sinks, respectively. The resulting instance is shown in Figure 5.14. If this exceeds the
maximum in- or out-degree of a box, we need intermediate super sources and sinks that
are then connected to the real super source and sink, respectively. For (ii) we assign all
edges to the column of its source. For (iii) we set k to the sum of the minimum vertical
edge length (due to the spacing constraints) in the frame, in the number gadgets, on the
edges incident to the anchors and on the edges incident to the super source and super sink.

Correctness

We now show, that the 3-Partition instance has a solution if and only if the Verti-
cal Edge Length Minimisation instance is solvable. Therefore, we firstly assume that
the anchors are positioned outside the cells as shown in Figure 5.14. Obviously, if the
3-Partition instance has a solution, then it can be transformed to a solution of the Ver-
tical Edge Length Minimisation instance by vertically ordering the number gadgets.
If the Vertical Edge Length Minimisation instance is solvable, we need to show, that
the 3-Partition instance has a solution as well. Therefore, we show that in a solution
of the Vertical Edge Length Minimisation instance each number gadget lies within
exactly one cell of the frame, i.e. (i) no number gadget is outside the frame and (ii) no
number gadget is crossed by a separating edge.
(i) Obviously, moving a number gadget outside the frame increases the sum of the ver-
tical edge length on the edges connecting the number gadgets with the anchors. As this
movement cannot decrease the vertical edge length somewhere else, the total vertical edge
length would exceed k. Thus, this configuration would not solve the Vertical Edge
Length Minimisation instance.

70



5.4. Metrics 71

Figure 5.14: The complete Vertical Edge Length Minimisation instance for the 3-
Partition instance A = {2, 2, 2, 2, 3, 3}, B = 7.
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(ii) We already discussed, that if a number gadget is crossed by a horizontal edge segment,
then two edges are crossed by this segment. Due to the spacing constraints the y-range of
the crossed number gadget would increase by 20 units. Thus, the vertical edge length of
the number gadget would increase by 40 units. In contrast only 20 units of vertical edge
length can be reduced on the edges connecting the number gadget with its anchors. Thus,
if a number gadget is crossed by a separating edge, the total vertical edge length exceeds k
by at least 20 units.
Thus, in a solution of the Vertical Edge Length Minimisation instance all number
gadgets are assigned to a cell of the frame. This assignment corresponds to the assignment
of the values ai ∈ A to the sets Si.

Now, we drop the assumption that in each column one anchor is above the highest sepa-
rating edge and the other one is below the lowest separating edge. Thus, the anchors can
move into the cells now. However, moving an anchor into a cell cannot reduce the total
vertical edge length. The sum of the vertical edge length on the edge connecting the anchor
with the super source or sink, respectively, and on the edge connecting the anchor with the
number gadget remains unchanged. Thus, we can drop this assumption without further
modification and conclude, that Vertical Edge Length Minimisation is NP-hard.
Since it is easy to see that Vertical Edge Length Minimisation ∈ NP, Vertical
Edge Length Minimisation is NP-complete. In the following two sections we suggest
two approaches how to cope with the problem of vertical edge length minimisation.

5.4.1.2 Network Flow Compaction

In this section we describe how a network-flow approach can be used to minimise the verti-
cal edge length for a given column assignment. Before we describe the construction of the
network we refer to one shortcoming of the network flow approach, i.e. a fixed topology is
required. However, Algorithm 5 in Section 5.3 introduces some flexibility to the topology
of Ĝ. In Figure 5.15 we depict two possible topologies of the same graph for the shape
computed by Algorithm 5. Having these topologies fixed in both layouts the total vertical
edge length is minimal. Nevertheless, in Figure 5.15a the vertical edge length is less than
in Figure 5.15b. Thus, the optimum concerning the vertical edge length depends on the
chosen topology.
Unfortunately, we have no efficient approach to choose the topology that leads to a lay-
out that has minimal vertical edge length over all possible topologies. Thus, we suggest
to choose one arbitrarily. Furthermore, we need to decide for each edge crossing which
segment of the one edge is crossed by which segment of the other one.

Having made these decisions, we are ready to construct the flow network. We will first
describe the general construction of the network and, afterwards, explain how the edge-
box and edge-edge spacing constraint and alignment can be enforced. We conclude with
a discussion of how edge crossings can be handled.

The general idea behind the network flow approach is that for each vertical edge segment
and each vertical box boundary there exists an edge in the flow network. The length
of a vertical edge segment is modelled as the volume of the flow on the corresponding
edge. Furthermore, we add some edges to the flow network in order to model minimum
spacing constraints. We enforce them by adding upper or lower bounds for the flow on a
single edge. Furthermore, we assign costs to the edges of the flow network. Edges that
correspond to vertical edge segments have cost 1, whereas all other edges are assigned
with zero costs. In this network we then search for a cost-minimal flow using standard
techniques. The resulting flow corresponds to a layout with minimal vertical edge length
subject to the fixed topology.
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(a) Vertical edge length minimal layout over
all possible embeddings.

(b) Vertical edge length minimal layout for
a specific embedding.

Figure 5.15: The vertical edge length minimal layout depends on the chosen embedding.

For the construction of the flow network we create one node per box and one node per
face except the external face. For the external face we create two nodes of which one will
serve as the source and one as the sink of the flow network. Furthermore, we add an edge
for each vertical line in the layout, i.e. there is one edge for each left or right boundary of
a box as well as one edge for each vertical edge segment. Edges that correspond to a box
boundary connect the node corresponding to the box and the node corresponding to the
face to the left or the right of the box, respectively. Edges that belong to a vertical edge
segment connect the nodes that belong to the two incident faces. All edges are directed
such that their source is on the left side of the corresponding vertical line and their target
is on the right side. In Figure 5.16 we depict the flow network. We label the edges of the
flow network using the notation “lower bound/upper bound/cost per unit”.
The boxes have a fixed height, i.e. the flow on the corresponding edges needs to be
fixed as well. Thus, we set the lower and upper bound of these edges to the height of
the corresponding boxes. The costs of these edges are zero as our goal function shall be
independent of the box heights.
The edges that correspond to a vertical edge segment are labelled with l/∞/1 where l
depends on the number of edge segments and whether this one is the first, second or third
segment. In general an edge of Ĝ consists of three edge segments. However, if the column
of the source or the target is the same as the column of the edge, segments can coincide.
For the choice of l we distinguish the following three cases:

• One vertical segment: For a unique vertical segment we set l to sboxbox.

• Two vertical segments: For both vertical segments we require a lower bound of
l = sedgebox for the flow on the corresponding edge.

• Three vertical segments: For the first and the last segment we set l to sedgebox .
The flow on the middle segment is not bounded as we do not enforce any spacing
constraint on two segments belonging to the same edge, i.e. l = 0.

Using the already described flow network we only enforce the minimum spacing con-
straints sboxbox and sedgebox as long as the box is source or target of the edge. However, we
do not treat the edge-box spacing constraint, if the box is neither source nor target of the
edge, and the edge-edge spacing constraint yet. Enforcing these constraints is subject of
the two following paragraphs.
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Figure 5.16: The general structure of the flow network for vertical edge length minimisa-
tion.

Minimum Edge-Box Spacing

We now enforce the minimum spacing constraint sedgebox between a box and an edge such
that the box is neither the source nor the target of the edge. We depict such a scenario in
Figure 5.17. We need to enforce a minimum distance of sedgebox between v2 and the first as
well as the second horizontal segment of edge (v1, v3). However, there is no vertical line in
the final layout that represents these two spacing constraints (marked red in Figure 5.17).
These vertical lines separate the face surrounded by v1, v2 and v3 into three regions. One
of them contains the node we originally added for this face. For the other two regions we
create a new node in the flow network and relink the network flow edges corresponding to
the vertical edge segments bordering the region to the newly added node. Furthermore,
we add two edges from the original node of the face surrounded by v1, v2 and v3 to the
newly added nodes. These edges have sedgebox as lower bound and are assigned with zero cost,
because the do not correspond to a vertical edge segment, and hence enforce the minimum
spacing constraint sedgebox .

