
Experimental Evaluation of Distributed
Node Coloring Algorithms in the SINR

Model

Bachelor Thesis of

Markus Schlegel

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Dipl.-Inform. Fabian Fuchs

Time Period: 1st January 2015 – 17th April 2015

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 17th April 2015

iii

Abstract

Nodes in wireless ad hoc or sensor networks can only communicate efficiently when
interference is kept low. One approach to minimizing interference is to limit the
number of concurrently transmitting nodes in every neighborhood by using a periodic
schedule. We periodically divide time into slots and assign one time slot to each
sender. A sender is only allowed to transmit messages in its time slot. Such a
schedule is called a periodic time-division multiple access schedule (TDMA). We can
reduce interference in every neighborhood by scheduling nodes according to a TDMA
schedule which ensures that nodes, which are neighbors in the communication graph,
are transmitting in different time slots. Establishing such a schedule is closely related
to the node coloring problem. In a properly colored graph, two neighboring nodes
are never assigned the same color. In consequence, if we map each color to a slot in
the periodic TDMA schedule, neighboring nodes are never allowed to transmit in the
same time slot.

The Signal to Interference and Noise Ratio model (SINR) determines the success of
each message transmission by taking the transmission power and the distance of all
other concurrent message transmissions as well as a global noise value into account.
Therefore, the SINR model describes real-world scenarios with great accuracy. For
this reason, the SINR model is often called the physical model.

In this thesis, we experimentally evaluate the runtime performance of three distributed
node coloring algorithms in the SINR model with the help of the network simulator
framework sinalgo. In order to achieve an optimal runtime of the algorithms, some
parameters must be experimentally determined, as the algorithms are originally
designed to match asymptotic runtime bounds. Additionally we look at some
practical improvements and evaluate their impact on the runtime.

Deutsche Zusammenfassung

Effiziente Kommunikation ist in drahtlosen Ad-Hoc- oder Sensor-Aktor-Netzen nur
möglich, wenn wenig Interferenz zwischen den Nachrichtenübertragungen auftritt.
Eine Möglichkeit, um die Interferenz zu minimieren, ist, verteilt ein periodisches
TDMA-Schema aufzubauen, bei dem benachbarte Knoten auf unterschiedliche
Zeitschlitze verteilt werden. Der Aufbau eines derartigen TDMA-Schemas lässt
sich als Graphfärbbarkeitsproblem betrachten. In einem korrekt gefärbten Graphen
haben zwei Nachbarn nie dieselbe Farbe. Wenn wir jede Farbe mit einem Zeitschlitz
assoziieren, senden benachbarte Knoten also stets in unterschiedlichen Zeitschlitzen.

Im Signal-to-Interference-and-Noise-Modell (SINR) wird für eine erfolgreiche Nachricht-
enübertragung von einem Sender zu einem Empfänger die gleichzeitige Sendeleistung
aller anderen Sender, deren Abstand zum Empfänger, sowie ein globaler Rauschwert
in Betracht gezogen. Damit ist dieses Modell sehr nah an der Realität und wird
deshalb oft auch als Physikalisches Modell bezeichnet.

Wir untersuchen in dieser Arbeit experimentell die Laufzeit dreier verteilter Graphfär-
bealgorithmen im SINR-Modell mithilfe des Netzwerk-Simulationsframeworks sinalgo.
Da diese Algorithmen im Hinblick auf deren asymptotische Laufzeit beschrieben sind,
bestimmen wir zunächst jeweils die optimalen Parameter für jeden Algorithmus und
betrachten einige Verbesserungen und deren Auswirkungen auf die Laufzeit.

v

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Our Contributions . 2

2. Preliminaries 3
2.1. Terminology . 3
2.2. Sinalgo . 4
2.3. Testing Environment . 5
2.4. Metrics for Evaluation . 8

3. Simple Coloring 9

4. Moscibroda-Wattenhofer Coloring 15
4.1. MIS Broadcasting . 16
4.2. Analyzing the flow of MW Coloring . 17
4.3. Practical improvements . 20

5. Yu et al. Coloring 27
5.1. Determining optimal parameter combinations 31
5.2. Practical improvements . 33

6. Comparison 35

7. Conclusion 37

Bibliography 39

Appendix 41
A. Local Broadcasting . 41

vii

1. Introduction

Ad hoc or sensor networks lack any initial structure that is shared among every node in
the communication graph. Establishing such a structure is crucial to efficient communica-
tion mechanisms, since interference makes uncoordinated reliable communication a time
consuming task. One approach for coordinated communication that avoids interference
is to employ a Medium Access Protocol (MAC) such as Time Division Multiple Access
(TDMA). With TDMA, time is periodically divided into a series of time slots and each
node is assigned to one slot per period. A node is then only allowed to transmit in its
assigned time slot. In ad hoc or sensor networks, one approach to keep local interference at
a minimum is to set up a TDMA schedule in such a way that two neigboring nodes are
never transmitting in the same time slot. Establishing such a schedule can be reduced to
node coloring of the communication graph. Coloring a graph means assigning each node a
color. In a properly colored graph there are no two neighboring nodes that are colored
with the same color. If we associate each color with a time slot in the periodic TDMA
schedule, no two neigboring nodes are assigned the same time slot. In a communication
graph where ∆ is the maximum degree the ultimate goal is to find a node coloring using
∆ + 1 colors since this is the best coloring that is always possible to find. A node coloring
using few colors leads to a TDMA schedule with fewer time slots which means more efficient
utilization of the medium’s bandwidth.

Distributed node coloring algorithms have been studied extensively in the past. In [FPS04]
Finocchi et al. provide an overview of different distributed coloring algorithms in a message-
passing model. In message-passing models, messages are transmitted along graph edges.
The success of one specific message transmission along an edge e is independent from any
other message transmission along a graph edge that shares neither start nor end node with e.
In this work we concentrate on node coloring algorithms in the SINR model as described
in [GK00]. This model is closer to reality in that it accounts for global interference of
all senders instead of only considering local interference by neighboring senders. Any
communication scheme that wants to stand the harsh constraints of the SINR model has to
drastically restrict the number of simultaneously transmitting nodes. All of the algorithms
we study in this thesis achieve this restriction by having any node transmit only with a
certain low probability in every time slot. Dropped messages may still occur of course, so
nodes have to counteract by transmitting a message for a longer period of time instead of
just for one time slot.

The harsh properties of the SINR model also involve that a TDMA schedule obtained
from a proper node coloring does not necessarily imply that there will not be any dropped

1

1. Introduction

messages due to interference. It is still possible that a message has to be dropped because
the interference caused by senders that are further away than one hop may accumulate at
the receiver. The probability of these events, however, is reduced considerably.

1.1. Related Work
The three algorithms we evaluate are described in [FP15] (Simple Coloring), [DT10] (MW
Coloring) and [YWHL14] (Yu Coloring). Simple Coloring is based on a well-known coloring
algorithm that is covered for example in [BE13]. This algorithm is designed for message-
passing models such as the LOCAL model that is described in [Pel00]. Fuchs and Prutikin
transferred this algorithm to the SINR model, proving an asymptotical runtime bound of
O(∆ logn). Simple coloring produces a node coloring of ∆ + 1 colors.

MW Coloring is based on [MW08] which introduces a coloring algorithm that works in the
unstructured radio network model [KMW04]. Derbel and Talbi transferred the algorithm
to the SINR model, proving an asymptotical runtime bound of O(∆ logn). MW coloring
produces a node coloring of O(∆) colors. The same work also introduces a way to schedule
an interference free TDMA-like MAC protocol in the SINR model. They prove that it is
possible to simulate message-passing algorithms of runtime τ in O(∆ logn+ ∆τ) time slots
in the SINR model. A similar result has been obtained by Fuchs and Wagner [FW13].

Node coloring algorithms that work in message-passing models have been studied extensively
in the past. The current state of the art for arbitrary graphs is an O(∆) + 1

2 log∗ n
algorithm [BE09]. For growth-bounded graphs there is an algorithm described in [SW08]
that reaches the optimal runtime of O(log∗ n). Finocchi et al. ([FPS04]) evaluate the
performance of different node coloring algorithms working in a message-passing model.
They also evaluate the effect of varying the graph density or wake-up probability on
the runtime of these algorithm. Halldórsson and Mitra ([HM11]) study a more general
scheduling problem in the SINR model, transferring a centralized algorithm by [KV10]
to a distributed version. In [ALPP09] Avin, Lotker, Pasquale and Pignolet examine edge
colorings in the SINR model with uniform transmission power.

1.2. Our Contributions
In this thesis we consider three different distributed node coloring algorithms in the SINR
model and evaluate their performance in six different simulated environments. We measure
the runtime with respect to a low failure rate and the number of colors used. Since all of
these algorithms have so far only been described with regard to their asymptotical runtime,
we first determine the constant parameters that lead to optimal runtime in our testing
environments. For each algorithm we consider a few practical improvements that do not
improve the asymptotical runtime bounds but lead to better performance in our simulated
testing scenarios.

In Chapter 2 we define the testing scenarios and metrics. In Chapter 3 we describe and
evaluate the Simple Coloring algorithm. In Chapter 4 we describe and evaluate Moscibroda-
Wattenhofer-based coloring. In Chapter 5 we describe and evaluate a coloring algorithm
designed by Yu et al. Finally, in Chapter 7 we analyze the results and compare the
performance of the algorithms.

2

2. Preliminaries

2.1. Terminology
In this section we explain the most fundamental terms that are used throughout the thesis.
In later chapters where we look at the three discussed algorithms in detail, we introduce a
few more terms that are specific to each algorithm.

An undirected graph G = (V,E) is a set of nodes (or vertices) V and a set of edges
E ⊆ {{u, v};u, v ∈ V }. In this thesis we may also speak of nodes as senders and of edges
as links. We say that two nodes u and v are connected or adjacent if and only if {u, v} ∈ E.
We say that u is a neighbor of v if and only if u and v are connected. The neighborhood
of v is then the set of all neighbors of v. The degree of a node is the cardinality of its
neighborhood. The maximum degree in a graph is denoted ∆.

