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Abstract
The fundamental goal of communication networks is to transfer messages from one
node to other nodes. Often, one is interested in maximizing the information flow,
which is limited by the connectivity of the network. If we focus on vertex-connectivity,
connected dominating sets (CDS) are a valuable tool. Having multiple (fractionally)
vertex-disjoint connected dominating sets, which we call a fractional CDS packing,
allows to get an information flow matching the size of the packing.
In this thesis, we present a distributed algorithm that given a communication

network with n nodes and vertex-connectivity k computes a fractional CDS packing
of size Ω(k/ logn). It takes O(log2 n · (D +

√
n logn log∗ n + k∆)) rounds in the

V-CONGEST model, where D denotes the diameter of the network and ∆ the
maximum degree. For networks of not too large vertex-connectivity, our algorithm
achieves a better runtime than the currently best known algorithm of Censor-Hillel,
Ghaffari, and Kuhn [CHGK14a].

We also show how the runtime can be improved to O(log2 n·(D+
√
n logn log∗ n+k))

if we work in the less restricted E-CONGEST model.

Deutsche Zusammenfassung
Das Ziel von Kommunikationsnetzwerken ist es, Nachrichten von einem Knoten

zu anderen zu schicken. Häufig interessiert man sich dafür, den Informationsfluss
zu maximieren. Dieser wird durch den Zusammenhang des Netzwerkes begrenzt.
Bei der Betrachtung des Knotenzusammenhangs haben sich „connected dominating
sets“ (CDS) als hilfreich erwiesen. Packt man mehrere connected dominating sets
in das Netzwerk, erhält man ein „fractional CDS packing“. Dieses kann verwendet
werden, um einen Informationfluss in der Größe der Packung zu erhalten.

In dieser Arbeit stellen wir einen verteilten Algorithmus vor, der zu einem Netzwerk
mit n Knoten und Knotenzusammenhang k eine solche Packung der Größe Ω(k/ logn)
bestimmt. Dieser benötigt O(log2 n · (D +

√
n logn log∗ n + k∆)) Runden im V-

CONGEST-Modell, wobei D den Durchmesser und ∆ den größten auftretenden
Knotengrad bezeichnet. In Netzwerken, deren Knotenzusammenhang nicht zu groß
ist, erreicht unser Algorithmus eine bessere Laufzeit als der bislang schnellste bekannte
Algorithmus von Censor-Hillel, Ghaffari und Kuhn [CHGK14a].

Darüber hinaus erläutern wir, wie die Laufzeit aufO(log2 n·(D+
√
n logn log∗ n+k))

Runden verringert werden kann, wenn wir das mächtigere E-CONGEST-Modell
annehmen.
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1. Introduction

The goal of communication networks is to transfer information from one node to another.
Normally, there is more than one node that wants to send a message at one time. Therefore,
one is interested in a method that optimizes the information flow, i.e. the number of messages
sent across the network per round. A fundamental measure that limits the information
flow is the connectivity of the network. There are two measures for connectivity, edge
and vertex connectivity, which describe the size of the minimum edge and vertex cuts,
respectively. Since edge and vertex cuts limit the information flow, we intuitively expect
that the larger the connectivity of a graph, the more information can be transfered in one
step.

This is illustrated by Menger’s Theorem [BM08, Theorem 9.1]: Given a graph with edge
connectivity λ or vertex connectivity k and two nodes v and w, there are λ edge-disjoint or
k internally vertex-disjoint paths from v to w, respectively. Hence, using these paths, it is
possible to send λ or k messages from v to w at the same time, respectively. Each message
is transmitted along one of these paths. But what happens if we deal with more than one
pair of nodes? Applying Menger’s Theorem to each pair gives paths from the sender to the
receiver. However, it is unclear how the paths of different pairs of nodes work together.
It is possible that the paths of different pairs are not disjoint. Hence, the messages from
different nodes might interfere, and thus, the throughput is decreased.

Therefore, a different approach is needed. We focus on the vertex connectivity and give a
rather natural method, which divides the nodes of a graph in (fractionally) vertex-disjoint
connected dominating sets (CDS). Our algorithm is based on the fractional dominating
tree packing algorithm of Censor-Hillel, Ghaffari, and Kuhn [CHGK14a]. They call this
approach connectivity decomposition as the graph is decomposed in smaller (fractionally)
vertex-disjoint subgraphs, which almost preserve the connectivity. These subgraphs can be
used to achieve an information flow that almost matches the connectivity of the graph.
For example, [CHGK14a, Appendix A] shows how these fractionally vertex-disjoint

connected dominating sets can be used for the gossiping problem, which is also known as
all-to-all broadcast. The basic idea is to send each message along one connected dominating
set such that the messages are almost evenly distributed among these connected dominating
sets. As the connected dominating sets are fractionally vertex-disjoint, they can be used
simultaneously to send messages, which leads to a high throughput.
Applied to a network with n nodes, vertex-connectivity k and maximum degree ∆

our algorithm finds a fractional CDS packing of size Ω(k/ logn). It takes O(log2 n(D +√
n logn log∗ n+k∆)) rounds in the V-CONGEST model and O(log2 n(D+

√
n logn log∗ n+

k)) in the less restricted E-CONGEST model.
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1. Introduction

Our algorithm works on a virtual graph that consists of Θ(logn) copies of the original
graph. These copies are arranged in layers. The lower layers contain one copy and the
upper layers contain two copies each. The two copies in each upper layer have types 1
and 2. A formal definition of the virtual graph is given in Section 3.1.
The algorithm consists of two parts. In the first one, we assign each node of the lower

layers to a randomly chosen class. According to Theorem 4.5, which was first presented in
[CHGK14b, Lemma 3.2], this gives domination for each class with high probability (w.h.p.),
which means that the probability that this happens is at least 1− 1/nc for some constant
c ≥ 1.

The classes may be unconnected after this step. Thus, the second part seeks to establish
connectivity by gradually adding nodes to the classes. We consider the upper layers one
after another. Assume that we have already assigned class numbers to the nodes of levels 1
to `. We call the virtual nodes of layer `+ 1 new and the nodes of layers 1 to ` old nodes.
We then assign classes to the new nodes using the following steps:

1. We determine the connected components of the old nodes.

2. All new nodes of type 1 choose a class randomly. Components that are now connected
to other components of the same class become inactive.

3. For each active component C, we determine a maximal set of paths that connect
C with another component of the same class. In compliance with [CHGK14b], we
call these paths long connector paths (cf. Section 3.2 for a definition). Note that
there must exist such paths of length at most 3, due to the domination of the classes
(cf. Lemma 3.2). To find these paths we apply a distributed maximal matching
algorithm to bipartite virtual graphs, which are simulated by the real graph G. This
step is the key part of the algorithm. A detailed description is given in Section 3.4.

4. Now each type-2 new node v knows all connector paths going through it and the
classes of the components they belong to. The node v then discards a path if the
type-1 internal node on this path has not chosen the class the path belongs to.
All remaining paths have the property that if v chooses their class they establish
a connection between two components of the same class. Finally, v chooses one
remaining path randomly and assigns its class to itself.

After we have run these steps for all layers each class represents a connected dominating
set w.h.p. This is shown in Theorem 4.4.

1.1 Related Work
Fractional CDS packings can be used to achieve a high throughput when broadcasting

multiple messages [CHGK14a, Appendix A]. There are other approaches to this problem,
which is called the multi-message broadcast problem. Many of these focus on the radio
network model, which was introduced in [CK85]. In this model each node decides whether
it sends or receives in the current round. Moreover, receiving a message is only successful
if only one neighbor sends a message at that time.
Bar-Yehuda et al. [BYII89] presented a routing based algorithm that asymptotically

needs O(log ∆ logn) rounds per package in expectation, where n and ∆ denote the number
of nodes and the maximum degree, respectively. Using network coding Khabbazian and
Kowalski improved this number of rounds per package to O(log ∆) [KK11]. Another
approach was introduced by Ghaffari and Haeupler [GH13], which asymptotically needs
O(logn) rounds per package. This is worse than the O(log ∆) rounds by Khabbazian and
Kowalski. However, it takes less time for the initialization as the network is structured
differently in what they call collision-free layers.
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1.2. Comparison with [CHGK14a]

Other works establish bounds for the runtime that is needed. For example, it has been
shown by Ghaffari et al. [GHK13] that there are networks in which broadcasting p packages
takes Ω(p logn) rounds in the radio network model.
The following two results are the ones our approach is based on. Therefore, we give a

more detailed description.
Censor-Hillel, Ghaffari, and Kuhn showed that each graph G with n nodes and vertex-

connectivity k has a fractional CDS packing of size Ω(k/ logn) and that this bound is
optimal [CHGK14b]. To show the existence of a large fractional CDS packing, they present
a centralized algorithm that outputs a fractional CDS packing of size Θ(k/ logn) w.h.p.
This algorithm introduces the structure of the algorithm we use and the layered virtual
graph and the notion of connector paths. The optimality of the bound is shown by building
a graph whose largest fractional CDS packing is of size O(k/ logn).
The same authors also presented a distributed algorithm that finds a fractional CDS

packing of size Ω(k/ logn) in O(log3 n ·min{(n logn)/k,D +
√
n logn log∗ n}) rounds in

the V-CONGEST model [CHGK14a]. Our approach is directly based on this algorithm.
There are t = Θ(k) classes that shall form a CDS after the algorithm is executed. They

work on a virtual graph G that is similar to the one we present in Section 3.1. Their virtual
graph is organized in L layers each consisting of 3 copies of each real node. The copies are
of types 1, 2 and 3, respectively.
The nodes in the first half of the layers join random classes, which gives domination

w.h.p. Each of the remaining layers is considered on its own. For each layer ` the following
steps are taken. They find the connected components of nodes of the same class in layers
1 to `− 1. Then, the type-1 and type-3 nodes in layer ` randomly select a class. If they
connect two components of the same class, these components become inactive.

