
Editing to (P5, C5)-free Graphs -
a Model for Community Detection?

Bachelor Thesis of

Philipp Schoch

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisor: Michael Hamann

Time Period: 22nd June 2015 – 21st October 2015

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 21st October 2015

iii

Abstract

We study the following method of detecting communities in a graph G:

Find a minimal set F of edges to delete from and edges to add to the graph G, such
that the resulting graph GF after applying these edits does not contain any P5 or C5
as an induced subgraph. Then use the connected components of the edited graph
GF as communities for the initial graph G.

The first of the two steps is called the (P5, C5)-free editing problem. The set F is
called an editing set. The idea stems from [NG13], who did the same thing with P4s
and C4s instead of P5s and C5s.

We also look at a variation of the method where only deletes of edges but no inserts
of edges are allowed. That is we look for a solution of the (P5, C5)-free deletion
problem instead of the (P5, C5)-free editing problem.

In order to find out whether this is a practical method for community detection we
have to address two issues:

1. the computational complexity of the (P5, C5)-free editing problem and of the
(P5, C5)-free deletion problem

2. find out whether the resulting connected components actually define meaningful
communities, when applied to graphs that represent real world data

Our main contribution to the first issue is that we prove the NP-completeness of
(P5, C5)-free editing and (P5, C5)-free deletion by generalizing existing NP-completeness
proofs for similar problems. Furthermore we discuss two algorithms that can be
used in order to find an exact or a heuristic solution to the (P5, C5)-free editing or
the (P5, C5)-free deletion problem. These algorithms where derived by adapting the
algorithms used by [NG13].

We then implement these algorithms in order to find editing sets for some real world
graphs. When applying these algorithms we found that the heuristic performs much
worse for (P5, C5)-free editing and (P5, C5)-free deletion than it does for (P4, C4)-free
editing. But by combining the heuristic algorithm with the exact algorithm we still
found some reasonable (P5, C5)-free editing/deletion sets for these real world graphs.

We visualized the graphs together with the found editing/deletion sets in order to
analyse the quality of the resulting connected components/communities. Thereby we
contribute to the second of the above two questions.

We found that the resulting communities are good on some graphs but on other graphs
the size of the found communities is too big. These identified communities which are
too big often contain the union of several underlying ground truth communities. As
we cannot distinguish these underlying communities, we get less information about
the graph than we would get by using a different algorithm, which also tells us the
border between these underlying communities.

Deutsche Zusammenfassung

Diese Bachelorarbeit beschäftigt sich mit einem bestimmten Ansatz für die Aufgabe
der Community Erkennung in Graphen. Community Erkennung bedeutet, dass man
versucht für einen gegebenen Graphen eine Partitionierung der Knotenmenge in

v

Teilmengen zu finden, mit der Eigenschaft, dass die Knoten innerhalb der Teilmengen
stärker miteinander verbunden sind als mit den Knoten aus den anderen Teilmengen.
Das heißt, es gibt mehr Kanten innerhalb der einzelnen Teilmengen als zwischen
den Teilmengen. Diese Teilmengen heißen Communities. Diese stärkere Verbindung
zwischen Knoten derselben Community kann dabei auf eine Gemeinsamkeit oder eine
gemeinsame Funktion in dem Netzwerk hinweisen, die sich alle Knoten aus derselben
Community miteinander teilen.

Es wurden schon sehr viele verschiedene Ansätze entwickelt um die Aufgabe der
Community Erkennung zu lösen. Ein relativ neuer Ansatz stammt von [NG13]. Um
die Communities in einem Graphen G zu finden, geht man mit der Methode von
[NG13] so vor:

Finde eine minimale Menge F von Kanten, die man von dem Graphen G entfernen
oder zu dem Graphen G hinzufügen muss, so dass der daraus resultierende Graph
GF keinen P4 und keinen C4 als induzierten Subgraphen enthält. Benutze dann die
Zusammenhangskomponenten von GF als Communities für G.

Der erste der beiden Schritte bedeutet, dass wir das sogenannte (P5, C5)-free Editing
Problem lösen. Die Menge F wird Editing Set genannt.

[NG13] haben diese Methode auf einige Graphen angewendet, die Daten aus der
realen Welt repräsentierten. Dabei haben sie einige sinnvolle Communities gefunden.

Wir wollen uns hier mit einer Abwandlung dieser Methode beschäftigen, in der
man nur verlangt, dass der modifizierte Graph GF keine P5s und keine C5s enthält.
Außerdem werden wir auch noch untersuchen was passiert, wenn man nur das
Entfernen von Kanten erlaubt aber nicht das Einfügen von neuen Kanten. Das heißt
wir werden nicht nur das (P5, C5)-free Editing Problem sondern auch das (P5, C5)-free
Deletion Problem behandeln.

Um herauszufinden, ob dies ein sinnvoller Ansatz ist um Communities zu finden
müssen wir zwei Fragestellungen bearbeiten:

1. Wie aufwändig ist es das (P5, C5)-free Editing Problem oder das (P5, C5)-free
Deletion Problem zu lösen?

2. Werden die resultierenden Zusammenhangskomponenten tatsächlich sinnvolle
Communities repräsentieren, wenn man die Methode auf reale Daten anwendet?

Unser wichtigster Beitrag zu der ersten Fragestellung ist es, dass wir die NP-
Vollständigkeit des (P5, C5)-free Editing Editing Problems und des (P5, C5)-free
Deletion Problems beweisen. Dazu verallgemeinern wir bereits existierende NP-
Vollständigkeitsbeweise für ähnliche Probleme.

Außerdem diskutieren wir einige Algorithmen, die man verwenden kann um das
(P5, C5)-free Editing und das (P5, C5)-free Deletion Problem zu lösen. Wir haben
hierzu die von [NG13] verwendeten Algorithmen an unser Problem angepasst. Einer
dieser Algorithmen berechnet eine exakte Lösung, wobei die Laufzeit exponentiell in
der Anzahl der benötigten Editieroperationen ist, die man auf den Graphen anwenden
muss. Die Laufzeit ist aber fixed-parameter tractable. Der andere Algorithmus ist
eine Heuristik, die nur polynomielle Zeit braucht. Dafür gibt es aber keine Garantie,
dass die Anzahl der von der Heuristik angewandten Editieroperationen minimal ist.

Wir haben diese Algorithmen auf einige Graphen angewandt, die Daten aus der realen
Welt repräsentieren. Dabei ist uns aufgefallen, dass der heuristische Algorithmus beim
(P5, C5)-free Editing Problem viel schlechtere Ergebnisse liefert als beim (P4, C4)-free
Editing Problem. Trotzdem gelang es uns einige brauchbare (P5, C5)-free Editing

vi

Sets und (P5, C5)-free Deletion Sets zu berechnen, indem wir den heuristischen
Algorithmus mit dem exakten Algorithmus kombiniert haben.

Wir haben die Graphen dann zusammen mit den gefundenen Editing / Deletion Sets
visualisiert um die Qualität der resultierenden Communities zu untersuchen. Dabei
leisten wir also einen Beitrag zu der zweiten der oben genannten Fragestellungen.

Es stellt sich heraus, dass die resultierenden Communities auf manchen Graphen
sinnvoll sind. Aber auf anderen Graphen dagegen gibt es das Problem, dass oft
mehrere Communities miteinander verschmolzen werden. Eine von uns gefundenen
Community ist hier manchmal die Vereinigung von mehreren zugrundeliegenden tat-
sächlichen Communities. Diese zugrundeliegenden Communities, die hier verbunden
wurden, möchten wir aber oftmals voneinander unterscheiden können, was so aber
nicht möglich ist.

vii

Contents

1. Introduction 1
1.1. Related Work . 4
1.2. Notation and Basic Definitions . 4

2. NP Completeness 7
2.1. NP Completeness of (P5, C5)-free Editing 7
2.2. Generalizing the NP-Completeness Proof . 13
2.3. NP-Completeness of the Deletion Version 16

3. Algorithms 19
3.1. Graph Representation . 19
3.2. P5, C5 Count . 20
3.3. P5C5Search . 26
3.4. Exact Algorithm . 27
3.5. Heuristic (P5, C5)-Free Editing . 37

4. Experimental Evaluation 41
4.1. Heuristic Algorithms . 41
4.2. Exact Algorithm . 42
4.3. Combining Exact and Heuristic Algorithms 44
4.4. Community Structure . 48

4.4.1. Zachary’s karate club (short karate) 49
4.4.2. Les Misérables (short lesmis) . 50
4.4.3. Dolphins . 54
4.4.4. Grass_Web . 58
4.4.5. Football . 61

5. Conclusion 67
5.1. Future Work . 68

Bibliography 69

Appendix 71
A. Appendix Section 1 . 71

ix

1. Introduction

Graphs representing real world data often have a certain structure, where the edges are
not distributed completely equally over the graph. Instead there is a high concentration
of edges within special groups of vertices and low concentration of edges between these
groups. This structure often indicates common properties and/or a common function or
role inside of the network shared by vertices belonging to the same group. These groups of
vertices are called communities. For example in a social network the communities might
represent families, friendship circles, groups of people living in the same village, groups of
people sharing a common interest and so on. However apart from social networks there are
many other types of networks that contain a community structure, for example biological
networks such as protein-protein interaction networks, the World Wide Web and so on.

The problem of identifying these communities using only the information contained in the
graph topology is called community detection. This task is not trivial as there are still
edges between different communities, there are only statistically fewer of them than inside
of the communities. Furthermore note that often the underlying correct solution which we
want to detect is not sharply defined. Some vertices may be related to different tasks or
roles in the network simultaneously. And the tasks may also be related to each other. For
example assume we want to cluster web pages according to the topic that they deal with.
Sometimes the web pages are related to more than one topic. And also some of the topics
are related to each other. Therefore sometimes it is not clear whether a certain information
contained in a web page belongs more to some topic A or more to some other topic B.
Community detection is an important issue in many different disciplines like sociology,
biology, computer science and so on. There has been much research in this area and many
different methods and algorithms have been proposed to solve this task. In this bachelor
thesis we study a variation of a new method proposed by [NG13]. They introduced a
method of community detection primarily for the context of social networks that works as
follows:

Assume we have a graph G. In order to apply the definition of [NG13] one has to find a
closest (P4, C4)-free graph GF . (P4, C4)-free means that GF does not contain any P4 or
C4 as an induced subgraph, where P4 and C4 are the graphs depicted in Figure 1.1a and
Figure 1.1b. By “closest” (P4, C4)-free graph we mean that the set F of edges that one
has to delete from or add to G in order to get GF has a minimal cardinality. Now [NG13]
defined the communities in G to be the connected components of GF .

1

1. Introduction

The problem of finding a closest (P4, C4)-free graph GF - or the corresponding editing set
F which transforms G into GF - is called the (P4, C4)-free editing problem. A more formal
definition of (P4, C4)-freeness and of editing problems is given in Section 1.2.

(a) P4

(b) C4

(c) P5

(d) C5

Figure 1.1.: Pk and Ck for k = 4 and k = 5

As the (P4, C4)-free editing problem is NP-complete, it is usually not feasible to calculate
the exact editing set. But using a heuristic approach [NG13] were still able to test their
definition on some graphs, which represented real world data. In doing so they found that
their definition actually identified sensible communities.

In the end they proposed relaxing the (P4, C4)-freeness condition to a (P5, C5)-freeness
condition as a topic for further research. In this bachelor thesis we do that. Additionally
we also study what happens if we allow only edge deletions when modifying the graph G
to a (P5, C5)-free graph GF . That is we also look at the (P5, C5)-free deletion and not only
at the (P5, C5)-free editing problem.

[CK90] shows that each connected (P4, C4)-free graph contains a clique X, such that
every vertex, which does not belong to X is adjacent to a vertex in X. Such a clique
is called a dominating clique. Therefore we know that the connected components of a
close (P5, C5)-free graph GF of some graph G each contain a dominating clique. This
“strong cohesion” in these components can be seen as a justification of the idea to use
these components as communities for the graph G. Especially if GF is the solution of the
deletion problem and not the editing problem, then we know that these dominating cliques
are also dominating cliques for the communities in G and not only in GF . So by solving the
(P5, C5)-free deletion problem we get communities that each contain a dominating clique.

In this bachelor thesis we want to find out whether solving the (P5, C5)-free editing or the
(P5, C5)-free deletion problem is a suitable approach to identify communities in a graph.

To do so we need to answer two questions:

1. What is the computational complexity of the (P5, C5)-free editing and the (P5, C5)-
free deletion problem? Is it at all feasible to edit a graph G of reasonable size to a
closest or at least to a close (P5, C5)-free graph?

2. Do the connected components of the resulting graph GF actually define meaningful
communities for graphs that represent real world data?

2

Our main contribution to the first question is a NP-completeness proof for the (P5, C5)-free
editing and the (P5, C5)-free deletion problem. We derived this proof by generalizing
existing proofs of the NP-completeness of the (P4, C4)-free editing problem and of some
other related problems. Furthermore we theoretically discuss two algorithms that can be
used to calculate close (P5, C5)-free graphs. They are similar to the algorithms used in
[NG13]. One of those two algorithms solves the (P5, C5)-free editing and the (P5, C5)-free
deletion problem exactly. Its running time is exponential in the number k of needed edits,
but it is still fixed-parameter tractable. The other algorithm is a heuristic algorithm, that
needs only polynomial time. But we have no theoretic guarantee that the resulting graph
is actually a closest (P5, C5)-free graph.

We implemented these algorithms and applied them to some real world graphs. Thereby
we supplement the theoretical analysis of their running time by some practical studies and
in the case of the heuristic we also evaluate the size of the calculated editing sets. Finally
we combined both algorithms in order to calculate heuristic solutions of the (P5, C5)-free
editing and the (P5, C5)-free deletion problem for the same real world graphs that were also
used by [NG13]. We visualized the results in order to analyse the quality of the resulting
connected components. Thereby we contribute to the second of the above mentioned
questions.

The thesis is structured as follows:

Section 1.1 presents existing results that are related to the topic of this thesis. Section 1.2
of this chapter defines and explains terms and notations that are used in this thesis.

In Chapter 2 we prove the NP-completeness of the (P5, C5)-free editing problem by
generalizing existing NP-completeness results by [EMC88], [LWGC12] and [NG13]. After
that we show that the prove can be generalized even more to show the NP-completeness of
other problems like for example the (P5, C4, C5)-free editing problem or the (P6, C6)-free
editing problem. Finally we show that the deletion versions of these problems are also
NP-complete.

Chapter 3 discusses the two aforementioned algorithms that can be used to calculate close
(P5, C5)-free graphs. Section 3.1 makes some notes on the data structure that we used to
represent graphs. Section 3.2 and Section 3.3 introduce a P5, C5 counting algorithm and
a P5, C5 search algorithm that are needed as subroutines for the two editing algorithms.
Finally Section 3.4 discusses the exact editing algorithm. And Section 3.5 discusses the
heuristic editing algorithm. For both editing algorithms we also show a modified version
that solves the (P5, C5)-free deletion problem in the corresponding chapters.

Chapter 4 discusses the results of implementing the algorithms described in Chapter 3 and
applying them to some real world graphs. We did that for two reasons. First we wanted
to evaluate the algorithms themselves as means to solve the (P5, C5)-free editing and the
(P5, C5)-free deletion problem. And second we wanted to make some conclusions about
(P5, C5)-free editing in general, regarding the quality of the communities induced by a close
(P5, C5)-free graph. We did the first task mainly in Sections 4.1, 4.2 and 4.3. Section 4.1
evaluates the heuristic editing algorithm. Section 4.2 tests an attempt to optimize the
running time of the exact algorithm. It turns out that the running time of the algorithm
can actually be reduced by more than a half if the optimization is used correctly. Section
4.3 describes how we combined the heuristic algorithm with the exact algorithm in order to
improve the result calculated by the heuristic algorithm. Finally the second of the two tasks
described above - analysing the quality of the community structure yielded by (P5, C5)-free
editing and (P5, C5)-free deletion - is done in Section 4.4. To do so we visualised the graphs
together with the applied edge edits and the resulting communities.

3

1. Introduction

1.1. Related Work
On the topic of (P5, C5)-free graphs we want to mention two interesting characterizations.
To do so we need a give a few definitions: A subset X ⊆ V (G) of vertices of some graph G
is called a dominating set, if each vertex v ∈ V (G) \X of G which does not belong to X
is adjacent to some vertex in X. A connected dominating set is a dominating set X such
that the subgraph G[X] induced by X is connected. A dominating clique is a dominating
set X, such that the subgraph G[X] induced by X is a clique.

[BT90] shows that a graph G is (P5, C5)-free if and only if every connected induced subgraph
contains a dominating clique. Note that this statement also contains the previously
mentioned result of [CK90], which says that each connected (P5, C5)-free graph contains a
dominating clique.

[Zve03] shows that a graph G is (P5, C5)-free if and only if for each connected induced
subgraph the minimum size of a connected dominating set is not bigger than the minimum
size of any dominating set.

Unfortunately it is difficult (or impossible) to use these characterizations in order to design
an algorithm that checks efficiently whether a graph G is (P5, C5)-free. Even if we found
an algorithm that checks efficiently whether G contains a dominating clique, doing that for
each connected induced subgraph of G would presumingly be much harder. Note that both
characterizations contain this “for each induced subgraph”-part. Therefore we do not use
these characterizations in the algorithms described in Chapter 3. Instead we use a more
straightforward approach in order to search for P5s and C5s.

There has also been much research on the topic of edge modification problems, not only in
the context of (P5, C5)-freeness. For example [BBD06, p. 1825] contains a table showing
the complexity status of the Π-edge editing and the Π-edge deletion problem for many
graph classes Π. [Cai96] shows that the edge editing problem is fixed-parameter tractable
for graph classes, which can be characterized by a finite set of forbidden induced subgraphs.

Important for our NP-completeness proof in Chapter 2 are the papers of [EMC88],
[LWGC12] and [NG13]. [EMC88] shows that the (Pl)-free deletion problem is NP-complete
for l ≥ 3. [LWGC12] uses the same reduction as [EMC88] in the case of l = 4 to show that
the (P4, C4)-free deletion problem is NP-complete. Finally [NG13] further generalizes this
proof. They still use the same reduction as in [LWGC12], to show that the (P4, C4)-editing
problem is NP-complete. However we did not find any paper that generalizes [EMC88]s
completeness results also for the case of l = 5. So we do this generalization by ourselves in
Chapter 2.

1.2. Notation and Basic Definitions
A graph G = (V,E) is a (finite) set V of vertices and a set E of edges. An edge e = {u, v}
is a connection between two vertices u, v ∈ V . We denote the set of vertices of G
by V (G) := V and the set of its edges by E(G) := E. For each vertex u ∈ V let
N(u) := {v ∈ V | {u, v} ∈ E} denote the set of neighbours of u. In this bachelor thesis
by the word graph we refer to an undirected, simple graph (except when explicitly noted
otherwise). A simple graph is a graph in which there are no two different edges between
the same two vertices u and v and in which a vertex must not be adjacent to itself.

A graph H is called a subgraph of some graph G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). Of
course an edge {u, v} of G may only appear in a subgraph H if its endpoints appear in H,
too, that is u, v ∈ V (H). If H contains all edges of G fulfilling this requirement, then H is
called an induced subgraph of G. Note that an induced subgraph can be specified solely

4

1.2. Notation and Basic Definitions

by giving its vertex set. Given a set S ⊆ V (G) of vertices of G we denote the induced
subgraph of G with the vertex set S by G[S].
A path p := (v1, . . . , vn) from some vertex u := v1 to some vertex v := vn in a graph G is
a series of vertices v1, . . . , vn ∈ V (G) such that {vi, vi+1} ∈ E(G) for each 1 ≤ i < n. A
connected component of some graph G is a subset X ⊆ V (G) of vertices such that for each
pair of vertices u, v ∈ X there exists a path from u to v, but there is no path from any
u ∈ X to any w ∈ V (G) \X. If there is a path between each pair of vertices in G, then G
is called connected. That is G is called connected if it consists of one connected component
only.
A graph G, in which there is an edge between each pair of vertices u, v ∈ V (G), is called a
clique. For example Figure 1.2 depicts a clique containing 6 vertices. The clique containing
p vertices is sometimes called Kp. Thus Figure 1.2 depicts a K6.
For k ∈ N we define Pk to be the graph consisting of a simple path containing k vertices.
And Ck shall be the graph consisting of a simple circle containing k vertices. More
precisely Pk consists of the vertices {v1, v2, . . . , vk} and edges {{vi, vi+1} | 1 ≤ i < k}. And
Ck consists of the vertices {v1, v2, . . . , vk} and edges {{vi, vi+1} | 1 ≤ i < k} ∪ {{vk, v1}}.
As an example 1.1c depicts a P5 and 1.1d depicts a C5.