We say that a color i is a positive integer including zero and [i] = {0, 1, 2, . . . , i} is a
set of colors up to i inclusively. Let k be a positive integer. We then say that a graph
G = (V,E) is k-colored if each node v ∈ V is associated with a color out of the set [k]
via a mapping f : V 7→ [k]. We say that G is properly k-colored if G is k-colored and
∀{u, v} ∈ E : f(u) 6= f(v).

In this thesis we look at graphs that are defined by the positions of nodes on an Euclidian
plane. dist(u, v) denotes the Euclidian distance between two nodes u and v. The edge set of a
unit disk graph (UDG) GrB = (V,E) is then defined as follows. There is an edge {u, v} ∈ E
if and only if dist(u, v) < rB where rB is a parameter called the broadcasting range.
Therefore the neighborhood of a node v in a UDG consists of all nodes that lie within the
broadcasting range rB around v. An illustration of the process of setting up a UDG is
given in Figure 2.1.

In an unit disk graph, an independent set in terms of R is a set of nodes S ⊆ V such
that ∀u, v ∈ S : dist(u, v) > R. A maximal independent set (MIS) in terms of R is an
independent set in terms of R such that there is no node v ∈ V, v 6∈ S such that {v} ∪ S
is still an independent set in terms of R. If R = rB, we may only speak of a maximal
independent set in general. In such a MIS there are no two nodes that are neighbors in the
UDG.

The Signal-to-Interference-plus-Noise-Ratio Model (SINR) describes the success of message
transmissions in shared medium scenarios with multiple senders by accounting for the
accumulative interference and a global noise value. Let some nodes v ∈ I ⊆ V in a network

3

2. Preliminaries

rB

(a) Setting up outgoing edges of a node.
All nodes inside the radius rB are con-
nected.

(b) Edges are directed, but for every
edge there is an opposite edge, effec-
tively making the UDG an undirected
graph.

rB

Figure 2.1.: The communication graph is the unit disk graph with broadcasting range rB

transmit simultaneously with uniform power P and let N be a global noise value. A
message transmission from u to w is successful if and only if

P
dist(u,w)α∑

v∈I
P

dist(v,w)α +N
≥ β (2.1)

where α is the geometric decay of a signal and β is a threshold value depending on the
receiver’s hardware. One assumes α ∈ [2, 6] and β ≥ 1, however, advanced interference
cancellation techniques have been proposed that make it possible to have β ≤ 1 ([MA04]).

All algorithms we consider work on the communication graph of a network of senders. The
communication graph is a unit disk graph defined by the broadcasting range rB. A node
will only consider messages that are transmitted by neighboring nodes and discard all other
messages. A node is able to decide whether a message is originating at one of its neighbors
by looking at the signal strength of the message.

We say that a node is transmitting with probability p for d time slots if in each of the d time
slots the node transmits with probability p and does not transmit with probability 1− p.

Throughout this thesis we report average (arithmetic mean) values a along with the
corresponding standard deviation s in the form a± s.

2.2. Sinalgo
We use Sinalgo ([G+08]) to simulate the coloring algorithms and measure their runtime.
Sinalgo is an abbreviation for Simulator for Network Algorithms. The software provides a
framework for simulating graph-based networking scenarios. Sinalgo is open-source and it
is written in Java.

The Sinalgo framework provides a way to place any number of nodes on a plane according
to a distribution model. For our purposes we use the preexisting random distribution model,
which distributes nodes uniformly on the plane. Nodes are able to communicate on the
foundation of a communication graph that is set up according to a connectivity model.
For our purposes we use the preexisting UDG connectivity model. Message transmissions
are subject to interference according to an interference model. For our purposes we use
the preexisting SINR interference model. Messages take a certain amount of time to be

4

2.3. Testing Environment

delivered. This duration is determined by the message transmission model, which we set to
the preexisting ConstantTime transmission model with a constant transmission time of one
time slot. Lossy networks can be simulated with the help of a reliability model. For our
purposes we use the preexisting ReliableDelivery reliability model since we want to simulate
a network where messages may be dropped solely due to interference and no other reasons.
Nodes may change their position on the plane according to a mobility model. We disable the
mobility option since we are interested in stationary nodes only. Furthermore it is possible
to choose between synchronous or asynchronous execution of node implementations. For
our purposes we choose synchronous execution.

We generate a subclass of the generic Node class in order to implement the three algorithms.
Node subclasses override the Node.handleMessages() method that is called by the framework
in every time slot. The Node subclass may then access its inbox where all messages that
have arrived in that time slot are placed by the framework. Nodes are now able to perform
any computation and transmit messages by using the method Node.broadcastMessage().
Nodes may also override the Node.preStep() and Node.postStep() methods that are called
before and after each time slot correspondingly.

There is one object of type CustomGlobal per run. With the help of this object it is possible
to perform computations before running the algorithm and the object decides when the
algorithm has finished. We also use CustomGlobal in order to log the overall runtime to a
log file.

The simulation of each time slot proceeds according to the following steps. First, Cus-
tomGlobal.preRound() is called, making it possible to perform preliminary computations.
The framework then calls each node to update its set of outgoing connections according
to the connectivity model. The framework calls interference tests for all messages that
are currently on the shared medium. These interference tests are performed according to
the interference model. The framework now calls Node.preStep(), Node.handleMessages()
and Node.postStep() on every node in that order. If a node calls Node.broadcastMessage()
inside these methods, the corresponding message is placed on the shared medium, making
it subject to interference tests in the next time slot. The framework then calls Custom-
Global.hasTerminated() in order to determine if the algorithm should stop or if execution
should continue.

2.3. Testing Environment
We test the performance of the three distributed node coloring algorithms in the SINR
model. The goal is for each node to decide on a color in such a way that the resulting node
coloring is proper.

Nodes are only able to communicate via a shared medium, there are no other means
of communication. Message transmissions are therefore inherently unreliable. Efficient
communication schemes have to restrict the number of nodes that are transmitting simul-
taneously at every point in time. Since the nodes start with no shared data structures
they only transmit with certain probabilities that can vary throughout the execution of
the algorithm.

In our environment, all nodes operate in a synchronous manner, i.e. there are time slots
in which nodes are transmitting and receiving. All messages that are transmitted in a
certain time slot will be received in the following time slot, if the SINR constraint holds
and if sender and receiver are neighbors in the unit disk graph defined by the broadcasting
range rB. The distance between communicating nodes has no influence on the transmission
time. The time slots are equal in duration and long enough for every node to finish its
calculations.

5

2. Preliminaries

Every node in the graph holds a globally unique identifier, which we call its ID. Before
startup, every node is given the global maximum degree of the communication graph ∆ and
the total number of participating nodes n. This information is required by the evaluated
algorithms.

Figure 2.2.: A unit disk graph with 500 nodes and a broadcasting range of rB = 40 on an
area of A = (1000, 1000)

Figure 2.3.: A unit disk graph with 1000 nodes and a broadcasting range of rB = 40 on an
area of A = (1000, 1000)

A testing scenario is sufficiently defined by the number of participating nodes n, the plane
A(width, length) on which the nodes are placed, the broadcasting range rB and the SINR
parameters α, β and N . We define six different configurations of these parameters in which
we test the three algorithms. All six configurations use a square plane of 1000m by 1000m
and all of them use rB = 40m. For SINR parameters we use β = 0.7, N = 0 and α ∈ {2, 6}.
The SINR constraint (2.1) leads to an upper bound for the broadcasting range. We call
this bound the transmission range rT ≤ (P

βN)
1
α . This bound is only defined for N > 0,

however. In a scenario without any global noise, there is no upper bound for rB.
For the number of nodes we choose n ∈ {500, 1000, 1500}. The nodes are randomly placed
on the surface area in an uniform way. On the given plane A(1000m, 1000m) with the
broadcasting range rB = 40m that means that we have one scenario (n = 500) where the

6

2.3. Testing Environment

Figure 2.4.: A unit disk graph with 1500 nodes and a broadcasting range of rB = 40 on an
area of A = (1000, 1000)

communication graph is disjointed and consists of many disconnected smaller graphs, we
have one scenario (n = 1500) where usually the communication graph is fully connected
and we have one scenario (n = 1000) that is a compromise between these two extremes.
Figure 2.2, Figure 2.3 and Figure 2.4 show communication graphs of size 500, 1000 and
1500 on the surface area of A(1000m, 1000m) with a broadcasting range of rB = 40m.
Please note that if we place more nodes on the same surface area the graph becomes denser
and therefore the maximum degree ∆ increases. All tested algorithms are asymptotically
bounded as a function of both n and ∆. In our specific scenarios if we increase n, ∆
increases as well. The average maximum degree for n = 500 is 7.9± 1.0, for n = 1000 it is
13.0± 1.3 and for n = 1500 it is 17.3± 1.4.

For our evaluation we vary α because one of the three evaluated algorithms varies the
broadcasting range throughout execution. Since higher α values means stronger signal decay
this algorithm might benefit from α = 6 more than the other two. We do not vary β since
we determined in a preliminary evaluation that no algorithm would particularly benefit
from lower or higher β values. For practical purposes we choose β to be comparatively
low since higher values would lead to impractically high runtimes. The same argument
applies to the noise value N . With a global noise value of N = 0, a scenario where every
node is transmitting with the same power P is equivalent to a scenario where every node
is transmitting with the same power λP for any scalar λ. We can therefore freely choose
the transmission power P ← 1.

The six testing scenarios are summarized in Table 2.1.

Table 2.1.: Summary of testing scenarios
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
β 0.7 0.7 0.7 0.7 0.7 0.7
N 0 0 0 0 0 0
A (1000m)2 (1000m)2 (1000m)2 (1000m)2 (1000m)2 (1000m)2

rB 40 40 40 40 40 40
Average ∆ 7.9± 1.0 7.9± 1.0 13.0± 1.3 13.0± 1.3 17.3± 1.4 17.3± 1.4

7

2. Preliminaries

2.4. Metrics for Evaluation
All nodes are uniformly distributed on the plane A. Every node is being woken up in time
slot t0 = 0. We measure the number of time slots it takes until the communication graph
is properly colored. If the algorithm comes to a halt but the communication graph is not
colored properly, we count the run as a failure. This might happen if urgent message
transmissions do not succeed. We tune the parameters of the algorithms in such a way
that the success rate s ≥ 99%.