Minimum Edge-Edge Spacing

In the context of vertical edge length minimisation we only need to cope with the vertical
distance between two horizontal edge segments. We discuss two cases we need to treat:
The first one occurs if two edges starting at the same box bend to the same side (see
Figure 5.18a). In this case we add an additional node to the face that is bounded by
these two edges. Some of the edges adjacent to the old node are relinked to the new one.
Furthermore, we create an edge connecting the old node with the new one. This edge has
sedgeedge as lower bound. As it does not cross any vertical line in the layout the costs for the
flow on this edge are zero.
The second case is that two edges belonging to the same face have overlapping x-coordinates
due to the column assignment. There are several possibilities how this case can be con-
structed. In Figure 5.18b we depict the possibility that one edge originates in the same
column as another ends. Thus, the horizontal segments overlap in one point. We can
enforce the minimum edge-edge spacing using basically the same approach as in the first
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Figure 5.17: Enforcing the minimum spacing constraint sedgebox . The red vertical lines repre-
sent the minimum spacing constraint.

case. However, the lower bound for the flow on the edge is ŝedgeedge as the two edges have
neither a common source nor a common target (see Section 3.4).

Alignment

We now turn to the alignment of predecessors, i.e. we require that the predecessors of a
node are aligned at the bottom of their boxes. As already discussed in Section 3.2 this is
not in all cases possible, because there can exist a directed path between two predecessors.
Aligning them would conflict with the upward drawing constraint. In such a situation we
are allowed to arbitrarily choose a set of predecessors such that their alignment is feasible.
In the context of the network flow approach we require that there exists no directed
path from an aligned predecessor to an unaligned one, whereas paths from unaligned
predecessors to aligned ones are allowed. We illustrate this using the example depicted in
Figure 5.19. There exist two paths between the predecessors: (v1, v2) and (v1, v3). Thus,
we can align v2 and v3 but leave v1 unaligned.
In terms of flow this means that the flow that passes between v2 and v4 has the same volume
as the flow that passes between v3 and v4. However, there is v1 and the edge (v1, v4) in
between on which no alignment constraints shall be enforced. In this scenario we insert an
additional node to each of the two faces and relink the edges passing between v2 and v4 and
between v3 and v4, respectively, to these nodes. Furthermore, we add an edge connecting
these two nodes and label it with 0/∞/1.

The scenario described above is easy to handle as (v1, v4) consists of a single edge segment.
Now, assume that it has three edge segments. There are three options how the alignment of
the two other boxes can be performed. We depict these options in Figure 5.20a-5.20c. We
denote the red dashed line representing the alignment of the two outer nodes by alignment
line. The point in question is which of the three segment of the edge in the middle is cut
by the alignment line. We decided to use Option (b) as this is the most symmetric option
but other decisions would be admissible as well.
If the edge consists of two vertical segments we need to distinguish two cases. If there is
another predecessor that is assigned to the same column as the edge’s source, the alignment
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(a) Enforcing the minimum spacing constraint sedgeedge.
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(b) Enforcing the minimum spacing constraint ŝedgeedge.

Figure 5.18: Enforcing the minimum distance between two edges. The red vertical lines
represent the minimum spacing constraints.

line cuts the segment that is closer to the target. However, if all other predecessors are
assigned to other columns than the edge’s source, the alignment line cuts the vertical
segment that is closer to the source.
In Figure 5.21a-5.21d we give an overview how to treat edges between two aligned boxes
depending on the number of their vertical edge segments. Note that the scenario illustrated
in Figure 5.19 corresponds to Figure 5.21a.

However, it is not clear, that this modelling does not conflict with vertical edge length
minimisation. In Figure 5.21a there are two edges crossing the same vertical edge segment.
The lower one is needed for the alignment, whereas the upper one serves the remaining
part of the segment. In total at least sboxbox flow units shall cross the edge segment in order
to enforce the minimum spacing constraint between the two incident boxes. Now imagine,
that the lower edge would already transport sboxbox flow units. Thus, the spacing constraint
between the two boxes is already fulfilled. However, the lower bound of the upper edge
requires additional sboxbox flow units to cross the vertical edge segment. If this lower bound is
a bottleneck in the flow network, this could lead to vertical edge segments that are longer
than actually necessary. The same problem arises in Figure 5.21b-5.21d.
In Lemma 5.10 we show that this is not possible. We prove that the network structure
and the bounds depicted in Figure 5.21a-5.21d lead to a layout with minimal vertical edge
length as long as the spacing constraints fulfil a certain inequality.

Lemma 5.10. The constraints on the network flow depicted in Figure 5.21a-5.21d do not
conflict with vertical edge length minimisation as long as the inequality 2·sedgebox ≥ sboxbox holds.

Proof. In this proof we distinguish the three cases depicted in Figure 5.21a-5.21d and treat
them one by one. We denote the node whose predecessors are aligned by t and the edge
between two aligned predecessors by (s, t).

• One vertical segment: As s is not aligned with the other predecessors of t there exists
a directed path p from s to another predecessor of t, which we denote by v. The
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Figure 5.19: Enforcing the alignment of the predecessors. The new nodes and the new
edge are marked red.

(a) Option (a). (b) Option (b). (c) Option (c).

Figure 5.20: The possibilities how to align two predecessors if there is another one in-
between.

path p together with (v, t) and (s, t) form a face of Ĝ. Since s and v are assigned
to different columns, there is at least one edge e on p that consists of at least two
vertical segments. Thus, e has at least vertical edge length 2 · sedgebox , i.e. at least
2 · sedgebox flow units cross the edge segments belonging to p. As p, (v, t) and (s, t) form
a face these flow units need to cross (s, t) as well. Due to the network structure these
units flow on the upper edge depicted in Figure 5.21a. As 2 · sedgebox ≥ sboxbox the lower
bound sboxbox on this edge is fulfilled.

• Two vertical segments: In the case that (s, t) consists of two vertical segments we
distinguish which of these segments is cut by the alignment line. By definition
the alignment line cuts the segment that is closer to the target, if there is another
predecessor that is assigned to the same column as s. Otherwise, the alignment line
cuts the vertical segment that is closer to the source.

– In the first case we show that the lower bound on the lowest edge crossing (s, t)
in Figure 5.21c needs to be fulfilled. There are at least two predecessors of t that
are aligned. Thus, at least one of them is assigned to another column than t.
We denote this one by v. Since v and t are assigned to different columns, the
edge (v, t) consists of at least two vertical segment. Thus, it is crossed by at
least 2 · sedgebox flow units. These units flow on the lowest edge in Figure 5.21c as
well. Hence, the lower bound sedgebox of this edge is fulfilled.

– In the second case the argument is similar to the single vertical segment case.
Assign v and p as described there. As s and v are assigned to different columns,
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Figure 5.21: The flow network for the alignment of two predecessors if there is an edge
between them. The two upper round black nodes belong to the face to the
left or the right of the edge. The two lower round black nodes are inserted in
order to enforce alignment.

there is at least one edge e on p that consists of at least two vertical segment.
Thus, e has at least vertical edge length 2 · sedgebox , i.e. at least 2 · sedgebox flow units
cross the edge segments belonging to p. As p, (v, t) and (s, t) form a face these
flow units need to cross (s, t) as well. Due to the network structure these units
flow on the topmost edge depicted in Figure 5.21d. Hence, the lower bound sedgebox

of this edge is fulfilled.