Figure 1.2.: a clique

We shall now introduce the notion of (P5, C5) freeness, (P4, C4) freeness, (P5, C4, C5)
freeness and so on. Let H be some graph. A graph G is called H-free if it does not contain
H as an induced subgraph. More precisely G is called H-free if it does not contain an
induced subgraph that is isomorphic to H. Two graphs H and H ′ are called isomorphic to
each other if there is a bijective mapping f : V (H) 7→ V (H ′) such that {u, v} ∈ E(H) if
and only if {f(u), f(v)} ∈ E(H ′) for all u, v ∈ V (H). That is H and H ′ are isomorphic if
H ′ is basically equal to H except that some vertices have been renamed in H ′.
Let H1, . . . ,Hp be some graphs. (p ∈ N, p ≥ 2) Then G is called (H1, . . . ,Hp)-free if G
does not contain an induced subgraph that is isomorphic to one of the graphs H1, . . . ,Hp.
In other words G is simultaneously H1-free, H2-free, . . . and Hp-free. In this paper we
are primarily interested in (P5, C5)-freeness. In this case we have p := 2, H1 := P5 and
H2 := C5.
Let us now introduce the notion of edge modification problems. Let G = (V,E) be some
graph. An edge editing set for G is a set F containing edges that shall be added to G
and edges that shall be deleted from G. More formally F ⊆ {{u, v} | u, v ∈ V } is a set
of unordered pairs of vertices in V . And the result of applying F to G is denoted by
GF = (V,E4F). Here E4F := (E \ F) ∪ (F \E) denotes the symmetric difference of E
and F . That is the edges in F ∩ E are removed from G and the edges in F \ E are added
to G. If F contains edge deletions only - that is F ⊆ E - then F is also called an edge
deletion set.
We will use the term “edge modification problem” as a generic term for edge editing and
for edge deletion problems. Let Π be some graph property. The Π (edge) editing (search)
problem and the Π (edge) deletion (search) problem are defined as follows:

5

1. Introduction

Π - edge editing (search) problem

Instance A graph G.

Question Find an editing set F ⊆ {{u, v} | u, v ∈ V } such that GF satisfies Π and |F | is
minimal.

Π - edge deletion (search) problem

Instance A graph G.

Question Find a deletion set F ⊆ E such that GF satisfies Π and |F | is minimal.

We are primarily interested in the (P5, C5)-free editing and the (P5, C5)-free deletion
problem where Π is the property of being (P5, C5)-free.

The notion of NP-completeness is usually only defined for decision problems, where the
solution to an instance of the problem is either “yes” or “no”. Therefore as we want to
talk about NP-completeness in Chapter 2 we need to define a decision version of these
problems:

Π - edge editing decision problem

Instance A pair (G, k) consisting of a graph G and an integer k ≥ 0.

Question Is there an editing set F ⊆ {{u, v} | u, v ∈ V } such that GF satisfies Π and
|F | ≤ k?

Π - edge deletion decision problem

Instance A pair (G, k) consisting of a graph G and an integer k ≥ 0.

Question Is there a deletion set F ⊆ E such that GF satisfies Π and |F | ≤ k?

When talking about a Π edge editing problem it should be clear from the context whether
we refer to the Π edge editing search problem or to the Π edge editing decision problem.
In the context of NP-completeness we usually refer to the decision problem, otherwise we
usually refer to the search problem. As this bachelor thesis does not discuss vertex deletion
problems there is no risk of confusion when we use only the term Π deletion problem
instead of Π edge deletion problem. Similarly we will often refer to the Π edge editing
problem just by Π editing problem.

6

2. NP Completeness

In this bachelor thesis we are primarily interested in the (P5, C5)-free editing search problem
and the (P5, C5)-free deletion search problem.

But as the notion of NP-completeness is usually only defined for decision problems we
will prove the NP-completeness of the (P5, C5)-free editing decision problem and the
(P5, C5)-free deletion decision problem (and some more related decision problems) here.

However note that if the decision version is not polynomial time solvable then neither is
the search version. Assuming the search version were polynomial time solvable, then given
an instance (G, k) of the decision version we might just calculate a minimal edge editing
set F and then check whether |F | ≤ k. So when we show the “hardness” of the decision
version, then the search version is “hard”, too.

Note that here in Chapter 2 by the (P5, C5)-free editing problem and the (P5, C5)-free
deletion problem and so on we implicitly refer to the corresponding decision problem and
not the search problem.

We will start in Section 2.1 by proving the NP-completeness of the (P5, C5)-free editing
problem by generalizing the related NP-completeness proofs mentioned in Section 1.1.
Then as an extra bonus in Section 2.2 we will show that the proof can be generalized even
more in order to show the NP-completeness of related editing problems like for example the
(P5, C4, C5)-free editing problem or the (P6, C6)-free editing problem. Finally in Section 2.3
we will show that the corresponding deletion problems are NP-complete, too.

2.1. NP Completeness of (P5, C5)-free Editing
In this section we show that the P5, C5-free editing problem is NP-complete. Remember
the definition of this problem from Section 1.2:

(P5, C5)-free editing decision problem

Instance A pair (G, k) consisting of a graph G = (V,E) and an integer k ≥ 0.

Question Is there an edge editing set F ⊆ {{u, v} | u, v ∈ V } such that GF is (P5, C5)-free
and |F | ≤ k?

As noted in Section 1.1 this proof is based on related NP-completeness proofs from [EMC88],
[LWGC12] and [NG13].

7

2. NP Completeness

The reduction that we use in the following Theorem 2.1 equals the one from [EMC88] for
the case of l = 5.1 Only the naming of the components of the graph is a bit different
from [EMC88] and corresponds more to [NG13] and [LWGC12]. The argument why this
reduction is still correct for our problem is in most parts based on [NG13] and [LWGC12].
(Although these two papers only discuss P4 and (P4, C4)-free editing)

Theorem 2.1. The (P5, C5)-free editing problem is NP-complete.

Proof. The containedness is clear. We show its hardness by giving a reduction from the
Exact 3-Cover decision problem which is defined as follows:

Exact 3-Cover

Instance A pair (S,C) consisting of a set S = {s1, s2, . . . , sn} of elements and a collection
C = {S1, S2, . . . , Sm} of subsets of S with |Si| = 3.

Question Is there a subcollection T ⊆ C such that S is the disjoint union of all 3 sets in
T . That is S :=

⋃
Ti∈T Ti and Ti ∩ Tj = ∅ for each Ti, Tj ∈ T with Ti 6= Tj .

Note that the number of subsets contained in a proper subcollection T is t := n
3 . (Let us

assume n is a multiple of 3, else the 3-cover instance would be trivially false.)

Given an instance (S,C) of Exact 3-Cover we construct an instance (G, k) of (P5, C5)-free
editing editing as follows: First we add a clique with the vertices S = {s1, s2, . . . , sn} to G.
Then we set the maximum number of edits to k := 3(m− t) · r + (r − 3t) where r :=

(n
2
)
is

the number of edges in S. For each Si ∈ S we add three cliques Xi, Yi and Zi to G such
that |Xi| = r and |Yi| = |Zi| = 3k. The newly added cliques shall be disjoint from each
other and from the rest of G. Finally we add all possible edges between Si and Xi, between
Xi and Yi and between Yi and Zi to G. Figure 2.1 depicts the graph G for the example
that S = {s1, . . . , s6} and C = {S1, S2, S3} with S1 := {s1, s2, s3}, S2 := {s3, s4, s5} and
S3 := {s4, s5, s6}. Note that Figure 2.1 shows which of the vertices in S are adjacent to
which of the other cliques and which of the other cliques are adjacent to each other. But
the number of depicted edges between one pair of cliques or one pair of a clique and an si
is too low due to lack of space. For example there should actually be

(6
2
)

= 15 instead of
just four edges between s1 and X1.

Given an instance (S,C) of Exact 3-Cover the corresponding instance (G, k) of (P5, C5)-free
editing is polynomial in the size of the instance (S,C). Also the calculation of (G, k) from
(S,C) is not very complicated and is obviously feasible in polynomial time.

Now let us show that (S,C) is a yes-instance of Exact 3-Cover if and only if the corresponding
instance (G, k) is a yes-instance of (P5, C5)-free editing, so we know that this is a proper
reduction from Exact 3-Cover to (P5, C5)-free editing:

⇒ Assume there is a solution T ⊆ C to the Exact 3-Cover instance (S,C), that is S is
the disjoint union of the 3-sets in T . We construct a proper edge editing set F to the
(P5, C5)-free editing instance (G, k) as follows: For each Si ∈ C \ T F deletes all edges
between Si and Xi. These are 3 · r deletions for each such Si. So altogether we get
3(m − t) · r deletions since there are m − t such sets in C \ T . For each pair of vertices
si, sj ∈ S F deletes the edge between them if si and sj do not belong to the same set
Tp ∈ T . Let GF be the graph that results from applying F to G and let GF [S] be the
induced subgraph of GF with the vertices in S. GF [S] will consist of t triangles with each

1Actually [EMC88] uses a slightly confusing notation where he proves NP-completeness of Pl+1 free editing
for l ≥ 2. So unlike in Section 1.1 of this thesis in [EMC88] l denotes a number that is the size of the
forbidden subgraph minus one. Therefore if you want to compare our proof to [EMC88]s, note that our
reduction actually equals [EMC88]s reduction for the case of l = 4.

8

2.1. NP Completeness of (P5, C5)-free Editing

X1

s2 s3s1 s4 s5 s6

X3X2

Y1 Y3Y2

Z1 Z3Z2

Figure 2.1.: Reduction for S = {s1, . . . , s6} and C = {S1, S2, S3} with S1 :=
{s1, s2, s3}, S2 := {s3, s4, s5} and S3 := {s4, s5, s6}

three edges. So there will be 3t edges left between vertices of S, while there were initially r
edges. Therefore we have r − 3t edge deletions between vertices of S. Adding this together
we get |F | = 3(m− t) · r + (r − 3 · t) = k.

Now let us prove that there is no P5 and no C5 in the resulting graph GF : Note that
each connected component in GF consists either of three cliques Xi, Yi, Zi or four cliques
Si, Xi, Yi, Zi. And remember that for two cliques K,K ′ ∈ {Si, Xi, Yi, Zi} (K 6= K ′) either
each vertex in K is adjacent to each vertex in K ′ or there is absolutely no edge between K
and K ′. Now suppose in one such connected component there are five nodes v1, v2, v3, v4, v5
that induce a P5 or a C5. Since there are less than five cliques, two of those vertices are in
the same clique. Without loss of generality suppose v1, v2 ∈ K. Note that one of the other
vertices v3, v4, v5 is adjacent to v1 or v2. Otherwise the induced subgraph would not be
connected and could therefore not be a P5 or a C5. Without loss of generality suppose v3
is adjacent to v1 or v2. This is only possible if v3 lies in a clique that is adjacent to K or
it lies in K too. In both cases v3 is not only adjacent to one of the vertices v1, v2 but to

9

2. NP Completeness

Xi Xj

Yi Yj

Zi Zj

u v

y1 y2

z

Figure 2.2.: Illustration of the proof of Lemma 2.3. Unaffected vertices are coloured black.

both of these vertices simultaneously. But v1 and v2 are also adjacent to each other, so
v1, v2, v3 induce a C3. This is a contradiction since neither a P5 nor a C5 contain a C3 as a
subgraph.

⇐ Assume we have an edge editing set F for G such that |F | ≤ k. Further assume that
GF is (P5, C5)-free. Remember GF denotes the graph that we get by applying F to G. Let
us show that in that case we can find a solution to our instance (S,C) of 3 cover. The
idea is to show that the connected components in the subgraph GF [S] of GF induced by S
represent elements of C. To do so we need to prove some more helping lemmas first:

Let us call a vertex v ∈ V affected if at least one of its incident edges was modified by F ,
that is added or deleted. Otherwise a vertex is called unaffected.

Lemma 2.2. Each Yi and each Zi contain an unaffected vertex.

Proof. Since each edge in F affects only two vertices, there are at most 2k affected vertices.
But each clique Yi and Zi contains 3k > 2k vertices.

Lemma 2.3. GF contains no edge from Xi to Xj. (i 6= j)

Proof. Assume there is an edge {u, v} in GF with u ∈ Xi, v ∈ Xj . By Lemma 2.2 we
can find unaffected vertices z ∈ Zi, y1 ∈ Yi and y2 ∈ Yj . Now z, y1, u, v, y2 induces a
P5 as depicted in Figure 2.2. But that is a contradiction, since we assumed that GF is
(P5, C5)−free. (Note that there can be no edges other than {u, v} added or deleted by F
between those five vertices, since it would contain at least one unaffected vertex.)

10

2.1. NP Completeness of (P5, C5)-free Editing

Xp Xq

Yp Yq

Zp Zq

x1 x2

y1 y2

si

Figure 2.3.: Illustration of the proof of Lemma 2.4. Unaffected vertices are coloured black.

Lemma 2.4. Every vertex si in S is adjacent to at most one Xj in GF . (Let us say si is
adjacent to Xj, if there is at least one x in Xj, such that si is adjacent to x)

Proof. Assume there is an si that is adjacent to x1 ∈ Xp and x2 ∈ Xq simultaneously.
(p 6= q) By Lemma 2.2 we can find unaffected vertices y1 ∈ Yp and y2 ∈ Yq. (See Figure 2.3)
The edges (y1, x1) and (x2, y2) cannot be deleted by F since they contain an unaffected
vertex. F cannot add the edge (x1, x2) by Lemma 2.3 and it cannot add any other edge
that would destroy the P5 induced by y1, x1, si, x2, y2, since it would contain an unaffected
vertex. That is a contradiction since we assumed that GF contains no P5.

Lemma 2.5. Every vertex si in S is adjacent to exactly one Xj in GF . And it was
adjacent to that Xj in G already.

Proof. There are 3rm edges between
⋃
Xi and S in G. Because of Lemma 2.4 there may

be at most n · r = 3tr of these edges left in GF . So in order to fulfil Lemma 2.4 we need
at least 3rm − 3tr = 3(m − t)r edge deletions between

⋃
Xi and S. Assume that there

is at least one s ∈ S that has been completely separated from each Xi to which it was
initially connected in G. In order to fulfil Lemma 2.4 and that assumption simultaneously
r additional edge deletions are required. So the number of edge deletions 3(m− t)r + r
would be greater than k = 3(m− t) · r + (r − 3t), which is a contradiction.

Lemma 2.6. If si is adjacent to Xp and sj is adjacent to Xq in GF for some p 6= q, then
F must have deleted the edge {si, sj}.

11

2. NP Completeness

Xp Xq

Yp Yq

Zp Zq

x1 x2

y

si sj

Figure 2.4.: Illustration of the proof of Lemma 2.6. Unaffected vertices are coloured black.

Proof. Let si, sj be some vertices in S such that si is adjacent to some x1 ∈ Xp and sj is
adjacent to some x2 ∈ Xq (p 6= q). Now assume that F had not deleted the edge (si, sj).

By Lemma 2.2 we find an unaffected vertex y ∈ Yp. Let us show that F cannot destroy
the P5 induced by y, x1, si, sj , x2, which is depicted in Figure 2.4. F cannot delete the
edge (y, x1) since y is an unaffected vertex. The edges (x1, si), (si, sj) and (sj , x2) exist
in GF by our initial assumption. F cannot add the edge (x1, x2) by Lemma 2.3, and it
cannot add the edges (x1, sj) or (si, x2) by Lemma 2.4. Any other edge addition that could
destroy the P5 would contain the unaffected vertex y, which is not possible.

Lemma 2.7. Each connected component in GF [S] is a subset of some Si ∈ C. (Remember
that GF [S] denotes the subgraph of GF induced by S.)

Proof. From Lemma 2.5 we know that each s ∈ S is adjacent to one Xi set in GF to which
it was already connected in G. From Lemma 2.6 we know that the nodes of one connected
component in GF [S] are all connected to the same Xi. Thus they belong to the same
Si ∈ C.

Lemma 2.8. The subgraph GF [S] of GF is a disjoint union of cliques of size exactly three.
(also called C3) Therefore each connected component of GF [S] is not a proper subsets of
some Si ∈ C but equal to some Si ∈ C.

12

2.2. Generalizing the NP-Completeness Proof

Proof. From Lemma 2.7 we know that S consists of connected components of size at most
three, as each Si has size three.

As noted in the proof of Lemma 2.5 F contains at least 3(m− t)r edge deletions between⋃
Xi and S. So there may be at most k − 3(m− t)r = r − 3t edge deletions in S.

The number of edges in a graph is the half of the sum of the degrees of all vertices appearing
in the graph. If we assume that GF [S] consists of cliques of size 3, then all vertices would
have degree 2. Therefore the number of edges left in S would be 3t·2

2 = 3t. Thus F would
need to delete r − 3t edges in S.

Now assume that GF [S] does not consist of cliques of size three only, but that there are
also P3s or cliques of size one or two. Note that in that case still all vertices in GF [S] had
a degree ≤ 2 but now some vertices would have a degree < 2. So the sum of degrees is
lower than in the previously discussed case. Therefore the number of edges remaining in S
is smaller, too. Thus the number of deletions in S has to be even bigger than r − 3t. But
we previously showed that this is not possible. So we have a contradiction.

Lemma 2.9. There is a solution to the instance (S,C) of the Exact 3-Cover problem
(induced by the solution to the instance (G, k) of (P5, C5)-free editing).

Proof. From 2.8 we know that each connected component in GF [S] corresponds to some
Si ∈ C. And obviously S is the disjoint union of these connected components/elements of
C.

This completes the proof of the equivalence of the instances (S,C) of Exact 3-Cover and
(G, k) of (P5, C5)-free editing and therefore also completes the proof of Theorem 2.1.

2.2. Generalizing the NP-Completeness Proof
Theorem 2.1 can be generalized even more. The reductions used in the following general-
ization of Theorem 2.1 are still the same as in [EMC88].

Theorem 2.10. Let p ∈ N0, l ≥ 4 and 4 ≤ µ[1] < · · · < µ[p] ≤ l:

The (Pl, Cµ[1], . . . , Cµ[p])-free editing problem is NP-complete.

Before we prove this theorem let us first make sure we understand what this theorem says:

First note that in the case of p = 1 we also refer to the (Pl, Cµ[1]) free editing problem
by (Pl, Cµ[1], . . . , Cµ[p])-free editing problem, although this notation suggests that there
would be more than one forbidden induced subgraph. Furthermore in the case of p = 0 we
also refer to the Pl-free editing problem by (Pl, Cµ[1], . . . , Cµ[p])-free editing problem. This
might seem a bit confusing but it saves us tedious case distinctions.

Here are some examples of problems that are NP-complete according to Theorem 2.10:

For the case of l := 5, p := 1, µ[1] = 5 we know that the (P5, C5)-free editing problem is
NP-complete. So Theorem 2.10 is a generalization of Theorem 2.1.

For the case of l := 5, p := 0 we know that P5-free editing is NP-complete. Remember that
[EMC88] proved the NP-completeness only for the deletion version of this problem.

For the case of l := 6, p := 1, µ[1] := 6 we know that (P6, C6)-free editing is NP-complete.

13

2. NP Completeness

For the case of l := 5, p := 2, µ[1] := 4, µ[2] := 5 we know that (P5, C4, C5)-free editing is
NP-complete. This problem was also mentioned in [NG13] as another possible relaxation
of the (P4, C4) freeness condition, which they focused on.

For the case of l := 8, p := 3, µ[1] := 4, µ[2] := 6, µ[3] := 7 we know that (P8, C4, C6, C7)-free
editing is NP-complete. This is just a random example invented only to illustrate Theorem
2.10.

Note that each PL and each CL with L > l contains a Pl. Therefore it would not make any
sense to use multiple paths of different size or circles of size bigger than the forbidden path
as forbidden induced subgraphs. An interesting problem however that is not covered by
Theorem 2.10 would be using only circles as forbidden induced subgraphs.

Proof. Again the containedness is clear. To show the hardness we use a reduction from
Exact 3-Cover. Let (S,C) be an instance of Exact 3-Cover. The corresponding instance
(G, k) of the (Pl, Cµ[1], . . . , Cµ[p])-free editing problem is constructed as follows: As in the
proof of Theorem 2.1, we start with G containing the elements of S as vertices, such that
S induces a clique in G. And again we define:

r :=
(
n

2

)
k := 3(m− t) · r + (r − 3t)

For each Si ∈ S we add l − 2 (disjoint) cliques Qi[1], . . . , Qi[l − 3], Xi to G such that
|Q[1]| = · · · = |Q[l − 3]| = 3k and |Xi| = r. And we add all possible edges between Si and
Xi, between Xi and Qi[l − 3] and between Qi[j] and Qi[j − 1] for 2 ≤ j ≤ l − 3 to G. For
simplicity we may also sometimes denote Xi by Qi[l − 2] and Si by Qi[l − 1]. Note that
for l = 5 the reduction is the same as in the proof of Theorem 2.1 except that Zi is called
Qi[1] and Yi is called Qi[2].

Figure 2.5 depicts this reduction for a simple example instance of Exact 3-Cover .