Apart from the number of time slots it takes an algorithm to produce a proper node coloring,
another interesting metric is the number of used colors. We do not have to measure the
number of colors since we know it a priori for all evaluated algorithms. Nevertheless we
want to keep this metric in mind, since in general it is harder to produce a proper coloring
with fewer colors and such a coloring is more useful for the resulting TDMA schedule.

8

3. Simple Coloring

The Simple Coloring algorithm as described by Fuchs and Prutkin in [FP15] consists of
two separate parts. In the first part a proper node coloring of 4∆ colors is computed. In
the second part the number of colors is reduced to ∆ + 1. The general idea is to quickly
erect a non-optimal coloring in the first part that is then used to coordinate medium access
in the second part. In the SINR model every message transmission is only successful with
a certain (low) probability. In Simple Coloring, nodes counteract this problem by drawing
colors from a comparatively large set of colors in a random manner. The chance of two
neighboring nodes choosing the same color from that set is very low. It is still possible of
course, so nodes do have to communicate their choices. However, since conflicts are rare
and if a conflict occurs it can be resolved by both conflicting nodes, it is not urgent that
every message is received with certainty.

Algorithm 3.1: Rand4DeltaColoring for node v
Data: Color of node v cv, color set Fv
// Initialization

1 Fv ← [4∆]
2 cv ← Fv.getRandom()

// Code
3 for d1 time slots do
4 if cv 6∈ Fv then
5 cv ← Fv.getRandom()
6 Fv ← [4∆]
7 transmit a message containing cv with probability p1
8 foreach received color cw from a neighbor w do
9 Fv ← Fv \ {cw}

Simple Coloring depends on four parameters p1, d1, p2 and d2. We later explain how to
find a parameter combination that leads to the best overall performance of this algorithm.

In the first part of the algorithm (Rand4DeltaColoring) as shown in Algorithm 3.1,
every node v draws a random color cv from a set of colors Fv of size 4∆ + 1. It then
transmits the chosen color with probability p1 in every time slot until the algorithm comes
to a halt after d1 time slots. If a message is received in which a neighbor u tells v about

9

3. Simple Coloring

Algorithm 3.2: ColorReduction for node v
Data: The color obtained from Rand4DeltaColoring cv and a color set Fv
// Initialization

1 Fv ← [∆]
// Code

2 foreach color ci = i ∈ [4∆] do
3 if cv 6= i then
4 listen for d2 time slots
5 foreach received color cw from a neighbor w do
6 Fv ← Fv \ {cw}

7 else
8 cv ← Fv.getRandom()
9 transmit a message containing cv with probability p2 for d2 time slots

its color cu, v has to remove that color from its color set. In the next time slot v checks
whether cv ∈ Fv. If it is not, v has to draw a new random color and transmit that color to
its neighbors again. After a certain amount of time slots d1, all nodes will have decided on
a final color and no more conflicts occur. That is when the nodes transition to the second
part of the algorithm.

In the second part (ColorReduction) as shown in Algorithm 3.2, nodes only transmit
during a time interval that is defined by the color on which they decided in the first part.
Nodes with color 0 only transmit during the first time interval, nodes with color 1 only
transmit during the second one and so on. In consequence, the number of concurrently
transmitting nodes is reduced significantly. In addition, neighboring nodes never transmit
at the same time since the colors from Rand4DeltaColoring already induce a proper
node coloring. As a result, nodes are able to transmit with much higher probabilities p2 in
the second part of the algorithm. Every round is of length d2.

At the beginning of ColorReduction, a node initializes its color set Fv as Fv ← [∆] so
that the resulting coloring is of size ∆ + 1. In its active round a node chooses a random
color from that set and transmits its final color with probability p2. During all the other
time intervals, v only listens for color messages and removes the received colors from its
color set Fv accordingly. Since a proper ∆ + 1 coloring is always possible, even the nodes
that are only allowed to act at the very end will still have at least one color left that they
can draw from their color set.

In order to understand the interplay of transmitting probabilities and durations, we
introduce the notion of a local broadcasting round. Since we want to restrict the total
number of concurrently transmitting nodes due to the SINR constraint, nodes have to
transmit with a low transmission probability p in every time slot. Assume every node is
transmitting with the same transmission probability p. After a certain period of time d,
that we call the transmission duration, all messages will have arrived successfully at their
respective recipient. We call the act of transmitting a single message with probability p for d
time slots (the simulation of) a local broadcasting round. A very simple way of translating
any algorithm that relies on reliable communication, for example any message-passing
algorithm, to the SINR model is to communicate only via local broadcasting rounds. This
has a big disadvantage though, since local broadcasting rounds always account for the worst
case. On average, a message arrives successfully after a shorter period of time. The sender,
however, does not know whether its message has already been received and has to assume
the worst case scenario. The goal is then to search for the optimal transmission probability

10

that leads to the lowest transmission duration with respect to a local broadcasting round.
If the transmission probability is too low, we waste bandwidth because the medium is
not saturated. On the other hand, if the transmission probability is too high, too many
messages have to be dropped due to high interference.

Rand4DeltaColoring does not use entire local broadcasting rounds in order to commu-
nicate color choices. We are still interested in the optimal transmission probability p1 that
takes advantage of the full potential of the medium without causing too much interference.
In order to determine this optimal transmission probability we set up Experiment 3.3.

Experiment 3.3: Local Broadcasting
Input : Set of transmission probability values p defined by a lower bound pstart,

an upper bound pend and an increment pstep, number of iterations j
Output : A mapping of transmitting probabilities p to corresponding

transmission durations d
Environment : A unit disk graph G = (V,E) of |V | = n nodes on an area A with a

broadcasting range rB and SINR parameters α, β and N
Let max() be the 99.9th percentile of a set.
For every input probability value we run j iterations of the experiment. Let p be the
currently tested probability value and let i be the current test iteration. Every node is
transmitting its ID in every time slot with probability p. For a node v we note the
number of time slots dv,i,p it takes until the node’s ID has been successfully received by
all of its neighbors. At the end of test run i we note the maximum duration over all
nodes maxi,p ← max(dv,i,p|v ∈ V) for probability p. The result of the experiment is a
mapping of each transmission probability p to the maximum over all corresponding test
runs maxp ← max(maxi,p |i ∈ [1, j]).

We run Experiment 3.3 adopting the probabilities given in Table 3.1 with 1000 iterations
each and note the 10 lowest resulting transmission durations as well as the corresponding
transmitting probabilities. The best results are shown in Table 3.2, the top 10 results
are shown in Table A.1 in the appendix. In order to get an overview of the interplay of
n and the local broadcasting behaviour, refer to Figure 3.1 and Figure 3.2. We can see
that determining an optimal transmission probability is more important in the denser
graphs. For n = 1500, if we pick a probability value that is only slightly too high or
low, transmission durations increase dramatically. This aligns well with our intuition.
Independently from the number of nodes, if p approaches zero, the transmission duration
tends towards infinity because if nodes are transmitting very seldomly, nothing happens.
On the other side, since interference is accumulative, more nodes correspond to more
interference and therefore lower optimal transmitting probabilities. This factor pushes the
range of acceptable transmitting probabilities closer towards zero.

Another expected result of the local broadcasting experiment is that a local broadcasting
round takes considerably less time in scenarios where α = 6. A stronger signal decay means
less interference from nodes farther away.

We now run Rand4DeltaColoring adopting the top ten probability values obtained from
the local broadcasting experiment (Table A.1). The results are shown in Table 3.3. We
set p1 as the top probability value from the Rand4DeltaColoring experiment and set d1
as the corresponding maximum runtime. The final values for p1 and d1 are summarized in
Table 3.5.

We notice that Rand4DeltaColoring takes considerably less time than the minimum
transmission duration obtained from the local broadcasting experiment. This speedup is

11

3. Simple Coloring

due to the randomized manner in which nodes choose their colors in Rand4DeltaColoring.
It is not necessary that every node transmits its color successfully to every neighbor.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Sending probability

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Ti
m

e
sl

ot
s t

o
fin

is
h

n = 1500

n = 1000 n = 500

with alpha = 2
Local Broadcasting

Figure 3.1.: Comparison of local broadcasting results with n ∈ {500, 1000, 1500} and α = 2

Table 3.1.: Parameter ranges for Local Broadcasting
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6

pstart 0.010 0.02 0.010 0.01 0.005 0.01
pend 0.150 0.35 0.070 0.30 0.050 0.20
pstep 0.002 0.01 0.001 0.01 0.001 0.01

Iterations 1000 1000 1000 1000 1000 1000

Table 3.2.: Best results of Local Broadcasting
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
p 0.088 0.14 0.047 0.1 0.028 0.08
d 177.0 126.0 385.0 245.0 600.0 361.0

For ColorReduction we need two more parameters p2 and d2. Unlike in the first part of
Simple Coloring the relationship of p2 and d2 really is that of a local broadcasting round.
ColorReduction works on the foundation of rounds. Each round consists of d2 time slots.
A node is only allowed to transmit in the single round associated with the color it obtained

12

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Sending probability

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Ti

m
e

sl
ot

s t
o

fin
is

h

n = 1500

n = 1000

n = 500

with alpha = 6
Local Broadcasting

Figure 3.2.: Comparison of local broadcasting results with n ∈ {500, 1000, 1500} and α = 6

Table 3.3.: Results of Rand4DeltaColoring
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
p1 0.086 0.150 0.048 0.130 0.032 0.100

Runtime 72.0 41.0 142.0 72.0 230.0 106.0

Table 3.4.: Parameter ranges for Color Reduction
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6

pstart
2 0.30 0.30 0.30 0.30 0.30 0.30
pend

2 0.70 0.70 0.80 0.80 0.70 0.70
pstep

2 0.01 0.01 0.01 0.01 0.04 0.04
dstart

2 6 2 2 2 14 14
dend

2 30 30 30 30 24 24
dstep

2 2 2 2 2 2 2

in Rand4DeltaColoring. Furthermore the set of colors is now only of size ∆ + 1. It is
therefore urgent that every message arrives successfully. The coloring obtained in the first
part helps to reduce the transmission duration d2. In every round, only one out of 4∆ + 1

13

3. Simple Coloring

Table 3.5.: Results of Simple Coloring with Color Reduction
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
p1 0.086 0.150 0.048 0.130 0.032 0.100
d1 72.0 41.0 142.0 72.0 230.0 106.0
p2 0.56 0.63 0.61 0.56 0.50 0.58
d2 14 14 16 16 20 20

Average runtime 561.3 534.3 1046.0 947.94 1690.0 1577.8
±59.6 ±62.6 ±84.8 ±78.5 ±106.3 ±130.6

nodes is transmitting. Furthermore, no two neighboring nodes are transmitting in the same
round. Nodes can therefore adopt higher transmitting probabilities p2.