In the next step, the bipartite bridging graph is built as follows. The active components
are the nodes of one side of the bipartite graph. Hence, we act as if all nodes of the
component are contracted to one node. The other side of the graph is formed by the type-2
nodes of layer `. These are the nodes that still have to choose a class. There is an edge
between an active component C of class i and a type-2 node v iff v has a neighbor in C and
a neighbor w of type-3 in layer ` that joined class i and has a neighbor in a component
C′ 6= C of class i. This rule corresponds to the intuition that v and C are neighbors in the
bridging graph if and only if the component C can be connected to another component C′
via nodes v and w. In other words: If v joins class i, the component C is joined with the
component C′.

As the final step for each layer, they apply a maximal matching algorithm to the bridging
graph. Each type-2 node that gets matched to a component C joins the class of the
component. All unmatched nodes choose a random class.
The following section contains a comparison of our algorithm and the one we just

presented.

1.2 Comparison with [CHGK14a]
In this section, we compare our approach to the one of Censor-Hillel, Ghaffari, and

Kuhn [CHGK14a], which is the base for our algorithm. We use the V-CONGEST model
to compare these two algorithms.

If we have a look at the running times of the two algorithms, we see that our algorithm
has round-complexity O(log2 n(D+

√
n logn log∗ n+ k∆)) compared to O(log3 n ·min{D+√

n logn log∗ n, (n logn)/k}) of their algorithm.
Both algorithms depend on the vertex-connectivity k. However, our algorithm becomes

slower when k increases while theirs becomes faster. The increase in the running time
is due to the fact that we calculate one matching per class and the number of classes is
proportional to k. But if the vertex-connectivity k and the maximum degree ∆ are not
“too large”, our algorithm is faster.

3



1. Introduction

If we assume D+
√
n logn log∗ n = O(n logn/k), the algorithm of Censor-Hillel, Ghaffari,

and Kuhn takes O(log3 n(D +
√
n logn log∗ n)) rounds. In this case our algorithm is faster

if k∆ = o(logn(D +
√
n logn log∗ n)). The improvement we achieve in this case is up to a

factor of Θ(logn).
Where does this improvement come from? To answer this question we need a more

detailed comparison of the steps of the algorithms. The general structure of both algorithms
is the same. They create a layered virtual graph. Note that the exact definition of this
virtual graph varies, e.g. there are two or three node types, but these are technical details.
In fact, both algorithms could work on the other graph with only minor modifications. For
example, the algorithm of Censor-Hillel, Ghaffari, and Kuhn could remove the nodes of
type 3 and use those of type 1 instead.

Both assign random classes to some part of the virtual nodes and then try to merge the
classes. They go over the remaining nodes layer by layer and do the following steps: First,
they find the connected components of nodes that belong to the same class. Then, some
fraction of the nodes in the layer (type 1 vs. type 1 and 3) randomly join a class.
They differ in how the remaining type-2 nodes select their classes. Both algorithms

use connector paths (cf. Section 3.2 for a formal definition) that connect components
of the same class. We determine them explicitly while the algorithm of Censor-Hillel,
Ghaffari, and Kuhn uses them only implicitly. They are only mentioned in the proof that
the algorithm is correct.

They calculate a matching on a graph, which they call the bridging graph. Some nodes
of this bridging graph are simulated by connected components of nodes. Hence, all nodes in
the same connected component must agree on a common strategy. Therefore, the matching
algorithm needs O(log2 n ·min{D +

√
n logn log∗ n, (n logn)/k}) rounds. The last factor

describes the time needed for the dissemination of information and the common strategy
across the component.

In our algorithm all nodes in the matching graph are simulated by one real node. Thus,
one application of the matching algorithm takes O(∆ logn) rounds. Note that the matching
graphs can be simulated by the real graph with only a constant overhead. As we calculate
one matching per class, the total running time of the algorithm is O(k∆ logn). If we
compare these two running times, we can see that they form exactly the gap in the total
running time.
The final step in each layer is that the type-2 nodes choose a class. As the previous

step is already different, the strategies vary. In the algorithm of Censor-Hillel, Ghaffari,
and Kuhn the type-2 nodes select the class of the component they are matched to. In our
algorithm they determine the useful paths, i.e. paths that can still connect components of
the same class (cf. Section 3.2), pick one randomly and join the class of this path.

1.3 Outline
In the following chapter, we define the basic terms and notations that are used throughout

this thesis. We then present the fractional CDS packing algorithm (Chapter 3) and prove its
correctness (Chapter 4). Finally, we summarize the contribution of this thesis in Chapter 5
and give a brief outlook on possible future research.
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2. Preliminaries

This chapter contains basic definitions and statements that are used in this thesis.

2.1 Graphs
An undirected graph G = (V,E) consists of a set of nodes V and a set of edges

E ⊆ {{v, w} | v, w ∈ V }. A subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ E ∩ {{v, w} | v, w ∈ V ′}, i.e. all edges in E′ belong to E and their endpoints lie in V ′.
A graph is bipartite if there are two disjoint sets of nodes V1 and V2 such that V = V1 ∪ V2
and all edges have one endpoint in V1 and one in V2.

Let V ′ ⊆ V be a set of nodes. We denote the subgraph that is induced by V ′ with G[V ′].
This means that G[V ′] = (V ′, E′), where E′ = E ∩ {{v, w} | v, w ∈ V ′} contains exactly
those edges that have both endpoints in V ′.

A path from v0 to v` is a sequence of nodes (v0, . . . , v`) such that there is an edge between
vi and vi+1 for i = 0, . . . , ` − 1. The nodes v0 and v` are called endpoints and the other
ones are internal nodes. A path is simple if the nodes v0, . . . , v`−1 are pairwise distinct.
In this thesis, we assume that all paths we work with are simple. The length of the path
(v0, . . . , v`) is `. Intuitively, it describes the number of steps that are needed to go from
one endpoint to the other. A set of paths is internally vertex-disjoint iff each node is an
internal node of at most one path in this set.
The distance dist(v, w) of two nodes v, w ∈ G is the length of the shortest path from

v to w. The largest distance of two nodes of graph G is the diameter D of this graph,
i.e. D = max{dist(v, w) | v, w ∈ V }.

The graph G = (V,E) is connected if for each pair of nodes v, w ∈ V there exists a path
from v to w in G. A connected component is a maximal subset of nodes C ⊆ V such that
G[C] is connected. This implies that if we add any node v ∈ V \ C the graph induced by
C ∪{v} is not connected. The graph G is k′-vertex-connected if the graph is still connected
if we remove an arbitrary set of k′ nodes. In other words, the graph is k′-vertex-connected
iff for each set S ⊆ V with |S| = k′ the graph G[V \ S] is still connected. The vertex
connectivity of G is the largest number k such that G is k-vertex-connected.

A subset S ⊆ V of the nodes is a dominating set if each node v ∈ V \ S has a neighbor
in S. In this case, we also say that the set S dominates the graph G. A dominating set S
is called a connected dominating set (CDS) if the subgraph G[S] is connected.
A fractional connected dominating set packing is a set S of connected dominating sets,

where each set S ∈ S has a weight xS ∈ [0, 1] associated with it. For each node v ∈ V let
Sv ⊆ S be the connected dominating sets that contain v. The sum of the weights of these
node has to be at most 1, i.e.

∑
S∈Sv xS ≤ 1. The total weight of all sets

∑
S∈S xS is the

size of the fractional CDS packing.
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2. Preliminaries

An independent set is a set S ⊆ V of nodes such that v, w ∈ S implies that {v, w} 6∈ E.
In other words, for each node v ∈ S the set S does not contain a neighbor of v.
A set M ⊆ E of edges is called a matching iff no two edges in M have a common

endpoint, i.e. if e, e′ ∈M and e 6= e′ then the two sets are disjoint, i.e. e ∩ e′ = ∅. The size
of a matching is the cardinality of the set M . A maximum matching is a matching that
has maximum size of all possible matchings in the graph G. A matching M is said to be
maximal if there is no matching M ′ ⊆ E such that M  M ′. Hence, if we add an edge
to a maximal matching, the result is not a matching anymore. Note that each maximum
matching is maximal but the converse does not hold. It is a well-known fact that the size
of a maximal matching is at least half of the size of a maximum matching.
Matchings and independent sets are quite similar. In fact, a matching can be seen as

an independent set of edges. For a precise statement, we need the notion of a line graph,
which basically switches the roles of nodes and edges. Let G = (V,E) be a graph. The line
graph L(G) = (V ′, E′) of G is defined as follows: For each edge e in the graph G, the line
graph L(G) contains a node ve. There exists an edge between two different nodes ve and
ve′ if and only if the edges e and e′ have a common endpoint in G.
An example of this construction can be found in Figure 2.1. It also highlights the

correspondence of matchings in G and independent sets in the line graph L(G), which we
show in the following lemma.

Lemma 2.1. Let G = (V,E) be a graph and L(G) its line graph.

(a) If M ⊆ E is a matching in G, the set {ve | e ∈ M} forms an independent set in
L(G).

(b) If S ⊂ V ′ is an independent set in L(G), the set {e | ve ∈ S} forms a matching in G.

Proof. (a) Let M ⊆ E be a matching in G. We show that S := {ve | e ∈ M} is an
independent set of L(G). We need to show that the nodes ve, ve′ ∈ S are not adjacent.
Since e and e′ are both included in the matching M , they do not share an endpoint. By
definition of L(G), this implies that there is no edge between ve and ve′ . As this is true for
all pairs of nodes in S, the set S forms an independent set of L(G).

(b) Suppose that S ⊆ V ′ is an independent set. This induces the set M := {e | ve ∈ S},
which is a subset of the edges of G. We show that no two elements of M have a common
endpoint. Fix two edges e, e′ ∈ M . Due to the definition of M the independent set S
contains both nodes ve and ve′ . Therefore, there is no edge between these two nodes.
According to the construction of L(G), this is equivalent to the fact that the edges e and
e′ do not have a common endpoint. As the choice of e and e′ was arbitrary, the set M is a
matching.

A consequence of this correspondence is that a maximal independent set in the line
graph L(G) translates to a maximal matching in G.