Again this reduction is obviously computable in polynomial time. Now let us show
that (S,C) is a yes-instance of Exact 3-Cover if and only if (G, k) is a yes-instance of
(Pl, Cµ[1], . . . , Cµ[p])-free editing :

⇒ Assume there is a solution T ⊆ C to the Exact 3-Cover instance (S,C). That is
S is the disjoint union of the 3-sets in T . As a solution for the (G, k) instance of the
(Pl, Cµ[1], . . . , Cµ[p])-free editing problem, we use the exact same editing set F as in the
proof of Theorem 2.1. As we already showed there |F | = k. Let us show that GF
does not contain any of the forbidden induced subgraphs. Note that each connected
component in GF consists either of l − 2 cliques Xi, Qi[l − 3], . . . , Qi[1] or l − 1 cliques
Si, Xi, Qi[l − 3], . . . , Qi[1]. For two cliques K,K ′ ∈ {Si, Xi, Qi[l − 3], . . . , Qi[1]} (K 6= K ′)
either each vertex in K is adjacent to each vertex in K ′ or there is absolutely no edge
between K and K ′. Assume there is a forbidden induced subgraph in such a connected
component induced by some V ′ ⊆ V (G). If there were v1, v2 ∈ V ′ that belong to the same
clique (v1, v2 ∈ K ∈ {Si, Xi, Qi[l− 3], . . . , Qi[1]}), then this would lead to an induced C3 in
GF [V ′] as in the proof of proof of Theorem 2.1. Therefore there may be no two such vertices,
since none of the forbidden induced subgraphs contains a C3. It immediately follows that
GF [V ′] is no Pl as there are only l − 1 or l − 2 cliques in each connected component but
Pl has l vertices. Assume GF [V ′] is isomorphic to some Cµ[q]. Let j1 be the index of the
outermost clique that contains a vertex from V ′, that is j1 := min{j | Qi[j]∩ V ′ 6= ∅}. The
vertex v that lies in Qi[j1] has no neighbours in Qi[j1− 1] (or Qi[j1− 1] does not even exist
if j1 = 1). As there may be at most one vertex in one clique, there may be no neighbour of

14

2.2. Generalizing the NP-Completeness Proof

v in Qi[j1] and at most one neighbour in Qi[j1 + 1]. Thus v has degree one in the induced
Cµ[q]. This is a contradiction as Cµ[q] does not contain a degree one node.

⇐ Assume there is an editing set F with |F | ≤ k such that GF is (Pl, Cµ[1], . . . , Cµ[p])-free.
Let us show that in this case there is a solution to the Exact 3-Cover -instance (S,C), that
was reduced to (G, k). In order to do so we have to prove lemmas analogue to the Lemmas
2.2 to 2.8 in the proof of Theorem 2.1.

Lemma 2.11. Each Qi[j] with 1 ≤ j ≤ l − 3 contains an unaffected vertex.

Proof. Again we have |Qi[j]| = 3k > 2k as in the proof of Theorem 2.2.

Lemma 2.12. GF contains no edge from Xi to Xj. (i 6= j)

Proof. Assume there is an edge {u, v} in GF with u ∈ Xi, v ∈ Xj . By Lemma 2.11
we can find unaffected vertices y1 ∈ Qi[1], . . . , yl−3 ∈ Qi[l − 3] and z ∈ Qi[l − 3]. Now
y1, . . . , yl−3, u, v, z induces a Pl. But that is a contradiction, since we assumed that GF
is (Pl, Cµ[1], . . . , Cµ[p])-free. (Note that there can be no edges other than {u, v} added
or deleted by F between those l vertices, since it would contain at least one unaffected
vertex.)

Lemma 2.13. Every vertex si in S is adjacent to at most one Xj in GF . (Let us say si
is adjacent to Xj, if there is at least one x in Xj, such that si is adjacent to x)

Proof. Assume there is an si that is adjacent to x1 ∈ Xa and x2 ∈ Xb simultaneously.
(a 6= b) By Lemma 2.2 we can find unaffected vertices y1 ∈ Qa[1], . . . , yl−3 ∈ Qa[l − 3].
The edges (yq, yq+1) for 1 ≤ q ≤ l − 4 and (yl−3, x1) cannot be deleted by F since they
contain one or two unaffected vertices. F cannot add the edge (x1, x2) by Lemma 2.12 and
it cannot add any other edge that would destroy the Pl induced by y1, . . . , yl−3, x1, si, x2,
since it would contain an unaffected vertex. That is a contradiction since we assumed that
GF contains no Pl.

Lemma 2.14. Every vertex si in S is adjacent to exactly one Xj in GF . And it was
adjacent to that Xj in G already.

Proof. The proof is exactly the same as in Lemma 2.4.

Lemma 2.15. If si is adjacent to Xa and sj is adjacent to Xb in GF for some a 6= b, then
F must have deleted the edge {si, sj}.

Proof. Let si, sj be some vertices in S such that si is adjacent to some x1 ∈ Xa and sj is
adjacent to some x2 ∈ Xb (a 6= b). Now assume that F had not deleted the edge (si, sj).

By Lemma 2.11 we find unaffected vertices y1 ∈ Qa[1], . . . , yl−3 ∈ Qa[l − 3]. Let us show
that F cannot destroy the Pl induced by y1, . . . , yl−3, x1, si, sj , x2:

F cannot delete the edges (yq, yq+1) for 1 ≤ q ≤ l− 4 and (yl−3, x1) since the yq-s and yl−3
are unaffected vertices. The edges (x1, si), (si, sj) and (sj , x2) exist in GF by our initial
assumption. F cannot add the edge (x1, x2) by Lemma 2.12, and it cannot add the edges
(x1, sj) or (si, x2) by Lemma 2.13. Any other edge addition that could destroy the Pl would
contain one of the unaffected vertices y1, . . . , yl−3, which is not possible.

Lemma 2.16. Each connected component in GF [S] is a subset of some Si ∈ C. (Remember
that GF [S] denotes the subgraph of GF induced by S.)

15

2. NP Completeness

Proof. This follows from Lemmas 2.14 and 2.15 as in the proof of 2.7.

Lemma 2.17. The subgraph GF [S] of GF is a disjoint union of cliques of size exactly
three. Therefore each connected component of GF [S] is not a proper subsets of some Si ∈ C
but equal to some Si ∈ C.

Proof. The proof is the same as for Lemma 2.8.

Lemma 2.18. There is a solution to the instance (S,C) of the Exact 3-Cover problem
(induced by the solution to the instance (G, k) of (Pl, Cµ[1], . . . , Cµ[p])-free editing).

Proof. See the proof of Lemma 2.9.

This completes the proof of the equivalence of the instances (S,C) of Exact 3-Cover and
(G, k) of (Pl, Cµ[1], . . . , Cµ[p])-free editing and therefore also completes the proof of Theorem
2.10.

2.3. NP-Completeness of the Deletion Version
Here we show that the deletion versions of the problems discussed in the previous section
are NP-complete, too. Especially this includes the NP-completeness of the (P5, C5)-free
deletion problem.

Theorem 2.19. Let p ∈ N0, l ≥ 4 and 4 ≤, µ[1] < · · · < µ[p] ≤ l: The (Pl, Cµ[1], . . . , Cµ[p])-
free deletion problem is NP-complete.

Note that in the case of p = 0 this theorem was already proved in [EMC88].

Proof. The containedness is clear.

We show that the exact same reduction that was used in the proof of Theorem 2.10 is also
a correct reduction to prove the hardness of the deletion problem.

Let (S,C) be some instance of Exact 3-Cover and let (G, k) be the corresponding instance
of (Pl, Cµ[1], . . . , Cµ[p])-free editing / deletion.

We show that (S,C) is a yes instance of Exact 3-Cover if and only if (G, k) is a yes-instance
of (Pl, Cµ[1], . . . , Cµ[p])-free deletion:

⇒ Assume (S,C) has a solution T ⊆ C. Note that the editing set F that we constructed
from T in the proofs of Theorems 2.1 and 2.10 does not contain any edge insertions. So F
is also a correct solution for the deletion problem.

⇐ Assume (G, k) is a yes-instance of the (Pl, Cµ[1], . . . , Cµ[p])-free deletion problem. That
is there is a deletion set F ⊆ E(G) with |F | ≤ k such that GF is (Pl, Cµ[1], . . . , Cµ[p])-free.
Note that a correct edge deletion set is also a correct editing set. Therefore (G, k) is also
a yes-instance of the (Pl, Cµ[1], . . . , Cµ[p])-free editing problem. But in that case we have
already proved in the proof of Theorem 2.10 that (S,C) is a yes-instance of Exact 3-Cover.

16

2.3. NP-Completeness of the Deletion Version

X1

s2 s3s1 s4 s5 s6

X3X2

Q1[l − 3] Q3[l − 3]Q2[l − 3]

Q1[1] Q3[1]Q2[1]

.

Figure 2.5.: Reduction for S = {s1, . . . , s6} and C = {S1, S2, S3} with S1 :=
{s1, s2, s3}, S2 := {s3, s4, s5} and S3 := {s4, s5, s6}

17

3. Algorithms

In this chapter we propose algorithms that can be used in order to calculate close (P5, C5)-
free graphs. We also discuss the correctness and theoretical bounds of the running time
here.

In the subsequent Chapter 4 we further evaluate the running time and - in the case of the
heuristic algorithms - also the quality of the results of these algorithms by practical case
studies.

3.1. Graph Representation
In order to prove the claimed running time of the algorithms that are presented in the
following sections, it is necessary to assume that we can check whether two given vertices
u, v ∈ V (G) of some graph G are adjacent in O(1) time. To do so we need an adjacency
matrix representation of the graph.

On the other hand however we need to assume that we can iterate over the neighbours of
some given vertex v in O(d(v)) time. That is as the body of a loop of the form of Algorithm
3.1 is executed d(v) times anyway in the asymptotic notation the time needed to calculate
N(v) can be neglected. However for that second assumption we need an adjacency list
representation of the graph. Therefore when dealing with some graph we want to assume
that we simultaneously have an adjacency matrix representation and an adjacency list
representation of the graph in the memory.

To prove the running time of the editing algorithms it is convenient to assume that we can
add and delete an edge {u, v} in time O(1).

It is obviously possible to update the adjacency matrix in O(1) time when adding or
deleting an edge. However we need to keep the adjacency list representation up to date as
well. Adding an edge {u, v} is no problem. We can add the vertex u to the head of the
adjacency list of v and add the vertex v to the head of the adjacency list of u in O(1) time.
However when deleting an edge {u, v} we first have to find the edge u in the adjacency

Algorithm 3.1: Neighbourhood Loop
1 forall u ∈ N(v) do
2 do something with u

19

3. Algorithms

list of v and find the edge v in the adjacency list of u. To do so we may need O(d(v))
and O(d(u)) time. As a solution to this problem we can use a special adjacency matrix
A = (ai,j). Let i[u] and i[v] denote the indices of some vertices u and v. For a given edge
{u, v} we can not only save the boolean value true in the locations ai[u],i[v] and ai[v],i[u].
Instead we can additionally save the location of the vertex v in the adjacency list of u in
ai[u],i[v] and save the location of the vertex u in the adjacency list of v in ai[v],i[u]. With the
help this kind of adjacency matrix we can delete edges in O(1) time.

So in the following sections of this chapter we assume that the following operations are
feasible in O(1) time:

• checking whether two vertices u, v ∈ V (G) are adjacent

• adding an edge {u, v}

• deleting an edge {u, v}

• finding the next neighbour u of some vertex v before one execution of the body of a
loop that iterates over N(v) as in Algorithm 3.1

3.2. P5, C5 Count
In this section we introduce an algorithm that counts the total number of P5s and C5s in a
graph G in time O(m · d3) ⊆ O(m · d2 + #P5 + #C5). Here d denotes the maximal vertex
degree in G and #P5 and #C5 denote the actual number of P5s and C5s in G.

Such an algorithm is needed in Section 3.5 to implement a greedy heuristic for the (P5, C5)-
free editing search problem. The counting algorithm CountP5C5 that we introduce in this
section can also easily be modified to a search algorithm. This search algorithm is needed
for the exact (P5, C5)-free editing algorithm in Section 3.4. The search algorithm needs
only O(m · d2) time.

The algorithm CountP5C5 uses a subroutine CountP5C5Local(G,v). The subroutine
CountP5C5Local(G,v) searches the neighbourhood N(v) of v and also the neighbours of
the neighbours of v for vertices that induce a P5 or a C5 together with v. One call to this
subroutine does not find all P5s and C5s in G. It only counts exactly the P5s that contain
v as a middle vertex and the C5s that contain v at any place. Therefore CountP5C5 has
to call this subroutine multiple times. One time for each vertex v ∈ V (G). CountP5C5
then sums up the number of vertices found in each of these calls to the subroutine.

A call to CountP5C5Local(G, v) iterates over quadruples (v1, v2, v4, v5) such that these
vertices together with v induce either a P5 or a C5 and the vertices appear in the same
order as in Figure 3.1 on this P5 or C5. To do so, CountP5C5Local iterates over pairs of
neighbours v2, v4 ∈ N(v) of v such that v2, v, v4 induce a P3 with v as the middle vertex.
For each of these pairs (v2, v4) it calculates the set V1(v2, v4) ⊆ N(v2) of vertices that could
take the place of v1 in Figure 3.1. It also calculates a set V5(v2, v4) ⊆ N(v3) of vertices that
could take the place of v5 in Figure 3.1. For each pair v1, v5 of vertices v1 ∈ V1(v2, v4) and
v5 ∈ V5(v2, v4) it checks whether they are adjacent or not. That is it checks whether the
found subgraph v1, v2, v, v4, v5 is a P5 or a C5. It then increments the according counter.
Note that a more naive version of CountP5C5Local might recalculate V5(v1, v2, v4) for each
found candidate of v1. Our version of CountP5C5Local may be faster as it recalculates
V5(v2, v4) only one time for each pair v2, v4.

A more formal pseudocode description of CountP5C5 and its subroutine is given in
Algorithm 3.3 and Algorithm 3.2.

Let us now prove the correctness and the running time of CountP5C5:

20

3.2. P5, C5 Count

v1 v4v2 v5v

Figure 3.1.: Subgraph found by CountP5C5Local(G, v)

Algorithm 3.2: CountP5C5Local
Input: Graph G = (V,E), node v ∈ V
Output: number of P5s in G containing v as their middle vertex, number of C5s in

G containing v at any place.
1 P5count← 0
2 C5count← 0
3 forall {v2, v4} ∈ N(v) with v2 6= v4 do
4 if v2 is not adjacent to v4 then

// v2, v, v4 = p3
5 V1 ← ∅
6 forall v1 ∈ N(v2) do
7 if v1 is not adjacent to v or v4 then

// v1, v2, v, v4 = p4
8 V1 ← V1 ∪ {v1}

9 V5 ← ∅
10 forall v5 ∈ N(v4) do
11 if v5 is not adjacent to v or v2 then

// v2, v, v4, v5 = p4
12 V5 ← V5 ∪ {v5}

13 forall pairs (v1, v5) where v1 ∈ V1, v5 ∈ V5 do
14 if v5 is adjacent to v1 then
15 C5count← C5count + 1
16 else
17 P5count← P5count + 1

18 return P5count, C5count

Theorem 3.1. CountP5C5Local is correct. That is, for a graph G and a vertex v ∈ V (G),
CountP5C5Local(G, v) returns the number of induced P5s in G that contain v as the middle
vertex. Furthermore CountP5C5Local(G, v) returns the number of induced C5s in G that
contain the vertex v at any place.

Proof. Let #P5 be the actual number of induced P5s containing the vertex v as the
“middle”-vertex and let P5count be the number counted by the algorithm.

1) P5count ≥ #P5:

We have to show that line 17 is executed at least once for each induced P5 that contains
v as “middle” vertex. That is we do not forget to count any of the P5s. Let G[V ′] be
some of these P5s induced by some subset V ′ := {u1, u2, v, u4, u5}, where v is the middle
vertex. Without loss of generality assume the vertices ui in G[V ′] are enumerated as in
Figure 3.2a. The body of the outermost loop in CountP5C5Local will be executed once for
either v2 = u2 and v4 = u4 or for v2 = u4 and v4 = u2.

21

3. Algorithms

Algorithm 3.3: CountP5C5
Input: Graph G = (V,E)
Output: number of P5s in G, number of C5s in G

1 P5count← 0
2 C5count← 0
3 P5countSum← 0
4 C5countSum← 0
5 forall v ∈ V do
6 P5count,C5count← CountP5C5Local(G, v)
7 P5countSum← P5countSum + P5count
8 C5countSum← C5countSum + C5count
9 numberOfP5s← P5countSum

10 numberOfC5s← C5countSum/5
11 return numberOfP5s, numberOfC5s

u1 u4u2 u5v

(a) some induced P5

v1 = u1 v4 = u4v2 = u2 v5 = u5v

(b) one way of discovering the P5 induced by u1, u2, v, u4, u5

v5 = u1 v2 = u4v4 = u2 v1 = u5v

(c) another way of discovering the P5 induced by u1, u2, v, u4, u5

Figure 3.2.: two different ways of discovering a P5

Let us consider the former case first: As v2 = u2 is not adjacent to v4 = u4 the body of
the if clause containing the three inner loops will be executed. The body of the first inner
loop will some time be executed with v1 = u1 as u1 is adjacent to v2 = u2. Note that the
condition of the if clause will be fulfilled as v2 = u2 is not adjacent to v or v4 = u4. So u1
will be added to V1. Similarly in the second inner loop u5 will be added to V5.

Since u1 ∈ V1 and u5 ∈ V5 the body of the third inner loop will be executed with v1 = u1
and v5 = u5. As v1 = u1 is not adjacent to v5 = u5 line 17 will be executed, with
v1 = u1, v2 = u2, v, v4 = u4, v5 = u5 as in Figure 3.2b.

Now assume that instead the outer loop had chosen v2 = u4 and v4 = u2. Then in a similar
way we can show that line 17 will be executed with v1 = u5, v2 = u4, v4 = u2, v5 = u1 as in
Figure 3.2c.

In any case line 17 is executed with {v1, v2, v, v4, v5} = {u1, u2, v, u4, u5}. Therefore for
each induced P5 (with “middle” vertex v) there is at least on execution of line 17. Thus
P5count ≥ #P5.
2) P5count ≤ #P5:
We have to show two things. First that we do not count any subgraph that is not a P5.
And second that we do not count any subgraph twice.
2.1) Assume v1, v2, v, v4, v5 are the nodes of some execution of line 17. We must show that
V ′ := {v1, v2, v, v4, v5} actually induces a P5. From the header of the outer loop we know

22

3.2. P5, C5 Count

u1

u3u2

u4

(a) C4

u1 u3u2 = u4

(b) or P3 ?

Figure 3.3.: How a badly designed C4 counting algorithm might mistake a P3 for a C4.

that v2 and v4 are adjacent to v. By the header of the third inner loop we know that
v1 ∈ V1 and v5 ∈ V5. By the construction of V1 we know that v1 must have been added to
V1 in line 8 in the first inner loop. By the header of this first inner loop we know that v1
is adjacent to v2. Similarly v5 must have been added to V5 in line 12 in the second inner
loop. By the header of this second loop we know that v5 is adjacent to v4.

Let us now show that G[V ′] contains no other edges except the mentioned edges {v1, v2},
{v2, v}, {v, v4}, {v4, v5}. By the if clause inside the first inner loop we know that v1 is not
adjacent to v or v4. Similarly by the if clause inside the second loop we know that v5 is not
adjacent to v2 and v. By the if clause starting in line 4 we know that v2 is not adjacent
to v4. As the condition of the if clause starting in line 14 failed, we know that v1 is not
adjacent to v5.

Note that these are all possible pairs of edges that must not be adjacent.

Now the edges are correct, but we also want to show that none of the vertices v1, v2, v, v4, v5
are identical. As an example why this is important consider a badly designed C4 search algo-
rithm that finds vertices u1, u2, u3, u4, where the edges {u1, u2}, {u2, u3}, {u3, u4}, {u4, u1}
exist. But u1 is not adjacent to u3 and u2 is not adjacent to u4. The algorithm might think
this is a C4 as depicted in Figure 3.3a but it might actually be a P3 as in Figure 3.3b.