We determine the values for p2 and d2 by adopting the values given in Table 3.4 and
evaluating the resulting overall runtimes for Simple Coloring. If the duration d2 is too
low for the current value of p2, the algorithm might fail. We disregard all combinations
with a failure rate of more than 1%. The remaining combinations are sorted by the total
runtime they yield. The best results are summarized in Table 3.5. The runtimes in this
table are also the final results of our evaluation of Simple Coloring. In order to get a feel
for these results, we again adduct the results from the local broadcasting experiment given
in Table 3.2. If we look at Scenario 1 for example, we notice that the runtime of Simple
Coloring is only about three times as high as the duration of a local broadcasting round.
We could therefore intuitively say that Simple Coloring takes only three successful message
transmissions between each pair of sender and receiver in order to set up a proper node
coloring.

Simple Coloring has a very practical feature. Since every node knows about the total
number of nodes in the graph n and the maximum degree ∆, it can deduce the runtime of
the coloring algorithm a priori. Nodes can deduce p1, d1, p2 and d2 from n and the total
runtime is always d1 + (4∆ + 1)d2.

Simple Coloring is already as simple as possible, so the only room for improvements is in
fine-tuning the parameters. In our implementation, we see that the ColorReduction
part takes considerably more time than the Rand4DeltaColoring part. One approach
for further improvement could be to balance this unevenness. In Rand4DeltaColoring,
instead of calculating a 4∆-coloring, we could calculate a bc∆c-coloring for any c ∈ [1..4].
Of course, this would take longer, but in consequence, ColorReduction would take less
time, hopefully in such a way that overall runtime is reduced. Since Simple Coloring is
very fast already, we do not evaluate such improvements in this thesis.

14

4. Moscibroda-Wattenhofer Coloring

MW Coloring is based on a coloring algorithm by Moscibroda and Wattenhofer ([MW08])
which is set in the so called graph-based model. In [DT10] the algorithm is transferred to
the SINR model by Derbel and Talbi. In the SINR model the algorithm has an asymptotical
upper runtime bound of O(∆ logn) and is therefore at par with Simple Coloring. The
number of assigned colors however is only asymptotically bounded by O(∆) in contrast to
Simple Coloring which always produces a (∆ + 1)-coloring.

At the beginning of MW Coloring a maximal independent set is being constructed. All
nodes compete for being in the MIS by means of a counting mechanism. Every node
holds an integer counter that is incremented or reset according to a set of rules. A node
whose counter exceeds a certain threshold wins the counting competition and enters the
MIS. Nodes that are in the MIS are called leaders and nodes that are not in the MIS are
called background nodes. If a node v receives a message from a leader node w it becomes a
background node and bookmarks w as its assigned leader L(v)← w. Background nodes ask
their respective leaders for a color. A leader distributes ranges of colors to its requesting
neighbors in an ascending manner. Since a background node may have a neighboring
background node that has been assigned the same color range, background nodes must
now compete for colors inside their assigned ranges. This competition works in the same
way as the initial competition for being in the MIS.

There are four different messages that are being exchanged. M i
A(w, cw) is telling the receiver

that the sender w is competing for color i and the counter value of w is currently cw.
M i
C(w) is telling the receiver that the sender w has decided on a final color i. A spin-off of

that type of message is M0
C(v, w, tc) which is sent by a leader v to a background node w as

an answer to a color request where tc is the assigned color. MR(v, w) is a color request
message from the background node v to its leader w.

Each node can be in three state classes Ai (Competing), R (Requesting) or Ci (Colored
and in the case of i = 0 also Leading). State A0 is special in that different constants are
used than in other Ai states. State C0 is special in that it is only entered by leaders and
thus holds the leader code.

MW Coloring depends on four parameters pleader, pbackground, dleader and dbackground. In
Section 4.2 we explain how to find a parameter combination that leads to the best overall
performance of this algorithm.

State A0 is the state in which all nodes wake up in the beginning and compete for leadership.
The pseudo-code for Ai is shown in Algorithm 4.2. Since in our environment, all nodes

15

4. Moscibroda-Wattenhofer Coloring

wake up at the same time, every node skips the listening part (Line 7) and starts with the
counting part (Line 16) right away. During the listening part a node does not transmit,
which reduces interference. Nodes only listen for counter updates or color messages. Note
that nodes do not skip the listening part in Ai>0. After listening for dbackground time slots a
node is competing for color i and therefore in the case of i = 0 for leadership. The counting
mechanism is the heart of MW Coloring. It works on the foundation of local broadcasting
rounds. At the beginning of the counting procedure, a node v chooses cv = 0 (Line 17).
In every following time slot, this counter is incremented by one (Line 19). The goal is to
reach the threshold of dbackground which means transitioning to a Colored state Ci (Line 23).
Node v tracks the counters of all neighboring nodes. Let w be a neighbor of v, then dv(w)
denotes the counter value that v currently knows of w. The competitors’ counters are also
incremented in every time slot (Line 21). Node v transmits its counter with probability
pbackground in every time slot (Line 24). If v receives a counter value cw from w, it updates
its dv(w) record and checks if the counter conflicts with its own counter cv (Line 32). A
conflict occurs if cw is too close to cv: |cv − cw| ≤ dleader. In the case of a conflict, v has
to choose a new counter value which has to be negative and must not conflict with any
neighbors’ counter values it knows of. This way it is guaranteed that counter values are
always at least dleader steps apart from each other. That means if a node v successfully
hurdles the threshold dbackground it takes the fastest neighbor at least dleader time slots to
reach the threshold as well. Before that can happen, however, node v successfully transmits
a M i

C(w) message that tells a competing neighbor w that v won the competition thus
forcing w to acknowledge its defeat and enter state R in the case of i = 0 or state Ai+1 in
the case of i > 0 (Line 27).

Leaders transition to state C0 while background nodes transition to R (Algorithm 4.4)
where they request a color range from their respective leaders. As soon as they have
successfully obtained a color range, they transition to Ai>0 where i defines their assigned
range. In Ai>0 background nodes are competing for a color within their range and transition
to Ci as soon as they decide on a final color.

Background nodes in Ci (Algorithm 4.3) only transmit their final color for the remainder
of the algorithm. Leaders in C0 add requesting background nodes to a queue Q (Line 10).
If said queue is empty, a leader v advertises its leadership via a M0

C(v) message (Line 12).
Otherwise it dequeues a node w from Q and assigns this node a color range defined by tc
via a M0

C(v, w, tc) message (Line 17). By incrementing tc (Line 14) it is guaranteed that
every requesting node is assigned a different color range. The process of color requests and
responses is illustrated in Figure 4.1.

Since we are not interested in proving asymptotical runtime bounds in this thesis, we reduce
the number of constants to four. These constants are dbackground, dleader, pbackground and
pleader. The naming of the four parameters already suggests the general idea. Leaders and
background nodes transmit with different probabilities which leads to different transmission
durations. We might want dleaderto be lower than dbackground because multiple background
nodes in state R are waiting for a single leader to assign colors to them. The total
runtime of the algorithm might therefore depend more on the efficient communcation from
leaders to background nodes than the other way around. [DT10] suggests a ratio of ∆, i.e.
pleader = ∆pbackground and dleader = 1

∆dbackground. In practice this theoretical ratio is too
high. We set up a separate experiment in order to determine optimal values for dbackground,
dleader, pbackground and pleader.

4.1. MIS Broadcasting
We set up Experiment 4.1 (MIS Broadcasting) that is quite similar to the local broad-
casting experiment. At the beginning of the experiment, a maximal independent set

16

4.2. Analyzing the flow of MW Coloring

(a) Nodes v and w lose the competition
for leadership. Node q is the leader of v
and r is the leader of w. Both v and w
request a color range from their respec-
tive leaders.

(b) Both leaders assign the color range
[2 · 18, 3 · 18 − 1] = [36, 53] defined by
tc = 2 to their respective requesters.

v w
q r

⊳ MR(v, q)
MR(w, r) ⊲ MC(q, v, 2) ⊲ ⊳ MC(r, w, 2)

v w
q r

(c) Both v and w compete for the first
color in range 2, which is 2 · 18 = 36.

v w
q r

⊳ M36
A (w, cw)

M36
A (v, cv) ⊲

(d) Node w wins the competition,
chooses 36 as its final color and trans-
mits a Color message to v, which has to
proceed to the next color 37 and com-
pete again.

v w
q r

⊳ M36
C (w)

Figure 4.1.: The process of color requests, leader responses and competition

is computed greedily. Again, all nodes transmit their IDs to their neighbors. In con-
trast to Local Broadcasting, nodes in the MIS adopt a different transmission prob-
ability pleader than all other nodes which adopt pbackground. We pick a random leader
node and a random background node and note the number of time slots it takes for
them to successfully broadcast their IDs. We run the experiment adopting the proba-
bility values given in Table 4.1 for 500 iterations each. In contrast to Simple Coloring,
in MW Coloring we are interested both in the maximum transmission duration and
the average transmission duration. Therefore Experiment 4.1 gives us a mapping of
(pleader, pbackground)→ (dleader, dbackground, d

avg
leader, d

avg
background).

