
Unpacking Planar Clustered Graphs:
To Bend or not to Bend?

Bachelor Thesis of

Nina Zimbel

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Dr. Tamara Mchedlidze
Marcel Radermacher, M. Sc.
Dr. Ignaz Rutter

Time Period: 1st December 2016 – 31st March 2017

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 31st March 2017

iii

Abstract

Every time the layout of very big graphs shall be edited, it is wise to edit an
abstraction instead and then transfer the changes back to the layout of the original
graph. For abstraction we use a cluster-graph, in which each vertex represents one
cluster of the original graph.

From a planar straight-line drawing of this cluster-graph we aim to construct a
planar straight-line drawing of the original planar graph, which keeps the positions
of the clusters and the embedding. To keep the positions of the clusters we limit
the regions into which the clusters can be drawn by circles around the vertices of
the cluster-graph. In contrast to some other papers in this field, which require
biconnected clusters, we require connected clusters to be able to use our construction
more flexibly.

Under the condition that the graph induced by two clusters does not contain another
cluster in its interior, we show constructively that it is possible to generate a drawing
of the original graph with the above-mentioned properties.

Deutsche Zusammenfassung

Immer dann, wenn das Layout sehr großer Graphen bearbeitet werden soll, ist es
sinnvoll eine Abstraktion zu verwenden und dann die Änderungen auf das Layout
des Originalgraphen zurück zu übertragen. Zur Abstraktion verwenden wir einen
Clustergraphen, in dem jeder Knoten ein Cluster des Originalgraphen darstellt.

Das Ziel dieser Arbeit ist es, aus einer planaren, geradlinigen Zeichnung dieses
Clustergraphen, unter Erhalt der Einbettung und der Positionen der Cluster, eine
planare, geradlinige Zeichnung des planaren Originalgraphen zu erstellen. Zum Erhalt
der Clusterpositionen werden die Flächen, in denen die Cluster gezeichnet werden
dürfen, durch Kreise um die Knoten des Clustergraphen begrenzt. Im Gegensatz
zu einigen anderen Arbeiten in diesem Bereich, die zweifach zusammenhängende
Cluster vorraussetzen, verlangen wir einfach zusammenhängende Cluster, um diese
Konstruktion flexibler einsetzen zu können.

Unter der Voraussetzung, dass der induzierte Graph zweier Cluster kein weiteres
Cluster in seinem Inneren enthält, zeigen wir konstruktiv, dass es möglich ist eine
Zeichnung des Originalgraphen mit den oben genannten Eigenschaften zu erstellen.

v

Contents

1 Introduction 1
1.1 Related Work . 1
1.2 Our Contributions . 3

2 Preliminaries 5

3 Unpacking Planar Clustered Graphs 13
3.1 Construction of the Drawing . 17
3.2 Correctness of the Construction . 22

4 Conclusion 27

Bibliography 29

vii

1. Introduction

Very big graphs can be found in many fields. Good examples are networks in social media
like Facebook or Twitter, big wiring diagrams or road maps. The size of those graphs
often prohibits any way of showing them on a display. So an abstraction is necessary. In
most cases, these graphs are provided with a layer of meta data that specifies some kind
of grouping on the vertices. These groups are called clusters and a graph with clusters is
called clustered graph.
A cluster-graph of a clustered graph is an abstraction where each cluster is represented by
one vertex and two vertices are adjacent if the two corresponding clusters are connected by
edges.

Sometimes it is necessary to edit the layout of big graphs, for example if their layout
is generated automatically and one wants to apply changes by hand. In this case, one
can instead edit the layout of the abstraction, the cluster-graph. The problem is then to
transfer the changes that were made in the layout of the cluster-graph to the layout of the
original graph. This should be done in a way that does not destroy the editor’s intentions
and his perception of the whole graph. The cluster-graph should, in some way, be seen as
a sketch for the drawing of the entire graph.

As this problem is very general, we restrict it to planar clustered graphs with planar
cluster-graphs and straight-line drawings. Also we require the clusters and the whole
clustered graph to be connected. We formalise the notion of preserving the user’s sketch as
follows: each cluster is required to lie in a small circle around the point representing this
cluster in the cluster-graph (for an example see Figure 1.1).

1.1 Related Work
Planarity is a popular aspect in graph theory and network visualisation [11]. Fáry [8]
shows that it is always possible to find a planar straight-line drawing of a planar graph.
So when thinking about planar straight-line drawings, it is more interesting to consider
variations of planarity. Many of those variations are studied [10], for example planarity
of clustered graphs by defining c-planarity [3]. A graph is c-planar if it is planar, no two
curves bounding clusters cross each other and no edge crosses the curve bounding a cluster
more than once. In our setting, these curves are the circles into which the clusters shall be
drawn.

Testing whether a graph is c-planar is a popular problem. Feng et al. [7] present an
algorithm that determines whether a connected clustered graph is c-planar and, if it is,

1

1. Introduction

Figure 1.1: A small example of editing the layout of a planar graph with a clustering. In
the left column the layout of the cluster-graph and in the right column the
corresponding layout of the original graph is shown.

2

1.2. Our Contributions

provides a c-planar embedding in O(n2) time. It is an open problem if the existence of a
c-planar drawing for a general graph can be tested in polynomial time and if a c-planar
drawing for a general c-planar graph can be found in polynomial time [10].

Another popular question is, how much space the drawing of a graph needs. In [6]
Feng et al. show that there exist clustered graphs whose straight-line drawings always
require exponential area when the regions for the clusters are bordered by convex regions.
They also present an algorithm which calculates a c-planar straight-line drawing of a
clustered graph C, where the regions representing the clusters are convex, in O(n2.5) time.
It considers nested clusters. Additionally they assume that the skeleton of C, which is the
graph consisting of the boundary of each cluster and the edges between different clusters,
is triconnected and that each of its clusters is biconnected.

Angelini et al. [2] introduce an algorithm that computes a c-planar straight-line drawing for
every c-planar clustered graph for an arbitrary assignment of convex shapes to the clusters.
They do not require a triconnected skeleton or biconnected clusters, but, in contrast to our
problem, the algorithm takes no constraints for the drawing that restrict the positions of
the clusters.

The problem of drawing hierarchical clustered graphs is investigated in [5] by Eades and
Feng. They propose a method to visualise clustered graphs in 3-dimensional space. Each
level of abstraction is drawn in a plane at a different z-coordinate. They show how to
derive such a 3-dimensional drawing from a 2-dimensional c-planar drawing.

Alam et al. [1] examine rectangular maps in context of clustered graphs. A rectangular
map is a rectangle that is subdivided into rectangular regions. Each rectangular region is
assigned to one cluster and defines the region where this cluster can be drawn. The inter-
cluster edges between two clusters must only pass through the borders of the rectangular
regions that are shared by the rectangular regions of both clusters. It is required that the
clustered graph is biconnected.
For this problem two condition are found: The first requires that each vertex has only
inter-cluster neighbours of the same cluster and the second requires that each connected
component of the cluster-graph has at most one cycle. Each of these conditions guarantees
that a planar straight-line drawing on the given rectangular map is possible.

1.2 Our Contributions
We assume that a connected clustered graph C of a planar graph G and a planar straight-
line drawing of the cluster-graph GC of G is given as input. The requirement that the
drawing of the cluster-graph is planar and straight-line is essential, as we get the positions
of the clusters from this drawing. If it would not be planar it might not be possible to
construct a straight-line drawing. If it would not be straight-line, we could get a situation
where we have collinear clusters that we want to connect with straight edges. They would
overlap and make it impossible for us to find a planar drawing of the original graph.
With this input we want to show that C has a c-planar straight-line drawing such that each
cluster lies in a circle around the point that represents this cluster in the drawing of GC .