From line three we know that v2 6= v4. In this bachelor thesis we only consider simple
graphs. That is there may be no selfadjacent vertices. Thus v1 6= v2, v2 6= v, v 6= v4 and
v4 6= v5. Since v1 6∈ N(v4) but v ∈ N(v4), we have v1 6= v. Similarly we can use the
following implications:

• v1 ∈ N(v2) but v4 6∈ N(v2) ⇒ v1 6= v4

• v1 ∈ N(v2) but v5 6∈ N(v2) ⇒ v1 6= v5

• v2 ∈ N(v1) but v5 6∈ N(v1) ⇒ v2 6= v5

• v ∈ N(v2) but v5 6∈ N(v2) ⇒ v 6= v5

Now we know that v1, v2, v, v4, v5 induce a P5 as in Figure 3.1. (without the dashed line)

2.2) Let v(i)
1 , v

(i)
2 , v

(i)
4 , v

(i)
5 be the values represented by the corresponding variables v1, v2, v4, v5

at the time when the algorithm hits line 17 for the i-th time. Let V (i) := {v(i)
1 , v

(i)
2 , v

(i)
4 , v

(i)
5 }

and V (j) := {v(j)
1 , v

(j)
2 , v

(j)
4 , v

(j)
5 } for some i 6= j. We have to show V (i) 6= V (j). We consider

two cases:

23

3. Algorithms

u1 u4u2 u5v

Figure 3.4.: some induced C5

Case 1: i and j belong to the same execution of the outer loop: In this case we have
v

(i)
2 = v

(j)
2 and v(i)

4 = v
(j)
4 . As i 6= j we must be in different executions of the third inner

loop. Thus v(i)
1 6= v

(j)
1 and/or v(i)

5 6= v
(j)
5 . We assume the former, i.e. v

(i)
1 6= v

(j)
1 , the

other case works analogue. As v(j)
2 , v

(j)
4 ∈ N(v) but v(i)

1 6∈ N(v) we have v(i)
1 6= v

(j)
2 , v

(j)
4 .

As v(j)
5 ∈ N(v(j)

4) = N(v(i)
4) but v(i)

1 6∈ N(v(i)
4) we have v(i)

1 6= v
(j)
5 . Thus v(i)

1 6∈ V (j) and
V (i) 6= V (j).

Case 2: i and j belong to different executions of the outer loop: In this case we have
{v(i)

2 , v
(i)
4 } 6= {v

(j)
2 , v

(j)
4 }. Thus v(i)

2 6∈ {v(j)
2 , v

(j)
4 } and/or v(i)

4 6∈ {v(j)
2 , v

(j)
4 }. We assume

the former case, the latter works analogue. As v(i)
2 ∈ N(v) but v(j)

1 , v
(j)
5 6∈ N(v) we have

v
(i)
2 6∈ {v

(j)
1 , v

(j)
5 }. Thus v

(i)
2 6∈ V (j) and V (i) 6= V (j).

Now we have shown that p5count = #P5. Showing that the number #C5 of induced C5s
in G is equal to the corresponding number c5count that was returned by the algorithm,
works similarly.

1) C5count ≥ #C5:

We have to show that line 15 is executed at least once for each induced C5 that contains v at
any place. Let G[V ′] be some of these P5s induced by some subset V ′ := {u1, u2, v, u4, u5}.
Without loss of generality assume that the vertices are enumerated as in Figure 3.4. Similar
to the P5 case we can show that the body of the third inner loop will at some point be
executed with either v1 = u1, v2 = u2, v, v4 = u4, v5 = u5 or v1 = u5, v2 = u4, v4 = u2, v5 =
u1. As u1 is adjacent to u5 the condition of the if clause in the third inner loop is fulfilled,
so line 15 will be executed.

2) C5count ≤ #C5:

Again we have to show two things. First that we do not count any subgraph that is not a
C5. And second that we do not count any subgraph twice.

2.1) Assume v1, v2, v, v4, v5 are the nodes of some execution of line 15. We have to show that
these vertices induce a C5 as in Figure 3.1 (including the dashed line). As the condition in
the if-clause succeeded we know that v1 is adjacent to v5. The proof of the existence of the
other needed edges, of the non-existence of edges that are not present in Figure 3.1 and of
the inequalities between the vertices work exactly as in the P5 case.

2.2) Showing that no C5 is counted twice works exactly the same way as in the P5 case.

Theorem 3.2. CountP5C5 is correct. That is, for a graph G, CountP5C5(G) returns the
total number of induced P5s and the total number of induced C5s in G.

Proof. As a P5 has only one “middle” vertex v3 it will be counted only one time when
CountP5C5Local(G, v) is called in line 6 with v := v3. As a C5 contains five vertices
v1, v2, v3, v4, v5 it will be counted five times, that is one time for each of the calls to
CountP5C5Local(G, v) in which v ∈ {v1, v2, v3, v4, v5}. Therefore after the execution of

24

3.2. P5, C5 Count

the loop in CountP5C5 we have P5CountSum = #P5 and C5CountSum = #C5 · 5. Here
#P5 and #C5 denote the actual numbers of P5s and C5s in the graph. We get the correct
number of C5s in line 11 when we divide by 5.

Theorem 3.3. Let t(n,m, d,#P5,#C5) be the maximum running time that is needed
to execute P5C5Count(G) on a graph G = (V,E) with |V | = n maximum degree d :=
maxv∈V d(v) and in which the actual number of P5s and C5s is #P5 and #C5.
Then:

t ∈ O(m · d2 + #P5 + #C5) ⊆ O(m · d3)

Proof. Obviously the majority of the running time is the time spent in the calls to the
subroutine CountP5C5Local. Note that considering the discussion in Section 3.1 we can
assume that one single execution of one line of code takes always only O(1) time. Let ts be
the number of times that the subroutine CountP5C5Local is called during one execution
of CountP5C5. Let to be the total number of times that the body of the outer loop is
executed, summed up over all calls to the subroutine. Let ti1 (ti2, ti3) be the total number
of times that the body of the first (second, third) inner loop is executed, summed up over
all calls to the subroutine.
Obviously we have

t ∈ O(ts + to + ti1 + ti2 + ti3)
as the lines of code outside of the outer loop of CountP5C5Local are executed ts times, the
ones inside the outer but outside of the inner loop are executed to and the lines of code in
the inner loops are executed ti1, ti2 or ti3 times.
We have

ts = n

to =
∑
v∈V

(
d(v)

2

)
=
∑
v∈V

d(v)(d(v)− 1)
2

≤
∑
v∈V

d(v)d
2 =

(
1
2
∑
v∈V

d(v)
)
· d

= m · d

In each of the to executions of the outer loop, the first and second loops are executed
d(v2) ≤ d and d(v4) ≤ d times. Therefore

ti1, ti2 ≤ to · d ∈ O(m · d2)

Note that the sum of the numbers of P5count and C5count returned by the subroutine in
line 6 of the main routine is equal to the number of executions of the third inner loop of
the subroutine. And these values are summed up over all executions of the subroutine. So
in the end we have ti3 = p5countSum+ c5CountSum. From the correctness proof of the
algorithm we know that p5countSum = #P5 and c5CountSum = 5 ·#C5. Therefore

ti3 = #P5 + 5 ·#C5 ∈ O(#P5 + #C5)
On the other hand we know that |V1| ≤ d(v2) ≤ d and |V5| ≤ d(v4) ≤ d. And in each of
the to executions of the outer loop the last inner loop is executed |V1| · |V2| ≤ d2 times.
Therefore

ti3 ≤ to · d2 = m · d3

Note that first upper bound is asymptotically at least as sharp as the second one since
#P5 + 5 ·#C5 = ti3 ≤ m · d3

25

3. Algorithms

v1 v2 v3 v4 v5

Figure 3.5.: result of FindP5C5(G) (if there is at least one induced P5 or C5 in G)

3.3. P5C5Search

We can modify the P5C5Count algorithm in order to return a set of vertices that induce a
P5 or a C5.

Definition 3.4. Let FindP5C5(G) be a subroutine that takes a given graph G = (V,E) as
input and does the following

• if G contains at least one induced P5 and/or C5, then FindP5C5(G) returns the
boolean value true and five vertices v1, v2, v3, v4, v5 ∈ V that induce either a P5 or a
C5. And the vertices shall be enumerated as in Figure 3.5.

• if G contains no induced P5 and no induced C5, FindP5C5(G) returns false.

Theorem 3.5. FindP5C5 can be implemented in time O(m · d2)

Proof. We implement FindP5C5(G) such that it does the following:

• start executing the algorithm CountP5C5 on the input graph G

• when the subroutine CountP5C5Local hits line 15 or 17 for the first time then

– abort the execution of both the subroutine CountP5C5Local and also of the
CountP5C5 algorithm.

– return the value true, and the set V ′ consisting of the vertices that were
represented by the variables v1, v2, v, v4, v5 of the algorithm CountP5C5Local at
the time when it hit line 15 or 17.

• if CountP5C5 finishes without ever hitting lines 15 or 17 of the subroutine CountP5C5Local
then return false

We have shown in the proof of Theorem 3.2 that when line 15 or 17 of the subroutine is
hit, then the vertices represented by the variables v1, v2, v, v4, v5 actually induce a P5 or a
C5 as depicted in Figure 3.1. And we have also shown that if there is an induced P5 or C5,
then it will be found. So if line 15 or 17 is never reached, then there is actually no P5 or
C5 in G. Thus we know that this implementation of FindP5C5 returns the correct result.

The proof of the running time works the same way as in the proof of Theorem 3.3. Again
the running time is in O(ts + to + ti1 + ti2 + ti3) where ts, to, ti1, ti2, ti3 are defined as in
the proof of Theorem 3.3. However there is one important difference here: As we abort the
calculation as soon as the body of the third inner loop of CountP5C5Local is hit the first
time we have

ti3 ∈ O(1)

26

3.4. Exact Algorithm

3.4. Exact Algorithm
In this section we introduce an editing algorithm EditToP5C5Free that solves the (P5, C5)-
free editing decision problem. And as an extra bonus if the given graph G can be edited to
a (P5, C5)-free graph in less than or equal to k steps then EditToP5C5Free(G,k) will also
calculate such a close (P5, C5)-free graph GF . However it is only guaranteed that |F | ≤ k
but not necessarily |F | = min! as required by the (P5, C5)-free editing search problem. To
solve the search problem we can call EditToP5C5Free multiple times with increasing values
of k until it finds a solution for the first time.

In Theorem 3.9 below we prove that our algorithm needs O(9k ·m · n2) time. Therefore
while the (P5, C5)-free editing problem is NP-complete as shown in Chapter 2, it is at least
fixed parameter tractable. Generally [Cai96] shows that if a hereditary graph property Π
can be characterized by a finite set of forbidden subgraphs, then the Π-editing problem is
fixed parameter tractable.

The algorithm proposed by [Cai96] is described in Algorithm 3.4. The only difference is
that [Cai96] describes the algorithm for the general case of an arbitrary set of forbidden
subgraphs and not just P5s and C5s. Also [Cai96] describes the algorithm more informally
without using pseudocode.

We use an optimized version of Algorithm 3.4 which is described in 3.5.

Let us first try to understand the original version Algorithm 3.4:

The idea is that if the graph G contains a forbidden induced subgraph G[V ′] induced by
some V ′ ⊆ V , then a proper editing set F will always contain at least one edge addition
or deletion in this subgraph G[V ′]. Therefore we iterate over all edges e := {u, v} of the
forbidden induced subgraph found in line 1. See lines 7 - 12. For each edge we check
whether there is a editing set F with e ∈ F such that GF is (P5, C5)-free and |F | ≤ k.

To check whether there is such a solution F containing the edge e, we first edit the edge e.
That is we delete it if it exists and we add the edge e to G if the vertices u and v were not
adjacent in G before. Then we recursively try to find at most k − 1 further edits to edit
the resulting graph to a (P5, C5)-free graph.

If we fail to find a proper editing set starting with the edge e we shall not forget to undo
the changes done to G in this failed attempt before we try another edge. We do that in
line 12.

The recursion ends when we have edited G to a (P5, C5)-free graph (line 2- 3) or when we
have no more edits left (line 4 - 5).

Now let us discuss the two optimizations that we applied to Algorithm 3.4 in Algorithm
3.5:

If the found forbidden subgraph G[V ′] is a P5 then adding the edge {v1, v5} to G would only
turn G[V ′] into a forbidden induced C5. Remember the vertices vi ∈ V ′ are enumerated as
in Figure 3.5 by FindP5C5. By adding the dashed line we turn a P5 into a C5. To destroy
this C5 we will have to edit another edge e. But e would have destroyed the P5 anyway.
Therefore adding the edge {v1, v5} was basically useless. Therefore we will not try to edit
the edge {v1, v5}.

If the found forbidden induced subgraph is a C5 then there are other problems of Algo-
rithm 3.4 that we want to avoid in Algorithm 3.5. If we try to destroy a C5 using a deletion
then we turn that C5 into a P5. A later recursion that tries to destroy this P5 will try to
add edges that would have destroyed the initial C5 anyway. Together with one of these edge
additions the initial deletions are useless. Another problem is the one depicted in Figure 3.6.

27

3. Algorithms

v1

v2

v3v4

v5

v1

v2

v3v4

v5

v1

v2

v3v4

v5

v1

v2

v3v4

v5

v1

v2

v3v4

v5

delete {v1, v2}
delete {v3, v4}

delete {v2, v3}

[. . .]

delete {v4, v5}

delete {v5, v1}
[. . .]

[. . .]

insert {v1, v3}

insert {v2, v4}

insert {v3, v5}

insert {v4, v1}

insert {v5, v2}

[. . .]

[. . .]

[. . .]

[. . .]

[. . .]

delete {v3, v4}

delete {v1, v2}

[. . .]

[. . .]

[. . .]
[. . .]

[. . .]

[. . .]

[. . .] [. . .]

[. . .]

[. . .]

[. . .]

[. . .]
[. . .]

[. . .]

[. . .]
[. . .]

Figure 3.6.: redundant calculations in Algorithm 3.4

28

3.4. Exact Algorithm

Algorithm 3.4: EditToP5C5freeCai
Input: Graph G = (V,E), number k
Output: boolean value s indicating whether G can be edited to a (P5, C5)-free

Graph in at most k steps
1 found, V ′ ← FindP5C5(G)
2 if found = false then
3 return true
4 else if k = 0 then
5 return false
6 else
7 forall e := {u, v} ⊆ V ′ do
8 G← G{e}
9 s← EditToP5C5freeCai(G, k − 1)

10 if s = true then
11 return true
12 G← G{e}

13 return false

Here Algorithm 3.4 tries to destroy a C5 induced by some vertices v1, v2, v3, v4, v5. Let A be
the recursive call to EditToP5C5FreeCai that is triggered after deleting the edge {v1, v2}.
Let B be the recursive call to EditToP5C5FreeCai that is triggered after deleting the edge
{v3, v4}. Now let us assume that for example in recursion A and in recursion B both times
FindP5C5 returns the remaining P5 induced by the same vertices - and not some other
5-tupel of vertices that also induce a P5 or a C5. Now when recursion A deletes the edge
{v3, v4} it ends up in the same situation as recursion B when it deletes the edge {v1, v2}.
So recursion A and recursion B will trigger two further recursive calls that try to edit the
exact same graph. This leads to redundant calculations that need unnecessary running
time. To prevent these problems in the optimized version of the algorithm when destroying
a C5 using deletions we do both deletions in the same (recursive) call to EditToP5C5Free
and not in different recursive calls .

Let us now prove that this optimized version of the algorithm is still correct:

Theorem 3.6. Algorithm 3.5 is correct. In other words assume we call

s← EditToP5C5Free(G, k)

on some graph G. Let G(1) be the graph represented by G before the call to Edit-
ToP5C5Free(G, k) and let G(2) be the graph represented by G after the call to Edit-
ToP5C5Free(G,k). Then:

1. if the algorithm returns s = true, then we have G(2) = G
(1)
F for some editing set F

with |F | ≤ k. Furthermore G(2) is (P5, C5)-free.

2. if the algorithm returns s = false, then G(1) can not be edited to a (P5, C5)-free graph
in ≤ k steps. Furthermore we have G(2) = G(1). That is, G will not be modified by
the algorithm if there is no solution.

Proof. Induction base k = 0:

Note that for k = 0 the algorithm will either end in line 3 or line 4, depending on whether
found will be set to true in line 1.

29

3. Algorithms

Algorithm 3.5: EditToP5C5free
Input: Graph G = (V,E), number k
Output: boolean value s indicating whether G can be edited to a (P5, C5)-free

Graph in at most k steps
1 found, V ′ ← FindP5C5(G)
2 if found = false then
3 return true
4 else if k = 0 then
5 return false
6 else if G[V ′] is a P5 then
7 v1, v5 ← first and last vertex of the P5
8 forall e := {u, v} ⊆ V ′, e 6= {v1, v5} do
9 G← G{e}

10 s← EditToP5C5free(G, k − 1)
11 if s = true then
12 return true
13 G← G{e}

14 return false
15 else

// G[V ′] is a C5
16 if k ≥ 2 then
17 forall e1, e2 ∈ E(G[V ′]), e1 6= e2 do
18 G← G{e1,e2}
19 s← EditToP5C5free(G, k − 2)
20 if s = true then
21 return true
22 G← G{e1,e2}

23 forall e := {u, v} ⊆ V ′, {u, v} 6∈ E(G[V ′]) do
24 G← G{e}
25 s← EditToP5C5free(G, k − 1)
26 if s = true then
27 return true, G′

28 G← G{e}

29 return false

30

3.4. Exact Algorithm

1) If the algorithm returns s = true, then found must be false such that the algorithm
ended in line 3. So G(1) is already (P5, C5)-free. The algorithm does not modify G before
returning true in line 3. Therefore we have G(2) = G(1) = G

(1)
F , where the editing set F = ∅

has size 0 = k.

2) If the algorithm returns s = false then this has happened in line 5. As the algorithm
does not modify G before line 5 we have G(2) = G(1). And obviously as found was set to
true G is not (P5, C5)-free and therefore not editable to a (P5, C5)-free graph in zero steps.

Induction hypothesis:

The algorithm fulfils properties 1 and 2 if it is called with k − 1. If k ≥ 2 it also fulfils
properties 1 and 2 when called with k − 2.

Induction step k − 2, k − 1→ k

1) Assume the algorithm returns s = true. Then the algorithm ended in line 3, 12, 21
or 27. If it ended in line 3 then G was already (P5, C5)-free and the algorithm leaves G
unchanged so G(2) = G(1) = G

(1)
∅ as in the induction base.

If it ended in line 12 or 27, then the most recent recursive call to EditToP5C5Free(G, k-1)
has returned true. Let G′ be the graph represented by G right before the last recursive call.
Note that only the last recursive call returned true, since the algorithm returns immediately
as soon as a recursive call is successful. The recursive calls except from the last one, which
returned true, did not change the graph G by the induction hypothesis. All edits done in
line 18 are undone in line 22. Except from the last edit e∗ all edits made in lines 9 and 24
are undone in line 13 and 28. Therefore we have G′ = G

(1)
{e∗}. By the induction hypothesis,

as the last recursion returned true, it has edited G′ to some (P5, C5)-free graph G(2) = G′F ′ ,
where |F ′| ≤ k − 1. Now we have G(2) = G′F ′ = G

(1)
F where F := F ′4{e∗}. That is either

F := F ′ ∪ {e} or F := F ′ \ {e}. In both cases we have |F | ≤ |F ′|+ 1 ≤ (k − 1) + 1 = k.
Remember the symmetric difference 4 is introduced in Section 1.2.

If the algorithm ended in line 21 then we can similarly show that the last recursion
EditToP5C5Free(G, k-2) edited G from some G′ = G

(1)
{e1,e2} to some (P5, C5)-free G′F ′ where

|F ′| ≤ k− 2. And we have G(2) = G′F ′ = G
(1)
F , where F := F ′4{e1, e2}. Note that we have

|F | ≤ |F ′|+ |{e1, e2}| ≤ k.

2) Assume the algorithm returns s = false. In this case none of the recursive calls has
returned true and therefore by induction hypothesis none of them has modified G. Also all
modifications to G in lines 9 are undone in line 13, the ones in line 18 are undone in line
22 and the ones in line 24 are undone in line 28. So G(1) = G(2).

Let us also show that G(1) can not be edited to a (P5, C5)-free graph in ≤ k steps: Assume
there was an editing set F with |F | ≤ k such that G(1)

F is (P5, C5)-free. As the algorithm
returned true we did not end in line 3, therefore in line 1 we must have found a P5 or a C5
G(1)[V ′] in G(1) induced by some set V ′ ⊆ V .

Assume G(1)[V ′] is a P5. Let v1, v5 be the first and the last vertex of this P5. Because G(1)
F is

(P5, C5)-free the graph G(1)
F [V ′] - induced by V ′ after applying F - is neither a P5 nor a C5.

Therefore there must be an edge e∗ := {u, v} ∈ F such that {u, v} ⊂ V ′, {u, v} 6= {v1, v5}.
Note that if {v1, v5} was the only pair of vertices of V ′ that belongs to F then G(1)

F [V ′]
would be a C5. Now as the loop in lines 8-14 iterates through all of these edges sometime
line 9 will edit the edge e∗ ∈ F . Then EditToP5C5Free(G, k-1) is called recursively on
G = G′ = G

(1)
{e∗}. Since (G′)F\{e∗} = G

(1)
F is (P5, C5)-free and |F \{e}| = |F |−1 ≤ k−1, G′

is editable to a (P5, C5)-free graph in ≤ k − 1 steps. By induction hypothesis the recursion

31

3. Algorithms

must return true, so we end in line 12 returning true. This is a contradiction to our initial
assumption that the algorithm returns false.