• Three vertical segments: If (s, t) consists of three vertical segments the difference
introduced by alignment is that the middle segment is crossed by two network edges.
As there are no constraints on these edges, i.e. both have 0 as lower bound and ∞
as upper bound, this cannot conflict with vertical edge length minimisation.

In Figure 5.22 we demonstrate how the alignment and the minimum edge-edge spacing can
be enforced at the same time. Thereby, we add multiple nodes for some faces, e.g. in the
face surrounded by v2, v3, v5 there are three nodes: the original one, one for the alignment
and one for the edge-edge spacing constraint.
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Figure 5.22: Combining the alignment of the predecessors and the edge-edge spacing con-
straint.

Edge Crossings

Up to now, we described the flow network construction for planar graphs. In this paragraph
we discuss how to handle edge crossings. As described in the introduction of this section
the topology needs to determine which edges cross. Furthermore, we need to decide which
segment of the one edge is crossed by which segment of the other one. Afterwards, we need
to enforce the minimum edge-edge spacing or minimum edge-box spacing. Therefore, we
have one edge in the flow network above the crossing and one below it (see Figure 5.23).
Depending on whether there is a bend or a box we have different lower bounds on these
edges.

ŝedge

edge
/∞/1

sedge

box
/∞/1

Figure 5.23: How to enforce the spacing constraints around an edge crossing.

Summary

In this short summary of the network flow approach we list the open decisions during the
flow network construction. Firstly, we need to fix the topology such that it is determined
which edges cross. If two edges cross, we need to decide which edge segments cross each
other. Furthermore, we need to choose one of the possibilities depicted in Figure 5.20a-
5.20c, i.e. how to treat an edge that is between two aligned predecessors. Having decided
on these points the network flow approach computes a layout with minimal vertical edge
length as long as 2 · sedgebox ≥ sboxbox.
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5.4.1.3 Greedy Compaction

The network flow approach to edge length minimisation described in the foregoing section
has two shortcomings. On the one hand it is quite complicated to implement and on the
other hand it only computes an optimal solution if restricting to a specific topology and
under certain constraints (see Section 5.4.1.2). Therefore, we decided to follow another
approach that is easy to implement and returns promising results although it does not
guarantee any optimality.
The idea of this approach is to find groups of nodes whose corresponding boxes need to
be aligned at their bottom. These groups are treated one by one according to a reverse
topological order of the groups. When positioning a group, we assign the highest possible
y-coordinate to the lower side of the boxes in the group. Thereby, we assign coordinates
to the source port and the first two bends of the outgoing edges and to the last two bends
and the target port of the incoming edges.
In the sequel we describe the single steps of this approach in detail.

Groups of Boxes

In the first step of the greedy approach we find groups of nodes whose corresponding boxes
need to be aligned at the bottom. In Figure 5.24 we illustrate that the grouping may not
be unique. In this example there are two ways how two group the three nodes 1, 2 and 3:
{1, 2} and {3} or {1} and {2, 3}. They cannot form one single group as there is a directed
path from 3 to 1. Aligning 1, 2 and 3 would contradict with the upward drawing constraint
(see Section 3.2).

Figure 5.24: The groups are not well-defined. Either we use the groups {1, 2} and {3} or
{1} and {2, 3}.

We compute the grouping of the nodes using Algorithm 6. We iteratively select a node v
that is not yet grouped and create a new group gi containing v. We initialise nextSuccs with
the set of successors of v. The group gi is iteratively extended until the set nextSuccs is
empty. In each iteration we check whether the elements of nextSuccs are feasible successors.
A successor s is feasible if all its immediate predecessors can be added to gi:

Definition 5.11 (Feasible Successor). Let s be the successor of a node in group g. The
node s is a feasible successor with respect to group g if there is no directed path between
an immediate predecessor p of s and a node n ∈ g.

If a node s ∈ nextSuccs is a feasible successor we add all its immediate predecessors to gi.
Otherwise, we simply skip s. After treating all nodes in nextSuccs we update nextSuccs
such that it contains the successors of the nodes we added to gi in the current iteration.
If one of these successors has been treated in the current or an earlier iteration we do not
add it again.

We now turn towards the runtime analysis of Algorithm 6. At first we need to compute
which of the predecessors of a node v is an immediate predecessor and between which
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Algorithm 6: Grouping

Input : Graph Ĝ = (V̂ , Â)
Output: Groups g1

.∪ g2
.∪ . . . .∪ gk = V̂ of the nodes in Ĝ

1 i← 1

2 while ∃n ∈ V̂ : n 6∈ gj for 1 ≤ j < i do
3 Insert v into gi
4 nextSuccs← successors of v
5 while nextSuccs 6= ∅ do
6 For s ∈ nextSuccs such that s is feasible do
7 For p immediate predecessor of s not in a group gj with 1 ≤ j ≤ i do
8 Insert p into gi
9 nextSuccs← successors of nodes added to gi in this iteration that have not

been treated yet

10 i← i+ 1

pair of nodes a directed path exists. This can easily be done in O(|V̂ | · (|V̂ |+ |Â|)) time:
We start depth-first-searches at each n ∈ V̂ . If we reach a successor s of v only once,
then v is an immediate predecessor of s. Furthermore, we thereby compute all pairs of
node between which a directed path exists.
Now, we analyse the runtime of Algorithm 6 itself assuming that the information about
immediate predecessors and directed paths is given. We amortise the cost of the feasibility
checks in Line 6 over all iterations and then analyse the runtime of the remaining algorithm:
To check whether a successor s is feasible we need to check whether there is a directed
path from an immediate predecessor of s to a node in gi or vice versa. Let #p(s) be the
number of immediate predecessors of s. Checking s upon feasibility needs 2 · |gi| ·#p(s)
look-ups whether there exists a directed path. For each i a node s is checked at most once
but it can be checked with respect to different groups gi. In order to amortise the costs of
Line 6 we need to consider the following sum:

k∑
i=1

∑
s∈V̂

2 · |gi| ·#p(s) = 2 ·
k∑
i=1

|gi| ·
∑
s∈V̂

#p(s)

= 2 · |V̂ | ·
∑
s∈V̂

#p(s)

≤ 2 · |V̂ | · |Â|

Thus, the amortised costs of Line 6 are O(|V̂ | · |Â|).
The remaining part of the algorithm runs in O(|V̂ |+ |Â|) time. The summand |V̂ | stems
from the insertion of the nodes in V̂ into a group gi in Line 3 and 8, whereas the treatment
of predecessors or successors (Line 4, 7 and 9) is assigned to the arcs leading to the
summand |Â|.
In total Algorithm 6 runs in O(|V̂ | · (|V̂ |+ |Â|) + |V̂ | · |Â|+ |V̂ |+ |Â|) = O(|V̂ | · (|V̂ |+ |Â|))
time. In order to store the information about the directed paths, we need O(|V̂ |2) space.

Order of Groups

In the second step we compute an order of the groups. We will later position the groups
one by one according to the computed order. Since we draw the layout bottom-up in the
third step, when positioning a group gi all successors of nodes in gi need to be positioned
already. Thus, the order we compute needs to be a reverse topological order. This step
can be done in O(|V̂ |+ |Â|) time and space.

81



82 5. Topology-Shape-Metrics

Positioning the Groups

In the last step of the greedy approach the actual coordinate assignment takes place. We
treat the groups according to the order computed in the second step. The y-coordinates
of the ports and the bends of an edge are computed in two parts. When the source of
an edge is positioned, we compute the y-coordinates of the source port and the first two
bends. The first bend is in the source’s column, whereas the other one is in the column
assigned to the edge. The two last bends and the target port are computed, when the
target of it is positioned.