We found that it is not always possible to achieve such a drawing. Consider a clustered
graph where inside the interior of the subgraph induced by the vertices of two clusters
a third cluster is embedded (see Figure 1.2). For the drawing we want to construct, we
blow up the vertices of the cluster-graph to circles with uniform size. Inside of these, the
clusters shall be drawn. But to keep the embedding of the original graph the red edge
in Figure 1.2 has to be drawn “around” the enclosed cluster. This is not possible with a
straight-line edge.

3

1. Introduction

Vi Vj

Vh

Gi

Gh Gj

Gi

Gh

Gj

C GC C

Figure 1.2: An example of a non-simple clustered graph. On the left the planar clustered
graph C, in the middle the corresponding cluster-graph GC with a planar
straight-line drawing and on the right the constructed drawing of C with the
desired properties, except that the red edge cannot be drawn straight-line.

To avoid such a situation, we define the property simple (see the preliminaries in Chapter 2)
and require our input graph C to fulfil it.

Our approach is different to [5] and [6] as we restrict the clustered graph to have only one
level of abstraction. Secondly, we do not restrict the cluster-graph to be tri- or biconnected,
like in [1] or [6]. This is also the biggest challenge for our construction. And thirdly, we fix
positions for the clusters, which distinguishes our problem from those of [2] and [6].

In the next chapter we introduce some definitions and notation. Chapter 3 includes our
main theorem and its corollary with a constructive proof. With Chapter 4 we conclude
this thesis.

4

2. Preliminaries

In this chapter we introduce definitions used in the next chapter. We mainly follow the
definitions and notation of the paper “Fitting Planar Graphs on Planar Maps” by Alam
et al. [1] for the basic concepts. During the whole chapter we use an example graph to
illustrate the definitions.

Let G = (V,E, E) be a planar embedded graph with a vertex set V , an edge set E and a
plane embedding E . Let V be partitioned into disjoint sets V = {V1, . . . , Vk}, k ≥ 1. We
call the tuple C = (G,V) a planar clustered graph. For each i, 1 ≤ i ≤ k, let Ei ⊂ E be
the set of edges between any two vertices of Vi. We call them intra-cluster edges. And
let Einter ⊆ E be the set of all edges with endpoints in different clusters, the inter-cluster
edges. See Figure 2.1 for an example of a planar clustered graph with inter-cluster edges
highlighted in red. Note that E = E1 ·∪ · · · ·∪Ek ·∪Einter. We call Gi = (Vi, Ei, Ei), 1 ≤ i ≤ k,
clusters of G. The embedding Ei is given by restricting E to Vi.

G1

G2

G3

G4

Figure 2.1: The clusters of the planar clustered graph are marked in gray and the inter-
cluster edges in red. The boundaries of the outer faces of the clusters are
marked in blue. The skeleton is the union of the red inter-cluster edges and the
blue boundaries. The black vertices and edges form the interior of the clusters.

5

2. Preliminaries

A clustered graph C = (G,V) is connected (resp. biconnected) if G and each Gi, 1 ≤ i ≤ k,
are connected (resp. biconnected) graphs.

Definition (Skeleton). The skeleton SC(Gi), 1 ≤ i ≤ k, of a planar connected cluster Gi
of G is defined as the boundary of the outer face of Gi. It consists of all vertices and edges
that are incident to the outer face of Gi. The skeleton of a connected planar clustered
graph C is S(C) =

⋃k
i=1 SC(Gi) ∪ Einter. See Figure 2.1 for illustration.

We observe that every SC(Gi) is a cactus graph, a connected graph, in which every two
cycles have at most one vertex in common and it is embedded in such a way that every
vertex is adjacent to the outer face.

Definition (Block-cut Tree). For every connected graph H, the block-cut tree T (H) is
constructed as follows (for illustration see Figure 2.2): We refer to the maximal biconnected
components of H as blocks, to the vertices in one block B as V (B) and to the edges of B as
E(B). The vertices of H that belong to more than one block are called cut vertices. The
block-cut tree T (H) has a b-vertex for each block and a c-vertex for each cut vertex. A
b-vertex of T (H) is connected to a c-vertex if and only if the block of the b-vertex contains
the cut vertex corresponding to the c-vertex. Only vertices of different kinds are connected
in T (H).

We claim that the graph T (H) is a tree. To see this, assume that T (H) has a cycle. Then
the subgraph of H belonging to this cycle would itself contain a cycle, which is biconnected.
Therefore the division into blocks has not been maximal.
Let l be a leaf vertex of T (H). We observe that l is always a b-vertex and refer to the
block of l as leaf block.

SC(G1) T (SC(G1))

r1

r1 = vb

vb

vr

vr

vm

vm

Figure 2.2: On the left side, the five blocks of SC(G1) of the example graph are marked. The
cut vertex shared by the green, orange and blue block is chosen as root for the
block-cut tree. On the right side the block-cut tree T (SC(G1)) is depicted. The
b-vertices are coloured in the same colors as the blocks on the left. C-vertices
are shown in black. The green block is the parent block of the red block, and
the yellow block is the parent block of the magenta block.

We create block-cut trees with an arbitrary c-vertex as root ri for each SC(Gi), 1 ≤ i ≤ k.
If T (SC(Gi)) has only one b-vertex, it has no c-vertices. In this case, we choose the vertex
that shall be represented by the root c-vertex ri out of the vertices of SC(Gi) with at least
one incident inter-cluster edge. Only if there is no such vertex, we choose a vertex with no
incident inter-cluster edge. This is important for our construction for Theorem 3.1.
Let p, q ∈ T (SC(Gi)) be two b-vertices. If p and q are connected to the same c-vertex and
p is closer to the root than q, we call the block represented by p the parent block of the
block represented by q.

6

ε

ci

cj

ch

cf

cg

Figure 2.3: Circles shall neither overlap each other nor the strips (dashed lines) between the
circles of adjacent clusters. This circle arrangement is not valid as ch overlaps
with the strip between ci and cj and cf overlaps with cg. Note that this circle
arrangement can be made valid by reducing ε.

In the following we refer to blocks of a graph SC(Gi) as SC-blocks. Note that every SC-block
is a simple cycle or only consists of two vertices and one edge. In the latter case we call it
degenerated. If SC(Gi) only contains one vertex it has no SC-blocks. For a non-degenerated
SC-block B, we call everything that is embedded inside the face, bounded by the cycle B
in the graph C, the interior of B and denote the vertices of the interior of B with V◦(B)
and the edges with E◦(B). Inside a degenerated SC-block B nothing can be embedded, so,
in this case, the interior is empty and we define V◦(B) and E◦(B) as empty sets.

Definition (Inter-cluster Neighbours). Let the inter-cluster neighbours Ninter(vi) of a
vertex vi in a cluster Gj , 1 ≤ j ≤ k, of a planar clustered graph C be the sequence of
vertices (xi1, . . . , xil) in clusters other than Gj incident to vi in clockwise order.
Let B be an SC-block in Gj . Let (v1, . . . , vm), vi ∈ V (B), i = 1 . . .m, be the vertices of
B in clockwise order. The inter-cluster neighbours of B are the inter-cluster neighbours
of every vi concatenated in clockwise order and without duplicates. We refer to them as
Ninter(B). To the inter-cluster edges incident to B we refer as Einter(B).