Now assume G(1)[V ′] is a C5. If F contains some edge addition e∗ := {u, v} ⊆ V ′, e∗ 6∈
E(G(1)), then the loop in lines 23-28 will sometime edit this edge. Then analogue to the P5
case, we can show that the recursion in line 25 must return true such that the algorithm
ends in line 27 and returns true. So we have the same contradiction.

Now assume F contains no edge addition e∗ := {u, v} ⊆ V ′, e∗ 6∈ E(G(1)). If F contained
only zero or one edge deletions of edges in our induced C5-subgraph G(1)[V ′], then G(1)

F [V ′]
would still be a C5 or a P5. So instead there must be at least two edits e1, e2 ∈ F that are
deletions of edges in G(1)[V ′]. Since we have k ≥ |F | ≥ 2 now we know that the loop in lines
17-22 will be executed. As this loop iterates over all such pairs of edges, it will eventually
do a recursion EditToP5C5Free(G, k-2) with G := G′ := G

(1)
{e1,e2}. As G

′
F\{e1,e2} = G

(1)
F is

(P5, C5)-free and |F \ {e1, e2}| = |F | − 2 ≤ k − 2, G′ is editable to a (P5, C5)-free graph
in ≤ k − 2 steps. Therefore by the induction hypothesis the recursion should return true,
such that we end in line 21 returning true. Again a contradiction to our initial assumption,
that the algorithm returned false.

Theorem 3.7. For each k ∈ N let tk be the maximum number of times that the routine
FindP5C5(...) is called, when executing EditToP5C5Free(G, k). Let tk also include the
calls to FindP5C5(...) in the recursive calls to EditToP5C5Free(...).

Then:

• t0 = 1

• t1 = 10

• tk = 1 + max{9tk−1, 5tk−1 + 10tk−2} for k ≥ 2

Proof. t0 = 1:

If the algorithm is executed with k = 0 then it will call FindP5C5(...) one time in line one.
After that it will return in line 3 or 5.

t1 = 10: The algorithm executes FindP5C5(...) one time in line 1 and then possibly some
more times in the recursive calls to EditToP5C5Free(G,0). There are three possibilities.
If no P5 or C5 is found, then there will be no recursion. So the total number of calls to
FindP5C5(...) is 1.

If a P5 is found then the body of the loop from lines 8-13 will be executed for vertex
pairs in the subgraph induced by V ′. Each time it will make one recursive call to Edit-
ToP5C5Free(G,0). There are

(|V ′|
2
)

=
(5

2
)

= 10 such vertex pairs. As the loop body is not
executed for {v1, v5} there will be only 9 recursions, each causing one call to FindP5C5(...).
So the total number of calls to FindP5C5(...) is 1 + 9 = 10.

If a C5 is found then the body of the loop from lines 23-28 will be executed for non-
edge vertex-pairs in V ′. Each execution of the loop body causes one recursive call to
EditToP5C5Free(G,0). There are 10 vertex pairs. As the loop body is only executed
for possible vertex additions but not for the 5 possible vertex deletions, there will be
only 5 recursions, each causing one call to FindP5C5(...). So the total number of calls to
FindP5C5(...) is 1 + 5 = 6.

So t1 = max{1, 10, 6} = 10.

tk = 1 + max{9tk−1, 5tk−1 + 10tk−2}:

32

3.4. Exact Algorithm

The algorithm executes FindP5C5(...) one time in line 1 and then possibly some more
times in the recursive calls to EditToP5C5Free(G,k-1) or EditToP5C5Free(G,k-2). Again
there are three possibilities:

If no P5 or C5 is found, then there will be no recursion. So the total number of calls to
FindP5C5(...) is 1.

If a P5 is found then the loop from lines 8-13 will do 9 recursive calls to EditToP5C5Free(G,k-
1). The number 9 can be derived as in the proof for t1 = 10. Let r1, . . . , r9 be the number
of calls to FindP5C5(...) in each of these recursions. Then the total number of calls to
FindP5C5(...) is 1 + r1 + · · ·+ r9. This value is maximal for r1 = · · · = r9 = tk−1. So the
maximum value in case a P5 was found is 1 + 9tk−1.

Now supposes a C5 is found. Then the loop from lines 23-28 will do 5 recursive calls to
EditToP5C5Free(G,k-1). The number 5 can be derived as in the proof for t1 = 10. Let
r1, . . . , r5 be the number of calls to FindP5C5(...) in each of these recursions.

As k ≥ 2 also the loop in lines 17-22 will be executed. It will do one recursion to
EditToP5C5Free(G,k-2) for each pair of edges in the found C5. As there are 5 edges
there are

(5
2
)

= 10 such pairs. Let r′1, . . . , r′10 be the number of calls to FindP5C5(...) in
each of these recursions to EditToP5C5Free(G,k-2). Then the total number of calls to
FindP5C5(...) is 1 + r1 + · · ·+ r5 + r′1 + · · ·+ r′10. This value is maximal for r1 = · · · =
r5 = tk−1 and r′1 = · · · = r′10 = tk−2. So the maximum value in case a C5 was found is
1 + 5tk−1 + 10tk−2. The total maximum value is therefore max{1, 1 + 9tk−1, 1 + 5tk−1 +
10tk−2} = 1 + max{9tk−1, 5tk−1 + 10tk−2}.

Theorem 3.8. Let tk be defined as in Theorem 3.7 for k ∈ N, then:

tk = 1
8(9k+1 − 1)

Proof. Induction base k = 0, k = 1:

1
8(90+1 − 1) = 1 = t0

1
8(91+1 − 1) = 10 = t1

Induction hypothesis:

tk′ = 1
8(9k′+1 − 1) for all 0 ≤ k′ < k

Induction step:

5tk−1 + 10tk−2 =Ind.Hyp.
5
8(9k − 1) + 10

8 (9k−1 − 1)

= 1
8(5 · 9k − 5) + 1

8(10 · 9k−1 − 10)

= 1
8(55 · 9k−1 − 15)

<
1
8(81 · 9k−1 − 9)

= 9
8(9k − 1) =Ind.Hyp. 9tk−1

33

3. Algorithms

Thus:

tk = 1 + max{9tk−1, 5tk−1 + 10tk−2}

= 1 + 9
8(9k − 1)

= 8
8 + 9k+1

8 − 9
8

= 1
8(9k+1 − 1)

Theorem 3.9. EditToP5C5Free(G, k) can be executed in time

t ∈ O(min(9k ·m · (d+ k)2, 9k ·m · n2))

on a graph G = (V,E) where n := |V |, m := |E| and d := maxv∈V d(v) is the maximum
degree of G.

Proof. If we consider the time of one call to EditToP5C5Free without the time needed
for the recursive calls, then the majority of this time is the time spent in the subroutine
FindP5C5 in line 1. Note that the bodies of the loops contained in this algorithm are
executed only a constant number of times. And considering the discussion in Section 3.1
we know that each line of code can be executed in O(1) time except line 1 and the recursive
calls. Note that to check whether G[V ′] is a P5 in line 6 we only need to check in O(1)
time whether v1 and v5 are adjacent to each other.

So the asymptotic running time of the algorithm is determined by the time needed for the
calls to the FindP5C5 subroutine. According to Theorem 3.5 each of the tk calls to this
subroutine needs O(m̃ · d̃2) time. Where d̃ is the maximum degree and m̃ is the maximum
number of edges in any of the edited versions of G that occur during the execution of the
algorithm. So the total asymptotic running time is in O(tk · m̃ · d̃2). Obviously d̃ ≤ d+ k
and m̃ ≤ (m+ k) as there are at most k edges added to G. Note that in the case of k ≥ m
the solution to the editing problem is trivial. We can just delete all of the edges instead
of running a complicated algorithm in order to find a proper editing set. Therefore we
assume that EditToP5C5Free is called with values k ≤ m only. Thus m̃ ≤ 2m. So the
total asymptotic running time is O(tk ·m · (d+ k)2). On the other obviously we can also
use the number of vertices n as an upper bound for d̃ instead of d + k. Thus we get an
asymptotic running time in O(tk ·m · n2). Now we only need to insert the actual value of
tk from Theorem 3.8.

Algorithm 3.5 can also be modified to a deletion algorithm as described in Algorithm 3.6.
Similar to the editing version we can show that DeleteToP5C5Free(G, k) returns true if and
only if there is an deletion set F ⊆ E(G) such that |F | ≤ k and GF is (P5, C5)-free. Also
if there is such a solution then DeleteToP5C5Free will actually edit G to a (P5, C5)-free
graph GF with some |F | ≤ k.

Let us now look at the running time of the deletion version.

Theorem 3.10. For each k ∈ N let t∗k be the maximum number of times that the routine
FindP5C5(...) is called, while executing DeleteToP5C5Free(G, k). Then:

t∗k = 1
3(4k+1 − 1)

34

3.4. Exact Algorithm

Algorithm 3.6: DeleteToP5C5free
Input: Graph G = (V,E), number k
Output: boolean value s indicating whether G can be edited to a (P5, C5)-free

Graph in at most k steps using deletions only
1 found, V ′ ← findP5orC5(G)
2 if found = false then
3 return true
4 else if k = 0 then
5 return false
6 else if G[V ′] is a P5 then
7 v1, v5 ← first and last vertex of the P5
8 forall e ∈ E(G[V ′]) do
9 G← G{e}

10 s← DeleteToP5C5free(G, k − 1)
11 if s = true then
12 return true
13 G← G{e}

14 return false
15 else

// G[V ′] is a C5
16 if k ≥ 2 then
17 forall e1, e2 ∈ E(G[V ′]), e1 6= e2 do
18 G← G{e1,e2}
19 s← DeleteToP5C5free(G, k − 2)
20 if s = true then
21 return true
22 G← G{e1,e2}

23 return false

35

3. Algorithms

Proof. By a similar argument as in Theorem 3.7 we get the recursive formula:

• t∗0 = 1

• t∗1 = 5

• t∗k = 1 + max{4t∗k−1, 10t∗k−2} for k ≥ 2

Now we can prove the explicit formula by induction: Induction base k = 0, k = 1:

1
3(40+1 − 1) = 1 = t∗0

1
3(41+1 − 1) = 5 = t∗1

Induction hypothesis:

t∗k′ = 1
3(4k′+1 − 1) for all 0 ≤ k′ < k

Induction step:

10t∗k−2 =Ind.Hyp.
10
3 (4k−1 − 1)

= 1
3(10 · 4k−1 − 10)

<
1
3(16 · 4k−1 − 4)

= 4
3(4k − 1) =Ind.Hyp. 4t∗k−1

Thus:

t∗k = 1 + max{4t∗k−1, 10t∗k−2}

= 1 + 4
3(4k − 1)

= 3
3 + 4k+1

3 − 4
3

= 1
3(4k+1 − 1)

Theorem 3.11. DeleteToP5C5Free(G, k) can be executed in time

t ∈ O(4k ·m · d2)

on a graph G = (V,E) where n := |V |, m := |E| and d := maxv∈V d(v) is the maximum
degree of G.

Proof. Similar to the proof of Theorem 3.9 we can show that t ∈ O(t∗k · m̃ · d̃2). Here d̃ is
the maximum degree and m̃ is the maximum number of edges in any of the edited versions
of G that occur during the execution of the algorithm. As the deletion of edges does not
increase the number of edges or the degree of any vertex, we have m̃ ≤ m and d̃ ≤ d.

36

3.5. Heuristic (P5, C5)-Free Editing

There is another possible optimization to the editing algorithm that was not applied in
Algorithm 3.5. In order to describe this better let R := (VR, ER) be a directed graph that
represents the tree of recursive calls to the editing algorithm when it is applied to some
graph G. So VR shall contain the initial call r1 to EditToP5C5Free and all the recursive
calls ri to EditToP5C5Free that were triggered by r1 directly or indirectly. Furthermore
the edge (ri, rj) shall exist in R if rj was directly triggered by the (recursive) call ri. If
there is a path from some r1 ∈ VR to some r2 ∈ VR then we call r1 an ancestor of r2
and r2 a descendant of r1. Now having introduced this formalism let us get back to the
optimization of the editing algorithm.

In a recursive call r ∈ VR actually it is unnecessary to try to undo an edit made by any
of its ancestors in the tree R. To know which pairs of vertices were already edited the
algorithm could always label an edited vertex pair before doing a recursive call. After the
recursive call when it undoes the edit it should also remove the label again. Then in the
loops in lines 7 - 14, 17 - 22 and 23 - 29 the algorithm could skip labelled edges and only
iterate over unlabelled edges. As it is difficult to tell how often the call to FindP5C5 in line
will return a subgraph that contains an already labelled edge, it is also difficult to analyse
theoretically how much this optimization improves the running time of the algorithm. But
it is likely that it improves the running time most times in practice.

Note that this optimization can only be used for the editing algorithm but not for the
deletion algorithm. The deletion algorithm cannot undo edits anyway. As it does not do
inserts at all, it will especially not insert previously deleted edges.

When we use this optimization the number of needed recursive calls depends of course
on the number of already labelled vertex pairs in the subgraph returned by FindP5C5.
Therefore, as there are usually many P5s and C5s in the graph with presumably different
numbers of labelled vertex pairs, we might wonder if we should specifically look for a
forbidden subgraph that maximizes the number of labelled vertex pairs instead of just
taking an arbitrary one. Similar to the routine FindP5C5 we could also modify the counting
algorithm CountP5C5 to another search algorithm FindMostLabeledP5C5 that returns the
most labelled induced P5 or C5 instead of just a random one. However such a routine could
not abort the calculation as soon as the first induced P5 or C5 is found like FindP5C5.
Instead it has to look at each one of them in order to find the best one. Therefore the
running time of FindMostLabeledP5C5 is in O(m · d3) like the running time of CountP5C5
and not in O(m · d2) like the running time of FindP5C5.

The question is whether the presumably decreased number of recursive calls when using
FindMostLabeledP5C5 instead of FindP5C5 outweighs the increased running time needed
for each single recursive call. The practical results of Section 4.2 suggest that a combina-
tion of both approaches that uses FindMostLabeledP5C5 in “higher” recursive calls and
FindP5C5 in “deeper” recursive calls might be the best solution.

3.5. Heuristic (P5, C5)-Free Editing
Unfortunately the running time of the exact editing algorithm is infeasible for most of the
graphs that we study in Chapter 4. Therefore we use a heuristic approximation similar to
the one used in [NG13]. The heuristic is described in Algorithm 3.7. In each step we test
every possible edge-deletion and every possible edge addition. Then we greedily chose the
edge edit that resulted in the lowest number of remaining forbidden induced subgraphs
(#P5s + #C5s).

Note that lines one and two of Algorithm 3.7 are only needed in the case that G is already
(P5, C5)-free. In that case we just want to return an empty editing set and not unnecessarily

37

3. Algorithms

go through one iteration of the while-loop. If we know G is not already (P5, C5)-free we
could also remove line one and two and use a do-while-loop.

A similar heuristic can also be used for the deletion problem see Algorithm 3.8.

Algorithm 3.7: HeurEditToP5C5Free
Input: Graph G = (V,E)
Output: a (hopefully small) editing set F such that GF is (P5, C5)-free

1 P5count,C5count← countP5C5 (G)
2 minCount← P5count + C5count
3 while minCount > 0 do
4 minCount←∞
5 forall e := {u, v} ⊆ V (G) and e 6∈ F do
6 P5count,C5count← countP5C5(GF∪{u,v})
7 if P5count + C5count < minCount then
8 bestE← e
9 minCount← P5count + C5count

10 F ← F ∪ {bestE}
11 return F

Algorithm 3.8: HeurDeleteToP5C5Free
Input: Graph G = (V,E)
Output: a (hopefully small) deletion set F ⊆ E(G) such that GF is (P5, C5)-free

1 P5count,C5count← CountP5C5 (G)
2 minCount← P5count + C5count
3 F ← ∅
4 while minCount > 0 do
5 minCount←∞
6 forall e ∈ E(GF) do
7 P5count,C5count← CountP5C5(GF∪{u,v})
8 if P5count + C5count < minCount then
9 bestE← e

10 minCount← P5count + C5count

11 F ← F ∪ {bestE}
12 return F

Theorem 3.12. Let G = (V,E) be some graph, and let n := |V |,m := |E| and let
d := maxv∈V d(v).

HeurEditToP5C5Free(G) can be executed in time

O(min(k · n2 · (m+ k) · (d+ k)3, k · n5 · (m+ k)))

where k is the number of edits in the editing set that will be found by HeurEditToP5C5Free.

HeurDeleteToP5C5Free(G) can be executed in O(kdel · m2 · d3) time, where kdel is the
number of deletes in the deletion set that will be found by HeurDeleteToP5C5Free.

Proof. The single execution of one line of code in HeurEditToP5C5Free except for the call
to CountP5C5 in line 6 can be executed in O(1) time. Note that we can check whether

38

3.5. Heuristic (P5, C5)-Free Editing

e ∈ F in line 5 in O(1) time if we keep an adjacency matrix representation of the graph
(V, F) in memory. Note that no line of code is executed more often than the call to
CountP5C5 in line 6. Therefore the majority of the running time of HeurEditToP5C5Free
is the time spent in the subroutine CountP5C5.

This subroutine is called k · n2 times. The while loop is executed k times and each time
the inner forall loop is executed n2 times. Each execution of the k · n2 calls to CountP5C5
needs time in O(m̃ · d̃3) by Theorem 3.3. Here let m̃ and d̃ denote the maximum number
of edges and the maximum degree in any of the modified versions of G that we get during
the execution of CountP5C5. Thus t ∈ O(k · n2 · m̃ · d̃3. Using m̃ ≤ m+ k and d̃ ≤ d+ k
we get the first argument of the min function as upper bound for the running time of
HeurEditToP5C5Free. If we use k̃ ≤ n instead of k̃ ≤ d+ k then we get the other running
time bound for HeurEditToP5C5Free.

Similar to the editing version in the deletion version the majority of the running time is
spent in the subroutine CountP5C5. Here the subroutine is only called O(kdel · m̃) times
where m̃ is the maximum number of edges in any of the modified versions of G. Each
execution of the O(kdel · m̃) calls to the subroutine takes O(m̃ · d̃3) time. As in the editing
case d̃ denotes the maximum degree appearing in any of the edited versions of G. Note
however that as we only use deletions we have m̃ ≤ m and d̃ ≤ d. Multiplying this yields
the desired term for the running time of HeurDeleteToP5C5Free.

39

4. Experimental Evaluation

In this chapter we discuss the results of applying the heuristic and the exact editing and
deletion algorithms of Chapter 3 to some real world graphs. In Sections 4.1 to 4.3 we
first evaluate the performance of the algorithms only as means to solve the (P5, C5)-free
editing and the (P5, C5)-free deletion problem. In Section 4.4 we finally evaluate the
results in the context of community detection by visualising the graphs together with the
calculated editing sets. We use the same graphs that were used in [NG13] in order to study
(P4, C4)-free editing. Table 4.1 summarizes some general information about the graphs.
For each graph it shows the number of vertices, the number of edges, the maximal degree
maxv∈V d(v) appearing in the graph and the initial number of P5s and C5s.

We implemented the algorithms in C++. We ran the algorithms on a computer with an
Intel(R) Core(TM) i7-2600K CPU with 3.4 GHz. The running times that are given in some
of the tables of this chapter refer to an execution this machine using no parallelization.

Table 4.1.: general graph info
name #vertex #edge max degree #P5 #C5

karate 34 78 17 1583 20
lesmis 77 254 36 8497 62

dolphins 62 159 12 6189 142
grass 75 113 17 1657 1

football 115 613 12 120326 1232

4.1. Heuristic Algorithms
Table 4.3 and Table 4.2 show the size of the resulting editing sets when applying the
heuristic editing and the heuristic deletion algorithm to the graphs. The tables also show
the needed running time. The results of the editing version are rather disappointing in case
of the graphs karate and lesmis. While we do not know what is the size of the actual best
editing set, we know that 18 edits for karate and 293 edits for lesmis is too much. Every
deletion set is also an editing set. Therefore the solutions with 13 and 153 edits found by
the heuristic deletion algorithm are also a better solutions for the editing problem than
the solutions found by the actual editing algorithm. Even more disappointing [BHSW15]
found a (P4, C4)-free editing set for lesmis consisting of only 60 edits. As each P5 and

41

4. Experimental Evaluation

each C5 contains a P4 we know that a (P4, C4)-free graph is also (P5, C5)-free. Thus
there is a solution with only 60 edits while the heuristic needed 293 edits. Interestingly
the (P4, C4)-free editing solution containing only 60 edits was calculated using the same
heuristic approach. As this heuristic works so well in the case of (P4, C4)-free editing, the
disappointing result in the case of (P5, C5)-free editing is rather surprising.