L(G)

G

Figure 2.1: Example of relationship between matchings in G and independent sets in
L(G). The marked nodes and edges show an independent set in L(G) and the
corresponding matching in G.
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2.2. Distributed Computing

2.2 Distributed Computing
When talking about distributed computing there are several different models that are

used (see e.g. [Pel00, Section 2.3]). In this thesis we focus on one that is called the
V-CONGEST model. Given a communication network (i.e. an undirected graph) with
n nodes, we assume that initially each node knows its unique ID and the IDs of its neighbors.
Hence, it only has a local view of the network.
The nodes of a graph communicate in synchronous rounds. Each round consists of the

following parts: (1) local computation, (2) sending one message to all neighbors, and (3)
receiving the messages from its neighbors. The size of each message is bounded by O(logn).
Hence, in each round each node can send one message of size O(logn) to all of its neighbors.
Note that in this model a node sends the same message to all of its neighbors.

This restriction is removed in the E-CONGESTmodel, which is also called the CONGEST
model. Here, each node can send different messages to its neighbors. But still each message
must have O(logn) bits.

We present our algorithm in the V-CONGEST model and explain how the running time
can be improved if we use the E-CONGEST model instead.

2.3 Mathematical Background
Given a graph with n nodes we use the term with high probability (w.h.p.) to indicate

that the probability is at least 1− 1/nc for a constant c ≥ 1.
The following three lemmas contain inequalities, which we need to show the correctness

of our algorithm.

Lemma 2.2 (Markov’s Inequality). Let X be a nonnegative random variable with expected
value E [X]. For all a > 0 the following inequality holds:

Pr[X ≥ a] ≤ E [X]
a

Proof. A proof can be found in [Kle14, Theorem 5.11].

The second inequality describes an upper bound for the values of binomial coefficients.

Lemma 2.3. For natural numbers n and k ≤ n we have(
n

k

)
≤
(
en

k

)k
Proof. A proof is shown in [CLRS09, Equation C.5].

The third lemma contains an inequality that deals with exponential functions.

Lemma 2.4. The following inequality holds for t ≥ 1 and 0 ≤ α ≤ t:(
1− α

t

)t
≤ e−α

Proof. This inequality is presented in [MR95, Proposition B.3]

We presented the basic terms and statements used in this thesis. The following chapter
contains a description of our fractional CDS packing algorithm.
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3. Fractional Connected Dominating Set
Packing Algorithm

In this chapter we present our fractional CDS packing algorithm. We start with the
definitions of the virtual graph (Section 3.1) and connector paths (Section 3.2). The
remaining sections contain the description of the algorithm.

3.1 The Virtual Graph
We use the general idea of the layered virtual graph, which was introduced in [CHGK14b]

but build it in a slightly different way.
Given a graph G = (V,E), we construct a virtual graph G = (V, E), which can easily

be simulated by G. Each node v ∈ G simulates L1 + 2L2 = Θ(logn) copies. These nodes
are ordered in L = L1 + L2 = Θ(logn) layers, which are numbered from 1 to L. We call
the first L1 layers the lower layers and the remaining ones upper layers. The lower layers
contain one copy of each node whereas the upper ones contain two copies each, one of
type 1 and one of type 2.
To distinguish the nodes of the two graphs, we refer to the nodes of G and G as real

and virtual nodes, respectively. The projection Ψ(v) of a virtual node v is the real node
that simulates v. Likewise, the projection of a set S of virtual nodes is the union of the
projection of the elements, i.e. Ψ(S) = {Ψ(v) | v ∈ S}.
There is an edge between two virtual nodes v and w if they are projected to the same

real node, i.e. Ψ(v) = Ψ(w), or there exists an edge in G between their projections Ψ(v)
and Ψ(w). An example of an virtual graph is shown in Figure 3.1.

3.2 Connector Paths
An important tool for connecting components in the virtual graph are connector paths.

The notion of these paths was first developed in [CHGK14b].
Suppose that all nodes of levels 1 to ` have already selected their classes. We call these

nodes old nodes. Consider a class i and the set nodes of this class in layers 1 to `, which
we denote with V i`. Let C be a connected component of the graph G[V i`], which is induced
by the old nodes of class i. Assume that C is not single in its class, i.e. we still need to
connect C to another component of class i. Let C = Ψ(C) be the projection of C to the
real graph G. We call a path P in the real graph G a potential connector if the following
conditions hold.:

(a) One endpoint of P is in C and the other is in Ψ(V i` \ C), i.e. P connects C and
another component of class i.

9
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L2 upper layers

L1 lower layers

type-1 node

type-2 node

node without type

Figure 3.1: Example of virtual graph G. The edges between nodes of different layers or
types are not shown.

(b) P has at most two internal nodes.

(c) If P has exactly two internal nodes, i.e. it is of form (s, v, w, t) where s ∈ C, v has
no neighbor in Ψ(V i` \ C) and w has no neighbor in C.

The last condition ensures that the potential connector paths cannot be made shorter by
removing one of the internal nodes and possibly selecting a new endpoint.

From the potential connector P we construct a connector path P such that the projection
of P is P . Assume that the endpoints of P are s and t. We then select virtual nodes
s′, t′ ∈ V i` of class i, such that their projections are s and t, respectively. For the internal
nodes of P we choose nodes from layer ` + 1. If P has exactly one internal node v, we
select the type-1 node that is projected to v. If otherwise P has two internal nodes, let v
be the node that is adjacent to a node in C and w be the other internal node. We choose
the copy of v with type 2 and the copy of w with type 1. We say that the connector path
P belongs to component C and class i.

Figure 3.2 shows an example of connector paths. Note that the path from the projection
of component C via nodes v2 and w2 to the projection of C2 is not a valid potential
connector path. It can be shortened as node v2 is adjacent to a node in Ψ(C1). Hence, it
violates condition (c), which requires the paths to be minimal. In Section 3.5, we analyze
properties of connector paths. This includes an intuitive explanation of why there are
“many” connector paths per component (cf. Lemma 3.2).

A connector path with one internal node is called a short connector path, whereas a
connector path with two internal nodes is called a long connector path. Moreover, we call
a long connector path belonging to a component of class i useful if its type-1 internal
node has assigned itself to class i. Otherwise, the path is useless. This corresponds to
the intuition that useless connector paths cannot connect the two components of class i
anymore since one internal node has chosen the “wrong” class. We also say that a connector
path selects class i if all internal nodes join class i.

3.3 Description of the Algorithm
Given a graph G = (V,E) with n nodes, diameter D and vertex-connectivity k, our goal

is to find Θ(k) connected dominating sets such that each node of G is contained in O(logn)
sets. To get the desired packing, we assign a weight of Ω(1/ logn) to each set. This gives a
fractional CDS packing of size Ω(k/ logn).

10
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C

C1

C2

w1

v1

v2

w3
v3

v4

w2

C

C1

C2

w1

v1

v2

w3
v3

v4

Potential connector paths belonging
to the projection of component C type-1 node type-2 node

real graph G: virtual graph G:

Figure 3.2: Potential connector paths and the corresponding connector paths belonging to
component C

We create t = αk classes for a constant α > 0. During the execution of the algorithm all
virtual nodes join exactly one class. They select a class such that in the end all classes
are connected dominating sets w.h.p., and each real node is contained in O(logn) classes.
Giving all classes a weight of L1 + 2L2 and projecting them to the real graph leads to the
desired fractional CDS packing, in which each node is contained in O(logn) classes.
Recall that for a layer ` and a class i we denote the virtual nodes of layers 1 to ` that

belong to class i with V i`. Moreover, let the set V` contain all nodes in these layers, i.e. it
is the union of V i` where i ranges over all classes.

Throughout the algorithm we use the following protocol, which was presented by Censor-
Hillel, Ghaffari, and Kuhn. We refer the reader to their article for a more detailed
description. The protocol is based on the connected component identification algorithm of
Thurimella [Thu97, Algorithm 5] combined with the MST-algorithm of Kutten and Peleg
[KP95].

Theorem 3.1 (Theorem B.2 of [CHGK14a]). Let G = (V,E) be a graph with n nodes and
diameter D and G′ = (V,E′) be a subgraph of G where E′ ⊆ E. Suppose each node has a
value with O(logn) bits. There is a distributed algorithm taking O(min{D′, D+

√
n log∗ n})

rounds in the V-CONGEST model that lets each node know the smallest value of all nodes
in the same connected component of G′. Here, D′ denotes the largest diameter among all
connected components of G′.

The algorithm consists of two parts: After the first one all classes dominate the graph G.
In the second one we make all classes connected by adding nodes to the classes.

Part A – Lower layers
In the first part of the algorithm each virtual node in the lower layers randomly joins a

class obeying a uniform distribution.

Part B – Upper layers
We then consider the upper layers one after another. Suppose the virtual nodes of layers

1 to ` have already selected a class. We call the nodes of these layers old nodes and nodes
of layer `+ 1 new nodes. We perform the following steps to determine the classes of all
new nodes.

11
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Step B.1 – Identify connected components of old nodes
We determine the connected components of the old nodes of the virtual graph by applying

the protocol of Theorem 3.1, where we use the node IDs as the values. This step is identical
to the step presented in Section B.1 of [CHGK14a].
After that each node knows the ID of the component it belongs to. It then sends this

information to all neighbors.

Step B.2 – Type-1 new nodes select class
After the components have been determined, all type-1 new nodes randomly choose a

class and send their choices to their neighbors. Additionally, each node v includes the
connector-symbol if it connects two components. This means that if v has chosen class i
it searches for two old neighbors that both belong to class i but not to the same component.
This is easy to determine since v already knows the classes and component IDs of its old
neighbors.

If a virtual node w receives a message containing the connector-symbol and the class it
belongs to, it knows that its component has been connected and it has to become inactive.
This information has to be shared by all nodes in the component, which is done by an
other application of the algorithm of Theorem 3.1.

The deactivation of components is identical to the first part of Section B.2 in [CHGK14a].
As the details of this step can be found there, we omit them here.

Step B.3 – Determine internally vertex-disjoint connector paths
For each active component we find internally vertex-disjoint long connector paths by

applying a maximal matching algorithm. We run this algorithm once for each class i
on a bipartite graph Hi, which represents the possible long connector paths of all active
components of this class.

As this is the key part of the algorithm, we give a detailed description of this step in the
next section.