At first, we compute the highest possible y-coordinate ŷ for the lower boundary of the
nodes in gi. We compute the highest possible y-coordinate ŷ(vj) for each node vj ∈ gi
separately and then take the minimum of these values as ŷ.
When computing ŷ(vj) we need to consider that we have not routed the second part of
the edges whose sources are in gi yet. For each of these edges we compute the highest
possible y-coordinate by going over all columns between the edge’s column and the source’s
column. For each column we consider the highest already drawn edge or node and add
the appropriate minimum spacing. We take the minimum of all these values which is the
highest possible y-coordinate for the horizontal edge segment. Basing upon this value we
can compute an upper bound for the y-coordinate of vj .
After computing the bounds induced by the horizontal segments of the incident outgoing
edges of vj , we need to check the box-box spacing to another box in the same column
as vj .

After computing v̂j for each vj ∈ V̂ , we set ŷ to the minimum of these values. Then, we
position the boxes in gi such that their lower boundary is aligned at ŷ and draw the second
part of the outgoing edges. Thereby, we draw the horizontal segments as high as possible.
Afterwards, we draw the incoming edges as low as possible. Therefore, we process the
nodes vj ∈ gi in an arbitrary ordering and draw their incoming edges such that all spacing
constraints hold.

The runtime of this step is O(|V̂ |+ |Â| · b) where b is the width of the shape measured in
the number of columns. Each node in V̂ is considered only once, i.e. when it is positioned.
The edges are treated twice: Once when the target is positioned and its first part is drawn
and a second time when its source is positioned, i.e. the second part of the edge is drawn.
Both times the highest possible y-coordinate needs to be determined which requires as
much operations as the drawn horizontal segment spans columns. We simply bound this
number of columns by b.

Runtime and Space Analysis

The computation of the groups in step one takesO(|V̂ |·(|V̂ |+|Â|)) time, whereas the groups
can be order in O(|V̂ |+ |Â|). For the final y-coordinate assignment we need O(|V̂ |+ |Â| ·b)
time. Thus, the greedy approach runs in O((|V̂ | + b) · (|V̂ | + |Â|)) time in total. As Ĝ
is connected and, therefore, O(|V̂ |) ⊆ O(|Â|), we can simplify the runtime expression to
O((|V̂ |+ b) · |Â|).
For the computation of the groups O(|V̂ |2) space is required. Furthermore, we need
O(|V̂ |+ |Â|) space for storing the y-coordinates assigned to the boxes and the edge ports
and bends. Additionally, we store for each of the b columns the highest object that is
already drawn. Thus, in total the greedy compaction needs O(|V̂ |2 + |Â| + b) = O(|V̂ |2)
space.

Comparison to the Network Flow Compaction

A shortcoming of the greedy approach in comparison to the network flow approach is
that it actually only tries to minimise the height of the layout instead of the vertical edge
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length itself. We illustrate this in Figure 5.25. The high box in Group 1 forces Group 3
to be positioned quite high. Thus, Group 2 can be positioned in several ways. The greedy
approach positions Group 2 as low as possible. However, Group 2 has two incoming
edges and one outgoing edge, i.e. by moving it upwards the vertical edge length can be
minimised. Of course, this could be optimised by a post-processing step. However, for the
sake of simplicity we pass on without post-processing.
Nevertheless, there is a big advantage over the network flow approach: We do not fix the
topology beforehand. The open decisions concerning the edge crossings are made one by
one when the edges are drawn. The information gathered by drawing a partial layout can
help to reduce the vertical edge length in comparison to fixing an arbitrary topology before
constructing the flow network.

(a) The layout resulting from the greedy ap-
proach.

(b) The optimal layout with respect to vertical
edge length minimisation.

Figure 5.25: A shortcoming of the greedy approach.

5.4.2 Horizontal Edge Length Minimisation

We follow two approaches in order minimise horizontal edge length. On the one hand we
try to avoid that an edge contains a horizontal segment that is directed to the right as
well as one that is directed to the left in Section 5.4.2.1. On the other hand we minimise
the width of the final layout in Section 5.4.2.2.

5.4.2.1 Bow Reduction

The column assignment computed by Algorithm 5 can contain so called bows. By bow
we denote an edge that contains a horizontal segment that is directed rightwards as well
as one that is directed leftwards. Thus, the column assigned to the bow is not between
its source’s and its target’s column. In Figure 5.26 we depict a layout that has two bows.
These are the edges (2, 4) and (1, 6). We distinguish necessary and unnecessary bows. A
bow is unnecessary iff the enclosed rectangle contains no box (see Figure 5.26). Thus, (2, 4)
is an unnecessary bow, whereas (1, 6) is necessary. An unnecessary bow can be removed by
assigning the source’s or target’s column to the edge itself. Due to the removal of a bow,
another bow can become compactable. In Figure 5.26 the removal of the bow (2, 4), makes
the bow (1, 6) compactable by one column. In this section we only discuss the removal of
unnecessary bows. For the compaction of bows we can apply the techniques presented in
the subsequent section.

In a first step we iterate over all edges of Ĝ and check which of them is a bow. As
this condition can be checked in constant time, we can detect the bows in O(|Â|) time.
Afterwards, we treat them one by one and check whether they can be removed. A bow
is anchored in three different columns, i.e. the source’s column, the target’s column and
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Figure 5.26: The bow (2, 4) can be removed, whereas the bow (1, 6) is necessary, because
the blue region (right side) contains Box 2. However, the removal of bow
(2, 4) makes bow (1, 6) compactable by one column.

the column assigned to the edge itself. By middle column we refer to the column in the
middle. Note that due to the definition of a bow, the middle column is either the source’s
or the target’s column. When removing a bow, we move the middle vertical segment from
the edge’s column to the middle column. Thus, there may be no other box in this column
that would be intersected by the moved vertical segment. This can be checked in O(|V̂ |)
time. Summing up over all treated bows, we need O(#bows · |V̂ |) operations in order
to check which bows are unnecessary and to remove them. Thus, bow reduction in total
needs O(|Â|+ #bows · |V̂ |) time and O(1) space.

5.4.2.2 Width Compaction

After compacting the height in Section 5.4.1 we discuss width compaction in this section.
Due to the shifting in each iteration of Algorithm 5 we introduce new columns to the shape.
Some of them are necessary while others will be partly or even completely empty in the
final layout. Thus, the final layout is wider than actually necessary. In Figure 5.27a we
depict a layout that can be compacted by two columns. Our approach to width compaction
is column based, i.e. the resulting layout again consists of disjoint columns.
In this section we first discuss the theoretic preliminaries of width compaction before we
come to an algorithm which performs the width compaction.

Preliminaries

We perform width compaction along so-called compaction paths. Each compaction along
a valid compaction path will reduce the number of columns by one. We firstly define the
term compaction path and describe how to compact along such a path. Afterwards, we
can discuss validity of a compaction path.

Definition 5.12 (Compaction Path). A compaction path is a axis-parallel y-monotone
path passing through a layout from the top to the bottom. It may only cut horizontal edge
segments. Furthermore, its vertical segments need to run within columns such that no
vertical edge segment is allowed to run through the same part of these columns.

In Figure 5.27b-5.27d we depict three compaction paths for the layout shown in Fig-
ure 5.27a. Of course, many more compaction paths are possible.

In Figure 5.28 we illustrate how compaction along a compaction path is performed. Firstly,
we split the path into its vertical segments. Then we delete the y-range of a column that
contains a vertical path segment. Thus, in total we gain one column of free space. We move
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(a) A layout that can be compacted by two columns.