When we look at the number of remaining P5s and C5s after each edit applied to the
graph lesmis by the heuristic editing algorithm, we also get the impression that something
the heuristic does not perform very well here. This is documented in Table 4.4. The
algorithm often ends up in situations where none of the edits actually improves the number
of remaining P5s and C5s. The column type lists the types of edits that were applied by the
heuristic (deletion or insert). The entries in the columns P5 and C5 contain the remaining
number of P5s and C5s after applying the edit in the column type in the corresponding row.
A column of the form (ix)del x y means that the heuristic applied i deletions here and the
first one decreased the number of P5s and C5s to x and y. The other i− 1 deletions left
the number of P5s and C5s unchanged. In other words this line is equal to i consecutive
lines containing the entries del x y. A line of the form (ix)ins x y is defined analogously.
Note that after reaching a number of 168 remaining P5s and 0 remaining C5s the heuristic
applied 154 edits that caused no further improvements!

Such a strange phenomenon did not occur in the other four graphs. In these graphs each
step of the heuristic decreased the number of remaining forbidden induced subgraphs at
least a little bit. If the interested reader wants to compare this by himself he can find
tables analogue to Table 4.4 in the appendix.

Table 4.2.: heuristic deletion results
name #deletions needed time

karate 13 0.24 s
lesmis 153 16.50 s

dolphins 62 3.28 s
grass_web 43 0.61 s

football 190 8 min

Table 4.3.: heuristic editing results
name #deletions #inserts sum needed time

karate 10 8 18 2.33 s
lesmis 66 227 293 810.36 s

dolphins 48 6 54 43.69 s
grass_web 19 9 28 14.06 s

football 181 9 190 approx. 95 min

4.2. Exact Algorithm
Remember that in the end of Section 3.4 we proposed an optimized version of Edit-
ToP5C5Free, that in a recursive call r skips other recursive calls belonging to vertex pairs
that were already edited by ancestors of r. The question was whether we should still use
the subroutine FindP5C5 in this optimized version of Algorithm 3.5. Or should we instead
use the subroutine FindMostLabeledP5C5 which increases the running time per recursive
call but presumably decreases the total number of needed recursive calls?

42

4.2. Exact Algorithm

Table 4.4.: lesmis editing log
type P5 C5 type P5 C5 type P5 C5 type P5 C5

del 7366 59 del 1965 3 del 570 0 del 144 0
ins 6854 32 ins 1826 2 del 536 0 (15x)ins 144 0
del 6449 25 del 1690 0 del 502 0 (5x)del 144 0
del 6021 18 ins 1568 0 del 468 0 ins 120 0
del 5729 15 ins 1462 0 del 430 4 del 120 0
del 5447 13 del 1368 0 del 343 2 (15x)ins 120 0
ins 5158 13 ins 1280 0 del 242 0 (4x)del 120 0
del 4903 6 del 1194 0 del 222 0 ins 96 0
del 4651 6 ins 1114 0 del 202 0 del 96 0
del 4324 6 del 1042 0 ins 188 0 (15x)ins 96 0
del 4102 5 del 985 0 ins 176 0 (3x)del 96 0
ins 3917 5 del 928 0 ins 169 0 ins 72 0
ins 3649 5 del 871 0 (3x)del 168 0 del 72 0
ins 3453 5 ins 826 0 (23x)ins 168 0 (15x)ins 72 0
del 3230 5 ins 785 0 del 168 0 (2x)del 72 0
del 2949 5 del 745 0 (83x)ins 168 0 (2x)ins 48 0
del 2796 3 ins 706 0 del 168 0 ins 0 0
del 2648 3 del 672 0 (38x)ins 168 0
del 2508 3 del 638 0 (6x)del 168 0
del 2187 3 del 604 0 ins 144 0

We shall now argue why a combination of both approaches might also be a good solution.
To understand that assume we are in some recursive call r1 of the form EditToP5C5Free(G,
k). Further assume we skip a recursive call r2 that would have been (directly) triggered
by r1 if the corresponding vertex pair had not been labelled. Then we will not only save
the running time that is needed by r2 directly but we will also skip the execution of the
descendants of r2. By descendants we mean the descendants in the tree R of recursive
calls as defined in Section 3.4. Note that the size of this skipped subtree consisting of
r2 and its descendants is small if k is small. For example for k = 1 it consists only of r2
itself. As r2 is called with k := 0 in this case it will not trigger further recursive calls.
However if k is big then the skipped subtrees will presumably be big too, and skipping
them will save a lot of running time. So finding induced P5s or C5s with a high number of
labelled vertex pairs that allow us to skip such subtrees is much more important for “higher”
recursive calls with a big value of k than for “deeper” recursive calls with a low value of
k. Therefore we defined a threshold value thres. And in our optimized implementation of
EditToP5C5Free we shall use the algorithm FindMostLabeledP5C5 in “higher” recursive
calls with k ≥ thres and we shall use FindP5C5 in “deeper” recursive calls with k < thres.

Now in order to find out what value we should use as threshold thres we ran the algorithm
EditToP5C5Free(G, k) several times, where G is the karate-graph and k = 9. The algorithm
did not succeed, so there is no solution with 9 steps. Each time we ran the algorithm we
used a different value of thres. The results are shown in Tables 4.5 and 4.6.

The tables contain the total numbers of recursive calls needed for each value of thres in
the row “rec. Count”. Furthermore the tables contain some statistics specific for each
“recursion depth”. More precisely for the sets of recursive calls with the same value of k := i.
The row “i) rec. Count” contains the total number xi of recursive calls with k := i. As the
algorithm did not succeed each of these xi recursive calls must have found either a P5 or a
C5. The row “i) num. P5s” contains the percentage pi of how many of these xi recursive

43

4. Experimental Evaluation

calls found a P5. The row “i -> i-1 (p5)” shows the average number of children in R of
these pi% · xi recursive calls. The remaining 100%− pi% of the xi recursive calls found a
C5. These recursive calls can trigger further recursive calls with k = i− 1 after destroying
the C5 by an edge addition and they can also cause recursive calls with k = i − 2 after
destroying the C5 using two edge deletions. The average number of children with k = i− 1
of each of these (100%− pi%) · xi recursive calls is documented in the row “i->i-1 (c5)”.
The average number of children with k = i− 2 of these (100%− pi%) · xi recursive calls is
documented in the row “i->i-2 (c5)”.

Note that the number of children of each recursive call finding a P5 would be 9 in the
unoptimized version of EditToP5C5Free, that does not label already edited edges. The
number of “i− 1-children” of the recursive calls finding a C5 would be 5. The number of
“i− 2” children would be 10. Note that the numbers of children are lower in Tables 4.5
and 4.6 as there are apparently often already labelled vertex pairs in the found forbidden
subgraphs.

Note total number of recursive calls in the second row of Tables 4.5 and 4.6 decreases when
we decrease the value of thres. That is as expected the number of recursions is lower if we
use the algorithm FindMostLabeledP5C5 instead of the algorithm FindP5C5 more often.
But is it actually worth the higher running time of the algorithm FindMostLabeledP5C5?
To find that out the first row of the table shows the total needed running time for each value
of thres. Note that in a recursive call with k = 0 FindMostLabeledP5C5 has no advantage
over FindP5C5 as for k = 0 there will be no further recursive calls anyway. Therefore
we know without practical experiments that thres = 0 will not be better than thres = 1.
Note that thres = 0 corresponds to the case that we exclusively use FindMostLabeledP5C5
and thres = 10 = k + 1 correspond to the case that we exclusively use FindP5C5. Using
FindMostLabeledP5C5 exclusively needs more than 6100 seconds and using FindP5C5
exclusively needs 1300 seconds. However when we combine both approaches with thres = 3
we need only 470 seconds in this example. So this experiment suggests that a combination
of both approaches is actually better than using one of the two search algorithms exclusively.
Thereby we can reduce the running time by more than a half in this example.

4.3. Combining Exact and Heuristic Algorithms

Unfortunately the exact algorithms DeleteToP5C5Free and EditToP5C5Free are too slow
to calculate an editing set or deletion set on their own for the graphs that we study here.
However we can still use them to optimize the editing sets found by the heuristic algorithms.

The idea is as follows: Assume we have an editing set H calculated by some heuristic for a
graph G such that GH is (P5, C5)-free. To check whether H is an optimal editing set, and
to find a better editing set if H is not, in theory we should call EditToP5C5Free(G, |H|−1).
However, as the running time is exponential in k := |H| − 1 and |H| − 1 might be a big
number, the calculation may be infeasible. So instead we first apply some but not all of
the heuristic edits to G yielding a graph GH\S . This graph GH\S contains all edits of
H except the ones in some subset S ⊆ H. Then we apply the exact algorithm. That is
we call EditToP5C5Free(GH\S , |S| − 1). This calculation is feasible if |S| is small enough.
If we find a subset S ⊆ H such that EditToP5C5Free(GH\S , |S| − 1) returns true, then
the algorithm has edited G′ := GH\S to some (P5, C5)-free graph G′F = G(H\S)4F with
|F | ≤ |S| − 1. Thus we have found a better editing set H2 := (H \ S)4F . Note that if F
has undone edits in H then we cannot just define H2 as the union of (H \ S) and F , since
H shall not apply these undone edits. Instead we used the symmetric difference defined in
Section 1.2. Also note that in any case |H2| ≤ |H|. After we optimized H to H2 we can
then look for subsets of H2 to further optimize H2 in the same way.

44

4.3. Combining Exact and Heuristic Algorithms

Table 4.5.: performance of EditToP5C5Free and number of recursive calls (part 1)
thres 1 2 3 4 5

time (secs) 6100 950 470 500 620
rec. Count 37 647 916 37 621 624 59 564 403 84 156 500 98 239 534

9) rec. Count 1 1 1 1 1
9) num. P5s 100% 0% 100% 100% 100%
9 -> 8 (p5) 9 - 9 9 9
9-> 8 (c5) - 5 - - -
9-> 7 (c5) - 10 - - -

8) rec. Count 9 5 9 9 9
8) num. P5s 67% 80% 44% 78% 67%
8-> 7 (p5) 8.00 8.00 8.00 8.14 8.00
8-> 7 (c5) 4.33 5.00 4.40 4.50 4.33
8-> 6 (c5) 8.67 6.00 8.40 8.00 8.67

7) rec. Count 61 47 54 66 61
7) num. P5s 80% 89% 93% 83% 90%
7-> 6 (p5) 7.43 7.52 7.52 7.51 7.53
7-> 6 (c5) 4.58 4.40 4.75 4.45 4.67
7-> 5 (c5) 6.42 7.00 4.50 6.82 4.50

6) rec. Count 445 344 437 478 468
6) num. P5 87% 92% 88% 88% 86%
6-> 5 (p5) 7.15 7.16 7.17 7.20 7.13
6-> 5 (c5) 4.48 4.50 4.37 4.48 4.36
6-> 4 (c5) 5.37 4.82 5.43 4.71 5.58

5) rec. Count 3 098 2 423 3 001 3 366 3 180
5) num. P5 88% 88% 88% 88% 87%
5-> 4 (p5) 6.85 6.87 6.86 6.88 6.85
5-> 4 (c5) 4.32 4.49 4.36 4.44 4.42
5-> 3 (c5) 4.66 4.14 4.47 4.20 4.27

4) rec. Count 20 593 16 067 19 974 22 429 21 168
4) num. P5 88% 89% 88% 87% 90%
4-> 3 (p5) 6.64 6.64 6.64 6.66 8.62
4-> 3 (c5) 4.30 4.40 4.35 4.43 4.78
4-> 2 (c5) 4.15 3.82 3.96 3.69 7.17

3) rec. Count 132 828 103 942 128 819 144 666 176 086
3) num. P5 89% 89% 88% 92% 88%
3-> 2 (p5) 6.47 6.49 6.48 8.56 8.44
3-> 2 (c5) 4.27 4.36 4.33 4.70 4.77
3-> 1 (c5) 3.78 3.54 3.65 7.25 7.60

2) rec. Count 837 768 656 204 811 258 1 205 496 1 423 504
2) num. P5 89% 89% 92% 87% 85%
2-> 1 (p5) 6.34 6.35 8.54 8.35 8.32
2-> 1 (c5) 4.24 4.35 4.67 4.72 4.76
2-> 0 (c5) 3.46 3.24 7.31 7.59 7.53

1) rec. Count 5 179 068 4 063 350 6 718 488 9 586 452 11 219 093
1) num. P5 89% 88% 82% 81% 80%
1-> 0 (p5) 6.23 8.45 8.28 8.16 8.13
1-> 0 (c5) 4.24 4.62 4.75 4.73 4.74
1->-1 (c5) 0.00 0.00 0.00 0.00 0.00

0) rec. Count 31 474 045 32 779 241 51 882 362 73 193 537 85 395 964

45

4. Experimental Evaluation

Table 4.6.: performance of EditToP5C5Free and number of recursive calls (part 2)
thres 6 7 8 9 10

time (secs) 790 990 1200 1300 1300
rec. Count 126 550 382 141 262 068 157 986 259 176 078 647 179 697 059

9) rec. Count 1 1 1 1 1
9) num. P5s 100% 100% 100% 100% 100%
9 -> 8 (p5) 9 9 9 9 9
9-> 8 (c5) - - - - -
9-> 7 (c5) - - - - -

8) rec. Count 9 9 9 9 9
8) num. P5s 89% 78% 78% 100% 100%
8-> 7 (p5) 8.13 8.00 8.00 8.67 8.89
8-> 7 (c5) 4.00 4.00 4.00 - -
8-> 6 (c5) 10.00 10.00 10.00 - -

7) rec. Count 69 64 64 78 80
7) num. P5s 86% 92% 95% 95% 89%
7-> 6 (p5) 7.54 7.47 8.75 8.76 8.73
7-> 6 (c5) 4.60 4.40 5.00 5.00 4.89
7-> 5 (c5) 5.90 6.20 6.33 8.25 8.22

6) rec. Count 501 483 569 668 664
6) num. P5 88% 89% 87% 86% 89%
6-> 5 (p5) 7.17 8.76 8.66 8.66 8.53
6-> 5 (c5) 4.60 4.91 4.88 4.79 4.87
6-> 4 (c5) 4.62 7.43 7.88 8.10 8.03

5) rec. Count 3 497 4 053 4 673 5 465 5 458
5) num. P5 91% 87% 86% 83% 87%
5-> 4 (p5) 8.62 8.58 8.53 8.49 8.44
5-> 4 (c5) 4.81 4.83 4.88 4.86 4.81
5-> 3 (c5) 7.06 7.51 7.72 7.68 8.04

4) rec. Count 29 199 33 179 37 948 43 810 44 181
4) num. P5 88% 85% 84% 82% 86%
4-> 3 (p5) 8.47 8.47 8.42 8.37 8.35
4-> 3 (c5) 4.80 4.82 4.83 4.80 4.74
4-> 2 (c5) 7.58 7.66 7.74 7.76 7.83

3) rec. Count 236 479 266 853 302 792 346 285 351 526
3) num. P5 86% 84% 83% 82% 85%
3-> 2 (p5) 8.36 8.34 8.29 8.24 8.22
3-> 2 (c5) 4.78 4.79 4.78 4.76 4.70
3-> 1 (c5) 7.61 7.76 7.72 7.72 7.77

2) rec. Count 1 884 178 2 112 515 2 380 388 2 697 320 2 748 886
2) num. P5 83% 82% 82% 81% 83%
2-> 1 (p5) 8.22 8.19 8.15 8.10 8.08
2-> 1 (c5) 4.73 4.73 4.73 4.71 4.65
2-> 0 (c5) 7.48 7.53 7.48 7.47 7.48

1) rec. Count 14 624 188 16 346 945 18 343 948 20 590 473 21 018 940
1) num. P5 79% 79% 79% 79% 80%
1-> 0 (p5) 8.03 8.01 7.97 7.91 7.89
1-> 0 (c5) 4.70 4.69 4.68 4.66 4.62
1->-1 (c5) 0.00 0.00 0.00 0.00 0.00

0) rec. Count 109 772 261 122 497 966 136 915 867 152 394 538 155 527 314

46

4.3. Combining Exact and Heuristic Algorithms

Assume H := {e1, . . . , e|H|} where the eis are enumerated in the order as they were applied
by the heuristic algorithm. The subsets that we tried to use to apply the described
optimization method, were consecutive subsets of the form

S := Si,k+1 := {ej | i ≤ j ≤ i+ k + 1}

We started with i := |H| − (k + 1). After each failed attempt we decreased i by about half
of the size of the subset. When for some subset the above described optimization method
succeeded and gave us a new editing set H2 then we started again with i := |H2| − (k + 1).
If we reached i := 0 and also there was no success with S0,k+1 then we incremented the
value of k and started the same procedure again. Initially we started with k := 1 and we
stopped when we the running time needed after incrementing k another time would exceed
a certain threshold.

By a similar method we also tried to optimize the deletion sets found by the heuristic
deletion algorithm using DeleteToP5C5Free. The results of optimizing the deletion sets to
obtain better deletion sets can be found in Table 4.7. The results of optimizing the editing
sets can be found in Table 4.8.

As every deletion set is also an editing set we can also use the deletion sets found by the
heuristic deletion algorithms as a starting point of the optimization in order to find better
editing sets. Since the heuristic deletion algorithm performed actually better than the
heuristic editing algorithm as seen in Section 3.5, this might sometimes even be a better
starting point. The results of optimizing the deletion sets to better editing sets can be
found in Table 4.9.

The second column of Tables 4.7 4.8 and 4.9 shows the number of edits needed by the initial
editing set which was calculated by the heuristic algorithm. The third column shows the
number of edits needed by the final optimized editing set H ′. An entry of the form x+y = z
means that the editing set contains x deletions and y inserts and that this makes a total of z
edits. The fourth column shows the maximums size |S| = k+1 of subsets which we used for
the optimization in the above described way. Note that we only stopped the optimization
process at points in time when the most recent optimization attempts failed for each of the
subsets Si,k+1 ∈ H ′, where i = |H|−(k+1), |H|−(k+1)−bk+1c, |H|−(k+1)−2bk+1c, . . . , 0.
So while we don’t know if the whole optimized editing (deletion) set H ′ is minimal, we
know at least that these subsets Si,k+1 are minimal editing (deletion) sets for the graphs
GH′\Si,k+1 that remain after applying the edits in H ′ \ Si,k+1.

Note that in the case of the graph karate in Table 4.7 the value in column four is the
equal to the size of the whole deletion set that we found. This means that an optimization
attempt with the non-proper subset S = H ′ did not find any better solution. In other
words we verified that the found solution for the deletion problem is actually minimal in
the case of karate.

Table 4.7.: heuristic deletion + exact deletion
name initial #deletions optimized #deletions #verified edits exact time

karate 13 13 13 97.6 s
lesmis 153 50 13 619.8 s

dolphins 62 57 14 917.2 s
grass_web 43 32 13 710.4 s

football 190 186 14 1156.5 s

47

4. Experimental Evaluation

Table 4.8.: heuristic editing + exact editing
name initial #edit optimized #edits #verified edits exact time

karate 10 + 8 = 18 6 + 9 = 15 10 928.1 s
lesmis 66 +227 =293 33 + 19 = 52 9 425.3 s

dolphins 48 + 6 = 54 48 + 6 = 54 10 645.1 s
grass_web 19 + 9 = 28 19 + 8 = 27 9 568.8 s

football 181 + 9 =190 179 + 7 = 186 9 303.0 s

Table 4.9.: heuristic deletion + exact editing
name initial #deletions optimized #edits #verified edits exact time

karate 13 13 + 0 = 13 10 801.4 s
lesmis 153 39 + 10 = 49 9 298.8 s

dolphins 62 50 + 5 = 55 10 775.1 s
grass_web 43 17 + 8 = 25 9 322.3 s

football 190 186 + 0 = 186 9 322.6 s

4.4. Community Structure
In this section we will visualize the editing sets calculated in Section 4.3. In doing so we will
try to find out whether the connected components of the resulting graphs after applying
the editing sets actually represent a sensible grouping of the vertices into communities. We
will also look at the differences between the grouping gained by (P5, C5)-free editing and
by (P5, C5)-free deletion. Therefore we will always look at a deletion set and at an editing
set. (except when the best editing set is equal to the best deletion set as in the case of
karate) Note that we have two editing sets for each graph - one obtained by combining
heuristic editing with exact editing and one by combining heuristic deletion with exact
editing. We will always look at the smaller editing set. While we calculated the editing
sets using our own implementation of the methods described in the previous chapters, for
the visual representation and for the layout of the graphs we used the help of a program
called visone1.

Our implementation of the editing algorithms wrote the resulting graph to a file using
the DOT format. This file could than be opened by visone. The dot file contained the
information which of the vertices were adjacent in the original graph, which of the edges in
the original graph were deleted by the calculated editing set and between which vertices the
editing set deleted edges. With the help of visone we added some additional information
like for example the ground truth communities in the case of the graphs karate and football
and we presented these informations visually for example by using colours. We also used
colours to distinguish deleted and inserted and remaining (not edited) edges.