Step B.4 – Type-2 new nodes select class
In the last step each type-2 new node v determines which connector paths going through

it are useful, i.e. the internal type-1 node of this path has chosen the right class. It then
chooses one of the remaining paths randomly and joins the class the connector path belongs
to. Both internal nodes of this class have joined the correct class, and hence, the path
connects two components of the same class. If no path is useful, v randomly selects any
class.

Final Part – Assign Weights
After all virtual nodes have selected their class, we assign each class a weight of 1/(L1 +

2L2) as each real node simulates exactly L1 + 2L2 virtual copies of itself.
After we completed all the steps, the classes are connected dominating sets w.h.p.

Together with the weights they form a fractional CDS packing. It still remains to describe
how to find the vertex-disjoint, long connector paths, which we do next.

3.4 Finding Vertex-Disjoint Connector Paths
In this section we give a detailed description of how we find internally vertex-disjoint long

connector paths for each active connected component. Note that we might not determine
a maximum set of these paths. But we make sure that the number of paths we find is at
least half of the maximum number. In Lemma 3.2 we show that each connected component
has at least k connector paths.
Finding many long connector paths is especially interesting if an active component has

at least k/2 internally vertex-disjoint long connector paths, which is the case we need to
show the correctness of the algorithm (cf. Lemma 4.7). In this case we find at least k/4
vertex-disjoint connector paths.

12
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In order to find these paths, we build one graph per class, which itself is the disjunct
union of bipartite graphs, one for each active component of this class. Each edge represents
a long connector path. Basically, this graph is determined by taking all long connector
paths of this component and removing their endpoints, i.e. only the internal nodes and the
edges between them remain. A formal definition is given in Section 3.4.1. In Section 3.4.2
we describe how the graph can be found algorithmically. A matching in this graph induces
a set of internally vertex-disjoint connector paths of this component. Therefore, we use a
maximal matching algorithm to find these paths, which is presented in Section 3.4.3.

3.4.1 The Virtual Graph Hi

In this section we formally define the virtual graph Hi for class i, which we use to
determine the sets of internally vertex-disjoint connector paths of this class.

Fix a class i. We obtain the graph Hi as the disjunct union of bipartite graphs, one for
each active component of class i. Hence, we only need to describe how the graph is built
for an active component C of class i.

Let C = Ψ(C) be its projection to the real graph G. For each type-2 new node v we add
a node vC to Hi if and only if the following three conditions hold:

(a) The projection of v does not belong to C.

(b) v has a neighbor in C.

(c) No old neighbor of v belongs to a component of class i other than C.

These conditions ensure that v might be the type-2 internal node of a long connector path
of component C.

For each type-1 node w that is a neighbor of any type-2 node we have chosen above, we
add a virtual node wC if w has a neighbor in a component C′ 6= C of class i but no neighbor
in C. We then include an edge between two nodes vC and wC in Hi if there is an edge
between the nodes v and w in G.
This construction ensures that there exists a long connector path of component C with

internal nodes v and w if and only if there is an edge between vC and wC in Hi. Hence,
each matching in Hi represents a set of internally vertex-disjoint long connector paths for
components of class i.
Figure 3.3 shows an example of a graph G and the corresponding graph Hi. Note that

there is no copy of node z in the virtual graph Hi. To be included in Hi there are two
possibilities: either as a copy of a type-1 or of a type-2 node. There exists no type-2
copy of z because z has neighbors in two different connected components of class i. To

G Hi

type-1 new node type-2 new node real node

u
v

w

x y

z

u

v

w

x y

C2

C3

C1

Figure 3.3: Example graph G and the corresponding graph Hi
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be included as the copy of a type-1 node, there has to be a neighbor of type-2 included
in Hi. This is indeed the case: The node v has a type-2 copy in Hi, which belongs to
component C2. But z also has a neighbor in the same component. Therefore, we do not
add a copy of z to Hi.

The arguments given refer to the definition of the graph Hi. But to see why Hi is defined
that way, we have to think about long connector paths. Each edge in the graph Hi shall
represent a long connector path in G. We include a node in Hi if and only if there exists a
long connector path of class i that has this node as internal node. But there exists no long
connector path that contains z.

3.4.2 Algorithm for Building Hi

The previous section contains a definition of the graph Hi. But to use this graph in our
fractional CDS packing algorithm, we need to give an algorithm for building it. This is
exactly what we do in the following.
The type-2 new nodes initiate the creation of the graph Hi. All type-2 nodes already

know the classes and components their old neighbors belong to. Hence, each type-2 node
can determine whether it shall simulate a node in Hi. Note that for each class i, a type-2
new node lies on connector paths of at most one component of G[V i`] (cf. Lemma 3.3).
Therefore, it only simulates at most one node in Hi. We will need this fact later when we
analyze the runtime of the maximal matching algorithm. If a node v adds a copy of itself
to Hi it sends the ID of its neighboring component to all type-1 new neighbors. These
check whether they satisfy the conditions to join the graph Hi. This can be done locally as
they already have the information which classes and components their neighbors belong to.
If the result is positive they answer with a special path-found symbol. This completes
the creation of Hi.

3.4.3 Finding Matchings in Hi

Our goal is to find a set of internally vertex-disjoint connector paths for each active
component. Since each edge in the graph Hi represents a long connector path, we can run
a matching algorithm to find internally vertex-disjoint connector paths. In this section we
describe how we do this.
We run the maximal matching algorithm for bipartite graph that was proposed in

[CHGK14a], which adapts Luby’s algorithm for finding maximal independent sets [Lub86].
In our case the implementation is even simpler because each virtual node in Hi is simulated
by one real node, whereas in the algorithm of [CHGK14a] there are virtual nodes that
represent connected components. We do not need additional communication to ensure that
all nodes in one component agree on their behavior in the next stage of the algorithm.

The variant we use has O(logn) stages, which work as follows: Each type-2 node vC ∈ Hi
that is still active randomly picks a number between 1 and n16 for each active edge that has
vC as its endpoint. Therefore, we can say each edge has a random number assigned to it,
which we will use as its priority. The node vC then picks the edge with the highest priority
and proposes to the other endpoint of this edge. This proposal includes the priority.
Some nodes of Hi that are simulated by a type-1 node of G have received proposals.

Suppose wC is one of them. It finds the proposal with the highest priority and accepts
it. This means that wC sends a message to the sender vC of this proposal containing the
Proposal-Accepted-symbol.
If a node vC receives a Proposal-Accepted-symbol from wC, it includes the edge

in the matching. The nodes vC and wC know that an adjacent edge is included in the
matching. Thus, they become inactive and send the Inactive-symbol to all neighbors in
Hi. Upon receiving a message containing the Inactive-symbol, the node marks the edge
to the sender as inactive and ignores this edge in the following stages.

After O(logn) stages the resulting matching is maximal w.h.p. (cf. Lemma 4.12). As all
edges in the graph Hi stand for long connector paths of components of class i, the edges
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in the matching represent a subset of these paths. We call these long connector paths
active. Due to the matching condition all active connector paths that belong to the same
component are internally vertex-disjoint. Note that this does not hold for active connector
paths of different components as shown in Figure 3.4.
In this section we made use of the fact that each new type-2 node lies on at most one

connector path of each class. In the following section we study the properties of connector
paths, which includes a proof of this fact.

3.5 Properties of Connector Paths
In this section we examine general properties of connector paths. This includes statements

concerning the number of connector paths per connected component (cf. Lemma 3.2) and
the number of long connector paths per type-2 new node (cf. Lemma 3.3).

Lemma 3.2. Let i be a class and ` ≥ L1 a layer. Consider any connected component C of
G[V i`]. If V i` dominates G and C is not the only component of G[V i`], the component C has
at least k internally vertex-disjoint connector paths.

This lemma is stated as Lemma 4.3 in [CHGK14a], and a formal proof can be found
there. We want to give an intuition about how this proof works.
Let C be a connected component of class i that satisfies the conditions of the lemma.

Additionally, let C′ 6= C be another component of the same class. Fix real nodes s and t
in C = Ψ(C) and C ′ = Ψ(C′), respectively. According to Menger’s Theorem there are at
least k internally vertex-disjoint paths from s to t in the real graph G [BM08, Theorem
9.1]. These paths are usually not connector paths themselves but we can derive connector
paths by shortening them.
In Figure 3.5 an example of such a path is shown. We can see that at some point

the path P leaves the component C and enters another component C ′′ 6= C. Due to the
domination of the class, we can pick one or two nodes between the components such that
they form the internal nodes of a potential connector path. Setting the types of the internal
nodes properly, we get a connector path of component C in G.
Note that the path P may leave and enter the component C before it enters a different

component of the same class, as it is shown in the top left of Figure 3.5. Moreover, the
component C ′′ might be different from the component C ′ the path ends in. Also note that
the connector path derived from path P may contain nodes and edges that do not belong
to P itself. In our example the connector path starts at node u, which is not on P . All
internal nodes of the connector path—v and w in our example—also lie on the path P

G Hi

type-1 new node type-2 new node real node

u
v

w

x y

z

u

v

w

x y

Figure 3.4: A possible result of the matching algorithm on the graph Hi and the projection
of the active connector paths to the graph G
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s

t

C

C′

C′′

v
u

w

x

connector path

s-t-path P from
Menger’s Theorem

Figure 3.5: Shortening of a path to a connector path

though. Hence, no other connector path of component C contains them. This implies that
the resulting connector paths are internally vertex-disjoint.
The following lemma examines the long connector paths belonging to the same class.

It is presented in [CHGK14b] as Proposition 3.3 and in [CHGK14a] as Proposition 4.2.
However, neither of these two articles contains a full proof of this statement. Therefore, we
give one here.

Lemma 3.3. Suppose we are at an upper layer and v is a type-2 new node. For each class
i, there is at most one component of class i that has long connector paths with v as internal
node.

Proof. We show that if there were two such components, we could shorten the long connector
paths. This would violate the minimality of the connector paths.
Let ` + 1 be an upper layer and i a class. Assume there is a type-2 new node v and

two components C1 and C2 of G[V i`] such that both components have connector paths that
contain the node v. Let P1 and P2 be such paths that belong to components C1 and C2,
respectively. Moreover, we denote the endpoint of path Pj that belongs to component Cj
with uj . This situation is shown in Figure 3.6.