(b) Compaction Path 1.

(c) Compaction Path 2.

(d) Compaction Path 3.

Figure 5.27: An uncompacted layout and some valid compaction paths.
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(a) The compaction path along which we compact.

(b) All boxes and edges right of the compaction path are moved one column to the left.

Figure 5.28: How to perform compaction along a compaction path.

everything that has been right to compaction path one column to the left and, thereby,
fill the free space again. Thus, in total the number of columns decreased by one.

Note that compacting along a compaction path can lead to an infeasible layout, because
spacing constraints could be violated (see Figure 5.29). Therefore, we distinguish between
valid and invalid compaction paths.

(a) The compaction path along which we
compact.

(b) After the compaction the spacing constraint
between the two edges can be violated.

Figure 5.29: An invalid compaction path.

Definition 5.13 (Valid Compaction Path). A valid compaction path p is a compaction
path such that compacting the layout along p results in a valid layout.

The compaction paths depicted in Figure 5.27b-5.27d are all valid. However, we cannot
compact the layout along all of them together. Therefore, we expand the term validity
from a single compaction path to a set of compaction paths:
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Definition 5.14 (Valid Set Of Compaction Paths). A valid set of compaction paths is a
set of compaction paths such that the contained paths do not overlap each other. However,
they are allowed to cross each other. Furthermore, compacting the layout along these paths
needs to result in a valid layout.

In the example of Figure 5.27 two possible valid sets of compaction paths are {Compaction
Path 1, Compaction Path 2} and {Compaction Path 1, Compaction Path 3}. However,
Compaction Path 2 and Compaction Path 3 together cannot be in a valid set of compaction
paths as they overlap each other.
Note that a set of valid compaction paths is not necessarily a valid set of compaction paths.
In Figure 5.30a we depict two valid compaction paths. However, compacting along both
paths can violate the spacing constraint between the two edges (see Figure 5.30b).

(a) The set of compaction paths along which we compact. Both
compaction paths are valid.

(b) After the compaction the spacing
constraint between the two edges
can be violated.

Figure 5.30: An invalid set of compaction paths.

The algorithm we present in the following paragraph finds the compaction paths using a
right-first search. Therefore, we introduce the terms rightmost valid compaction path and
rightmost valid set of compaction paths. Afterwards, we argue that a cardinality-maximal
valid set of compaction paths can be transformed to a rightmost valid set of compaction
paths of the same cardinality.

Definition 5.15 (Rightmost Valid Compaction Path). A rightmost valid compaction path
is a valid compaction path p = (p1, . . . , pk) fulfilling the following property: No sub-
path (pi, . . . , pj) of p can be replaced by a path (q1, . . . , ql) that is right of p such that
(p1, . . . , pi−1, q1, . . . , ql, pj+1, . . . , pk) is a valid compaction path.

Definition 5.16 (Rightmost Valid Set Of Compaction Paths). A rightmost valid set of
compaction paths P = {p1, . . . , pk} is a valid set of compaction paths such that no pair
of paths pi, pj for i 6= j cross each other and p1 is a rightmost valid compaction path.
Furthermore, we require for i = 1, . . . , k − 1 that pi+1 is left of pi and no subpath of pi+1

can be replaced by a path in-between pi and pi+1 such that pi+1 stays a valid compaction
path.

In Figure 5.31 we depict a rightmost valid set of compaction paths for the example of
Figure 5.27. It remains to show that we can transform any cardinality-maximal valid set
of compaction paths P = {p1, . . . , pk} to a rightmost valid set of compaction paths of the
same cardinality. We do this by the following normalisation steps:

• Remove crossings: Firstly, we remove all crossings of paths. Let pi and pj for i 6= j
cross each other. We simply swap the suffixes of the paths that start at the crossing.
Afterwards, pi and pj touch each other but do not cross anymore. Furthermore,
we cannot introduce a new crossing by this approach. Thus, the overall number of
crossings decreases by one in each step.
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• Order the paths: Since the paths p1, . . . , pk do not cross, we order them from right
to left.

• Move rightwards: After removing all crossings we treat the paths pi in the increas-
ing order of their indices. As long as we can perform a replacement of a subpath
of pi as forbidden in Definition 5.15 and 5.16, we perform this replacement.

After these normalisation steps we gain a rightmost valid set of compaction paths. Note
that we do not change the number of paths during the normalisation. Thus, the right-first
approach we present in the following paragraph is feasible.

Figure 5.31: A rightmost valid set of compaction paths.

The Algorithm

In this paragraph we present the algorithm that performs the width compaction. As
already mentioned in the foregoing paragraph, this algorithm finds compaction paths by
using a right-first search. Initially, we build up the compaction network in which we search
for compaction paths using the right-first search. After we found a compaction path, we
need to slightly modify the compaction network in order to ensure that the computed set
of compaction paths is valid.

At first, we describe the initialisation of the compaction network D. The compaction
network depends on empty regions in the columns, i.e. we need to find the empty rectangles
in each column. Therefore, we create a list per column which will contain the boxes and
edge segments that are contained by the corresponding column. Afterwards, we iterate
over all boxes and edges. We add the boxes to the list of the column to which they are
assigned. The edges are treated more fine-grained. All three vertical segments are added
to the list of the corresponding column. Furthermore, we add the horizontal segments to
all columns between the source’s column and the edge’s column and the edge’s column
and the target’s column, respectively. Thus, in total we have O(|V̂ |+ |Â| · b) entries in the
lists. Since Ĝ is connected and, therefore, O(|V̂ |) ⊆ O(|Â|), we can simplify the number
of entries to O(|Â| · b). Each of these entries is associated with two y-coordinates that
determine the y-range that is occupied by the box or edge segment, respectively. We sort
these entries according to their y-coordinates in O(|Â| · b · log(|Â| · b)) time.
Afterwards, we detect the free rectangles in the columns, i.e. the gap between two entries
in the list whose y-ranges do not touch. Furthermore, we assume that on the top and on
the bottom of each column is a large free rectangle. For each free rectangle we add a node
to D. Since there is a bijective mapping between nodes and free rectangles, we do not
distinguish between them.
Since we have at most O(|Â| · b) entries that bound the free rectangles, there can be at
most O(|Â| · b) rectangles, i.e. at most O(|Â| · b) nodes in D.
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We create the edges of D in two ways: For two rectangles in the same column we add an
edge between them, if they are only separated by a single horizontal edge segment.
Furthermore, we create edges between rectangles in neighbouring columns if their y-ranges
overlap. Imagine two overlapping rectangles of neighbouring columns as depicted in Fig-
ure 5.32a. If a compaction path p runs through these rectangles as shown in Figure 5.29a,
compacting along p would move the right box under the left one. Then the distance
between the two edges needs to be at lest sedgeedge or ŝedgeedge, respectively. Note that this dis-
tance after the compaction equals to the overlapping of the y-ranges of the two rectangles.
Therefore, we only add an edge from the right to the left rectangle, if the overlapping of the
y-ranges of the two rectangles is at least the minimum spacing sedgeedge or ŝedgeedge, respectively.
However, we always add an edge from the left to the right rectangle. If compacting along
a path that runs from left to right, the two edges do not move to the same column and we
cannot violate a spacing constraint. Analogously, we add edges in the mirrored case (see
Figure 5.32b).
As final step of the construction of D, we add two nodes to D which we denote by s and t.
We connect s to all rectangles on the top of the columns and connect all rectangles on the
bottom of the columns with t.
Obviously, D is a planar graph, i.e. it has at most O(|Â| · b) edges. However, we need
to check more pairs of rectangles than we add edges. Using Algorithm 7 the number of
checks that do not lead to an edge is in O(|Â| · b) as well. Thus, the construction of D can
be performed in O(|Â| · b) time. In Figure 5.33a we depict a clipping of a layout and the
corresponding compaction network D.