Furthermore as mentioned above we needed to construct a layout for each graph. That is
we needed to place the vertices at sensible positions on the plane such that the resulting
connected components after applying the editing set can easily be identified by the reader.
We also tried to order the connected components in a way such that components with
many deleted edges between them are placed more closely to one another. Furthermore
we tried to minimize the number of intersections between edges and between edges and
vertices. We used the help of an algorithm offered by visone, but we also did many manual
optimizations by dragging vertices with the mouse pointer around.

1http://visone.info/index.html

48

4.4. Community Structure

Figure 4.1.: karate heuristic deletion, could not be optimized by exact deletion or exact
editing algorithm

4.4.1. Zachary’s karate club (short karate)

For the graph karate the editing set Fdel,edit found by the combination of the heuristic
deletion algorithm and the exact editing algorithm is smaller than Fedit,edit the one found
by the combination of the heuristic editing algorithm and the exact editing algorithm. It
is 13 vs. 15, see Table 4.9 and Table 4.8. Furthermore we can see that the values of the
second and the third column in Tables 4.7 and 4.9 are equal, they are both 13. That means
that the deletion set Fdel found by the heuristic deletion algorithm could not be optimized
by either the exact editing algorithm nor by the exact deletion algorithm. Thus we have
Fdel,edit = Fdel = Fdel,del. That means the best editing set that we found for karate is equal
to the best deletion set.

Figure 4.1 shows the graph karate together with this best deletion set which is also the
best editing set. The corresponding deleted edges are coloured in a brighter colour. Before
we explain the meaning of the colouring of the vertices in Figure 4.1 we first need to
understand where this graph stems from.

The initial karate graph - as it looks before applying the deletion set - stems from [Zac77].
It shows the interactions between students of an university karate club. The club suffered

49

4. Experimental Evaluation

from a conflict between the club president represented by vertex 34 and the karate instructor
who corresponds to vertex number 1. Eventually the conflict led to a split of the club
into two karate clubs. The graph represents the situation shortly before the split. [Zac77]
showed that by looking for a minimal cut in a weighted version of the graph one could
group the club’s members into supporters of the club president and supporters of the karate
instructor regarding the conflict. Thereby one could almost accurately have predicted
which members would stay in the karate club led by the president and which will go to the
newly formed organization headed by the instructor after the split.

In Figure 4.1 we coloured the supporters of the instructor (vertex 1) red and the supporters
of the club president (vertex 34) blue. Weak supporters are coloured in a brighter colour
and members that were neutral to the conflict are coloured white. (See [Zac77, p. 465])
Members that joined the club of the instructor after the split are depicted by a rectangle,
members that stayed with the president are depicted by a circle. Note that our algorithm
almost correctly separated the “rectangles” from the “circles”. The only problem is vertex 9.
However while number 9 joined the club of the instructor he is actually a (weak) supporter
of the club president. [Zac77] explains it like this: “[...] he was only three weeks away from
a test for black belt (master status) when the split in the club occurred. Had he joined
the officers’ club [=the club of the club president, vertex 34] he would have had to give up
his rank and begin again in a new style of karate with a white (beginner’s) belt, since the
officers had decided to change the style of karate practiced in their new club. Having four
years of study invested in the style of Mr. Hi [=the instructor, vertex 1], the individual
could not bring himself to repudiate his rank and start again.” So one could argue that
vertex 9 is not actually misclassified as the student actually wanted to join the club of
the instructor but just could not do so for technical reasons. [NG13] also classified vertex
9 as belonging to vertex 34 using (P4, C4)-free editing. And [GN02] did so as well using
a different clustering method. These papers however did not mention the vertex 9 to be
misclassified. Also [Zac77]s min-cut method puts vertex 9 into one group with vertex 34
(using a weighted version of the graph). Interestingly our method did not misclassify vertex
3, which was misclassified in [GN02] and [NG13].

So as a summary we conclude that the (P5, C5)-free editing was very successful on the
graph karate.

4.4.2. Les Misérables (short lesmis)

Les Misérables is a 19-th century novel by Victor Hugo. [KKK93] constructed a network
where the vertices are characters of the novel. Two vertices are adjacent if the corresponding
characters exist in a chapter together. We call this network short “lesmis”.

For this graph the editing set found by the combination of the heuristic deletion algorithm
and the exact editing algorithm Fdel,edit was better than Fedit,edit - the one found by the
combination of the heuristic editing algorithm and the exact editing algorithm. (See Tables
4.8 and 4.9) Therefore we will concentrate on Fdel,edit here. Furthermore the best editing
set that we found is actually better than the best deletion set Fdel,del that we found. The
former one needs only 49 edits while the latter one needs 50 deletes. (see Tables 4.7 and
4.9). Therefore it makes sense to compare the communities obtained by the deletion version
with the ones obtained by the editing version here.

Figure 4.2 and Figure 4.3 both depict the graph lesmis. Figure 4.2 shows the edges that
are deleted by Fdel,del in a brighter colour. Figure 4.3 shows the edges that are deleted
by Fdel,edit in a brighter colour. Edges inserted by Fdel,edit are coloured red. For lack of
space we did not write down the real names of the characters represented by the vertices.
Instead we just enumerated the vertices. You can find the real names of the characters in
Table A.5 in the appendix.

50

4.4. Community Structure

Figure 4.2.: lesmis heuristic deletion + exact deletion

51

4. Experimental Evaluation

Figure 4.3.: lesmis heuristic deletion + exact editing

52

4.4. Community Structure

The ground-truth communities are not known for this graph. Thus unlike for the karate
graph the colours that we used for the vertices do not indicate any ground-truth communities.
We just used this colouring in order to compare the deletion version Figure 4.2 and the
editing version Figure 4.3. In Figure 4.2 we coloured the vertices according to their
connected component after applying Fdel,del. Then in Figure 4.3 we coloured the vertices
in the same colour as in Figure 4.2. Using this colouring if one looks closely, one can see
that vertex 67 in the top left corner of Figure 4.3 does not belong to the same connected
component as it does in Figure 4.2. You can see this as it is not connected to the other
vertices of the same red colour by any remaining edge. By “remaining” edge we mean
an edge which is not deleted by the editing set, that is it is not coloured in the brighter
grey colour. Also vertex 50 on the right side is not connected to the yellow component in
Figure 4.3. Except for vertex 67 and vertex 50 the big connected component of the editing
version is the union of the red and the yellow components of the deletion version. The
remaining components are the same for the editing and for the deletion version.

The novel Les Misérables consists of 5 parts. Four of them are named after a character.
We depicted the corresponding four vertices by rectangles. Note that the editing algorithm
strongly increased the degree of vertex 55 (see the red inserted edges). So in some sense we
can say that the editing algorithm noticed that vertex 55 is important, though we did not
tell it that vertex 55 actually appears in the title of one of the books.

When analysing the results of Figure 4.2 and Figure 4.3 we found that there are other
equivalent solutions to the (P5, C5)-free editing problem that induce slightly different
communities. By equivalent solution we mean a (P5, C5)-free editing set that contains an
equal number of edits. So apparently the theoretical possibility, that the communities
obtained by (P5, C5)-free editing are not completely well defined, actually occurs quite
often in practice. We found that (at least) vertices 2, 3, 12 and 47 can as well be assigned
to a different community. For example look at the vertices 2 and 3 on the lower left side
of the yellow coloured main character 11 in Figure 4.2. If we delete the edges {2, 11} and
{3, 11} then we don’t need to delete the edges {2, 0} and {3, 0} anymore as the vertex 0
is already disconnected from the yellow group. Note that the newly formed component
consisting of vertices 0, its neighbours 1 and 2 - 9 and the newly added vertices 2 and
3 does not contain any P5 or C5. A P5 requires 3 vertices of a degree greater than one.
And a C5 requires even more of them. Only vertices 0, 2 and 3 have a degree greater
than 2 in this newly formed community. But they already induce a C3. Obviously as the
yellow group was (P5, C5)-free before it will still be (P5, C5)-free without vertices 2 and 3.
(If we take away some vertices of any (P5, C5)-free graph the resulting graph will still be
(P5, C5)-free. In other words (P5, C5) freeness is a hereditary property.) So vertices 2 and
3 may as well be assigned to the cyan community instead of the yellow community. Note
that the same changes can be made in the case of the editing version Figure 4.3 as well. In
a similar way the reader may prove to himself that we can delete the edge {11, 12} instead
of {12, 23}. Thereby we can assign vertex 12 to the violet community instead of the yellow
one. If we delete edge {47, 48} instead of {47, 46} then we can group vertex 37 together
with vertex 46 instead of the red community. These changes to vertices 12 and 47 work in
the deletion version Figure 4.2 and in the editing version Figure 4.3 as well.

It is difficult to tell whether the communities detected by our algorithms are correct, as
there are no known ground truth communities here. What might be a bit problematic in
the case of the deletion version is the main character represented by vertex 26. It has six
neighbours in the yellow community but only four neighbours in its own red community. So
we might wonder if it would actually be better grouped together with the yellow community
here. In the case of the editing version this problem does not exist as the yellow and the
red community were merged into one community anyway.

53

4. Experimental Evaluation

However apart from that problem the communities look quite convincing. For example most
of the vertices in the non-trivial communities except for vertex 26 have more neighbours
that belong to the same community than neighbours that belong to different communities.
A indication that it makes sense to assign these vertices to the community to which they
were assigned here. By non-trivial communities we mean communities consisting of more
than one vertex.

[NG13] noted that (P4, C4)-free editing correctly separated only unimportant characters into
trivial groups. The vertices that were separated into single vertex groups by (P5, C5)-free
editing and (P5, C5)-free deletion have a low degree. Furthermore they are not connected to
any main character. These are both indications that they are unimportant too. Note that
there are many degree one vertices connected to the main character vertex 11. Correctly
none of them were isolated into trivial groups by either the deletion version nor by the
editing version.

What could be criticized about the communities especially in case of the editing version is
that they are too big. Therefore while they might be correct, they don’t give us so much
information as we might get from a more finely divided grouping. For example on the one
hand it might be correct that a certain character in the big component of Figure 4.3 is
more closely related to the main characters represented by vertices 55, 26 and 11 than
he is related to vertex 23. However on the other hand we might also be interested in the
question whether the character is more closely related to vertex 55 than he is related to
vertex 11. Also note that the vertices 29, 36, 35, 34, 38 and 37 in the clique on the lower
right side of the yellow community seem to have a stronger connection to each other and
to vertex 11 than to the rest of the their community. The communities obtained by our
approach do not tell us anything about this internal structure of the found communities.

As a summary we conclude that the results obtained by (P5, C5)-free deletion and (P5, C5)-
free editing for the graph lesmis make sense but they give us too few information about
the structure of the graph due to the big size of the identified communities.

4.4.3. Dolphins

The dolphins graph shows the social network of bottlenose dolphins living in some fjord in
New Zealand. Two dolphins are joined by an edge if they were seen together a statistically
significant number of times. It was created by [Lus03].

Figure 4.4 and Figure 4.5 both show the dolphin network. Figure 4.4 also shows the
(P5, C5)-free deletion set that we found by combining the heuristic deletion and the exact
deletion algorithm with each other. The deleted edges are depicted in a brighter colour. For
the dolphins graph the best editing set that we found is actually the one that was calculated
using the heuristic editing algorithm together with the exact editing algorithm. As shown
in Table 4.8 and Table 4.9 it needed only 54 edits while the one which was calculated
using the deletion heuristic needed 55 edits. Figure 4.5 depicts the former editing set. The
deleted edges are coloured in a brighter colour and the inserted edges are coloured red.

As in the case of lesmis but unlike in the case of karate the colouring that we used for
the vertices of dolphins does not represent any ground truth communities in the graph.
It is only there to help compare the results of the deletion version with the results of the
editing version. As in the case of lesmis the colours indicate the connected components of
the deletion version. Using this colouring one can see that two of the three single vertices
of the deletion version were grouped together with some of the larger communities in the
editing version. Furthermore the vertex SN100 is in a different community in the editing
version. Apart from that the communities are the same for both versions.

54

4.4. Community Structure

Figure 4.4.: dolphins heuristic deletion + exact deletion

55

4. Experimental Evaluation

Figure 4.5.: dolphins heuristic editing + exact editing

56

4.4. Community Structure

Like [NG13] we depicted the females by circles and the male dolphins by a rectangles.
Dolphins of unknown gender are depicted by triangles. Like [NG04] and [NG13] we also
found that there is one community which consists mainly of females - the yellow one in our
case.

As in the case of lesmis we found that there are a vertices which can equally well be
assigned to different communities. For example the vertex Bumper on the lower side of
the blue community. If we remove the edge from SN96 to Bumper then we do not need to
delete the edge from Bumper to Zipfel. Therefore we get a similarly sized correct editing
set or deletion set that assigns Bumper to the green community. Note that this is true for
the deletion and for the editing version as well. In the case of the deletion version SN89
may be grouped together with SN100 instead of the red community. This ambiguity does
not occur in the case of the editing version as SN100 is grouped together with the yellow
group. Connecting SN89 with SN100 would cause a P5 consisting of SN89, SN100, SN4
Scabs and Fork here. Furthermore the red vertices Mus, Number 1 and Beescratch which
are adjacent to the blue vertex Notch can be assigned differently in the deletion version.
If we delete the three edges from these three vertices to the vertex Jet then we will not
need to delete three edges to the vertex Notch. Thereby we get a similarly sized editing set
that assigns Mus, Number 1 and Beescratch to Notch instead of the red community. This
ambiguity however does not occur in the editing version as Notch is connected to the red
community here.

As in the case of lesmis we need to evaluate the community structure without having any
ground truth communities to compare. For a large portion of the vertices the number of
neighbours that lie in the same community is bigger than the number of neighbours that
belong to different communities. This is an indication that they were assigned correctly.
However there are also a few vertices that have many neighbours in other communities.
We want to take a look some of those critical vertices.

The vertex double was assigned to the violet group by the deletion algorithm although it
has only two neighbours in this group Tap and Topless. However it has three neighbours
in the yellow group CCL, SN4 and Kringel. In the editing version CCL was moved to the
violet clique. This justifies the assignment of Double a bit better as he has at least two
neighbours in his community and only two neighbours in the yellow group. The vertex
CCL itself has only one neighbour in the yellow group but two neighbours in the violet
community. However on the other hand the one neighbour in the yellow group is more
central two this group as indicated by its high degree of 10. Therefore both assignments of
CCL make sense. Therefore we can not tell which assignment is better in this case the one
of the deletion version or the one of the editing version. The vertex Knit on the left side of
the blue has an equal number of neighbours in the red community as he has neighbours in
his own blue community. The same holds for DN63.

The vertex Oscar in the blue group has only two neighbours in his own community but
three neighbours in foreign communities. However note that each of the foreign neighbours
belongs to a different community. Therefore the blue community is still the community
with the maximum number of neighbours of Oscar. So Oscars assignment still makes sense.

Note that the algorithm also deleted edges between vertices of the same community. For
example when we look at Kringel we might think at first sight that it has few connections
to its own yellow community as there are only two remaining edges emanating from it.
However if one looks closely one can see that two of the deleted edges emanating from
Kringel also go to vertices of the same community in the deletion version. In the editing
version three of the deleted edges go to vertices of the same component. In the deletion
version four of the nine neighbours belong to the same community, in the editing version
five of them belong to the same community. Also note that like in the case of Oskar the

57

4. Experimental Evaluation

Figure 4.6.: grass_web heuristic deletion + exact deletion

foreign neighbours of Kringel do not all belong to the same foreign community. It is not 4
vs. 5 but 4 vs. 2 vs. 2. vs. 1 in the case of the deletion version. In the editing version it is
5 vs. 2 vs. 2. So assigning Kringel to the yellow community makes sense. If we analyse all
vertices of the graph like this we get the impression that the communities defined by our
algorithm are acceptable.

4.4.4. Grass_Web

This graph shows describes the food web between some grassland species. It was built in
[DHC95].

Figure 4.6 and Figure 4.7 both show the graph grass_web. Figure 4.6 shows the (P5, C5)-
free deletion set that we found using the combination of the heuristic deletion algorithm
and the exact editing algorithm. The deleted edges are coloured in a brighter colour. The
editing set that we found using the combination of the heuristic deletion algorithm and the
exact editing algorithm is smaller than the one that we found using the combination of the
heuristic editing algorithm and the exact editing algorithm. As shown in Table 4.8 and
Table 4.7 the former one needs only 25 edits and the letter one needs 27 edits. Therefore
we will concentrate on the former one here. It is shown in Figure 4.7. The corresponding
deleted edges are coloured in a brighter colour and the inserted edges are coloured red.

Like for the graphs lesmis and dolphins the vertex colours are there to help compare the
deletion and the editing version. Again the colours represent the communities found by
the deletion version. Using this colouring we can see that the big community of Figure 4.7
contains the union of the “green” and the “red” community of Figure 4.6. Furthermore it

58

4.4. Community Structure

Figure 4.7.: grass_web heuristic deletion + exact edit

59

4. Experimental Evaluation

contains four vertices that were single vertex groups in Figure 4.6 and it contains vertex 15
which belonged to a different community in Figure 4.6. The second largest community of
Figure 4.7 on top right corner almost corresponds to the union of three communities of
Figure 4.6, except that vertex number 20 was separated into a new single vertex group.

Let us take a closer look on the above mentioned vertex 15, which was connected to the
orange community in the deletion version but was connected to the green community in
the editing version. Note that if we separated it from the green component and connected
it to the orange component in the editing version as well, then the graph would still be
(P5, C5)-free. In doing so we would need one additional deletion for the edge {28, 15} but
we would save the deletion of the edge {28, 15}. So the total number of edits would be
the same. So we could equally well assign vertex 15 to the orange group in the editing
version. In a similar way the reader may also prove to himself that we may also delete the
edge {15, 16} instead of the edge {28, 15} in the deletion version. Thereby we could equally
well assign vertex 15 to the green component in the deletion version. So the different
assignment of vertex 15 in Figure 4.6 and in Figure 4.7 is actually arbitrary and does not
really show a difference between the editing and the deletion version. Furthermore note
that in both the deletion and in the editing version we might also separate vertex 15 from
both the green and the orange community and instead leave the edge connecting it to the
violet community. Note that vertex 15 would then be in a similar position as vertex 14
in the violet community. So if there was a P5 (or C5) in that community that includes
vertex 15 and four other vertices, then the other four vertices had also induced a P5 (or
C5) together with vertex 14. But this was not the case. So this community consisting
of vertex 15 and the violet vertices would still be (P5, C5)-free. Furthermore note that
when vertex 15 is not connected to the orange group then we could also connect vertex
16 to the brown group instead of the orange group. Another vertex that could have been
assigned differently in both the editing and the deletion version is vertex 7 in the blue
group. It could have been assigned to the beige group centred around vertex 6 as well. In
the deletion version vertex 14 could have been assigned to the red community instead of the
violet community. This different assignment however is not possible in the editing version.
Here we would get P5s for example the one induced by 14, 12, 10, 28, 29. Furthermore in
the deletion version the red vertices 12, 55 and 57 could each have been assigned to the
green community, too. Furthermore in the deletion version we might have separated vertex
0 from the green community. This would need 3 additional deletes. In exchange we might
have left vertex 0 connected to the single vertices 1, 23 and 26.

We found out that the deletion set in Figure 4.6 is not optimal. There is one mistake at the
lower half of the green community. When we delete the edges between the green vertices 2
and 28 and between 29 and 28 then we do not need to delete the edges {2, 1}, {2, 30} and
{29, 30}. So we save 3− 2 = 1 edits. There is another mistake at the violet community. If
we separated vertices 8 and 43 from the violet community then we would need 2 additional
deletes. However then we would not need to delete the edges between these two vertices
and the pink community. Thereby we would save 3 deletes. Thus this would save us a total
of 3− 2 = 1 deletes.

Except from all these ambiguities the results look quite convincing: Except for these above
mentioned vertices whose assignment to the communities is ambiguous, most of the vertices
have much more neighbours in their own communities than they have neighbours in foreign
communities. This is true for both the deletion and the editing version. But the editing
version is still better than the deletion version as there are fewer ambiguities than in the
deletion version. Furthermore in the case of the editing version the total number of edges
that connect different communities with each other is much lower than the number of edges
inside of the communities.

60

4.4. Community Structure

As a summary we conclude that the result of the editing version looks very convincing.
And the result of the deletion version is still acceptable but not as good as the editing
version. Furthermore we found again that the theoretical possibility of not uniquely defined
connected components actually appears quite frequent in practice. And apart from the
community structure as a side result we found that there is room for improvement in the
method that we used in order to calculate the deletion sets.

4.4.5. Football

This graph stems from [GN02]. The vertices in this graph represent teams of United States
college football. Two teams are joined by an edge when they have played against each
other during a particular football season. While according to [GN02] it is the 2000 season.
[Eva10] writes that it actually appears to be the 2001 season. The teams are grouped into
conferences. While most of the teams belong to one of these 11 conferences there are also a
few independent teams. Games are more frequent between members of the same conference
than between members of different conferences. A team plays about seven intraconference
games and four interconference games in this season.