However, this implies that there is a short connector path from u1 to u2 via the type-1
new node that is simulated by the same real node as v. This violates the requirement
that long connector paths cannot be shortened. Hence, the paths P1 and P2 are not long
connector paths, which contradicts the assumption. Thus, all long connector paths of the
same class that have the same type-2 internal node belong to the same component.

type-1 new node

type-2 new node

old node

v

u2

u1

C1

C2

Figure 3.6: Two long connector paths of the same class that have the same internal type-2
node v. The solid red path is the short connector path that makes the two long
connector paths invalid.
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We analyze the algorithm in this chapter. First, we determine its runtime in both the
V-CONGEST and the E-CONGEST model (cf. Section 4.1). In the second part of this
chapter, we show that the algorithm works correctly, i.e. it outputs a fractional CDS
packing w.h.p.

4.1 Runtime
In this section we show the total runtime of the algorithm. We focus on the V-CONGEST

model. Additionally, we show how the runtime can be improved if we use the less restricted
E-CONGEST model.

Theorem 4.1. Let G be a graph with n nodes, vertex-connectivity k and maximum degree ∆.
The algorithm takes O(log2 n(D +

√
n logn log∗ n+ k∆)) rounds of communication in the

V-CONGEST model.

Proof. Clearly, we do not need any communication for the first L1 layers. We analyze how
many rounds of communication we need for each upper layer in the following.
Identify connected components of old nodes: Suppose the nodes of layers 1 to `
have already selected their classes. According to Theorem 3.1, the algorithm to determine
the connected components of old nodes needs O(D +

√
|V| log∗ |V|) rounds on the virtual

graph G. Since G has |V| = O(n logn) nodes and the same diameter as G (unless G consists
of only one node), the running time can be simplified to O(D +

√
n logn log∗ n) rounds on

the virtual graph G. Each real node simulates O(logn) virtual nodes so each round on G
can be simulated in O(logn) rounds on G. Hence, we need O(logn(D +

√
n logn log∗ n))

rounds for this step.
Type-1 new nodes select class: All old nodes send their component IDs to their
neighbors and all type-1 new nodes send the ID of the class they joined. Both can be done
in one step on the virtual graph G, and thus, it takes O(logn) rounds on G. Broadcasting
that a component is inactive is done by another application of the algorithm of Theorem
3.1. Hence, we again need O(logn(D +

√
n logn log∗ n)) rounds.

Determine active connector paths: Each real node simulates one new node of type 1
and one of type 2. Therefore, establishing the graph Hi can be done in two rounds.
Although a real node may simulate one type-2 node and multiple type-1 nodes in Hi, each
edge is used at most twice, which is shown in Lemma 4.3. This implies that in one round
on Hi each real node sends at most two messages per edge. Hence, each round on Hi can
be simulated in O(∆) rounds on the real graph G, where ∆ denotes the maximum degree.
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In Lemma 4.12 it is shown that the maximal matching algorithm takes O(logn) rounds
on the graph Hi. Our argumentation above implies that this can be simulated in O(∆ logn)
rounds on the real graph G. We apply the maximal matching algorithm once for each class.
Therefore, we need O(t∆ logn) = O(k∆ logn) rounds to find internally vertex-disjoint
connector paths for all classes.

Wrap Up
All in all, we need O(logn(D +

√
n logn log∗ n + k∆)) rounds per layer and thus

O(log2 n(D +
√
n logn log∗ n+ k∆)) rounds in total, which completes the proof.

The proof above assumes that we work in the V-CONGEST model. If we use the
less restricted E-CONGEST model instead, it is possible to improve the runtime of the
algorithm.

Corollary 4.2. Let G be a graph with n nodes and vertex-connectivity k. The algorithm
takes O(log2 n(D +

√
n logn log∗ n + k)) rounds of communication in the E-CONGEST

model.

Proof. Note that the runtime in the E-CONGEST model does not depend on the maximum
degree ∆ of the graph. To get this result, we show that we can simulate the matching
algorithm on the graph Hi more efficiently. Recall that each real edge simulates at most
two edges in Hi (cf. Lemma 4.3). In the E-CONGEST model a node can send different
messages along different edges at the same time, which is impossible in the V-CONGEST
model. Hence, we can simulate each round on Hi in two rounds on G in the E-CONGEST
model as opposed to O(∆) rounds in the V-CONGEST model.

Leaving all other parts of the algorithm unchanged, we get a total runtime of O(log2 n ·
(D +

√
n logn log∗ n+ k)) rounds in the E-CONGEST model.

In the proofs above, we make use of the following structure of the graph Hi, which allows
to simulate this graph more efficiently.

Lemma 4.3. Let i be a class. Consider the graph Hi that is built at an upper layer. Each
real edge in the graph G simulates at most two edges in Hi.

Proof. Fix an edge e of Hi. Since the graph Hi has been constructed separately for each
component, the edge e belongs to a component C of G[V i`]. All virtual edges connect type-1
and type-2 nodes. Thus, one of the endpoints of e has to be of type 2. Let this endpoint
be vC and the endpoint of type 1 be wC . These nodes are simulated by the virtual type-2
node v ∈ G and type-1 node w ∈ G, respectively. We show that there is no other edge in
Hi whose endpoints are simulated by the same nodes in G.
Assume that there is another edge e′ in H which is simulated by the virtual nodes v

and w. Due to the construction of Hi, this edge e′ cannot belong to the same component as
e, which is C. According to Lemma 3.3 there is at most one component of class i such that
this component has long connector paths that include the type-2 new node v. We already
know that C is this component because the existence of edge e implies a long connector
path from C via v and w to another component of class i. Therefore, no other component
of class i has a long connector path containing v, and thus, e is the only edge in Hi between
copies of v and w.

This completes our analysis of the runtime of the algorithm. In the remainder of the
chapter, we show that the algorithm works correctly.
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4.2 Correctness
In this section we deal with the correctness of the algorithm, which is formulated in the

following theorem.

Theorem 4.4. The classes form a fractional connected dominating set packing w.h.p.

Proof. We need to show that the following conditions hold w.h.p.:

1. Each class dominates all nodes (cf. Theorem 4.5).

2. Each class is connected (cf. Theorem 4.6).

3. The total weight of all classes a node belongs to is at most 1.

Condition 3 is always satisfied. Each real node v simulates L1 + 2L2 virtual nodes. Hence,
it is included in at most L1 + 2L2 classes. As each class has weight 1/(L1 + 2L2), the total
weight of all classes that include v is at most 1.

According to Theorem 4.5, the probability that all classes are dominating sets is at
least 1− 1/nc1 for a constant c1 ≥ 2. Similarly, Theorem 4.6 says that if the classes are
dominating, the probability that all classes are connected is at least 1−1/nc2 for a constant
c2 ≥ 2. Setting c′ = min{c1, c2}, we get the following lower bound for the probability that
all conditions 1–3 are satisfied.

Pr[1–3 satisfied] = Pr[classes dominate] · Pr[classes are connected | classes dominate]

≥ (1− 1
nc′

) · (1− 1
nc′

)

≥ 1− 2
nc′

≥ 1− 1
nc′−1

The last inequality holds if n ≥ 2. For n = 1, i.e. the graph consists of only one node, the
result of the algorithm is always a fractional CDS packing of size 1.
The calculation shows that the classes form a fractional CDS packing w.h.p.

The remainder of the chapter contains the proofs that the result of our algorithm also
satisfies the first two properties. We begin with the proof of the dominance in the next
section. The other sections starting with Section 4.2.2 deal with the connectedness of the
classes.

4.2.1 Dominance
In this section we show that all classes form dominating sets w.h.p., which is formulated

in the following theorem. The algorithm in [CHGK14a] uses the same technique to achieve
dominance and already contains a proof that this technique works. However, many details
are left out. Therefore, we present a more detailed proof of this theorem. Moreover, we
simplified the proof by removing the use of a Chernoff bound.

Theorem 4.5. The following three statements hold w.h.p.

(a) The virtual nodes of each class that belong to the lower layers form a dominating set.

(b) All nodes of each class form a dominating set in G.

(c) The projection of all classes to G form dominating sets.

Before we begin with the proof, let us consider where we need each part of the theorem.
Part (c) states the desired result of the algorithm. Parts (a) and (b) are used to show that
classes are also connected.
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Proof. (a) Fix a class i. We show that the lower virtual nodes of this class form a dominating
set. Due to the construction of the virtual graph, all virtual nodes that are projected to
the same real node have the same neighbors. Therefore, it suffices to show that the virtual
nodes of layer 1 are dominated.

Let v be a virtual node in layer 1. Since G has vertex connectivity k, each real node has
at least k neighbors. Therefore, v has at least kL1 = kλ logn neighbors in the lower layers.
All neighbors independently join class i with probability 1/t = 1/αk = β/k for β = 1/α.

Pr[one neighbor selects class i] ≥ 1−
(

1− β

k

)kλ logn

= 1−
((

1− β

k

)k)λ logn

(∗)
≥ 1− e−β·λ logn

= 1− 1
nβλ

The step marked with (∗) uses the inequality from Lemma 2.4. Using a union bound over
all choices of nodes in layer 1 and all classes we obtain a lower bound for the probability
that statement (a) holds.

Pr[(a) holds] ≥ 1−
t∑
i=1

∑
v∈V1

Pr[v has no lower-layer neighbor in class i]

≥ 1−
t∑
i=1

∑
v∈V1

1
nβλ

= 1− nt

nβλ

≥ 1− 1
nβλ−2

Hence, the nodes of class i in the lower layers dominate the virtual graph w.h.p., which
completes the proof of part (a).
(b) Clearly, if the nodes of a class in the lower levels already dominate G, this is also

true if we additionally consider the nodes of this class in the upper layers. Thus, all virtual
nodes of a class dominate G w.h.p.
(c) Due to the construction of the virtual graph G, the projection of a dominating set

in G is a dominating set in G. Hence, the resulting sets of real nodes dominate G w.h.p.

4.2.2 Connectedness
In the previous section, we have seen that the results of the algorithm are indeed

dominating sets. We now turn to the second part of the algorithm and show that these
sets are also connected.