Definition (Circle Arrangement). A circle arrangement C with respect to a clustered
graph C with l clusters is a set of l circles in the plane with radius ε where one cluster is
assigned to each circle. A circle arrangement C is valid, if the following two conditions
hold:

• The circles do not overlap or touch each other.

• Consider strips of width 2ε that connect circles of adjacent clusters (see Figure 2.3).
A strip connecting the circles ci and cj , 1 ≤ i, j ≤ l, is bordered by two parallel
tangents. It consists of ci, cj and the region in between, enclosed by the tangents. We
require that no circle ch assigned to a cluster Gh overlaps or touches a strip between
ci and cj , i, j 6= h.

Definition (C-valid). Let C be a valid circle arrangement. A drawing of a planar clustered
graph C is C-valid if every cluster is contained in its assigned circle.

For a C-valid planar straight-line drawing of our example see Figure 2.4.

Definition (Simple). A clustered graph C = (G,V) is simple when, for every 1 ≤ i, j ≤ k,
there is no cluster Gh, i, j 6= h, embedded in the interior of the subgraph induced by Vi ∪Vj
(see Figure 2.5).

Note that this condition also implies that the clustering is flat, that means no cluster
Gi contains another cluster in one of its inner faces. Figure 2.5 illustrates the case of
a clustered graph with a flat clustering that is not simple. For a non-simple clustered
graph C and a valid circle arrangement C with respect to C it is not possible to find a
C-valid planar straight-line drawing of C.

7

2. Preliminaries

G1

G2

G3

G4

Figure 2.4: The gray circles depict a valid circle arrangement C with respect to the example
graph. The drawing is C-valid.

Vi Vj

Vh

Gi

Gh Gj

Gi

Gh

Gj

C GC C

Figure 2.5: An example of a non-simple clustered graph C. On the left the clustered
graph. The induced graph of Vi ∪ Vj contains a cluster Gh. In the middle the
corresponding clustered-graph GC with a planar straight-line drawing. On the
right a valid circle arrangement C with respect to GC in gray and a C-valid
planar straight-line drawing of C, except that the red edge can not be drawn
straight-line without crossing Gh or changing the embedding.

8

Definition (Free). Let B be a leaf SC-block of a cluster Gi of a connected planar clustered
graph C. Consider two inter-cluster edges of Einter(B) that are incident to the same
u ∈ Ninter(B) of a cluster Gj . These two edges form, together with edges of B, a cycle in
C. We call B free if none of these cycles contains any SC-block.

For an example of a block that is not free, see Figure 2.7.

Definition (Contracted Clustered Graph). Let G = (V,E, E) be a connected planar graph
and let C = (G,V) be a connected clustered graph. Let B be a free leaf SC-block of
T (SC(Gi)). The contracted clustered graph C/B = (G/B,V ′) is constructed from C as
follows (for an example see Figure 2.6):
The graph G/B = (V ′, E′, E ′) is constructed by removing the interior of B, replacing the
vertices of B by one single vertex v, eliminating double edges and removing loops. If B
has a parent SC-block Bp, let v be the cut-vertex that B shares with Bp, else let v be the
vertex represented by the root ri of the block-cut tree T (SC(Gi)). The set of vertices of
G/B is V ′ = (V \ V (B) \ V◦(B)) ∪ {v} and the set of edges E′ = (E \ E(B) \ E◦(B) \
Ninter(B)) ∪ {(v, u)|u ∈ Ninter(B)}. The embedding E ′ is obtained from E by ordering the
edges (v, u) according to the cyclic order of Ninter(B). In C/B the set of vertices of cluster
Gi is now V ′i = Vi \ V (B) \ V◦(B) ∪ {v} and V ′ = {V1, . . . , Vi−1, V

′
i , Vi+1, . . . , Vk}.

Proof. We have to show that the embedding E ′ obtained by the construction is always
well-defined. During the contraction, the edges of Ninter(B) that are incident to the same
vertex u ∈ Ninter(B) are replaced by one single edge (v, u). Therefore we have to show that
these edges are embedded consecutively around B and around u. Otherwise the resulting
ordering of vertices around u and v would not be well-defined.
The requirement for B to be free guarantees that all edges of Einter(B) incident to the same
vertex u ∈ Ninter(B) are ordered consecutively around u. Additionally, the embedding
of C is planar and B is a leaf block. This means that edges to the same inter-cluster
neighbours of B are ordered consecutively around B. So we see that the embedding E ′ is
well-defined.

We refer to the operation of constructing a contracted clustered graph C/B as contracting
B (into the vertex v). When constructing C from the contracted clustered graph C/B we
unpack B.

To construct the cluster-graph GC = ((V, EC , EC),V) of C, consider all SC-blocks of a
planar clustered graph C = (G,V). Contract the free leaf SC-blocks iteratively. The
resulting clustered graph, where all blocks are contracted and each cluster contains only one
vertex, is GC (see Figure 2.8). We claim that there is always at least one free SC-block in a
connected planar clustered graph. Therefore it is always possible to contract all SC-blocks
of a connected planar clustered graph C.

If an SC-block B of cluster Gi is not free, there is at least one SC-block A incident to an
inter-cluster neighbour u of B that is the reason for that. This SC-block A lies inside the
cycle formed by two inter-cluster edges between B and u and edges of B. Only if there is
another SC-block A′ inside this cycle in cluster Gi it is possible that A itself is non-free.
As A′ has to lie inside the cycle it cannot coincide with B. So the only situation where C
has no free SC-blocks is when there is an infinite number of SC-blocks in C.

9

2. Preliminaries

G1

G2

G3

G4

G1

G2

G3

G4

Figure 2.6: On the left the planar clustered graph C. One free leaf SC-block B (and its
interior) of cluster G1 is highlighted in blue. Its inter-cluster neighbours are
highlighted in orange. On the right the contracted clustered graph C/B is
depicted. The cut-vertex that B shares with its parent block in C is marked in
blue.

B

C C/B

Gi

Gj

Gi

Gj

v

u u

Figure 2.7: On the left a clustered graph C with a non-free SC-block B that shall be
contracted. The cycle formed by the two red inter-cluster edges contains an
SC-block of Gj . The embedding of the contracted graph C/B is not well-defined.

V1

V4

V3

V2

Figure 2.8: The cluster-graph GC of our example graph.

10

Clustered graphs can be drawn in such a way that the clusters are bounded by closed
curves. A drawing of a clustered graph is c-planar if it is planar, no two curves bounding
clusters cross each other and no edge crosses the curve bounding a cluster more than once.
In our setting, these curves are the circles of the circle arrangement. A graph is c-planar
if there is a c-planar drawing of it. We observe that every C-valid planar straight-line
drawing is c-planar.

With these definitions we are now able to formulate the main theorem of this thesis in the
next chapter.

11

3. Unpacking Planar Clustered Graphs

In this chapter we present the main theorem of this thesis and its corollary. Theorem 3.1
shows that we can create a drawing of a simple connected planar clustered graph C, with
the desired properties, based on a drawing of the graph C/B, where the SC-block B is
contracted. Our main result is Corollary 3.2, which shows that not only one SC-block can
be unpacked, but, based on the cluster-graph, that all blocks of a clustered graph can be
unpacked.