4.2. Analyzing the flow of MW Coloring
In order to pick the optimal combination of transmitting probabilities, we have to weight the
4-tuples obtained from MIS Broadcasting according to the influence these values have
on the total runtime of MW Coloring. For example, if we determine that dbackground has
four times as much influence on the total runtime as dleader we want to weight dbackground
four times as high. We therefore analyze the flow of sample runs of MW Coloring. An
overview of our analysis is shown in Figure 4.2 and Figure 4.3.

The total runtime of MW Coloring depends directly on the time it takes the last background
node to decide on its final color. Since the runtime of the slowest background node depends
on all nodes in its vicinity which again depend on their respective neighbors, we have to
consider the runtime of every node in the graph. It simplifies our analysis drastically if we

17

4. Moscibroda-Wattenhofer Coloring

Experiment 4.1: MIS Broadcasting
Input : Set of transmission probability values pleaderdefined by a lower bound

pstart
leader, an upper bound pend

leader and an increment pstep
leader and a set of

transmission probability values pbackgrounddefined by a lower bound
pstart

background, an upper bound pend
background and an increment pstep

background,
number of iterations j

Output : A mapping of transmission probability tuples (pleader, pbackground) to
corresponding maximum and average transmission duration tuples
(dleader, dbackground, d

avg
leader, d

avg
background)

Environment : A unit disk graph of n nodes on an area A with a broadcasting range
rB and SINR parameters α, β and N

At the beginning of this experiment, a MIS is calculated using a greedy algorithm.
Nodes inside the MIS adopt pleader as transmission probability, nodes not in the MIS
adopt pbackground.
For every combination of input probabilities we run j iterations of the experiment.
Let i be the current iteration.
Every node is broadcasting its ID in every time slot with its assigned probability. We
randomly choose a leader v and a background node w to watch. We measure the
number of time slots it takes until all neighbors of v have received v’s ID successfully.
We also measure the number of time slots it takes until all neighbors of w have
received w’s ID successfully.
By running multiple iterations of this experiment, we obtain a maximum as well as an
average transmission duration for leaders and background nodes, which we enter into
the output tuple (dleader, dbackground, davg

leader, d
avg
background).

Table 4.1.: Parameter ranges for MIS Broadcasting
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6

pstart
leader 0.040 0.080 0.020 0.020 0.010 0.040
pend

leader 0.140 0.240 0.100 0.100 0.060 0.200
pstep

leader 0.010 0.010 0.005 0.005 0.005 0.010
pstart

background 0.040 0.080 0.020 0.020 0.010 0.040
pend

background 0.140 0.240 0.100 0.100 0.050 0.200
pstep

background 0.010 0.010 0.010 0.010 0.005 0.010
Iterations 500 500 500 500 500 500

A0 C0

tleader(A0) = x · dbackground

Figure 4.2.: Analysis of leaders in MW Coloring

look at the control flow of an average node starting at time t = 0 and going on until the
node decides on a final color.

Let tleader(S) be the time an average leader spends in state S. Let tbackground(S) be the time
an average background node spends in state S. For all combinations of pleader, pbackground,

18

4.2. Analyzing the flow of MW Coloring

A0 R Ai>0 Cj

y · dbackground + davgleader
davgbackground + s · dleader z · dbackground

Figure 4.3.: Analysis of background nodes in MW Coloring

dleader, dbackground, davg
leader and davg

background, that we used in MIS Broadcasting, we run
four iterations of MW Coloring adopting these parameters. Every node logs the time
it spends in each state it is going through. We therefore learn the values for tleader(A0),
tbackground(A0), tbackground(R) and tbackground(Ai>0) by examining the log of MW Coloring.
Please note that the value for tbackground(Ai>0) is a sum over all i > 0 as depicted in
Figure 4.3.

We now have to decide how exactly dleader, dbackground, davg
leader and davg

background contribute
to tleader(A0), tbackground(A0), tbackground(R) and tbackground(Ai>0). In order to do this we
analyze leaders and background nodes separately. In the following paragraphs, let l be the
number of leaders and let b be the number of background nodes in a greedily calculated
MIS for each testing scenario.

The analysis for leader nodes is simple. An overview is given in Figure 4.2. Leaders
only perform a single transition from A0 to C0. They decide on their final color right
after they transition to C0. The time it takes leaders to leave state A0 only depends on
dbackground since this is the threshold they have to reach. For an average leader node it
takes tleader(A0) = x · dbackground time slots in order to reach this threshold.

The analysis for background nodes is more involved. An overview is given in Figure 4.3. In
state A0, nodes that end up as background nodes lose the competition for leadership. They
get informed about their defeat by receiving a message from a neighboring leader. That
message takes davg

leader time slots to be delivered. The remainder of the time is therefore spent
counting and listening which both counts towards dbackground. For an average background
node it therefore takes tbackground(A0) = y · dbackground + davg

leader in order to leave state A0
and enter state R.

When a node is in state R it transmits a request to its leader which takes an average time
period of davg

background. If the total number of leaders is l and the total number of background
nodes is b then an average leader has to serve b/l background nodes. The average time it
takes a leader to serve a background node in state R is s · dleader where the factor s can
also be calculated as follows.

s = 1 + 2 + · · ·+ b/l

b/l
=

(b/l)2+(b/l)
2
b/l

= (b/l + 1)
2

For an average background node it therefore takes tbackground(R) = davg
background + s · dleader

in order to leave state R.

After a background node has been assigned a color range it transitions to a state Ai
with i > 0. For the remainder of the algorithm background nodes only work with dbackground
so all the time spent in Ai>0 counts towards dbackground. An average background node
spends tbackground(Ai>0) = z · dbackground time slots in Ai>0.

We rearrange the obtained equations and get the values for x, y, s and z.

19

4. Moscibroda-Wattenhofer Coloring

x = tleader(A0)
dbackground

y = tbackground(A0)− davg
leader

dbackground

s =
tbackground(R)− davg

background
dleader

z = tbackground(Ai>0)
dbackground

The weighting we get from x, y, s and z is then as follows.

wdbackground = l

l + b
· x+ b

l + b
· y + b

l + b
· z

wdleader = b

l + b
· s

wdavg
background

= b

l + b
· 1

wdavg
leader

= b

l + b
· 1

We calculate these values for every run of MW Coloring adopting the parameter combi-
nations obtained from MIS Broadcasting. An extract of these results for Scenario 3
can be seen in Table 4.2. By looking at this extract, we already notice a trend. The
weighting seems to depend very little on the transmission probability and duration values.
In Table 4.3 we list the normalized average weightings as well as the standard deviation
over all samples. Keep in mind that the values in Table 4.2 are averaged over only four
runs each.

Now we have two possibilities to weight the tuples from MIS Broadcasting. We can
either use the individual weightings as shown in the extract in Table 4.2 or we can use
the averaged weightings shown in Table 4.3. We sort the combinations according to
the individual weightings. We take the top five combinations of the individually ranked
combinations and perform 100 iterations of the MW algorithm with each of these. We now
sort the combinations according to the average weighting. We also take the top five of the
average ranked combinations and perform 100 iterations of the MW algorithm with each of
these as well. The best results for each testing scenario are shown in 4.4. For every testing
scenario, the best individually ranked parameter combination also yields the best overall
runtime when applied to MW Coloring. For every testing scenario with the exception of
Scenario 2, these combinations are also the best average ranked combinations. In the case
of Scenario 2, the best individually ranked combination is the third-best average ranked
combination.

4.3. Practical improvements
The original algorithm is described in a way that makes it easy to prove its asymptotical
upper bound. There are some improvements that do not improve on any theoretical bounds
but yield a better runtime in our testing scenarios.

First of all, we abandon the listening phase in state Ai. Nodes waste a lot of time listening
for conflicting color messages without much benefit.

20

4.3. Practical improvements

Table 4.2.: Extract of results for MW weighting in testing scenario 3
pleader pbackg dleader dbackg davg

leader davg
backg wdbackground wdleader wdavg

background
wdavg

leader

0.050 0.02 222 646 25 64 1.114 3.807 0.711 0.711
0.050 0.03 255 449 26 46 1.200 4.194 0.716 0.716
0.050 0.04 272 368 28 38 1.214 4.336 0.709 0.709
0.050 0.05 540 523 31 35 1.211 4.006 0.707 0.707
0.050 0.06 459 519 35 33 1.208 4.451 0.706 0.706
0.050 0.07 836 584 41 35 1.232 4.610 0.706 0.706
0.050 0.08 930 1033 51 39 1.261 4.520 0.707 0.707
0.050 0.09 1746 1457 68 47 1.241 4.210 0.703 0.703
0.055 0.02 253 692 23 64 1.143 3.822 0.712 0.712
0.055 0.03 305 466 24 47 1.118 4.201 0.707 0.707
0.055 0.04 247 405 26 39 1.214 4.151 0.710 0.710
0.055 0.05 338 440 29 35 1.199 4.255 0.710 0.710
0.055 0.06 389 654 33 34 1.237 4.246 0.710 0.710
0.055 0.07 931 929 39 36 1.201 4.325 0.704 0.704
0.055 0.08 1851 1347 50 41 1.202 4.505 0.702 0.702

Table 4.3.: Results of the MW analysis
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6

wdleader
0.111 0.108 0.178 0.175 0.224 0.214
±0.008 ±0.007 ±0.01 ±0.011 ±0.013 ±0.014

wdbackground
0.645 0.655 0.615 0.620 0.596 0.611
±0.052 ±0.053 ±0.035 ±0.046 ±0.039 ±0.043

wdavg
leader

0.122 0.118 0.103 0.102 0.09 0.087
±0.001 ±0.001 ±0.001 ±0.001 ±0.0004 ±0.0005

wdavg
background

0.122 0.118 0.103 0.102 0.09 0.087
±0.001 ±0.001 ±0.001 ±0.001 ±0.0004 ±0.0005

Inspired by the heavy usage of randomization in Simple Coloring we introduce random
color range allocation for MW Coloring. In the leader code of Algorithm 4.3, instead of
assigning color ranges in an ascending manner, we randomize these decisions by picking tc
from the interval [0,∆]. We have to keep track of the color ranges we assigned already,
so we introduce another integer set Gv for every leader v. Gv is initialized as Gv ← [∆]
and every time a leader dequeues a node from Q, it randomly picks and removes a color
from Gv. The effect of this improvement is the same as with the randomization in Simple
Coloring. If all leaders distribute color ranges in an ascending manner, it is very likely
that two neighboring background nodes are assigned the same color range and thus have
to compete for a color inside that range. If the color range distribution is randomized
however, less of these conflicts occur.