Theorem 4.6. W.h.p., the nodes of all classes are connected after L layers, i.e. G[V iL] is
connected for i ∈ {1, . . . , t}.

Proof. Let Xi
` be the number of connected components of G[V i`] and M i

` = Xi
` − 1 the

number of “missing connections” between these components. We denote the sum of missing
connections over all classes with M` =

∑t
i=1M

i
` . Hence, we have that M` =

∑t
i=1X

i
` − t.

Our goal is to show that after L layers the nodes of all classes are connected, which means
ML = 0.
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In Lemma 4.7 we show that the number missing components decreases in each layer by
a constant factor with probability at least π. Using this lemma, we are able to prove that
ML = 0 w.h.p. We do this in three steps: First, we determine an upper bound for the
value of ML1 . In a second step we calculate the expected value of ML. Finally, we derive
the desired bound for the probability by an application of Markov’s inequality.

To obtain an upper bound for the number of missing connections we note that each class
has less that n components. Therefore, we have that tn and thus n2 are upper bounds for
ML1 .
Since the values of M` are nonnegative integers, ML = 0 is equivalent to ML < 1. We

claim that setting L2 > −(2 + c) logn/ log(1− δπ) suffices to get a probability of at least
1− 1/nc for the event that all classes are connected. Note that log(1− δπ) < 0. Therefore,
L2 is always positive.
In order to calculate E [ML], we analyze the relation between the expected values

of two succeeding layers E [M`] and E [M`+1]. According to Lemma 4.7 we have that
M`+1 ≤ (1− δ) ·M` with probability at least π. If the value of M`+1 does not decrease by
this constant factor 1− δ, we still know that M`+1 ≤M`. Hence, we obtain the following
inequality for the expected value of M`+1:

E [M`+1] ≤ (π(1− δ) + (1− π) · 1) · E [M`] = (1− δπ) · E [M`]

Using this inequality L2 times, once for each layer ` ∈ {L1, . . . , L− 1}, we get an upper
bound for the expected value of E [ML].

E [ML] ≤ (1− δπ)L2 · E [ML1 ]

< (1− δπ)
−(2+c) logn

log(1−δπ) · n2

= 1
n2+c · n

2

= 1
nc

An application of Markov’s inequality gives an upper bound for the probability that not
all classes are connected, i.e. ML ≥ 1.

Pr[ML ≥ 1] ≤ E [ML]
1 ≤ 1

nc

Hence, we have Pr[ML = 0] = Pr[ML < 1] ≥ 1− 1/nc, which means that all classes are
connected w.h.p.

The following lemma is our variant of what Censor-Hillel, Ghaffari and Kuhn call
the “Fast Merger Lemma” [CHGK14a, Lemma 4.4]. It is the key to the proof of the
connectedness. Its proof is based on the proof of the Fast Merger Lemma of Censor-Hillel,
Ghaffari, and Kuhn. That proof however contains some minor technical flaws. Therefore,
we present a corrected version of this proof as part (b), which is also slightly adapted to fit
to our algorithm.

The main flaw in the proof of the Fast Merger Lemma in [CHGK14a] is that they seem to
use the variable M` for two different things: Sometimes, it denotes the number of missing
connections, which is the correct usage according to the definition. But in some equations
it is used to express the total number of connected components, which is actually M` + t.
Despite the flaws in the proof, the statement of the Fast Merger Lemma itself is correct.

In our corrected version we always refer to the total number of connected components as
M` + t and additionally account for the fact that there are components that are single in
its class.
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Although the proof of part (a) can be found in the proof of the Fast Merger Lemma in
[CHGK14a], we include it here to be self-contained.

Lemma 4.7 (Fast Merger Lemma). Provided that all classes form dominating sets, the
following holds for each layer ` ∈ {L1, . . . , L− 1}:

(a) M`+1 ≤M`,

(b) For sufficiently small constants δ and π we have Pr[M`+1 ≤ (1 − δ)M`] ≥ π with
independence between the layers.

Proof (based on the proof of Lemma 4.4 in [CHGK14a]). Let ` ∈ {L1, . . . , L − 1} be a
layer. Recall that the virtual nodes in layer 1 to ` are called old nodes and the nodes in
layer `+ 1 are new nodes. Suppose a new node v joins class i. Since the nodes of class i
form a dominating set, v has at least one neighbor in class i. Hence, adding v to class i
does not create a new connected component. Therefore, the number of components cannot
increase, which implies part (a).
For part (b), let i be a class such that G[V i`] has at least two components. Suppose C is

one of these. We call the component C good if at least one of the following conditions holds:

(A) There is a type-1 new node u such that it is adjacent to a node in C and another
node in V i` \ C, and u joins class i.

(B) There are two adjacent nodes w and v with types 1 and 2, respectively, such that v
has a neighbor in C and w has a neighbor in V i` \ C, and both nodes join class i.

Otherwise, we call the component C bad. We can see that a good component of old nodes
is merged with another component of the same class at the next layer. Note that the
converse does not hold, i.e. there might be components that are merged although they are
bad. This might occur because condition (b) is not symmetric. Nevertheless, we can use
the number of good components as a lower bound for the number of components that are
merged at the next layer. If a component is the only component of its class we say that
this component is single.
We first show that there are at least 3δ ·M` good components in expectation for a

constant δ > 0. An application of Markov’s inequality then shows that with constant
probability there are at least 2δ ·M` good components, which implies that the number of
missing connections decreases by a constant factor, i.e. M`+1 ≤ (1− δ)M` with constant
probability.

We denote the number of single components with Z`. Let Y` be the total number of bad
components that are not single in its class and X` be the number of good components.

Since each component C is either good, bad, or single, C is counted exactly once. Therefore,
the sum X` + Y` + Z` is the total number of components of old nodes, which can also be
expressed as M` + t. Hence, we have that Y` = M` −X` − Z` + t.
Each good component is merged with at least one other component. Hence, a group of

at least two components is merged to one component in the next layer. Therefore, the
total number of components decreases by at least X`/2.
Therefore, we have for the total number of components at level `+ 1 that M`+1 + t ≤

X`/2 + Y` + Z`. Using the fact that Y` = M` − X` − Z` + t we can simplify this to
M`+1 ≤M`−X`/2. Intuitively, this means that the good components decrease the number
of missing connections.
Suppose that M` = m and Z` = z. Fixing these two values follows the structure of

our algorithm since they do not depend on what happens to the nodes in the layer `+ 1.
Intuitively, we consider the situation when all nodes in the old layers have selected a class,
and hence, the values of M` and Z` are fixed.
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Assume we know that E [X` |M` = m,Z` = z] ≥ 3δ ·(M`+t−Z`) for some constant δ > 0,
which is independent of the values of m and z. Since X`+Y` = M`−Z`+ t, we have that in
this case the expected value of the number of bad components is E [Y` |M` = m,Z` = z] ≤
(1−3δ)(M`+t−Z`). Applying Markov’s inequality gives an upper bound for the probability
that there are “many” bad components.

Pr[Y` ≥ (1− 2δ)(M` + t− Z`) |M` = m,Z` = z] ≤ E [Y` |M` = m,Z` = z]
(1− 2δ)(M` + t− Z`)

≤ 1− 3δ
1− 2δ

Having Y` ≥ (1− 2δ)(M` + t−Z`) is equivalent to the event X` ≤ 2δ(M` + t−Z`). Hence,
we can derive the following lower bound for the probability that there are enough good
components:

Pr[X` ≥ 2δ(M` + t− Z`) |M` = m,Z` = z] ≥ 1− 1− 3δ
1− 2δ =: π

As this probability holds for all possible values of m and z, it follows that Pr[X` ≥
2δ(M` + t − Z`)] ≥ π. Since there is at most one single component per class, the total
number of single components Z` is at most t. Hence, we have t− Z` ≥ 0 and thus

Pr[X` ≥ 2δ ·M`] ≥ Pr[X` ≥ 2δ(M` + t− Z`)] ≥ π.

Together with M`+1 ≤ M` − X`/2, this implies that Pr[M`+1 ≤ (1 − δ)M`] ≥ π, which
would complete the proof.

It remains to show that E [X` |M` = m,Z` = z] ≥ 3δ · (M` + t − Z`) for all possible
values of m and z. Fix M` = m and Z` = z. We divide the components that are not single
in two groups. The first group contains those components that have at least k/2 short
connector paths. We call these components fast. The remaining components go into the
group of slow components. Since we know from Lemma 3.2 that all components that are
not single have at least k vertex-disjoint connector paths, all slow components have at least
k/2 vertex-disjoint long connector paths.
We show that both slow and fast components become good with at least constant

probability. Each component has two possibilities to become good: Either the internal
node of a short connector path or the two internal nodes of a long connector path join the
right class. In the algorithm we first check whether the first condition holds before we try
to find long connector paths. The analysis below follows this structure.
Let C be a fast component of class i. Since C has k′ ≥ k/2 short connector paths and

t = αk, we have k′ ≥ γt for γ = 1/2α. Each internal node of a short connector path has
probability 1/t to join class i. An application of Lemma 2.4 shows that the probability
that no internal node of these paths joins class i is constant:

Pr[no path selects class i] =
(

1− 1
t

)k′
≤
(

1− 1
t

)γt
≤ e−γ

Thus, the probability that at least one internal node of these paths selects class i is at least
δF = 1− e−γ . This already shows that the probability that C becomes good is at least δF .
Therefore, we do not need to consider the long connector paths.

Now suppose C is a slow component of class i. There is a positive probability ρ that C
becomes good because a short connector path selects class i. Suppose this does not happen.
In Lemma 4.11 we show that in this case there is a constant probability δS > 0 that at
least one long connector path selects class i, and thus, the component C becomes good.
Hence, the probability that C becomes good is at least ρ+ (1− ρ)δS ≥ δS .
To combine these two results we select a constant δ > 0 such that 3δ ≤ min{δF , δS}.

Hence, for each component C that is not single the probability that C becomes good is at
least 3δ. Note that the value of δ is independent of the values ofM` = m and Z` = z. There
are M` + t− Z` components that are not single. Thus, using the linearity of expectation,
we obtain that E [X` |M` = m,Z` = z] ≥ 3δ · (M`+ t−Z`), which completes the proof.
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We assumed that the active, slow components become good with constant probability.
In the following section, we show that this assumption is true.