Theorem 3.1. Let G = (V,E, E) be a connected planar graph with a plane embedding E. Let
C = (G,V) be a simple connected clustered graph. Let B be a free leaf SC-block of a cluster
Gi of G. Let C/B = (G/B,V ′) be a contracted clustered graph with G/B = (V ′, E′, E ′) and
C a circle arrangement with respect to C/B. Let C/B have a C-valid planar straight-line
drawing with an embedding identical to E ′.
Then C has a C-valid planar straight-line drawing with an embedding identical to E.

Our main Theorem 3.1 shows that we can “reverse” the contraction of one block while
keeping a C-valid planar straight-line drawing. As we can do this, we can also reverse all
contractions that we had to do to receive GC from C. So the following is a corollary to
Theorem 3.1. It is implied by Theorem 3.1 by induction over the blocks in the clustered
graph.

Corollary 3.2. Let G = (V,E, E) be a connected planar graph with a plane embedding E.
Let C = (G,V) be a simple connected clustered graph and let GC = (V, EC , EC) be the
cluster-graph of C. Let ΓC be a planar straight-line drawing of GC with an embedding
identical to EC .
Then there is a circle arrangement C so that ΓC is C-valid and C has a C-valid planar
straight-line drawing with an embedding identical to E.

Proof. The statement of this corollary follows by induction on the SC-blocks of C from
Theorem 3.1. Note that each contracted clustered graph with l blocks that originates from
C by contracting an arbitrary number b, 0 ≤ b ≤ l, of blocks has the same blocks as C,
except that the contracted ones are missing.
In the base case, all blocks are contracted. This is the graph GC with the drawing ΓC . It
is easy to see that for every planar straight-line drawing of a cluster-graph, where every
cluster contains only one vertex, a valid circle arrangement C exists.

13

3. Unpacking Planar Clustered Graphs

With Hb we denote the set of all simple connected planar clustered graphs that originate
from C by contracting b free SC-blocks. Their embeddings are fixed by the contractions.
The induction hypothesis states, that every Hb ∈ Hb with its embedding Eb has a C-valid
planar straight-line drawing with an embedding identical to Eb.
Now consider the graph Hb−1 ∈ Hb−1 with its embedding Eb−1. When contracting a free
leaf SHb−1-block B, we get the graph Hb−1/B ∈ Hb. Let E ′ be its embedding. By induction
hypothesis, Hb−1/B has a C-valid planar straight-line drawing with an embedding identical
to E ′. By Theorem 3.1, this drawing can be extended to a C-valid straight-line drawing of
Hb−1 with an embedding identical to Eb−1.

Before we proceed to the proof of Theorem 3.1 in Section 3.1, we present several definitions
and facts we need later on.

Let (v, w) be an edge of a graph G, let w have a fixed position in the plane and let c
be a circle in the plane that does not contain w. We want to draw (v, w) in such a way
that v lies in c. We define cone(w, c) as the region where (v, w) can be drawn with these
conditions. It is bordered by two tangents to c passing through w and the circular arc of c
that connects the two tangent points (see Figure 3.1).

cone(w, c)

cone(x, c) x

v

c

w

Figure 3.1: An edge (v, w), where w has a fixed position outside of c and v lies anywhere
in c, is drawn inside cone(w, c).

Let C be a circle arrangement with respect to a clustered graph C. We refer to a circle of
C assigned to a cluster Gi of C as ε-circle of Gi.

Observation 3.3. Let v ∈ Vi, w ∈ Vj , i 6= j, with (v, w) ∈ Einter and let c be a circle that
lies inside the ε-circle of Gi. Then cone(w, c) lies completely inside the strip between Gi
and Gj (see Figure 3.2).

Assume that we have a C-valid planar straight-line drawing of the clustered graph C. Now
we want to show that we can construct a circle c, with “nice” properties, around any vertex
v ∈ S(C). In the proof of Theorem 3.1 we need such a circle around the vertex into which
the SC-block B is contracted.

Gi
Gj

c v wcone(w, c)

Figure 3.2: The dashed lines mark the strip between the ε-circles of the clusters Gi and
Gj . For every position of c in the ε-circle of Gi and w in the ε-circle of Gj , the
cone cone(w, c) lies completely inside the strip connecting Gi and Gj .

14

G1

G2

G4

r
v

G3

c

Figure 3.3: Cluster G3 contains vertex v. The cones of the inter-cluster edges of v are
marked in different colours. The ε-circles for each cluster are marked by circles
with thick borders. The circle c with radius r, which fulfils both properties
demanded by Lemma 3.4, is marked in red.

Lemma 3.4. Let G = (V,E, E) be a connected planar graph with a planar embedding E.
Let C = (G,V) be a simple connected planar clustered graph and C a circle arrangement
with respect to C. Let v be a vertex of S(C) in a cluster Gi and let Γ be a C-valid planar
straight-line drawing of S(C).
Then there is a circle c with a radius r > 0 centered at the position of v in Γ with the
following properties:

(I) It lies properly inside the ε-circle of Gi.

(II) Shifting v to any position inside c does not cause any edge crossings in the clusters
of S(C) except of Gi, and keeps the ordering of the inter-cluster edges around v.

Proof. The two properties demanded by the lemma can be translated directly into the
following two requirements for r. For illustration see Figure 3.3.

(I) ε-circle: The radius r has to be small enough so that c lies properly inside the ε-circle
of cluster Gi. Let oε be the center of the ε-circle of Gi and oc be the center of c,
which is the position of v. Then the condition for r is: r < ε− ‖oε − oc‖.

(II) Cones: Let Gh be a cluster of S(C) that is connected to v by an inter-cluster edge
(u, v). Note that such a cluster does not need to exist. If v has no incident inter-cluster
edges, there is no condition of this kind. If cone(u, c) does not overlap the drawing of
SC(Gh), then, for any position of v in c, the edge (u, v) does not cross the drawing
of Gh. So we set ru to be the radius of a circle cu around v that is small enough that
cone(u, cu) does not intersect the drawing of Gh. For illustration see Figure 3.4. We
choose r ≤ min({ru | u ∈ Ninter(v)}).

From both constraints we get possible intervals for r. We choose r such that it is in the
intersection of both intervals. For an example construction see Figure 3.3. Note that it
might be useful to choose a big r from this interval to get “nicer” drawings.

15

3. Unpacking Planar Clustered Graphs

v

u

SC(Gh)

cone(u, cu)

ru
cu

Figure 3.4: The maximal circle centered at v, where cone(u, cu) does not cross components
of SC(Gh) is marked in red. The dashed lines mark the maximum region for
cone(u, cu) (green). Shifting v inside cu causes edges like the red one inside
cone(u, cu); shifting v inside the blue circle can cause edges like the blue one,
which crosses components of SC(Gh).

In the following we show that the resulting radius r for the circle c is always greater than
zero. Constraint (I) cannot shrink r to zero, because the position of v is properly inside
the ε-circle of Gi (not on its border). What is left to show, is that all radii ru of constraint
(II) are greater than zero.

Let (u, v) be an inter-cluster edge. Let x, y ∈ V \ {u, v} and (x, y) ∈ E. The edge (x, y)
does not intersect (u, v) in Γ, as Γ is a planar drawing. So there is a small space around
(u, v) where cone(u, c) lies. This guarantees that the borders of cone(u, c) do not cross v
and that ru is greater than zero. As this is true for all cones and v is positioned in the
center of all cu, the minimum of {ru | u ∈ Ninter(v)} is also greater than zero.