(a) Case (a). (b) Case (b).

Figure 5.32: Edges between overlapping boxes of neighbouring columns.

Algorithm 7: Edges Between Columns

Input : Graph D, free rectangles ri,j in columns ci
1 For i from 1 to b− 1 do
2 j1 ← 0
3 repeat
4 j2 ← 0
5 repeat
6 If ri,j1 and ri+1,j2 overlap
7 Add edges to D
8 Else If ri+1,j2 is below ri,j1
9 break

10 j2 ← j2 + 1

11 until all rectangles in column ci+1 treated
12 j1 ← j1 + 1

13 until all rectangles in column ci treated
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We use the compaction network D in order to find compaction paths using a right-first
depth-first search starting at s. Thereby, we need to ensure that the computed compaction
path is y-monotone. Therefore, we always keep the current y-coordinate in mind. We are
only allowed to move to a neighbouring rectangle if this requires no upward movement of
the compaction path. If the search reaches t, we found a compaction path.

After a compaction path has been found, we need to slightly modify the compaction
network. The part of the compaction network that is right of the compaction path cannot
be part of a further compaction path, because we use a right-first search. Therefore, we
do not need to consider this part. However, we need to treat the part through which
the compaction path cuts (see Figure 5.33): We split rectangles that contain (a part of)
a vertical segment of the compaction path such that there is one rectangle that is cut
from top to bottom and one or two rectangles that are not cut by the compaction path.
Rectangles that are crossed horizontally are split into two rectangles as well.
For all rectangles that are cut from top to bottom by a vertical path segment we delete
the corresponding nodes in D. Afterwards, we need to create edges between the newly
created rectangles on the left side of the compaction path and their surrounding rectangles.
In Figure 5.33a-5.33c we illustrate the modification of D after the compaction along a
compaction path. After the modification of D we continue the right-first search in order
to find more compaction paths. The set of compaction paths we compute is (i) rightmost,
because we use a right-first search and (ii) valid due to the construction of D and its
modifications.

Runtime and Space Analysis

We now turn to the runtime and space analysis of finding the compaction paths. We
already argued that D has at most O(|Â| · b) nodes and it is planar. However, the size
of D can increase due to the modifications after the compaction along a path. Recall
that we are dealing with rightmost compaction paths. Thus, each horizontal segment of a
compaction path coincides with the upper or lower boundary of a rectangle. Otherwise,
we can replace a subpath of the compaction path with a path that is right of it, i.e. the
compaction path was not rightmost yet. We now estimate the number of rectangles we
need to create at most.
Assume we would split all rectangles at the y-coordinates of the upper and lower boundary
of a single rectangle. Thereby, we can create at most two new rectangles per column, i.e.
2 · b rectangles in total. Doing this with all O(|Â| · b) rectangles, we have O(|Â| · b2)
rectangles. Thus, the number of nodes in D cannot exceed O(|Â| · b2). As D is still planar,
the number of edges has the same complexity. In order to analyse the time complexity of
the right-first depth-first search that operates on a changing graph, we assume that it is
directly executed on the final D. Thus, it runs in O(|Â| · b2).
When all compaction paths are found, we need to compact along them. Compacting along
one path can easily be performed in O(|V̂ |+ |Â| · b) = O(|Â| · b). Thus, compacting along
all paths needs O(|Â| ·b ·(b− b̂)) time, where b̂ is the number of columns in the final layout.

Summing up the runtime of the initial construction of D, the computation of the com-
paction paths and the compaction itself, we get O(|Â| · b · (log(|Â| · b) + b + b − b̂)) =
O(|Â| · b · (log(|Â|)+ b)) as total runtime. As argument maps are simple graphs, |Â| ≤ |V̂ |2
holds. Thus, we can further simplify the time complexity to O(|Â| · b · (log(|V̂ |) + b)).
The required space is in O(|Â| · b2), because the number of nodes and edges in D can
grow to this number. Furthermore, we need O(|V̂ | + |Â|) space to store the column as-
signment. Thus, the size of D is the greatest summand and the space complexity of the
width compaction is O(|Â| · b2).
In our implementation we use a slightly modified version of the algorithm we just described.
In order to avoid the modification of the compaction network after the compaction along
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a compaction path, we simply recompute the compaction network from scratch. Note that
this is a greater effort than modifying the compaction network. Nevertheless, it has only
little impact on the empiric runtime of width compaction.

5.5 Summary

Before evaluating the layouts computed by the topology-shape-metrics approach we pre-
sented in the foregoing sections, we give a short summary of it in this section. Furthermore,
we present the time and space complexity of the single steps in Table 5.3.

In Section 5.1 we showed how to transform the input graph G into an acyclic graph Ĝ
with a single source and single sink.
Afterwards, we compute an upward planar representation by using layer-free upward cross-
ing minimisation technique by Chimani et al. [CGMW10] as described in Section 5.2. To
this end, we first compute a feasible upward planar subgraph and route the remaining
edges through this subgraph. In doing so, we try to insert the edges cost minimal. If a
cost minimal insertion would forbid the insertion of remaining edges, we use a heuristic
approach to insert the edge instead. For the computation of the upward planar represen-
tation we use randomisation when computing the feasible upward planar subgraph as well
as for the reinsertion of the remaining edges.
In the subsequent step we assign the nodes and edges to columns (see Section 5.3) such
that each edge is bent at most four times. Thereby, we relax some decisions that have
been made during the computation of the upward planar representation, i.e. the computed
column assignment can lead to other crossings than the upward planar representation pre-
scribes.
In Section 5.4 we compute the final coordinates of boxes and edges. Firstly, we compact
the height using a greedy approach that positions groups of nodes that need to be aligned
one by one. Afterwards, we remove unnecessary bows and compact the width.
In the last step we reverse the edges that were reversed in Section 5.1 in order to remove
cycles.

Topology Time Complexity Space Complexity

Feasible upward planar subgraph O(|Â|2) O(|Â|)
Optimal edge insertion O(|V̂ |+ r) O(|V̂ |+ #crossings)

Heuristic edge insertion O(|V̂ |2 + r|V̂ |) O(|V̂ |+ #crossings)∑
(only optimal edge insertions) O(|Â|2) O(|Â|+ #crossings)∑
(with heuristic edge insertions) O(|Â|2 · |V̂ |) O(|Â|+ #crossings)

Shape

4-bend shape with top. mod. O(|Â|) O(|Â|)
Metrics

Height compaction O((|V̂ |+ b) · |Â|) O(|V̂ |2)
Bow reduction O(|Â|+ #bows · |V̂ |) O(1)

Width compaction O(|Â| · b · (log(|V̂ |) + b)) O(|Â| · b2)∑ O(|Â| · b · (|V̂ |+ b)) O(|Â| · b2)
Total

Only optimal edge insertion O(|Â|2 · b) O(|V̂ |2 + |Â| · b2 + #crossings)

With heuristic edge insertion O(|Â|2 · (|V̂ |+ b)) O(|V̂ |2 + |Â| · b2 + #crossings)

Table 5.3: An overview over the runtime of the single steps.