Interestingly for this graph the editing set Fdel,edit - calculated by the combination of the
heuristic deletion algorithm and the exact editing algorithm - didn’t use any insertions.
Furthermore Fdel,edit is equal to Fdel,del - the deletion set found by the combination of
the heuristic deletion and the exact deletion algorithm. We compared Fdel,del and Fdel,edit
and found that the deletes are actually the same and it is not just the same number of
deletes (i.e. Fdel,del = Fdel,edit not only |Fdel,edit| = |Fdel,edit|). Figure 4.8 depicts the graph
football together with this deletion set Fdel,del = Fdel,edit. The corresponding deleted edges
are coloured in a brighter colour. The combination of the heuristic editing algorithm and
the exact editing algorithm found another editing set Fedit,edit of the same size. Figure 4.9
depicts this editing set. The corresponding deleted edges are coloured in a brighter colour.
Note that there are also a few inserted edges, the ones coloured in red.

Note that unlike for the graphs lesmis, dolphins and grass_web, the colours of the ver-
tices contain more information than just a help for the comparison between different
editing/deletion sets. Here in Figure 4.8 and Figure 4.9 each vertex is coloured according
to the conference to which it belongs. The grey vertices do not belong to any conference.

Note that in both versions none of the teams is separated from its original conference.
However the grey-coloured vertices that do not belong to any conference were not recognized
as single vertex communities. Instead they where grouped together with some other
conferences. But a bigger problem is that both editing sets joined some pairs of conferences
into one single community. Both editing sets connected the two conferences in the lower
left corner. Additionally Fdel,del = Fdel,edit connected the blue conference at the bottom
with the orange conference at the top. And Fedit,edit connected the orange conference to
the beige one on its left side.

The graph football is the biggest one of the graphs that we studied. (see Table 4.1)
Accordingly also the editing set and the deletion set is the biggest one for this graph. (see
Tables 4.7, 4.9, 4.8) The question is whether our method of computing the editing sets
performs worse on bigger graphs. Note for example that we tried to optimize subsets of the
deletion sets of a maximum size of 9 or 10 for the editing sets of each graph. (Table 4.7)
While in the case of the graph karate such a subset makes up 10/13 = 77% of the whole
editing set, in the case of football it is only 9/186 = 4.8%. Therefore intuitively we may
expect that our method of calculating the editing sets yields suboptimal results for bigger
graphs. Therefore the important question is if the disappointing results in the case of
football are due to the method how we calculated the editing sets. Or are these problems
inherent to (P5, C5)-free editing? Is it possible that the actual correct solution to the

61

4. Experimental Evaluation

(P5, C5)-free editing problem would separate all conferences from each other unlike our
heuristic solution?

At least if we assume that the assignment of the independent teams to the conferences
stays the same then the answer is no. Note that Fdel,del did not do any edits inside of
the connected components. All the edits 186 in Fdel,del are therefore needed in order to
separate the groups from each other. Furthermore in order to separate all conferences from
each other the actual best editing set would need some additional deletes between the
violet and the green conference and between the orange and the dark blue one. Therefore
if the actual best editing set Fbest would separate all conferences from each other we had
Fbest) Fdel,del. This is a contradiction since |Fbest| ≤ |Fdel,del|.

The phenomenon that our approach merges several underlying ground truth communities
into one community gives rise to the question if the results may still be useful if we want
to learn something about the relationship between different communities. Assume we want
to identify a hierarchical community structure. We then might first apply (P5, C5)-free
editing. Then we might further subdivide the found communities into more subcommunities
using a different community detection algorithm. This however only makes sense if the
(P5, C5)-free editing algorithm does not merge the underlying subgroups in a completely
random manner. Instead we hope that it merges different groups into one community only
when there is some special connection between them.

To get an impression whether the merged conferences actually belong to each other in
the case of the football graph we depicted the connections between the conferences in
Figure 4.10. Here we represented each conference by only one vertex. The number on the
vertices of Figure 4.10 represent the number of teams that belong to that conference. The
number on an edge between two conferences A and B in Figure 4.10 represents the number
of edges between those two conferences in the football graph. The size of the vertices and
the edges correspond to the numbers the numbers that they are labelled with. Note that
we did not include the vertices without conference in Figure 4.10 due to lack of space.

By looking at Figure 4.10 we can see that the merging of the dark blue and the orange
community in the deletion version Figure 4.8 does not make much sense: There is actually
only one edge between these two communities. We wonder why the algorithm did not
instead merge the dark blue community for example with the green community to which it
is connected by five edges.

Merging the orange community with the beige community as in the editing version Figure 4.9
makes more sense. The beige is one of the two conferences with the most connections
to the orange one. (The other one is the red one.) We still may wonder why the beige
community was not instead merged with the blue community on the left as there are even
more connections. (7 vs 5)

Note that both the deletion version Figure 4.8 and the editing version Figure 4.9 merged
the violet and the green conference. This actually makes sense as the green community has
8 connections to the violet conference but to each of the other conferences it has only less
than five connections. Also the violet conference has only less than five connections to each
of the other conferences. There is also some similarity in the neighbourhood of those two
conferences. Both of them have many connections to the dark blue conference on the right
of the green conference, to the pink conference and to the dark green conference. However
there is also some difference as the green conference has more connections to the magenta
conference and the violet conference has more connections to the dark red conference.

As a summary we conclude that the resulting communities are rather disappointing. Due
to the merging of the conferences we can not separate all of them from each other. And
presumingly this problem can not be solved by using a better (P5, C5)-free editing or a

62

4.4. Community Structure

Figure 4.8.: football heuristic deletion + exact deletion = heuristic deletion + exact edit

better (P5, C5)-free deletion algorithm. Furthermore the merging of the communities is
often rather random and does not even help us in the context of hierarchical clustering. We
do not know whether at least the usefulness in the context of hierarchical clustering can be
improved by using a better (P5, C5)-free editing and (P5, C5)-free deletion algorithm.

63

4. Experimental Evaluation

Figure 4.9.: football heuristic edit + exact edit

64

4.4. Community Structure

Figure 4.10.: football

65

5. Conclusion

In this bachelor thesis we have gained many theoretical and practical results regarding the
question for the computational feasibility of the (P5, C5)-free editing and the (P5, C5)-free
deletion problem and regarding the search for appropriate methods to solve these problems:

In our theoretical studies we have proven that the (P5, C5)-free editing and the (P5, C5)-
free deletion problem and many more similar problems like (P5, C4, C5)-free editing are
NP-complete. To do so we generalized existing NP-completeness proofs.

We introduced a P5 and C5 counting algorithm and a P5 and C5 search algorithm, which
was a modification of the counting algorithm. We needed these algorithms as subroutines
for the (P5, C5)-free editing and the (P5, C5)-free deletion algorithms. We have shown that
one can count the total number of P5s and C5s in a graph in O(m · d3) time. Furthermore
one can check whether a graph is (P5, C5)-free and return a P5 or a C5 if it is not in time
O(m · d2). Here and in the following sentences m denotes the number of edges in the
graph and d is the maximum degree. We have adapted an exact editing algorithm, which
was explained in [Cai96] and also used by[NG13], to the problem of (P5, C5)-free editing
and (P5, C5)-free deletion. We also proposed some optimizations for this algorithm. We
have shown that using this algorithm one can solve the (P5, C5)-free editing problem in
O(9k ·m · n2) time and the (P5, C5)-free deletion problem in O(4k ·m · d2) time. Here k
denotes the maximum number of allowed edits. When discussing an optimization of the
exact editing algorithm we found that the goal of reducing the number of recursive calls
and reducing the number of time needed per recursive call by the search for P5s and C5s
conflict with each other. Furthermore we have described a heuristic for the (P5, C5)-free
editing and the (P5, C5)-free deletion problem, which was also used by [NG13].

Following these theoretic studies we have also done many practical experiments: We found
that the mentioned heuristic algorithm yields very bad results for the (P5, C5)-free editing
problem. This was unexpected as it performed very good in the case of (P4, C4)-free editing
in other papers. For the (P5, C5)-free deletion problem the results of the heuristic were
better than for the editing version but still not very good in some cases.

We have also done some practical studies on the aforementioned conflicting goals when
optimizing the running time of the exact editing algorithm. We showed that in order to
optimize the running time finding a proper balance between both goals is better than
completely concentrating on any one of them. By doing so one can reduce the running
time by more than a half.

67

5. Conclusion

We have shown that while the heuristic algorithm yields often very bad results and the
exact algorithm takes too much time for most graphs, we can still find some reasonable
results by combining them. But still these results are presumingly not optimal. This is
indicated by the fact that we found possible optimizations of the deletion set of one of the
graphs when visualizing them.

We have also found practical results regarding the usefulness of the community structure
induced by solutions to the (P5, C5)-free editing and the (P5, C5)-free deletion problem.
These results were derived by visualizing the graphs together with the editing sets and the
deletion sets calculated by the combination of the heuristic and the exact algorithms.

The (P5, C5)-free deletion and (P5, C5)-free editing method seems to work well on many
graphs and not so well on other graphs. The main problem of this approach is that often
the resulting communities are too big. The algorithm sometimes merges several underlying
communities into one community. This phenomenon occurred in the graph football and
also a bit in the graph lesmis.

Another problem - but less important than the merging problem - is that the communities
are often not exactly well defined as there are often several solutions of equal size to the
(P5, C5)-free editing and the (P5, C5)-free deletion problem.

5.1. Future Work
More future research is needed in order to find out how one can predict on which graphs
the aforementioned merging phenomenon occurs. Thereby we might find out for which
graphs (P5, C5)-free editing / deletion is a reasonable approach to identify the communities.

Another open question is whether the merging phenomenon if it occurs can be used in
order to identify a hierarchical community structure. That is the question is whether two
communities are merged together when they have something to do with each other or
whether instead the communities are joined together randomly. In the case of the football
graph we found that the algorithms merged together communities that obviously did not
belong to each other especially in the deletion version. However we don’t know if this
result could be improved by a better algorithm or if it is inherent to the (P5, C5)-free
editing/deletion approach. Furthermore the algorithm also merged two other communities
where there was actually a strong connection between them. So it is too soon to already
answer this question in this bachelor thesis.

Finally future research should try to find a better heuristic algorithm for the (P5, C5)-free
deletion and especially for the (P5, C5)-free editing problem.

68

Bibliography

[BBD06] Pablo Burzyn, Flavia Bonomo, and Guillermo Durán. Np-completeness results
for edge modification problems. Discrete Applied Mathematics, 154(13):1824 –
1844, 2006. Traces of the Latin American Conference on Combinatorics, Graphs
and Applications A selection of papers from {LACGA} 2004, Santiago, Chile.

[BHSW15] Ulrik Brandes, Michael Hamann, Ben Strasser, and Dorothea Wagner. Fast
quasi-threshold editing. In Nikhil Bansal and Irene Finocchi, editors, Algorithms
- ESA 2015, volume 9294 of Lecture Notes in Computer Science, pages 251–262.
Springer Berlin Heidelberg, 2015.

[BT90] G. Bacsó and Zs. Tuza. Dominating cliques in p5-free graphs. Periodica
Mathematica Hungarica, 21(4):303–308, 1990.

[Cai96] Leizhen Cai. Fixed-parameter tractability of graph modification problems for
hereditary properties. Information Processing Letters, 58(4):171 – 176, 1996.

[CK90] Margaret B. Cozzens and Laura L. Kelleher. Dominating cliques in graphs.
Discrete Mathematics, 86(1–3):101 – 116, 1990.

[DHC95] Hassan Ali Dawah, Bradford A. Hawkins, and Michael F. Claridge. Structure
of the parasitoid communities of grass-feeding chalcid wasps. Journal of Animal
Ecology, 64(6):pp. 708–720, 1995.

[EMC88] Ehab S. El-Mallah and Charles J. Colbourn. Complexity of some edge deletion
problems. IEEE transactions on circuits and systems, 35(3):354–362, 1988.
cited By 19.

[Eva10] T S Evans. Clique graphs and overlapping communities. Journal of Statistical
Mechanics: Theory and Experiment, 2010(12):P12037, 2010.

[GN02] M. Girvan and M. E. J. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12):7821–7826,
2002.

[KKK93] Donald Ervin Knuth, Donald Ervin Knuth, and Donald Ervin Knuth. The Stan-
ford GraphBase: a platform for combinatorial computing, volume 37. Addison-
Wesley Reading, 1993.

[Lus03] David Lusseau. The emergent properties of a dolphin social network. arXiv
preprint cond-mat/0307439, 2003.

[LWGC12] Yunlong Liu, Jianxin Wang, Jiong Guo, and Jianer Chen. Complexity and
parameterized algorithms for cograph editing. Theoretical Computer Science,
461(0):45 – 54, 2012. 17th International Computing and Combinatorics Confer-
ence (COCOON 2011).

[NG04] M. E. J. Newman and M. Girvan. Finding and evaluating community structure
in networks. Phys. Rev. E, 69:026113, Feb 2004.

69

Bibliography

[NG13] James Nastos and Yong Gao. Familial groups in social networks. Social
Networks, 35(3):439–450, 2013.

[Zac77] Wayne W. Zachary. An information flow model for conflict and fission in small
groups. Journal of Anthropological Research, 33(4):pp. 452–473, 1977.

[Zve03] Igor Edmundovich Zverovich. Perfect connected-dominant graphs. Discuss.
Math. Graph Theory, 23(1):159–162, 2003.

70

Appendix

A. Appendix Section 1

Table A.1.: karate editing log
type P5 C5

ins 1038 13
ins 801 12
ins 611 4
del 515 0
ins 415 0
del 323 0
ins 264 0
del 208 0
ins 157 0
del 114 0
ins 83 0
del 59 0
del 46 0
del 33 0
del 20 0
del 9 0
del 4 0
ins 0 0

71

Appendix

Table A.2.: dolphins editing log
type P5 C5 type P5 C5 type P5 C5 type P5 C5

del 5754 134 del 2258 32 del 595 12 del 62 0
del 5384 132 del 2041 30 del 544 12 ins 50 0
del 5051 111 del 1915 22 del 496 12 del 39 0
del 4739 105 del 1763 21 del 449 12 del 28 0
del 4472 86 del 1630 21 del 372 12 ins 18 0
del 4202 79 del 1487 20 del 335 9 del 11 0
del 3983 73 del 1356 18 del 299 9 ins 6 0
del 3779 67 del 1249 15 ins 269 5 ins 2 0
del 3579 57 del 1140 15 del 239 5 del 0 0
del 3368 54 del 1040 15 ins 207 5
del 3170 43 del 955 15 del 181 5
del 2968 41 del 876 15 del 160 0
del 2775 37 del 783 15 del 136 0
del 2585 35 del 717 15 del 115 1
del 2398 33 del 657 12 del 79 0

Table A.3.: grass_web editing log
type P5 C5

del 1372 1
del 1155 1
del 982 2
del 829 2
del 726 2
del 636 1
del 548 1
ins 470 1
del 408 0
del 346 0
del 291 0
del 242 0
del 201 0
ins 172 0
ins 145 0
ins 123 0
ins 106 0
ins 90 0
del 75 0
del 61 0
del 48 0
del 35 0
del 25 0
ins 17 0
del 9 0
del 5 0
ins 2 0
ins 0 0

72

A. Appendix Section 1

Table A.4.: football editing log
type P5 C5 type P5 C5 type P5 C5 type P5 C5

del 118446 1211 del 54252 536 del 20137 209 del 3941 75
del 116690 1187 del 53309 510 del 19700 203 del 3769 75
del 114954 1162 del 52356 503 del 19260 192 del 3582 72
del 113261 1146 del 51424 494 del 18818 191 del 3330 72
del 111587 1131 del 50505 479 del 18309 190 del 3183 73
del 109928 1116 del 49583 477 del 17875 190 del 3014 67
del 108279 1110 del 48682 474 del 17449 188 ins 2876 63
del 106668 1077 del 47811 456 del 17027 178 del 2743 63
del 105054 1068 del 46934 451 del 16597 173 del 2586 63
del 103475 1068 del 46061 451 del 16181 173 del 2459 59
del 101919 1048 del 45189 451 del 15770 172 del 2333 55
del 100415 1030 del 44326 450 del 15300 171 del 2189 51
del 98915 1022 del 43330 448 del 14911 171 del 2060 51
del 97415 1006 del 42500 441 del 14530 171 del 1865 51
del 95973 976 del 41665 440 del 14045 170 del 1763 42
del 94536 965 del 40837 440 del 13664 170 del 1629 33
del 93128 941 del 40022 435 del 13281 170 del 1518 33
del 91739 925 del 39237 419 del 12910 170 del 1313 33
del 90346 917 del 38456 413 del 12549 170 del 1219 28
del 88957 910 del 37693 405 del 12130 170 del 1094 22
del 87604 894 del 36935 400 del 11779 162 ins 994 22
del 86260 872 del 36199 387 del 11435 148 del 907 22
del 84920 864 del 35479 384 del 11085 148 del 802 22
del 83600 854 del 34770 380 del 10747 137 del 720 21
del 82301 834 del 34075 375 del 10416 137 del 638 21
del 81004 820 del 33384 368 del 10095 137 del 564 20
del 79721 819 del 32702 367 del 9793 130 del 470 20
del 78458 802 del 32048 367 del 9498 125 del 408 20
del 77214 796 del 31415 363 del 9183 124 del 322 20
del 75970 789 del 30711 362 del 8882 123 del 273 20
del 74747 770 del 30089 356 del 8549 122 del 225 20
del 73553 759 del 29505 336 del 8260 117 del 177 20
del 72355 754 del 28929 323 del 7986 117 del 141 20
del 71192 744 del 28353 316 del 7661 117 ins 117 20
del 70048 724 del 27781 309 del 7392 117 ins 100 13
del 68925 705 del 27236 308 del 7130 117 ins 76 13
del 67812 679 del 26674 304 del 6855 117 del 54 13
del 66705 670 del 26148 288 del 6641 99 ins 41 4
del 65595 667 del 25610 287 del 6422 81 ins 30 0
del 64517 653 del 24976 286 del 6200 81 ins 21 0
del 63437 647 del 24451 278 del 5984 81 del 12 0
del 62382 624 del 23939 260 del 5729 81 del 4 0
del 61328 622 del 23432 260 del 5421 81 ins 0 0
del 60268 621 del 22932 260 del 5214 81
del 59227 607 del 22442 255 del 5015 81
del 58180 594 del 21978 225 del 4783 81
del 57179 569 del 21497 225 del 4523 81
del 56171 566 del 21036 225 del 4325 81
del 55203 556 del 20588 212 del 4113 81

73

Appendix

Table A.5.: lesmis character names
vertex number character name vertex number character name

0 Myriel 39 Pontmercy
1 Napoleon 40 Boulatruelle
2 MlleBaptistine 41 Eponine
3 MmeMagloire 42 Anzelma
4 CountessDeLo 43 Woman2
5 Geborand 44 MotherInnocent
6 Champtercier 45 Gribier
7 Cravatte 46 Jondrette
8 Count 47 MmeBurgon
9 OldMan 48 Gavroche
10 Labarre 49 Gillenormand
11 Valjean 50 Magnon
12 Marguerite 51 MlleGillenormand
13 MmeDeR 52 MmePontmercy
14 Isabeau 53 MlleVaubois
15 Gervais 54 LtGillenormand
16 Tholomyes 55 Marius
17 Listolier 56 BaronessT
18 Fameuil 57 Mabeuf
19 Blacheville 58 Enjolras
20 Favourite 59 Combeferre
21 Dahlia 60 Prouvaire
22 Zephine 61 Feuilly
23 Fantine 62 Courfeyrac
24 MmeThenardier 63 Bahorel
25 Thenardier 64 Bossuet
26 Cosette 65 Joly
27 Javert 66 Grantaire
28 Fauchelevent 67 MotherPlutarch
29 Bamatabois 68 Gueulemer
30 Perpetue 69 Babet
31 Simplice 70 Claquesous
32 Scaufflaire 71 Montparnasse
33 Woman1 72 Toussaint
34 Judge 73 Child1
35 Champmathieu 74 Child2
36 Brevet 75 Brujon
37 Chenildieu 76 MmeHucheloup
38 Cochepaille

74

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Notation and Basic Definitions

	2 NP Completeness
	2.1 NP Completeness of (P5, C5)-free Editing
	2.2 Generalizing the NP-Completeness Proof
	2.3 NP-Completeness of the Deletion Version

	3 Algorithms
	3.1 Graph Representation
	3.2 P5, C5 Count
	3.3 P5C5Search
	3.4 Exact Algorithm
	3.5 Heuristic (P5, C5)-Free Editing

	4 Experimental Evaluation
	4.1 Heuristic Algorithms
	4.2 Exact Algorithm
	4.3 Combining Exact and Heuristic Algorithms
	4.4 Community Structure
	4.4.1 Zachary's karate club (short karate)
	4.4.2 Les Misérables (short lesmis)
	4.4.3 Dolphins
	4.4.4 Grass_Web
	4.4.5 Football

	5 Conclusion
	5.1 Future Work

	Bibliography
	Appendix
	A Appendix Section 1