Now we argue that both properties demanded by the lemma are fulfilled by the constructed
circle c. Property (I) is fulfilled because of constraint (I), which guarantees that r is not
bigger than the minimal distance of v to the border of the ε-circle. Property (II) is fulfilled
because of constraint (II). It guarantees that the cones {cone(u, c) | u ∈ Ninter(v)} can only
contain Gi and the vertices in Ninter(v). For any position of v in c, all inter-cluster edges
incident to v have to lie inside these cones when they are drawn straight-line. So the first
part of property (II) is fulfilled. What is left to show, is that the circular ordering of the
inter-cluster edges around v remains the same for every position of v inside c.

Let a, b ∈ Ninter(v), a 6= b and let Ga be the cluster of a. If the segment between a and
b crosses c, the relative position of a to b cannot be changed by moving v inside c (see
Figure 3.5). So assume that the segment does not cross c.
To change the circular order of Ninter(v) around v, the line passing through the positions
of a and b has to cross c. W.l.o.g. let b be nearer to v than a. Then b has to lie inside
cone(a, c). By construction, cone(a, c) does not contain any vertices of the cluster Ga
other than a. Also cone(a, c) lies completely inside the strip between Gi and Ga (see
Observation 3.3). So no vertices other than a and vertices of Gi lie inside cone(a, c). This
means b cannot lie inside cone(a, c) and the line through a and b cannot pass through c.
Therefore, the circular ordering of Ninter(v) around v is preserved.

16

3.1. Construction of the Drawing

a

a a

b

b b

cone(a, c)

v v v

c c c

(1) (2) (3)

Figure 3.5: Different relative positions that two inter-cluster neighbours a and b of v can
have regarding c: (1) The segment ab crosses c; the circular order does not
change inside c. (2) The line through a and b does not cross c; the circular
order does not change inside c. (3) The vertex nearer to c (here b) lies inside
the cone of the other (here a); the circular order changes inside c.

3.1 Construction of the Drawing
In this section we give a construction of the resulting drawing of Theorem 3.1 and in the
next section we prove that it fulfils all properties demanded by the theorem. The theorem
states:

Theorem 3.1. Let G = (V,E, E) be a connected planar graph with a plane embedding E. Let
C = (G,V) be a simple connected clustered graph. Let B be a free leaf SC-block of a cluster
Gi of G. Let C/B = (G/B,V ′) be a contracted clustered graph with G/B = (V ′, E′, E ′) and
C a circle arrangement with respect to C/B. Let C/B have a C-valid planar straight-line
drawing with an embedding identical to E ′.
Then C has a C-valid planar straight-line drawing with an embedding identical to E.

Let Γ′ be the C-valid planar straight-line drawing of C/B. In the following we construct
the C-valid planar straight-line drawing Γ of C. Let vc be the vertex into which B is
contracted in C/B. To obtain the drawing Γ of the unpacked graph, we determine the
positions for the newly added set of vertices (V (B) ∪ V◦(B)) \ {vc}. All vertices of the
contracted clustered graph C/B = (G/B,V ′) will stay in the positions they had in Γ′. Let
c be a circle around vc with the following two properties, which exist by Lemma 3.4:

(I) It lies properly inside the ε-circle of Gi.

(II) Shifting v to any position inside c does not cause any edge crossings in the clusters
of S(C) except of Gi, and keeps the ordering of the inter-cluster edges around v.

Now the task is to find a convex shape inside c where we can safely place the new vertices
on the border. We will choose an eye-like shape σ that does not overlap with those parts
of the circle that are “occupied” by components of Gi. After placing the vertices on σ the
cycle B describes a convex polygon. So we can then apply the algorithm for drawing a
graph with prescribed convex outer face by Chambers et al. [4].

In the contracted clustered graph C/B, the set of inter-cluster edges EB that are incident
to B in C are incident to vc in C/B and are embedded consecutively around vc. We define
the bordering edges of a free leaf SC-block as follows:

17

3. Unpacking Planar Clustered Graphs

vc EB

el

eu

vc
B

H H/B

el

eu

Gi Gi

Figure 3.6: On the left vc and B of the graph H and on the right H/B with the cut vertex
vc where B is contracted into. The bordering edges el and eu are coloured in
red in the drawing Γ′ of H/B and the remaining inter-cluster edges are coloured
in orange. In the drawing of H the position el has in Γ′ is shown in gray. In
this example eu does also exist in H. Because of this it is shown in black. The
ε-circle of the cluster Gi of B is she dashed green circle.

Definition (Bordering Edges). Let B be a free leaf SH -block of a clustered graph H. Let
vc be the vertex into which B is contracted in H/B. Let EB be the set of inter-cluster edges,
which originate from replacing the inter-cluster edges incident to vertices of V (B) \ {vc} in
H by inter-cluster edges incident to vc in H/B, when contracting B.
Then we call the first and the last edge of EB in clockwise order around vc in H/B lower
and upper bordering edge to B. We denote them by el and eu.

Note that there are no bordering edges of an SH-block, if |EB| = 0 or if vc has no other
incident edges than those in EB. Also it is possible that el = eu, if |EB| = 1.

Let el and eu be the lower and upper bordering edge of B respectively, if they exist (see
Figure 3.6). They may not exist in C. So, to be able to use them in the construction of Γ,
we store their positions. We consider the pie slice of c bordered by el and eu in Γ′ that
contains the edges EB. Into this pie slice we place σ.

If |EB| = 0, there are no bordering edges of B and no inter-cluster edges incident to it.
When B is the only SC-block of SC(Gi) nothing else is inside c, so we do not need to
construct σ. We just embed the cycle B on c. Then we apply the algorithm for drawing a
graph with a prescribed convex outer face of Chambers et al. [4] to complete the drawing
of B with its interior and we are done. Note that this can only happen if C only consists of
B and its interior. So in the following we only consider vertices vc with edges that belong
to components of C other than B or its interior.
If |EB| = 0 and B has a parent block Bp, we consider the edges incident to vc that precede
and follow the inter-cluster edges of B incident to vc. The last edge preceding B and the
first edge following B in clockwise order also include a pie slice of c opposite to Bp. We
call these edges f and g. Note that f and g can coincide if B is degenerated.

Also there are no bordering edges of B if vc has no other incident edges than those of EB.
This can only happen when B is the only block in Gi. Otherwise B has a parent block Bp
and vc has incident intra-cluster edges belonging to Bp. So, in this case, vc is the vertex
represented by the root ri of the block-cut tree T (SC(Gi)). We chose vc from the vertices of
B in such a way that it has at least one incident inter-cluster edge if there is such a vertex
in B. If vc has an incident inter-cluster edge, this edge is not in EB and it is a bordering
edge to B. If there is no vertex in B that has incident inter-cluster edges, then we are in
the case that |EB| = 0 and B is the only SC-block of SC(Gi) (see above). Therefore we do
not have to consider the case that vc has only incident edges of EB in the following.

18

3.1. Construction of the Drawing

I1u1 u5

u4
u3u2

cl

cr

l

sl

sr

el

Gi

vc

eu

c

Figure 3.7: Illustration for the case where B has bordering edges. The fat black edges
el and eu are the bordering edges. In gray there is an example constellation
for the vertices of B with inter-cluster edges. The sequences are sl = (u1, u2)
and sr = (u3, . . . , u5) in this example. The eye-like shape σ is marked in red
and the region where components of Gi other than B or its interior can lie is
coloured in dark gray.