In Table 5.3 we give an overview of the running times of the single steps we just described.
The variable r stands for the number of edges that we need to insert after the current
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edge. By b we denote the number of columns in the column assignment of the shape. Note
that r, b, |V̂ | ≤ |Â| holds.
Furthermore, we present two overall running times of the whole topology-shape-metrics
approach. One time we assume, that during the computation of the topology all edges
are inserted optimally, and get the overall runtime O(|Â|2 · b). The other time we assume,
that there are heuristic edge insertions as well, which leads to an overall running time of
O(|Â|2 · (|V̂ |+ b)). The space complexity is O(|V̂ |2 + |Â| · b2 + #crossings) in both cases.
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(a) The compaction network D.

(b) A compaction path p.

(c) The modified network after the compaction along p.

Figure 5.33: The compaction network D and how it is modified.
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6. Evaluation

In this chapter we evaluate the layouts computed by our topology-shape-metrics approach
which we described in the foregoing chapter. For the computation of the topology we set
the parameters α and δ to one, i.e. we equally weight crossing minimisation and total
source/sink distance. Furthermore, we require the following minimum spacings: sboxbox = 40,
sedgebox = 20, sedgeedge = 5 and ŝedgeedge = 20. As already mentioned in Section 5.2 we randomise the
computation of the topology. We randomise it at two points:
(i) For the construction of the feasible upward planar subgraph we randomise the order
in which we visit the outgoing edges during the depth-first searches. Furthermore, we
randomise the order of insertion of edges that are not in the initial feasible upward planar
subgraph. Each time we compute a feasible upward planar subgraph, we use ten ran-
domised runs and choose the subgraph having at most edges as result.
(ii) Afterwards, we reinsert the missing edges in a random order.
These two steps are performed ten times, i.e. we execute the computation of a feasible
upward planar subgraph 10 · 10 = 100 times in total. Over all runs we take the crossing
minimal upward planar representation as result.

In Section 6.1 we discuss the aesthetic qualities of these layouts, whereas we present the
hard facts, e.g. the number of crossings, in Section 6.2.

6.1 Case Studies

In this section we present six layouts that are created by the algorithms described in
Chapter 5. Using these layouts as example we discuss the benefits and the disadvantages
of these algorithms. Figure 6.1 and Figure 6.2 show two layouts for which we have no
suggestions for improvement. Both layouts are free of crossings, their numbers of bends
are close to the minimum, they are compact and locally symmetric. Beside the hard facts
they are well structured and give a good impression of the flow of argumentation. The
other four layouts – though they are good looking in general – have minor drawbacks which
we discuss in the following.

In Figure 6.3 and Figure 6.4 there is a set of boxes on the right side of the layout that are
positioned quite high. It seems as one could move these boxes downwards. However, these
boxes are aligned with boxes that are some columns apart, i.e. they need to be positioned
that high. One could reconsider the drawing style of argument maps such that alignment
of boxes is only required if the number of columns between the boxes is small. Note that
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we can easily integrate such a modification by adapting the computation of the groups in
Algorithm 6 in Section 5.4.1.3.
However, Figure 6.3 gives a good example of the edge bundling enabled by the different
minimum edge-edge spacings sedgeedge and ŝedgeedge. At the rightmost sink there are two edges
having only sedgeedge distance, because they have a common sink. These edges are bundled.
However, above the second rightmost sink we can see two edges that are not bundled.
Since the two edges have neither a common source nor sink, the distance between their
horizontal segments is at least ŝedgeedge.

In Figure 6.5 on the left side there is a constellation that is similar to a bow which we
treated in Section 5.4.2.1. However, this time we have a bow containing a box. We
could expand the concept described in Section 5.4.2.1 to paths in Ĝ that contain only
nodes whose in-degree and out-degree equals to one. However, the scenario depicted in
Figure 6.5 only occurs 5 times in the 51 input instances. Therefore, we omit its treatment.

The layout shown in Figure 6.6 consists of many columns but is quite flat. However, the
number of columns is bounded by the number of sources and the number of sinks of G as
we require free sources and sinks (see Section 3.2). Again, one could reconsider the drawing
style of argument maps, because especially for large trees layouts get badly proportioned.

Figure 6.1: Instance D-2.5.

6.2 Statistics

After giving an overview on the aesthetic qualities of the layouts computed by our topology-
shape-metrics approach, we discuss the hard facts, e.g. the number of crossings, the number
of bends and the runtime, in this section. Our analysis is based on the 51 argument maps
supplied by the three sources presented in Section 2.2.

We start analysing the number of crossings in the final layout as well as in the upward
planar representation U (see Figure 6.7). Although it is theoretically possible that the
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Figure 6.2: Instance D-3.5.

Figure 6.3: Instance D-2.7.
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Figure 6.4: Instance D-4.2.

Figure 6.5: Instance D-5.3.
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Figure 6.6: Instance CE-1.2.

final layout contains less crossings than U , for all instances there are at least as many
crossing in the final layout as in the upward planar representation U . However, if U is free
of crossings, then the final layout is planar as well (see Lemma 5.9). On average there
are 69% more crossings in the final layouts than in the upward planar representations.
Breaking down the number of crossings to the number of edges, we have 0.14 crossings per
edge.
Furthermore, it is notable that for the vast majority of argument maps the computed
layout is planar. There are thirteen non-planar layouts but only five instances that are
not upward-planar. Thus, one could reduce the number of crossings for eight instances.
Note that for these eight instances the number of crossings in U is non-zero as well.
One approach in order to reduce the number of crossings is to increase the number of
randomised runs during the computation of the topology. This increases the probability
that the computed topology is optimal with respect to the number of crossings and the
total source/sink distance. However, this will increase the runtime of this step as well.
In Figure 6.8 we depict the distribution of the number of crossings on an edge for all
instances. Note that in contrast to Figure 6.7 we now count each crossing twice, i.e. one
time for the one edge and one time for the other edge. The filled diamond indicates the
mean of the number of crossings on an edge. In most cases it is very close to zero. However,
there are four instances having around one crossing on each edge. The maximum number
of crossings on an edge is ten. Nevertheless, most non-planar layouts have at most two
crossings on an edge.
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Figure 6.7: Number of crossings divided by the number of edges.
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Now, we turn towards the bends. Again, we plot the distribution of the number of bends
on an edge broken down to the instances (see Figure 6.9). Due to Algorithm 5 there can
be at most four bends per edge. Except of three bend-free layouts, the average number
of bends per edge lies between 0.40 and 1.52. Only 13 of 51 layouts have edges that have
four bends. Taking the average over all layouts, we have 1.07 bends per edge.

The total source/sink distance is notably low. Since we align all sinks at their bottom
in Section 5.4.1.3, the sink distances are always zero. Except of two layouts all source
distances are zero. In these two layouts there are one and ten sources, respectively, whose
source distance is one. In the upward planar representation the edges connecting the super
source ŝ and these sources were free of crossings. However, since the topology is relaxed
in the shape and metrics steps, these eleven boxes were moved into an internal face again
(see Figure 5.11 on page 66 for illustration).

As already discussed in the foregoing section, the number of sinks and the number of
sources are lower bounds for the number of columns. Therefore, we analyse the number
of columns divided by the maximum of the number of sources and the number of sinks.
In most cases the layouts have at most twice as many columns as the lower bound. The
average is 1.38 times the maximum of number of sources and sinks. There are two outliers
that have four and five times as many columns. These two instances contain cycles which
are removed by the method described in Section 5.1. However, we count the sources and
sinks before the removal of cycles. Due to the cycle removal the number of sources and
sinks in these two instances increase. Thus, the two outliers are comprehensible.
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Figure 6.10: Number of columns in relation to the known lower bounds.

We measure the area of a layout by the area of the smallest bounding box containing the
whole layout and set it into relation to the number of nodes and the number of edges. In
most cases, this measure is less than 60, 000. However, there are two outliers. These two
layouts have many shallow columns and few tall columns which force the bounding box
to be tall as well. Thus, if the area would be measured using the contour of the layout
instead of the bounding box, these outliers would assimilate.