Another limitation that we want to overcome is that leaders have to transmit for the total
duration of a local broadcasting round when they distribute color ranges. A background
node may have received the message a long time ago, but the corresponding leader is still
transmitting. After a background node v receives the message M0

C(L(v), v, tc) it transitions
to state Atc·18 where it transmits aM i

A(v, cv) message. Leaders can safely stop transmitting
as soon as they receive such a message. This way the next node in the leader’s queue is
served faster.

The improved leader code is shown in Algorithm 4.5.

21

4. Moscibroda-Wattenhofer Coloring

Table 4.4.: Results of the evaluation of MW Coloring
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6

pleader 0.060 0.150 0.050 0.080 0.050 0.070
pbackground 0.110 0.160 0.040 0.100 0.025 0.080

dleader 221 91 272 226 270 287
dbackground 138 113 368 207 616 283

Average runtime 1909.7 1215.8 5589.7 3393.5 10567.4 6032.2
±239.8 ±122.7 ±533.7 ±346.6 ±812.3 ±417.9

We implement all these features and improvements and rerun the experiment. The results
are shown in Table 4.5. If we compare these results with the results of the unimproved
version of MW Coloring in Table 4.4, we see that our improvements have a big impact on
the average runtime of the algorithm. In every testing scenario we have a speedup of at
least 20%. In Chapter 6 we compare these results in more detail.

22

4.3. Practical improvements

Algorithm 4.2: MW Coloring for node v in state Ai
Data: Set of competing nodes Pv, dictionary dv(w) mapping counter values to

nodes, dictionary L(w) mapping leaders to nodes, own counter value cv
// Initialization

1 Pv ← ∅
2 if i = 0 then
3 d← dleader
4 Asuc ← R

5 else
6 d← dbackground
7 Asuc ← Ai+1

// Listening
8 for dbackground time slots do
9 forall w ∈ Pv do

10 dv(w)← dv(w) + 1
11 if M i

A(w, cw) received then
12 Pv ← Pv ∪ {w}
13 dv(w)← cw

14 if M i
C(w) received then

15 L(v)← w
16 transitionTo(Asuc)

// Counting
17 cv ← χ(Pv), where χ(Pv) is the maximum value such that

χ(Pv) 6∈ {dv(w)− d, dv(w)− d+ 1, . . . , dv(w) + d− 1, dv(w) + d} for each w ∈ Pv
and χ(Pv) ≤ 0

18 while state = Ai do
19 cv ← cv + 1
20 forall w ∈ Pv do
21 dv(w)← dv(w) + 1
22 if cv ≥ dbackground then
23 transitionTo(Ci)
24 transmit M i

A(v, cv) with probability pbackground
25 if M i

C(w) received then
26 L(v)← w
27 transitionTo(Asuc)
28 if M i

A(w, cw) received then
29 Pv ← Pv ∪ {w}
30 dv(w)← cw
31 if |cv − cw| ≤ dleader then
32 cv ← χ(Pv)

23

4. Moscibroda-Wattenhofer Coloring

Algorithm 4.3: MW Coloring for node v in state Ci
Data: Color of node v colorv, color counter tc, queue of neighboring nodes Q
// Initialization

1 colorv ← i
2 tc ← 0
3 Q ← ∅

// Code
4 if i > 0 then
5 for the remainder of the algorithm do
6 transmit M i

C(v) with probability pbackground

7 else
8 for the remainder of the algorithm do
9 if MR(w, v) received and w 6∈ Q then

10 Q.enqueue(w)
11 if Q.empty() then
12 transmit M0

C(v) with probability pleader

13 else
14 tc ← tc + 1
15 Let w ← Q.dequeue()
16 for dleader time slots do
17 transmit M0

C(v, w, tc) with probability pleader

Algorithm 4.4: MW Coloring for node v in state R
Data: Color of node v colorv, color counter tc, queue of neighboring nodes Q

1 while in state R do
2 transmit M0

R(v, L(v)) with probability pbackground
3 if M0

C(L(v), v, tc) received then
4 transitionTo(Atc·18)

Table 4.5.: Results of the evaluation of improved MW Coloring
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6

pleader 0.06 0.15 0.05 0.08 0.050 0.07
pbackground 0.11 0.16 0.04 0.10 0.025 0.08

dleader 221 91 272 226 270 287
dbackground 138 113 368 207 616 283

Average runtime 1372.0 933.9 4774.7 2684.3 8321.5 4416.8
±147.4 ±114.6 ±382.5 ±251.1 ±835.4 ±274.8

24

4.3. Practical improvements

Algorithm 4.5: Improved code for node v in state Ci
Data: Color of node v colorv, queue of neighboring nodes Q, set of assigned colors

Gv

// Initialization
1 colorv ← i
2 Gv ← [∆]
3 Q ← ∅

// Code
4 if i > 0 then
5 for the remainder of the algorithm do
6 transmit M i

C(v) with probability pbackground

7 else
8 for the remainder of the algorithm do
9 if MR(w, v) received and w 6∈ Q then

10 Q.enqueue(w)
11 if Q.empty() then
12 transmit M0

C(v) with probability pleader

13 else
14 Let tc ← Gv.getRandomAndRemove()
15 Let w ← Q.dequeue()
16 for dleader time slots do
17 transmit M0

C(v, w, tc) with probability pleader
18 if M i

A(w, cw) received then
19 break out of for loop

25

5. Yu et al. Coloring

This third algorithm as described by Yu, Wang, Hua and Lau in [YWHL14] is similar to
the MW-based algorithm of the previous section. The basic idea remains that neighbors
compete for colors by incrementing a counter until they reach a threshold or receive a
conflicting counter from a neighboring competitor. Yu Coloring has another similarity
with MW Coloring in that nodes compete to get into a maximal independent set. We thus
borrow the terms from MW and say that nodes in the MIS are called leaders and all other
nodes are called background nodes.

The original version of Yu Coloring as described in [YWHL14] is designed to work without
the knowledge of ∆. The algorithm uses a slow start mechanism in order to determine
optimal transmission probabilities dynamically during runtime. A node v starts with an
extremely low transmission probability pv and doubles that value after a certain period of
time. Node v may also halve the transmission probability if it comes to its knowledge that
its neighborhood’s additive transmission probability is too high. Due to this slow start
mechanism, Yu Coloring has an asymptotical runtime bound of O(∆ logn+ log2 n).

With the slow start mechanism, Yu Coloring has seven parameters that could only be
determined by running the algorithm with all possible combinations of those parameters.
Even if we constrained the number of different values for each parameter to ten, we
would have to run Yu Coloring with 107 = 10, 000, 000 combinations, which is not feasible.
Furthermore, in our testing environment, algorithms know n and ∆ and are therefore able
to deduce optimal transmission probabilities right from the start. In consequence, we
simplify Yu Coloring and abandon the slow start mechanism. Keep in mind that we cannot
prove that our modified implementation performs better than the original algorithm in all
cases.

In contrast to MW Coloring, Yu Coloring calculates a MIS in terms of 3rB. This is done
by setting the broadcasting range to rhi

B = 3rB and using an appropriately higher radio
power of Phi = 3αP where α is the geometric decay in the SINR model. The nodes that
currently use the higher radio power and broadcasting range are called strong nodes, the
others are called weak nodes. In order to avoid ambiguity, we use rlo

B = rB for the low
broadcasting range and rhi

B = 3rB for the high broadcasting range in this chapter. We also
use Phi = 3αP for the high transmission power and Plo = P for the low transmission power.
Yu Coloring depends on four parameters phi, plo, dhi and dlo. In Section 5.1 we explain
how to find a parameter combination that leads to the best overall performance of this
algorithm.

27

5. Yu et al. Coloring

Algorithm 5.1: Yu Coloring state B for node v
Data: Counter cv, integer step value step

1 step← step + 1
2 if step ≥ dhi then
3 cv ← cv + 1
4 transmit mB(cv) with probability phi and power Phi

5 if cv ≥ dhi then
6 transitionTo(M)
7 if mB(cw) received then
8 if |cv − cw| ≤ dhi then
9 cv ← 0

10 step← 0

11 if DoNotTransmitu received then
12 Fv.add(u)
13 transitionTo(S)

Algorithm 5.2: Yu Coloring state M for node v
Data: Integer step value step

1 step← step + 1
2 if step < dhi then
3 transmit DoNotTransmitv with probability phi and power Phi

4 else
5 transitionTo(G)

B

M G

S C1 C2

cv ≥ dhi

DoNotTransmitu received

step ≥ dhi

Fv is empty

StartColoringu received Grantv received

Figure 5.1.: State machine for Yu Coloring. Nodes that win the competition for being in
the MIS take the upper path, losing nodes go to state S and may later take
the upper path or enter S again.