The cases we need to consider for the construction of σ are, firstly, that there are bordering
edges of B and, secondly, that |EB| = 0 but B has a parent block Bp. Next we show how
to determine the two extreme points of σ and then we construct the two convex curves
bounding σ.

Let l be the bisector through the pie slice bordered by el and eu, or f and g respectively
(see Figures 3.7 and 3.8). If l crosses any inter-cluster neighbours of B, rotate it a small
angle to avoid this. The two half-planes hl and hr induced by l partition the inter-cluster
neighbours of B into the two sequences sl = (u1, . . . , uq) and sr = (uq+1, . . . , um). The
vertex vc and the intersection I1 of l with c are the two extreme points of σ. We construct
an eye-like shape by connecting the two extreme points with two curves, cl and cr, that do
not intersect or touch the bordering edges of B, except in vc.

If we constructed l between f and g, it can cross through components of Gi before crossing
c (see Figure 3.8). Because of this, we construct a new circle c′ inside c that does not
contain any components of Gi, except of vc and parts of f and g. This is always possible
as between each two vertices of a drawing there is always some free space. Then I1 is the
intersection of l with c′.

Before we continue with the construction of σ, we make an observation that helps us to
understand the given graph structure better.

Claim. Let B be a non-degenerated free leaf SH-block of a simple connected clustered graph
H with embedding E. Let vc be the vertex into which B is contracted in the contracted
clustered graph H/B with embedding E ′, which is implied by the contraction of B. Let vc
have edges that belong to components of C other than B or its interior. Let (v1, . . . , vm)
be the vertices V (B) \ {vc} in clockwise order starting with the first vertex after vc. Let
sl = (u1, . . . , uq) and sr = (uq+1, . . . , um) be two sequences of inter-cluster neighbours in
clockwise order around vc of B that can be concatenated to the whole sequence Ninter(B) in
the following way: sl · sr = Ninter(B). Let vi, vj ∈ V (B) \ {vc}, i < j and let H/B have a
planar straight-line drawing.

19

3. Unpacking Planar Clustered Graphs

In H, if vi is connected to a vertex of sr, then vj can only be connected to vertices of sr.
If, the other way around, vj is connected to a vertex of sl, then vi can only be connected to
vertices of sl.

Proof. In the graph H, let vi be connected to a vertex ur of sr and vj be connected to a
vertex ul of sl. In H/B, the cut vertex vc is connected to ul and ur. Let Γ′ be the planar
and straight-line drawing of H/B. The contraction of B and the embedding of H dictate
that (vc, ur) comes before (vc, ul) in clockwise order around vc starting from the lower
bordering edge of B. So the region where (vc, ul) can be embedded in Γ′ is restricted by
(vc, ur) and other edges incident to vc. But ul is not in this region. So Γ′ can either not be
a straight-line drawing or it is not planar. (For illustration see Figure 3.9.) ♦

l

Gi

vc

Bp

f g

c

c′

I1

Figure 3.8: Illustration for the case where B has no bordering edges and therefore no
incident inter-cluster edges. A circle c′ is constructed inside c. The eye-like
shape σ is marked in red and the region where components of Gi other than B
or its interior can lie is coloured in dark gray.

vc

sl

sr

ul

ur

B

H

l

vi

vj vc

sl

sr

ur

H/B

lul

Figure 3.9: The dashed line l divides the inter-cluster neighbours of B into two sequences sl
and sr. On the left the situation in H is illustrated. On the right the drawing of
H/B is shown. The region where (vc, ul) can be embedded straight-line in the
drawing of H/B with the given embedding E ′ is marked in green. The vertex
ul is not inside this region. So a planar straight-line drawing with embedding
E ′ is not possible.

20

3.1. Construction of the Drawing

I1
l

cl

uq

Il

u1

vc

uq+1um

cr

4l

4r

Ir

sl

sr

Figure 3.10: The black dots on the top mark the vertices of sl, those on the bottom the
vertices of sr. In blue one can see Bézier curves cl and cr. In orange one can
see two example vertices. One on cl, which is connected to all vertices of sl,
and one on I1, which is connected to all vertices of sl and sr. Note that they
cannot exist both.

From the claim we see that there can be at most one vertex that is connected to vertices
from sl and sr. We place this vertex on I1, if it exists. All other vertices that are connected
either only to vertices of sl or only to vertices of sr are placed on the corresponding curve
cl or cr.

Each v ∈ V (B) has a subset Uv ⊆ Ninter(B) of adjacent inter-cluster neighbours. Let
a, b ∈ V (B) \ {vc}, a 6= b such that a is between vc and b on the cycle B in clockwise order.
The partitioning into the two sequences sl and sr in the claim is arbitrary. So we can
consider another partitioning into sa and sb. Let sa be the sequence (u1, . . . , ua), where
ua is the last inter-cluster neighbour of a in clockwise order. Then Uva ∩ Uvb

can at most
contain ua. We see that all sets Uv include consecutive sequences of vertices and that two
of them can at most have one vertex in common.

In the following, we explain how exactly the curves cl and cr have to be constructed in
order to avoid crossings among edges incident to B and edges of B itself in Γ.
To determine cl and cr, we construct triangles 4l and 4r left and right of l. The triangles
4l and 4r share one side, which lies on l connecting vc and I1 (see Figure 3.10). The third
corner Il of 4l is the intersection of I1u1 and vcuq. Likewise, the third corner Ir of 4r is
the intersection of I1um and vcuq+1. This construction is only valid if the segments, which
determine the third corners of the triangles do not cross l. For the proof that this cannot
happen, see proof (4a) in the next section.
If sl is empty, we do not need to place vertices with incident inter-cluster edges on cl, but
there might still be other vertices to place there. In this case, we define Il to be a point
a little bit left of I1 on c (or c′ respectively). This guarantees that cl does not cross any
components of Gi except of vc. We do an analogous construction for cr, if sr is empty.

The curves cl and cr have to lie inside c (or c′ respectively) and their corresponding triangle.
For the construction with c′ this is always given as B has no inter-cluster neighbours in
this case. If 4l ∩ c 6= 4l, replace the triangle 4l by a triangle inside 4l that fulfils this
condition. Such a triangle does always exist as 4l ∩ c 6= ∅ and both, 4l and c, contain vc
and I1. We handle 4r equivalently. Additionally, cl and cr have to be strictly convex, be

21

3. Unpacking Planar Clustered Graphs

monotone with respect to vcI1 and connect I1 and vc. If all this is given, also σ is strictly
convex.

Types of curves that satisfy all the mentioned constraints are for example parabolas that
stay inside the corresponding triangle and pass through vc and I1 or Bézier curves of second
degree with vc, I1 and one third, suitable control point inside the corresponding triangle.

As mentioned above, we place the only vertex that is connected to vertices of sl and sr
on I1, if it exists, and we place the vertices only connected to sl on cl and the vertices
only connected to sr on cr. We further place all vertices without inter-cluster edges on σ
in the order of the embedding, possibly in between vertices that are already drawn. As
σ is convex, we can then draw all intra-cluster edges of B. Afterwards, we can apply the
algorithm for drawing a graph with a prescribed convex outer face of Chambers et al. [4]
to complete the drawing of B with the interior of B. Ultimately we draw the inter-cluster
edges Einter(B).

3.2 Correctness of the Construction
To prove the correctness of the resulting drawing Γ, we have to show that it has the
following four properties:

(1) Γ is C-valid.

(2) Γ is straight-line.

(3) Γ has embedding E .

(4) Γ is planar.