4.2.3 Connecting Slow Components
In order to make the proof cleaner we replace the strategy of how a type-2 node chooses

a class by a different and slightly more complicated one. To distinguish the two strategies
we call the one used in the algorithm strategy A and the modified one strategy B.

Definition 4.8 (Selection Strategy B). First, each type-2 node v discards all paths whose
type-1 internal node has not chosen the right class. Then, all paths are independently
discarded with probability 1/2. We call this step the random discard step. The node v
randomly selects one of the remaining paths and assigns the class of the path to itself. If
all paths are discarded, v joins a random class.

The random discard step is the only difference between the two strategies, i.e. if we
remove this step we get strategy A, which we use in the algorithm. In order to show a
constant lower bound for the probability that active, slow components become good, we
take the following steps:

1. We first show that if we use strategy B, the probability that an active long connector
path selects class i is at least 1/4t (cf. Lemma 4.9).

2. In Lemma 4.10 we compare the two strategies and show that the probability that a
path selects class i is higher if we use strategy A. This implies that the lower bound
of 1/4t holds for strategy A as well. Additionally, we prove an upper bound of 1/t.

3. Finally, we combine these bounds to obtain the desired result. This is shown in
Lemma 4.11.

Lemma 4.9. Let P be a long connector path of an active component of class i. The
probability that both internal nodes of P join class i is at least 1/4t if we use strategy B.

Proof. This proof follows the structure of the first part of the proof of Lemma 4.5 in
[CHGK14a]. We also use a result that is shown there, which we present in Lemma A.1.
Let C be a component of class i that is active after the type-1 new nodes have chosen

their classes. Fix a long connector path P of C and let v and w be the type-2 and type-1
new internal nodes of P . We show that the probability that P selects class i, and hence,
connects C to another component of class i, is at least 1/4t.

In order to simplify the proof of this lower bound we only focus on the case in which P ,
the long connector path of component C, is the only useful path that goes through v and
thus v joins class i. This is the case if and only if the following two conditions hold:

(A) The type-1 node w selects class i and is not discarded.

(B) All other active connector paths through v that do not lead through w are discarded.

These two conditions are independent. Note that in condition (B) we exclude all paths
with v and w on them as (A) already implies that they are discarded. If we included them,
the two conditions above would not be independent anymore.
For (A) to hold, the node w must join class i and the path P is not discarded. Since w

is of type 1, it randomly selects one class. Hence, the probability that w joins class i is 1/t.
The node v discards the path P with probability 1/2. As these two events are independent,
the probability that condition (A) is met is 1/2t.

In order to calculate a lower bound for the probability that condition (B) holds, we need
to look at the active connector paths that contain v.
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w
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type-1 new node

type-2 new node

old node

Figure 4.1: Active connector paths of different classes that have the same internal type-2
node.

Let i1, . . . , iz be the classes that have active long connector paths going through v but
not through w. Clearly, we have z < t. Moreover, let w1, . . . , wz′ be the type-1 new nodes
on these connector paths. Since multiple connector paths might share the same type-1
node we have z′ ≤ z. For each node wj , we denote the number of connector paths that go
through v and wj with xj . This situation is shown in Figure 4.1. In this example, there
is one path that contains the node w1 and thus we have x1 = 1. Similarly, we get x2 = 2
because there are two connector paths going though w2.

According to Lemma 3.3, there is at most one component of each class with a connector
path that contains the type-2 node v. Since the active connector paths of each component
are internally vertex-disjoint, there is at most one active connector path containing v per
class and thus at most t in total. This implies

∑z′
j=1 xj < t. Note that this sum is strictly

less than the number of classes because the path of class i is not counted.
Fix one type-1 node wj . The probability that all paths through wj are discarded can be

determined by looking at two distinct cases: (a) The node chooses a class different from
the classes of the paths that go through it or (b) the node chooses a class of a path but
this path is discarded by v in the random discard step. There are paths of xj classes that
have a long connector path containing v and wj . Thus, the probability that the node wj
chooses none of these classes is Pr[(a) holds] = 1 − xj/t. Otherwise, if it selects one of
these classes, the probability that v discards the path of this class is 1/2. Hence, (b) holds
with probability xj/t · 1/2. We have

Pr[all paths through wj are discarded] = Pr[(a) holds] + Pr[(b) holds]

=
(

1− xj
t

)
+ xj

t
· 1

2
= 1− xj

2t

The events for all type-1 nodes w1, . . . , wz′ are independent. Thus, Lemma A.1 gives a
lower bound of 1/2 for the probability of condition (B). As the two conditions (A) and (B)
are independent, the probability that both are satisfied is at least 1/2 · 1/2t = 1/4t.

We focused on the case that the long connector path P of class i is the only one that is
not discarded. Of course, there are other cases in which the type-2 node v might also join
class i. But these cases only increase the probability that both internal nodes v and w of
path P join class i. Therefore, 1/4t is a lower bound of the probability that this happens,
which completes the proof.

We have seen that the probability that both internal nodes of an active long connector
path join the right class, i.e. the class the path belongs to, is at least 1/4t if we use
strategy B. But in the algorithm we use a different strategy, which we call strategy A. We
need to show that the same lower bound of the probability also holds if we use this strategy.
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Lemma 4.10. Let P be an active long connector path of an active component C of class i.
If we use strategy A, the probability that both internal nodes of P join class i is in the
interval [1/4t, 1/t] and the upper bound of 1/t holds independently of what happens to the
other active paths of component C.

Proof. We compare the two strategies and show that the probability is higher if we use
strategy A instead of strategy B. Since we already know that the lower bound of 1/4t holds
for strategy B (cf. Lemma 4.9), the claim follows.

Let C be a component of class i. Fix a long connector path P that was determined with
the maximal matching algorithm. Let w and v be the internal nodes of the path P with
types 1 and 2, respectively.
If w does not choose class i, the path P is useless and both strategies discard it. The

probability that both internal nodes of P join class i is clearly 0 in both cases.
We now assume that the path P is useful and there are exactly 0 ≤ s < t other useful

paths. We denote the events that v selects class i in this case with V s
A and V s

B for the two
strategies, respectively.
Strategy A randomly selects one of the s+ 1 useful paths. Hence, the probability that

the path P is chosen is Pr[V s
A] = 1/(s+ 1).

We now turn to strategy B and show that the probability for V s
B is slightly less than

1/(s+ 1). Since the situation is the same for all remaining useful paths, all of them are
equally likely to be chosen. Thus, the probability that P is chosen can be at most 1/(s+ 1).
It is possible however that all paths are discarded and therefore no path is selected. Hence,
the probability is even less than 1/(s+ 1).
To formally obtain the probability V s

B, we first consider the case that exactly j out of
the other s paths (without P ) are not discarded. In this case j + 1 paths remain, and
hence, the probability that path P is chosen is 1/(j + 1). As all paths are discarded with
probability 1/2 independently of each other, the number of remaining paths follows a
binomial distribution. Thus, we have

Pr[P chosen and j other paths] = Pr[P chosen | j other paths] · Pr[j other paths]

= 1
j + 1 ·

(
s

j

)(1
2

)j (1
2

)s−j
= 1
j + 1 ·

(
s

j

)(1
2

)s
Summing over all possibilities for the value of j, we get the probability that path P is

selected if it is not discarded. Hence, we get the following probability for the event that P
is chosen, which is V s

B.

Pr[V s
B] = Pr[P not discarded] · Pr[V s

B | P not discarded]

= 1
2 ·

s∑
j=0

1
j + 1

(
s

j

)(1
2

)s

= 1
2s+1

s∑
j=0

1
j + 1 ·

s!
(s− j)!j!

= 1
2s+1

s∑
j=0

1
s+ 1 ·

(s+ 1)!
(s+ 1− j − 1)!(j + 1)!

= 1
(s+ 1)2s+1

s∑
j=0

(
s+ 1
j + 1

)
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= 1
(s+ 1)2s+1

(
2s+1 − 1

)
= 1
s+ 1

(
1− 1

2s+1

)
<

1
s+ 1 = Pr [V s

A]

We compared the two strategies in all possibles cases. Combining these results leads to
the desired lower bound of 1/4t for the probability that both internal nodes of path P
join class i when we use strategy A. We denote this event with XA and the corresponding
event for strategy B with XB. Furthermore, let W be a random variable that describes
the class the type-1 node w has selected. Note that we do not have to distinguish between
the two strategies here because in both strategies w picks its class in the same way. Let S
be another random variable that describes the number of useful paths other than P that
contain the type-2 node v. We show that Pr[XA] ≥ Pr[XB].

Pr[XA] = Pr[W = i] ·
(
t−1∑
s=0

Pr[S = s] · Pr[V s
A]
)

≥ Pr[W = i] ·
(
t−1∑
s=0

Pr[S = s] · Pr[V s
B]
)

= Pr[XB]

≥ 1
4t

Thus, we have shown the lower bound of 1/4t for the probability of the event XA.
For the upper bound of 1/t for XA we note that the type-1 internal node of the long

connector path P joins class i with probability 1/t. Hence, the probability for the event
that both internal nodes of P join class i is at most 1/t. Since all connector paths of
component C are internally vertex-disjoint, this upper bound holds independently of what
happens with the other connector paths of component C.

The previous lemma considers one fixed active connector path of a connected component C
of class i. The component C becomes good if any of its active connector paths selects
class i. To get a lower bound for the probability that this happens, we must consider all
connector paths of the connected component C.

Lemma 4.11. Suppose that the nodes of class i dominate. Let `+ 1 be an upper layer and
C a component of class i that is still active after the type-1 new nodes have selected a class.
If C has k/2 internally vertex-disjoint long connector paths, the probability that for any of
these paths both internal nodes join class i is at least δ = 1/40− 1/211.