When a node wakes up in state B (Algortihm 5.1), it immediately begins to execute the
MIS algorithm adopting the high transmission power Phi along with the corresponding
broadcasting range of rhi

B . A node v that gets in the MIS and thus becomes a leader,
transitions to state M (Algorithm 5.2) and transmits a DoNotTransmitv message to all
neighbors in terms of rhi

B . Nodes that receive such a message transition to a passive state S
(Algorithm 5.4). The DoNotTransmitv message works similar to locking a semaphore. Each
node u in state S has a forbidden set Fu. If u receives a DoNotTransmitv message it adds v
to its forbidden set. Later the leader v transmits a StartTransmitv message to u which is

28

Algorithm 5.3: Yu Coloring state G for node v
Data: Counter cv, queue Qv

1 colorv ← 0
2 for dlo time slots do
3 transmit StartColoringv with probability plo and power Plo

4 if Qv is not empty then
5 let u← Qv.dequeue()
6 for dlo time slots do
7 transmit Grantu with probability plo and power Plo
8 cv ← cv + 1

9 else
10 cv ← cv + 1
11 if Qv is empty and cv > dlo then
12 for dhi time slots do
13 transmit StartTransmitv with probability phi and power Phi

14 if AskColoru received then
15 Qv.enqueue(u)
16 cv ← 0

similar to unlocking the semaphore. Upon receiving such a message, node u removes v
from its forbidden set. If thereupon the forbidden set is empty, u leaves the passive state S
and begins to execute the MIS algorithm again by transitioning to state B.

After a leader v transmits the DoNotTransmitv message, it transitions to state G (Algo-
rithm 5.3) where it transmits a StartColoringv message to all neighbors within broadcasting
range rlo

B . Upon receiving such a message, a node w in state S transitions to state C1
(Algorithm 5.5). The background node w in state C1 transmit a color request message
AskColorw to its leader. The leader v in state G accepts color requests from neighbors.
Each request is added to a queue Qv. The leader v then dequeues a node x and transmits
a Grantx message. Upon receiving such a Grantx message, node x transitions to state C2
(Algorithm 5.6). In C2 it chooses an available color from its color set and transmits
this choice to its neighbors. After leader v has served all neighboring background nodes,

Algorithm 5.4: Yu Coloring state S for node v
Data: Counter cv, forbidden set Fv, color set Colorv . . .

1 if Fv is empty then
2 transitionTo(B)
3 if DoNotTransmitu received then
4 Fv.add(u)
5 if StartTransmitu received then
6 Fv.remove(u)
7 if Coloru received then
8 Colorv.remove(the color in the Color message)
9 if StartColoringu received then

10 transitionTo(C1)

29

5. Yu et al. Coloring

Algorithm 5.5: Yu Coloring state C1 for node v
Data: Counter cv, forbidden set Fv, color set Colorv . . .

1 transmit AskColorv message with probability plo and power Plo
2 if Grantv received then
3 transitionTo(C2)
4 if Coloru received then
5 Colorv.remove(the color in the Color message)

Algorithm 5.6: Yu Coloring state C2 for node v
Data: Counter cv, forbidden set Fv, color set Colorv . . .

1 choose the first available color from the color list Colorv
2 for dlotime slots do
3 transmit Colorv message containing the chosen color with probability plo and

power Plo

it again adopts the higher radio power Phi and broadcasting range rhi
B and transmits a

StartTransmitv message as explained already. This scenario is illustrated in Figure 5.2 and
Figure 5.3. An overview of the state transitions is shown in Figure 5.1.

u

w

v

rhiB

rloB

Figure 5.2.: Node u is a neighbor of v in terms of rhi
B and rlo

B , node w is only a neighbor in
terms of rhi

B .

As already stated, the competition for becoming a leader (state B, Algorithm 5.1) is based
on a counting mechanism similar to that of MW Coloring. Every competing node v holds
a counter cv. After entering state B, v has to wait for dhi time slots before beginning
to increment this counter by one in each time slot (Line 3). While incrementing the
counter, v transmits its counter to its neighbors (Line 4). If v receives a neighbor’s counter
value cw it checks whether this counter conflicts with its own counter cv. A conflict occurs
if |cv − cw| ≤ dhi. In the case of a conflict, v has to reset its counter (Line 9) and step
value (Line 10). By resetting its step value, it again has to wait for dhi time slots before
restarting to increment its counter. This way it is guaranteed that the counters of two
neighboring nodes are always at least dhi apart from each other. When the fastest node v
reaches the threshold of dhi, it takes the next node w at least dhi time slots in order to
reach the threshold as well. Before this happens, however, v successfully transmits a
DoNotTransmitu message (Line 6) to all neighboring nodes including w, thus forcing w to
quit the competition and enter state S (Line 13).

30

5.1. Determining optimal parameter combinations

v u w

DoNotTransmitv

DoNotTransmitv

StartColoringv

AskColoru

Grantu

Coloru

StartTransmitv

transitionTo(S)

transitionTo(M)

Fv = ∅

Fv = {v}

Fv = ∅

Figure 5.3.: A sample interaction between a leader v, an active background node u and a
passive background node w

5.1. Determining optimal parameter combinations
In contrast to MW Coloring, Yu Coloring calculates a MIS in terms of 3rB. This has the
effect that every background node inside the rB-radius has exactly one neigboring leader.
Once a background node has been assigned a color, it does not have to compete with
other nodes anymore. This advantage comes at a price though. Erecting a MIS in terms
of 3rB takes significantly longer than erecting a standard MIS. Nodes have to adopt a
higher radio power and accept messages from nodes that are farther away. By tripling the
broadcasting radius, the broadcasting area becomes nine times as big. Every node therefore
has nine times as many neighbors which increases the length of a local broadcasting round
significantly.

Yu Coloring has one trait that makes it difficult to optimize for our testing scenarios. In
Simple Coloring, we have two distinct and synchronous phases (Rand4DeltaColoring
and ColorReduction). All nodes are in the same phase at all times. This makes it
easy to determine optimal transmitting probabilities. In MW Coloring, a node is either
a leader or a background node and that role does not change throughout the algorithm.
Therefore we have no major problem to determine optimal transmitting probabilities for
MW Coloring either. In Yu Coloring however, there are no synchronous phases and we can
make no guesses about the number of leaders or background nodes since these numbers
change multiple times throughout the algorithm and in unpredictable quantities. Yet, we
are not able to treat all nodes the same, since some nodes transmit with higher power
and broadcasting range than others. So instead of making a distinction between leader
and background nodes, we make a distrinction between nodes transmitting with higher
power Phi and a higher broadcasting range rhi

B (strong nodes) and those transmitting with
lower power Plo and a lower broadcasting range rlo

B (weak nodes). We want strong nodes

31

5. Yu et al. Coloring

to transmit with probability phi and weak nodes to transmit with probability plo which
leads to transmission durations of dhi and dlo for local broadcasting rounds respectively.

Throughout the course of the algorithm a single node slips into the roles of a strong
node and a weak node multiple times and at unpredictable points in time. It is therefore
impossible to estimate the number of strong nodes and the number of weak nodes. We
are compelled to make a very rough estimation and optimize for the worst case which is
that there are only strong nodes accessing the shared medium at the same time. We set up
a modified version of Experiment 3.3 (Local Broadcasting) in which we make every
node a strong node, transmitting with Phi and rhi

B . We determine the optimal transmission
probability by adopting the probability values given in Table 5.1. The results are shown in
Table 5.2.

Table 5.1.: Parameter ranges for Local Broadcasting with strong nodes
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6

pstart 0.005 0.010 0.002 0.005 0.002 0.005
pend 0.025 0.070 0.012 0.025 0.008 0.020
pstep 0.005 0.005 0.002 0.005 0.001 0.005

Iterations 100 100 100 100 100 100

Table 5.2.: Results of Local Broadcasting with strong nodes
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
phi 0.015 0.030 0.006 0.020 0.005 0.015
dhi 1213 728 2702 1550 4086 2479

As we can see the local broadcasting rounds take a lot longer for strong nodes because
every strong node has nine times as many neighbors on average.

Now suppose there are some weak nodes among the strong nodes. The weak nodes have to
transmit with plo ≤ phi in order to not cause more interference than if there were only strong
nodes. Now suppose there are only weak nodes and no strong nodes. For this scenario
we already determined the optimal transmitting probabilities and durations in Chapter 3.
Those optimal probabilities are consistently higher than the probabilities for strong nodes in
Table 5.2. Since corresponding transmission durations are strictly monotonically decreasing
when we approach the optimal transmission probability, we conclude that plo = phi. Keep
in mind that this does not necessarily mean that dlo = dhi, in fact, dlois considerably
lower than dhi. We determine the values for dlo by running Experiment 3.3 (Local
Broadcasting), adopting the probability values given in Table 5.2. The results are shown
in Table 5.3.

We take these values for phi, plo, dhi and dlo and run Yu Coloring with 50 rounds for each
testing scenario. The results are shown in Table 5.4.

As stated in Section 2.3, we vary the SINR parameter for the geometric signal decay α in
our testing environment in order to see the effect on Yu Coloring in particular. We expect
that a higher signal decay (α = 6) is more beneficial for Yu Coloring than the other two
algorithms, because Yu Coloring uses a higher broadcasting range at times. As we can see
in Table 5.4, our expectations seem to be correct. Yu Coloring saves up to 53% of time

32

5.2. Practical improvements

Table 5.3.: Results of Local Broadcasting with weak nodes
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
plo 0.015 0.030 0.006 0.020 0.005 0.015
dlo 733 390 2057 660 2466 887

Table 5.4.: Results of the evaluation of Yu Coloring
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
phi 0.015 0.030 0.006 0.020 0.005 0.015
dhi 1213 728 2702 1550 4086 2479
plo 0.015 0.030 0.006 0.020 0.005 0.015
dlo 733 390 2057 660 2466 887

Average runtime 50745.3 28559.5 171009.5 74494.3 280140.1 131550.5
±3132.3 ±1841.2 ±8896.0 ±3786.3 ±12777.8 ±5346.0

with α = 6 (Scenario 6) in contrast to α = 2 (Scenario 5). In Chapter 6 we compare these
results and speedups with the ones of the other two algorithms.

5.2. Practical improvements
In contrast to MW Coloring, Yu Coloring is hard to improve. The reason for this is that
we cannot make any definitive statements about the number of leaders, background nodes,
strong or weak nodes. We therefore have to optimize the parameters phi, plo, dhi
and dlo for the worst case which is often very far from reality. However, there is one very
simple improvement that has a strong impact on the runtime. In state G, a leader v
transmits a Grantu message to a neighbor u for the duration of dlo (Algorithm 5.3, Line 8).
After the average transmission duration, which is a lot lower than dlo, node u receives the
Grantu message, transitions to state C2 and transmits a Coloru message (Algorithm 5.6,
Line 3). On receiving that Coloru message, the leader node v can safely stop transmitting
the Grantu message since the recipient has obviously received it. Instead of wasting time
transmitting a message that has already been received, leader node v continues to dequeue
the next node from its queue of requesting nodes.