(1) Γ is C-valid: The positions of the vertices (V \V (B) \V◦(B))∪{vc} in Γ are the same
as in Γ′. The drawing Γ′ is C-valid. So Γ is C-valid if and only if all vertices V (B) ∪ V◦(B)
lie inside the ε-circle of Gi. The vertices V (B) ∪ V◦(B) are placed inside c or on its border
and c lies properly inside the ε-circle of Gi (see property (I) of Lemma 3.4).

(2) Γ is straight-line: In Γ′, all edges are drawn straight-line and all edges we added in
the construction above are drawn straight-line. Therefore, also Γ is straight-line.

(3) Γ has embedding E: The drawing Γ′ has the embedding E ′, which is implied by E
through the contraction of B. So we only need to show that the vertices V (B), V◦(B) and
Ninter(B) have the correct embedding in Γ.

If B has no inter-cluster edges and no parent block, the clustered graph C only consists
of B and its interior. Then the vertices V (B) are placed on the convex shape c. So, as
the algorithm of Chambers et al. works correctly, in this case all vertices are embedded
correctly.

Consider the cases where B has incident inter-cluster edges and/or a parent block Bp. The
circular order of Ninter(vc) around every point in c is the same as around vc in C/B, by
property (II) of Lemma 3.4. This is the same as the circular order of Ninter(B) around vc
in C. This means that the ordering of all inter-cluster edges around the vertices V (B) is
correct, as we showed in (2) that all edges are drawn straight-line.

The shape σ is drawn inside the correct pie slice of c according to E , so the ordering of the
edges around vc is correct if the interior of B is embedded correctly.
The graph B is a cycle or contains only one edge and it is embedded on the convex shape σ.
So the edges E(B) are positioned completely inside σ. As no edge of Einter(B) crosses σ
(see proof of property (4a)) and the algorithm of Chambers et al. positions the vertices

22

3.2. Correctness of the Construction

and edges of the interior of B inside the convex polygon formed by B in correct order, all
vertices V (B) ∪ V◦(B) are embedded correctly.

Now we have to show that the embedding of all Ninter(B) is correct. We show in (4) that
there are no crossings among the edges Einter(B) and that all vertices V (B) are placed in
such a way that the straight-line connections from them to their inter-cluster neighbours
do not cross any components of B. This means that the order in which the vertices V (B)
of the cycle B are placed on the circle c is the same order in which they are connected to
the vertices Ninter(B). This order is exactly the one that is given by E .
Consider a vertex u ∈ Ninter(B). Let EB(u) be the edges of Einter(B) that are incident to
u. What is left to show is that the edges EB(u) are sorted in correctly in between other
edges incident u. As B is free, the edges EB(u) are embedded consecutively around u. In
C/B the vertex u is embedded correctly. This means the edge (u, vc) is sorted in correctly.
When unpacking B, all edges incident to u except of (u, vc) stay at their positions and
(u, vc) is replaced by EB(u). Therefore all Ninter(B) are embedded correctly.

(4) Γ is planar: The drawing Γ′ is planar. So we need to show that all edges that we add
for Γ do not cross the edges that C and C/B have in common. And also that the added
edges do not cross each other. This means we have to show the following properties:

(a) No edge of the set E(B) ∪ E◦(B), crosses any edge of E.

(b) No edge of the set Einter(B), crosses any edge of E.

Proof of (a) If B has no parent block and no inter-cluster edges, it is the only component
of C. Its vertices V (B) are positioned on c. Thus they describe a convex polygon, which
means the algorithm of Chambers et al. can be used and produces a planar drawing of B
and its interior.

In all other cases the vertices of B are placed on σ. Since σ is strictly convex, all edges
of B are placed inside σ. Because the algorithm of Chambers et al. places the vertices
V◦(B) inside the convex polygon formed by B, all edges E(B) ∪E◦(B) are placed inside σ.
We constructed σ either between the bordering edges of B or, if there are no bordering
edges of B, we placed it between the intra-cluster edges f and g of the parent block Bp. In
the latter case we constructed a new circle c′ inside c which does only contain parts of f
and g and the vertex vc in Γ′. This means no vertices and edges of Gi, except those of B
and its interior, are inside σ. So the edges E(B) ∪ E◦(B) cannot cross any components
of the already drawn graph. Also they do not intersect each other, as the algorithm of
Chambers et al. works correctly.
What is left to prove is that the edges E(B) ∪ E◦(B) do not intersect the edges Einter(B).
So in the following we only need to consider the case in which bordering edges of B exist.

To do this, we show that no edge of Einter(B) crosses σ. In the following we see that this is
guaranteed by the construction of σ and the placement of the vertices on σ.
The shape σ is convex and the partitioning into sl and sr is done by l. The line l is
constructed as bisector between the bordering edges el and eu or, if the bisector crosses
a vertex of Ninter(B), it is very near to the position of a bisector. We claim that this
guarantees that no inter-cluster edge (v, u) ∈ Einter(B) incident to a vertex v placed on σ
crosses l.
The elongations of the two segments uvc and vvc enclose a region r of c that does not
include el or eu (see Figure 3.11). This region r encloses an angle α in vc. When α ≤ 180◦,
then r is convex. The line l lies outside of r as v is placed on the according curve of σ. So
a crossing of (v, u) with l cannot happen when α ≤ 180◦.
Consider the case where α > 180◦. As u is connected straight-line to vc in Γ′, it has to lie
in the region that is bounded by the extended bordering edges. As l is (nearly) a bisector

23

3. Unpacking Planar Clustered Graphs

α

el eu

l

σ

v

u

α

el eu

l

σ

u

v

vc vc

r r

Figure 3.11: On the left α > 180◦ holds and (v, u) crosses l. On the right l is the bisector
between el and eu, so α < 180◦ holds and (v, u) does not cross l. The region r
is, in both cases, marked in orange.

of this region, it partitions the angle enclosed by el and eu into two angles that are both
smaller or equal to 180◦. So r has to be convex, which means that (v, u) does not cross l.

The fact that l is not crossed by edges of Einter(B) guarantees that the construction of the
triangles 4l and 4r is valid. Therefore the curves cl and cr can be constructed correctly.

Now we need to show that the edges Einter(B) do not cross cl and cr. Let Sl be the set of
segments connecting vc and I1 to all vertices of sl (equivalently for Sr and sr). We claim
that no segment of Sl crosses 4l.
This is ensured by property (II) of c (see Lemma 3.4), which states that the ordering of
inter-cluster edges around vc stays the same when shifting vc to any point in c. This means
that the ordering of inter-cluster edges around vc is the same as around I1. So the segments
I1u1 and vcuq are closest to vcI1 and, as I1u1 and vcuq are the sides of 4l, no segment of
Sl can cross 4l. This also means that all u ∈ sl can be connected straight-line to every
point of cl without intersecting cl. The equivalent statement for 4r and the vertices in
sr is also true. Additionally, this guarantees that a vertex placed on I1 can be connected
straight-line to every vertex in Ninter(B) without intersecting σ.
Eventually we see that no edge of E(B) ∪ E◦(B) crosses any edge of E.

Proof of (b) Next we consider the added inter-cluster edges Einter(B). We just showed
that they do not cross any edges of E(B) ∪E◦(B). An inter-cluster edge (v, u) ∈ Einter(B)
lies inside cone(u, c). This cone only contains components of Gi and the vertex u, by
construction of c (see proof of requirement (II) in Lemma 3.4). So only edges that are
incident to Gi can be crossed by (v, u). All vertices Ninter(B) lie in the region rinter bounded
by the extended bordering edges of B, as they were connected straight-line to vc in Γ′
(see Figure 3.12). As we examine possible crossings of the edgesEinter(B), the block B has
bordering edges. In rinter the shape σ is placed, too. So to exclude crossings of the edges
Einter(B) with components of C that are not B or its interior, it suffices to show that the
bordering edges el and eu are not crossed.