Furthermore, we are interested in the aspect ratio of the layouts, i.e. the ratio of width to
height (see Figure 6.12). Our preferred interval for the aspect ratio is from 0.5 to 2. There
are 18 layouts, i.e. 35.3%, that are outside this interval. Only one of them has an aspect
ratio that is too small, whereas 17 are too wide in comparison to their height. The far
outliers having an aspect ratio of 7.9 or even more almost only consist of singleton nodes.
Thus, the number of columns is high, whereas each column is only as tall as a single node.
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Figure 6.11: Area per node and edge.

Therefore, the aspect ratio is high as well. Ignoring these outliers, the aspect ratio of the
layouts lie in an interval from 0.47 to 5.64. The average aspect ratio is 3.11.
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Figure 6.12: Aspect ratios of the computed layouts. The red rectangle indicates the pre-
ferred range for the aspect ratio.

Finally, we turn towards the runtime analysis. In Figure 6.13 we depict the maximum
runtime over the number of nodes. The maximum runtime is 25,667ms for an instance
having 134 nodes and 158 edges, whereas the average is 769.84ms. However, the average
runtime is strongly influenced by the few large instances. Therefore, we give the maximum
and the mean runtime for instances in our evaluation set of 51 argument maps that have
up to 10, 20, 30 and 40 nodes in Table 6.1.

As stated in Chapter 2, 96% of the argument maps consist of at most 40 nodes and 78%
have at most 20 nodes. Thus, for 96% of the instances a layout can be computed in 124ms
on average. For 78% the mean of the computation time is 24ms.

It is interesting, how high the contribution of the three phases topology, shape and metrics
to the overall runtime is. Shape and metrics make only insignificant contributions of
0.003% and 0.494%, respectively, whereas topology needs 99.503% of the overall runtime.
Thus, the topology step is the bottleneck of the whole topology-shape-metrics approach.
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#Nodes Max in ms Mean in ms

≤ 10 1 1

≤ 20 262 24

≤ 30 524 61

≤ 40 2095 124

All 25,667 769.84

Table 6.1: Maximum and mean runtime in our test suite broken down by the number of
nodes.

Therefore, we decreased the number of randomised runs of both, the feasible upward
planar subgraph and the topology computation, to three. Recall that for each topology
computation run we compute a feasible upward planar subgraph. Thus, we compute
3·3 = 9 subgraphs in total – in comparison to 100 computations when using ten randomised
runs. This reduced the average runtime over all 51 instances to 72.59ms, i.e. to 9.4%.
Surprisingly, this severe runtime optimisation had no influence on 47 layouts – they did
not change. On the 4 remaining instances the runtime reduction had only small impact,
i.e. the number of crossings increased by 17% on average, whereas the other properties
remained almost unchanged. For one instance having 20 nodes the number of crossings
was increased from ten to eleven. A strong influence of this optimisation step is noticeable
with three layouts containing 40, 72 and 134 nodes, respectively. Therefore, we suggest
to adjust the number of randomised runs to the size of the argument map that is to be
layouted.

We conclude that the computed layouts are of high quality from an aesthetic point of
view as well as regarding the statistics. Both, the number of crossings and the number of
bends, are small. The total source/sink distance is 0 for 49 of 51 layouts. Furthermore,
the layouts are compact and there are 33 layouts that have an aspect ratio in our preferred
interval ranging from 0.5 to 2.
However, one could reconsider the drawing style in two points. Layouts having a large
number of sources sinks are forced to have many columns. For these argument maps
the aspect ratio exceeds the value two and the resulting layouts are unnaturally flat.
Furthermore, the alignment of predecessors can lead to confusion, if a box is aligned with
another that is several columns apart. In the following chapter we present our ideas how
to cope with these shortcomings of the drawing style.
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7. Conclusion

In this work we developed the characteristics of good layouts of argument maps and pre-
sented an algorithm that computes such layouts. In general, layouts of argument maps
are orthogonal upward drawings. Since the boxes are of uniform width, we focus on
column-based layouts, i.e. the canvas is divided into disjoint columns of uniform width
that corresponds to the uniform width of the boxes. During the layout computation the
boxes and vertical edge segments are positioned within these columns. Furthermore, we
enforce alignment of predecessors, free sources and sinks, minimum spacing between boxes
and edges as well as local symmetry. Besides the number of crossings, number of bends and
total edge length, which are typical optimisation goals, we minimise the total source/sink
distance as well. Thereby, we basically denote the distance from the sources and sinks of
the graph to the outer face of the layout.

Our approach integrates the layer-free upward crossing minimisation technique recently
published by Chimani et al. [CGMW10] into the well-known topology-shape-metrics frame-
work. In the first step we minimise the number of crossings as well as the total source/sink
distance. Afterwards, we use a modified graph drawing heuristic by Biedl and Kant [BK94]
such that there are at most four bends per edge. Thereby, nodes and edges are assigned to
columns. In the last step, we first minimise vertical edge length using a greedy approach
and then horizontal edge length basing on a flow network. During the edge length minimi-
sation we remain true to the columns such that the resulting layouts are column based.
Unconventionally, we do not fix the topology computed in the first step throughout the
remaining phases. When computing the column assignment in the second step, we relax
some of the decisions we made before, and hence, the edge crossings are not determined
anymore. We fix the edge crossings again when minimising the vertical edge length. In
usual applications of the topology-shape-metrics framework, bend minimisation and total
edge length minimisation are subordinated to crossing minimisation. However, using our
approach we increase their significance.

Note that our algorithms for crossing and total source/sink distance minimisation, for bend
minimisation and for vertical edge length minimisation are heuristics. For the first and
third problem we proved NP-completeness. However, a proof of the NP-completeness of
bend minimisation is missing.

The layouts we compute using this approach are of high quality and outperform our expec-
tations. They have a clear, well-structured look and are compact as well. Input instances
that have a typical size for argument maps can be layouted in 124ms in average. Thus,
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our algorithm is feasible for practical purposes as well and will be integrated into an editor
for argument maps called argunet1.

Future Work

There are problems in the context of layouts for argument maps we did not handle in
this work. One of them is already described in Section 3.2: the grouping of boxes into a
bounding box that contains no other boxes. However, we offer no methods to enforce this
type of constraint.

In Section 6.1 we already broached that one could reconsider the drawing style of argument
maps concerning two points: (i) The alignment of predecessors can lead to boxes that
seem to be layouted unnecessary high, because they are aligned with boxes that are many
columns apart (see the right side of Figure 6.3 and 6.4). This could be improved by taking
the number of columns between the predecessors into account. Then, only boxes that are
close to each other would be aligned. (ii) The constraint “free sources and sinks” enforces
a high number of columns if the number of sources or sinks is high. Especially for large
trees, the resulting layouts look unnatural (see Figure 6.6). One could either relax this
constraint for some sources and sinks or omit it totally. We can easily adapt our width-
compaction algorithm in Section 5.4.2.2 to omit the constraint for single sources or sinks
by simply removing the edge connecting the source (sink) with the super source (super
sink), because these edges keep the columns above the sources and below the sinks free.

Furthermore, it is of interest to separate the incoming edges such that the supporting
edges are en bloc and the argument is centred below these edges. Then, the attacking
edges would come from the left or right side. This would increase readability, because the
supporting paths are layouted straightly top-down.

Finally, since the construction of argument maps is a dynamic process, it would be a great
support for the user to create incremental layouts, i.e. to adapt the former layout after an
insertion or deletion has been proceeded.

1See www.argunet.org
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