Proof. This proof is based on the last part of the proof of Lemma 4.5 in [CHGK14a].
According to Lemma 4.12 the matching we have calculated for Hi is maximal with

probability at least 1− 1/|Hi|c for a constant c ≥ 1. Since the component C is not single
and we assume that nodes in V i` dominate the graph G, there exists a connector path
belonging to component i. Hence, the graph Hi contains at least one edge and thus at least
two nodes, i.e. |H| ≥ 2. This implies that the matching in Hi is maximal with probability
at least 1− 1/21 = 1/2. For now, we assume that the matching is maximal.
We constructed Hi as the disjunct union of bipartite graphs, one for each connected

component of G[V i`]. Let HC be the component of Hi that belongs to the component C.
The maximal matching in Hi induces a maximal matching in the subgraph HC .

There are at least k/2 internally vertex-disjoint, long connector paths belonging to
component C. Note that we do not know them. But we can use this fact to derive a lower
bound of the number of active connector paths of component C. The existence of these
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connector paths implies that there is a matching of size at least k/2 in the graph HC . Since
the size of a maximal matching is at least half of the size of a maximum matching, we
know that the number of active connector paths belonging to C is at least k/4.
Let Z be a random variable which counts the number of active connector paths that

belong to component C and select class i. Note that the events that two different paths
select class i are not independent. Hence, we cannot use a Chernoff bound, and Markov’s
inequality is not strong enough. Censor-Hillel, Ghaffari, and Kuhn faced almost the
same problem and developed a sufficiently strong lower bound for Pr[Z ≥ 1], which
is presented in the last part of the proof of Lemma 4.5 in [CHGK14a]. We present it
including the small modifications in Lemma A.2. Applying this lemma to our situation
gives Pr[Z ≥ 1 | matching is maximal] ≥ 2δ for δ = 1/40− 1/211.
Remember that the computation above is only valid if the matching is maximal. Oth-

erwise, there might be not enough active connector paths. We denote the event that
the matching is maximal with X. We have already determined that this happens with
probability Pr[X] ≥ 1/2. Therefore, we have

Pr[Z ≥ 1] = Pr[X] · Pr[Z ≥ 1 | X] + Pr[X] · Pr[Z ≥ 1 | X]
≥ Pr[X] · Pr[Z ≥ 1 | X]

≥ 1
2 · 2δ = δ

Hence, the probability that both internal nodes of any active long connector path of
component C join class i is at least δ = 1/40− 1/211, which completes the proof.

We showed that the slow components, i.e. those with less than k/2 long connector paths,
become good with constant probability, which is used in the proof of Lemma 4.7. We still
need to prove that the maximal matching algorithm works correctly, which is done in the
next section.

4.2.4 Correctness of the Matching Algorithm
In this section we show that the matching algorithm presented in Section 3.4.3 produces

a maximal matching w.h.p.
Our maximal matching algorithm can be seen as an application of Luby’s maximal

independent set algorithm [Lub86, Monte Carlo Algorithm A] to the line graph of the
graph Hi. To prove the correctness of our maximal matching algorithm, we compare it to
Luby’s maximal independent set algorithm. In order to do this, we give a short description
of the latter.
Suppose we work on a graph G = (V,E) with n nodes. Luby’s algorithm runs for

O(logn) stages, each consisting of the following steps: Each active node picks a random
number chosen from {1, . . . , n4}. Then, the values of all adjacent nodes are compared
and the nodes with the lower numbers are discarded. The remaining nodes are those that
have chosen a higher number than all of their neighbors. These nodes are added to the
independent set. Additionally, they and all their neighbors become inactive and do not
participate in the remaining stages.
Clearly, this algorithm produces an independent set. Moreover, Luby has proven that

w.h.p. the independent set is maximal after O(logn) stages. We use this result to show the
correctness of the maximal matching algorithm.

Lemma 4.12. Let i be a class and Hi be the bipartite graph that is built at an upper layer.
Running the matching algorithm on Hi for O(logn) stages results in a maximal matching
w.h.p.
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4.2. Correctness

Proof. To prove this lemma, we use the correspondence of independent sets and matchings,
which is shown in Lemma 2.1. Luby has shown that w.h.p. the independent set algorithm
has produced a maximal independent set after O(logn) stages. We use this result to show
that the matching algorithm outputs a maximal matching w.h.p.

Our matching algorithm consists of O(logn) stages, which simulate the stages of Luby’s
independent set algorithm. Each real node simulates up to one node per connected
component of G[V i`]. The number of connected components of one class is clearly bounded
by the total number of nodes, which is n. Hence the graph Hi has less than n2 nodes and
therefore at most n4 edges. This implies that it is sufficient if each edge picks a priority
between 1 and (n4)4 = n16. However, all computation is done by nodes and thus, the
selection of the values must be done by nodes. Therefore, the type-2 new nodes perform
this task and choose a priority for all adjacent edges in Hi.
In the next step, the priorities of adjacent edges are compared. First, all type-2 nodes

pick the largest priority of their adjacent edges and propose this edge to the type-1 endpoint
of this edge. The type-1 nodes compare the priorities of all received proposals and accept
the one with the highest priority. This is almost equivalent to the comparison step in
Luby’s algorithm on the line graph of Hi. Note that an edge e might be included in the
matching although it does not have the highest priority of all adjacent edges. This might
happen if the edge with the higher priority is not proposed to the type-2 endpoint of e.
An example is shown in Figure 4.2. The edge e is included in the matching although the
edge e′ has a higher priority. But e′ is not proposed because the edge on the bottom has a
higher priority.
However, this is not a problem. Clearly, the result of our matching algorithm is still

a matching. If we additionally include an edge in the matching without violating the
matching condition there are less remaining edges after this stage. Hence, the matching is
maximal even faster. Therefore, the running time of O(log |L(Hi)|) = O(logn) stages of
Luby’s algorithm implies that after O(logn) stages the matching is maximal w.h.p.

1

2

3

4

e

e′
type-1 node

type-2 node

Figure 4.2: Example of graph Hi, where an edge is selected although a neighboring edge
has higher priority. The numbers at the edges denote the priorities and the
marked edges are proposed and included in the matching.
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5. Conclusion

In this thesis we present a distributed algorithm for finding a fractional connected dominat-
ing set packing. Given a graph with n nodes, vertex-connectivity k and maximum degree ∆,
our algorithm finds a fractional CDS packing of size Ω(k/ logn). It takes O(log2 n(D +√
n logn log∗ n+ k∆)) rounds of communication in the V-CONGEST model. Moreover, we

describe how the number of rounds can be decreased to O(log2 n(D +
√
n logn log∗ n+ k))

rounds if we use the less restricted E-CONGEST model.
The algorithm is based on the fractional dominating tree algorithm of Censor-Hillel et al.

[CHGK14a]. It improves the runtime by up to a factor of O(logn) if the vertex connectivity
of the graph is not too large while the size of the resulting fractional CDS packing stays
the same.
The bound for the runtime of our algorithm could be improved if one would show that

each class contains O(n logn/k) nodes w.h.p. We could use this as a bound for the number
of nodes per component, and thus have a bound for the diameter D′ of the component.
This would improve the running time of the protocol presented in Theorem 3.1 as we have
a non-trivial bound for D′.

Moreover, the matching algorithm we use guarantees that its result is a maximal matching
w.h.p. But we only need that this happens with constant probability. Hence, we could
replace the matching algorithm with a weaker version, which might be faster. This could
reduce the total runtime of the algorithm.
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Appendix

The following two lemmas are taken from [CHGK14a]. As these statements are not
presented explicitly but only as a part of a proof, we include them here. We use the first
lemma it in the proof of Lemma 4.9.

Lemma A.1 (Part of Lemma 4.5 of [CHGK14a]). Let X1, . . . , Xz′ be independent events
and x1, . . . , xz natural numbers s.t.

∑z′
j=1 xz′ < t and Pr[Xj ] = 1 − xj/2t. Then, the

probability that all events occur simultaneously is at least 1/2.

Proof. Clearly, we have xj < t and thus xj/2t ≤ 1/2. This implies

1− xj
2t ≥ 4−

xj
2t

Using this result, we can calculate a lower bound for the probability that all events occur
simultaneously.

Pr[X1 ∩ · · · ∩Xz′ ] =
z′∏
j=1

(
1− xj

2t

)
≥ 4−

∑z′

j=1
xj
2t ≥ 4−

1
2 = 1

2

The last inequality holds because
∑z′
j=1 xj < t.

The second lemma is used in the proof of Lemma 4.11.

Lemma A.2 (Part of Lemma 4.5 of [CHGK14a]). Let k′ = Ω(k) and X1, . . . , Xk′ be
random variables with values 0 and 1 s.t. Pr[Xj = 1] ∈ [1/4t, 1/t] for j = 1, . . . , k′.
Suppose that the upper bound of 1/t for Pr[Xj = 1] holds independently of the values of the
other random variables. Then, we have

Pr

 k′∑
j=1

Xj ≥ 1

 ≥ 1
20 −

1
210

Proof. Let Z =
∑k′
j=1Xj . We want to show that Pr[Z ≥ 1] ≥ 1/20 − 1/210. As most of

the proof can be found in [CHGK14a], we only give a short overview and mention where
we modify it.

Originally, the probability that Xj = 1 lies in the interval [1/4t, 1/2t] for each random
variable Xj , and the upper bound holds independently of what happens with the other
paths. Our situation is almost the same. The only difference is that the upper bound is
1/t.

Using the fact that k′ = Ω(k) and the linearity of expectation, they determine that
E [Z] ≥ z0 for a constant z0 > 1 if the constant α in the definition of the number of classes
t is sufficiently small. Then, they calculate an upper bound for Pr[Z = ζ] for a variable ζ.
In this step we have to account for the different upper bounds for the probabilities that
one specific path selects class i. But applying a stronger upper bound for the binomial
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coefficients (cf. Lemma 2.3), we are able to derive exactly the same upper bound for
Pr[Z = ζ].

Pr[Z = ζ] ≤
(
k′

ζ

)(1
t

)ζ (∗)
≤
(
ek′

ζ

)ζ
·
(1
t

)ζ
The (∗) indicates where the stronger bound for the binomial coefficient is used. Having
calculated this upper bound for Pr[Z = ζ], they derive an upper bound for E [Z], which
depends on Pr[Z ≥ 1]. A quick computation leads to Pr[Z ≥ 1] ≥ 1/20− 1/210.
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