When el and eu enclose an angle bigger than 180◦, the region they enclose is not convex.
Only in this case el and eu can be crossed by inter-cluster edges. Extend el and eu to lines
ll and lu (see Figure 3.12). The edge (v, u) can only cross el or eu if v is placed in the
region rf of c that is enclosed by el and lu or in the region rg that is enclosed by eu an ll.
Suppose that v is placed in rg. Then, by the construction, it is placed on cr and therefore
only connected to vertices of sr. Equivalently, vertices placed in rf are placed on cl and
are only connected to vertices in sl. So no bordering edge is crossed by edges of Einter(B).

24

3.2. Correctness of the Construction

el eu

l

rf rg

σ

I1

cl cr

sl

sr
lu ll

v

u

rinter

Figure 3.12: The region rinter, inside which all Ninter(B) lie, is highlighted in orange. The
region rf is green and rg is red. A vertex v on cr has to be connected to
vertices in the sequence sr. So the edge (v, u) cannot occur.

It only remains to show that the edges Einter(B) do not cross each other. We saw that σ is
not crossed by the edges Einter(B) and, as the curves are strictly convex, there cannot be
any collinear points on them. From the claim we saw that all sets Uv include consecutive
sequences of vertices and that two of them can at most have one vertex in common. Also
we saw in (3) that Γ has the correct embedding. So the edges Einter(B) cannot cross each
other.

25

4. Conclusion

Given a planar straight-line drawing of a cluster-graph GC with an embedding corresponding
to the embedding of a simple connected clustered graph C = (G,V), we asked ourselves
the following question: Could we “unpack” the drawing of GC to a planar straight-line
drawing Γ of C? Or would we need to abolish the requirement of Γ to be straight-line,
while working on the construction? “To bend or not to bend?”, that was our question.
Then we developed the construction described in this thesis, which proves that it is possible
to draw C with all the wanted properties. So the answer to our question is: “Not to bend!”

Our construction works as follows: We create a block-cut tree for each cluster in the
skeleton of C. This divides the skeleton of the clusters into blocks. Then, beginning
with the cluster-graph GC , we iteratively unpack these blocks inside of circles around the
vertices of the cluster-graph. When unpacking one block, we construct a convex shape in a
“suitable” place and then place the vertices of the block on its boundary. The construction
of this shape and the placement of vertices on it, is done in a way that guarantees that no
edge-crossings occur and that the embedding is not destroyed. Degenerated blocks do not
have any interior. But non-degenerated blocks of the skeleton have and they are always
simple cycles. They describe a convex polygon, when placed on the boundary of a convex
shape. Because of this we can then use the algorithm for drawing a graph with a prescribed
convex outer face of Chambers et al. [4] to draw the interior of the blocks.

We restricted the clustered graph to be connected. But the same construction also works
for graphs that have connected clusters but are not connected themselves. The only thing
one has to be careful about in this case is, that you cannot draw the different components
completely independently. This is because the whole circle arrangement with the circles of
all components has to be valid.

Our construction has some degrees of freedom. These might be useful to improve the
resulting drawing. One can vary how to choose the root blocks of the block-cut tree.
Choose, for example, one that minimizes the height of the tree. Also, in different steps of
the algorithm, it is not completely fixed where the vertices have to be placed. One can vary
this for example by keeping a big distance to neighbouring vertices to make the drawing
easier to read.

In the following we propose two further questions related to our construction. The first
proposes a way to improve the layout of the constructed drawing and the second is a
proposal for further generalisation of the problem.

27

4. Conclusion

Feng et al. [6] show that there exist clustered graphs that require exponential area for any
straight-line drawing in which clusters are bordered by convex regions. In our construction
the clusters are bordered by circles. Therefore the calculated drawing has to require
exponential area. But even disregarding this, our algorithm will possibly not compute very
“nice” drawings of G. This is because the area where a block can be unpacked is restricted
very much by the convex shape that we construct. In many cases this restriction could
be relaxed. One possibility to make the drawing “nicer” afterwards might be to use our
algorithm to compute the positions of the vertices and, after that, use a force directed
algorithm to let the vertices spread around. To do this the forces have to be designed in
such a way that the planarity and the embedding of the drawing is kept. Also there should
be forces that keep the vertices inside or near to their ε-circles.

We required the clustered graph C to be simple, as, otherwise, no C-valid planar straight-
line drawing with any circle arrangement C with respect to C would be possible. Is there a
way to adapt the construction for non-simple clustered graphs C? For this, one would need
to adapt the circle arrangement, e.g. allow circles of different sizes. Also there might be no
planar straight-line drawing of GC , in this case. So one would have to find an algorithm
that gets a drawing of GC as input that is not straight-line. What would be the constraints
for Γ to make it look similar to the drawing of GC? Would one want to bend edges by
purpose? Or would one only allow to vary the sizes of the circles of C?

28

Bibliography

[1] Md. Jawaherul Alam, Michael Kaufmann, Stephen G. Kobourov, and Tamara
Mchedlidze. Fitting planar graphs on planar maps. Journal of Graph Algorithms and
Applications, 19(1):413–440, 2015.

[2] Patrizio Angelini, Fabrizio Frati, and Michael Kaufmann. Straight-line rectangular
drawings of clustered graphs. Discrete & Computational Geometry, 45(1):88–140,
2011.

[3] Ralf Brockenauer and Sabine Cornelsen. Drawing Clusters and Hierarchies, pages
193–227. In Kaufmann and Wagner [9], 2001.

[4] Erin W. Chambers, David Eppstein, Michael T. Goodrich, and Maarten Löffler.
Drawing graphs in the plane with a prescribed outer face and polynomial area. Journal
of Graph Algorithms and Applications, 16(2):243–259, 2012.

[5] Peter Eades and Qing-Wen Feng. Multilevel visualization of clustered graphs, pages
101–112. Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

[6] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. How to draw a planar clustered
graph. In Computing and Combinatorics, First Annual International Conference,
COCOON ’95, Xi’an, China, 1995, Proceedings, pages 21–30, 1995.

[7] Qing-Wen Feng, Robert F. Cohen, and Peter Eades. Planarity for clustered graphs.
In Paul Spirakis, editor, Algorithms - ESA ’95, Third Annual European Symposium,
Corfu, Greece, 1995, Proceedings, pages 213–226. Springer Berlin Heidelberg, 1995.

[8] István Fáry. On straight-line representation of planar graphs. In Acta Scientiarium
Mathematicarum 11, pages 229–233. János Bolyai Mathematical Institute (University
of Szeged), 1948.

[9] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs Methods and
Models, volume 2025 of Lecture Notes in Computer Science. Springer, 2001.

[10] Marcus Schaefer. Toward a Theory of Planarity: Hanani-Tutte and Planarity Variants,
pages 162–173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[11] René Weiskircher. Drawing Planar Graphs, pages 23–45. In Kaufmann and Wagner
[9], 2001.

29

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	3 Unpacking Planar Clustered Graphs
	3.1 Construction of the Drawing
	3.2 Correctness of the Construction

	4 Conclusion
	Bibliography