The runtime results of the improved Yu Coloring algorithm are shown in Table 5.5. As
we can see, the runtimes have improved by a lot, taking only 66% of the time in the case
of Scenario 5. It is interesting to see that the speedup increases with increasing average
degree ∆. In dense graphs with a high average degree (Scenario 5 and Scenario 6), leaders
have more neighbors than in sparse graphs with lower average degree (Scenario 1 and
Scenario 2). These leaders have to serve more neighbors and therefore benefit greatly from
an early continuation scheme like the one we introduced in this section. It is also interesting
to see that the speedup decreases with increasing SINR parameter α. In the case of a higher
α parameter, the length of local broadcasting rounds (the maximum transmission duration)
is closer to the average duration of a message transmission than with lower α. Since our
improvement relies on the gap between average and maximum transmission duration, the
speedup is higher if this gap is wider.

In Chapter 6 we compare the results of this chapter in more detail.

33

5. Yu et al. Coloring

Table 5.5.: Results of the evaluation of improved Yu Coloring
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
phi 0.015 0.030 0.006 0.020 0.005 0.015
dhi 1213 728 2702 1550 4086 2479
plo 0.015 0.030 0.006 0.020 0.005 0.015
dlo 733 390 2057 660 2466 887

Average runtime 43785 25826.7 123126.7 60147.3 185251.1 98012.8
±2403.2 ±1988.4 ±5457.7 ±2924.4 ±8291.7 ±4705.7

Average speedup 116% 111% 139% 124% 151% 134%

34

6. Comparison

In this chapter we compare the results of our evaluations of Simple Coloring, MW Coloring
and Yu Coloring. For an overview of all average runtimes, refer to Table 6.1. For a
comparison of runtimes in relation to Simple Coloring, refer to Table 6.2.

Table 6.1.: Average runtimes of Simple Coloring, MW Coloring and Yu Coloring
Scenario 1 2 3 4 5 6

n 500 500 1000 1000 1500 1500
α 2 6 2 6 2 6
∆ 7.9± 1.0 7.9± 1.0 13.0± 1.3 13.0± 1.3 17.3± 1.4 17.3± 1.4

Simple Coloring 561.3 534.3 1046.0 947.94 1690.0 1577.8
±59.6 ±62.6 ±84.8 ±78.5 ±106.3 ±130.6

MW Coloring 1909.7 1215.8 5589.7 3393.5 10567.4 6032.2
±239.8 ±122.7 ±533.7 ±346.6 ±812.3 ±417.9

MW improved 1372.0 933.9 4774.7 2684.3 8321.5 4416.8
±147.4 ±114.6 ±382.5 ±251.1 ±835.4 ±274.8

Yu Coloring 50745.3 28559.5 171009.5 74494.3 280140.1 131550.5
±3132.3 ±1841.2 ±8896 ±3786.3 ±12777.8 ±5346

Yu improved 43785 25826.7 123126.7 60147.3 185251.1 98012.8
±2403.2 ±1988.4 ±5457.7 ±2924.4 ±8291.7 ±4705.7

Table 6.2.: Comparison of average runtimes in relation to Simple Coloring
Scenario 1 2 3 4 5 6

Simple Coloring 1 1 1 1 1 1
MW Coloring 3.4 2.3 5.3 3.6 6.3 3.8
MW improved 2.4 1.7 4.6 2.8 4.9 2.8

Yu Coloring 90.4 53.5 163.5 78.6 165.8 83.4
Yu improved 78 48.3 117.7 63.5 109.6 62.1

Consistent with our expectations, runtimes generally improve with increasing geometric
signal decay parameter α and with lower n and therefore lower average ∆. The most harsh
conditions are therefore given in Scenario 5 whereas Scenario 2 is the most forgiving one.

35

6. Comparison

As we see, Simple Coloring, the least complex of the three algorithms, outperforms the
other two. One reason for this is that Rand4DeltaColoring does not make any
assumptions about when a message has been received successfully. No node is transmitting
messages for the entire duration of a local broadcasting round and then only proceeding
afterwards. Instead, all nodes just react to incoming messages. Since most messages
arrive early, most listening nodes can therefore finish their computations early as well. In
Rand4DeltaColoring nodes do not have to wait for the worst case transmitting duration.
In ColorReduction they have to act according to the worst case, however, thanks to
the groundwork done by Rand4DeltaColoring, even that worst-case is acceptable.
Nodes are therefore able to transmit with far higher probabilities at far lower transmitting
durations.

MW Coloring mostly suffers from the slow counting mechanism which always has to account
for the worst-case transmitting duration. That same problem applies to Yu Coloring as
well, in fact in an even more severe fashion. Yu Coloring is mostly held back by the need
for a maximal independent set in terms of 3rB. By tripling the broadcasting range, the
average degree in the graph is nine times as high. This leads to far higher transmitting
durations. Apart from the counting mechanism, Yu Coloring relies heavily on simulated
local broadcasting rounds throughout the algorithm. In almost every step of the algorithm,
the worst case transmitting duration has to be considered. In contrast to MW Coloring,
Yu Coloring does not leave a lot of room for improvements. The major problem of Yu
Coloring is the tripled broadcasting range. If there was a way to calculate a MIS in terms
of 3rB without tripling the broadcasting range of every participating node and without
introducing too much other overhead, Yu coloring could be vastly improved.

As stated in Section 2.3, we vary the SINR parameter for the geometric signal decay α in
our testing environment in order to see the effect on Yu Coloring in particular. We expect
that a higher signal decay (α = 6) is more beneficial for Yu Coloring than the other two
algorithms, because Yu Coloring uses a higher broadcasting range at times. As we can see
in Table 6.1, our expectations seem to be correct. Yu Coloring saves up to 50% runtime
with α = 6 (Scenario 6) in contrast to α = 2 (Scenario 5). Simple Coloring only benefits
slightly from increased α values and MW Coloring only saves up to 40%.

Since all algorithms were designed to prove asymptotical bounds, the original algorithms
are not necessarily optimized to perform well in practice. A fair comparison between the
algorithms has to account for improvements that do not improve asymptotical bounds but
lead to better performances in practice. As we can see, the improvements we introduce for
MW Coloring and Yu Coloring in this thesis have a big impact on the runtime. However,
Simple Coloring still beats both.

36

7. Conclusion

In this thesis we evaluated the runtime of three distributed node coloring algorithms (Simple
Coloring, MW Coloring and Yu Coloring) in six different testing scenarios in the SINR
model. Since these algorithms are designed with regard to their asymptotical runtime, we
had to determine optimal parameters for each algorithm. One fundamental concept in each
algorithm is a local broadcasting round. A local broadcasting round is the simulation of a
single reliable message transmission in an unreliable network. By running modified local
broadcasting experiments, we determined the optimal parameters for each algorithm.

We observed that Simple Coloring is the fastest of the three, while producing an optimal
coloring of ∆ + 1 colors. MW Coloring is slower by a factor of 2 to 7, producing a coloring
of O(∆) colors. Yu Coloring is very hard to optimize for our testing scenarios. We modified
the original algorithm in order to make it feasible to find optimal parameters. Our modified
version of Yu Coloring is slower than MW Coloring by a factor of about 20 to 30, but
produces an optimal coloring of ∆ + 1 colors.

For MW Coloring and Yu Coloring we introduced a set of modifications that improve the
runtime of these algorithms, considerably narrowing the gap between Simple Coloring and
MW Coloring and between MW Coloring and Yu Coloring. The improved version of MW
Coloring saves up to 30% of time. The improved version of Yu Coloring saves up to 34% of
time.

For our given testing environment, the results are very obvious. However, there might
be scenarios where MW coloring or even Yu coloring have an advantage. In our testing
environment, nodes wake up at the same time. However, MW and Yu Coloring are designed
to handle the case of random wake-ups very well. We also did not consider scenarios where
nodes transmit asynchronously or scenarios in which nodes are not stationary but mobile in
unpredictable ways. Such properties are common in real-world ad hoc or sensor networks,
so further investigation in these directions might be valuable.

37

Bibliography

[ALPP09] Chen Avin, Zvi Lotker, Francesco Pasquale, and Yvonne-Anne Pignolet. A
note on uniform power connectivity in the SINR model. In Algorithmic Aspects
of Wireless Sensor Networks, pages 116–127. Springer Science Business Media,
2009.

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta+1)-coloring in linear
(in delta) time. In Proceedings of the 41st Annual ACM Symposium on Theory
of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages
111–120, 2009.

[BE13] Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamen-
tals and Recent Developments. Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool Publishers, 2013.

[DT10] Bilel Derbel and El-Ghazali Talbi. Distributed node coloring in the SINR
model. In 2010 IEEE 30th International Conference on Distributed Computing
Systems. Institute of Electrical & Electronics Engineers (IEEE), 2010.

[FP15] Fabian Fuchs and Roman Prutkin. Simple distributed delta + 1 coloring in
the SINR model. CoRR, abs/1502.02426, 2015.

[FPS04] Irene Finocchi, Alessandro Panconesi, and Riccardo Silvestri. An experimental
analysis of simple, distributed vertex coloring algorithms. Algorithmica, 41(1):1–
23, Sep 2004.

[FW13] Fabian Fuchs and Dorothea Wagner. On local broadcasting schedules and
CONGEST algorithms in the SINR model. In Algorithms for Sensor Systems,
pages 170–184. Springer Science Business Media, Dec 2013.

[G+08] EDC Group et al. Sinalgo-simulator for network algorithms (accessed jan 1,
2015) available: http://www.disco.ethz.ch/projects/sinalgo/, 2008.

[GK00] P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Transac-
tions on Information Theory, 46(2):388–404, Mar 2000.

[HM11] Magnús M. Halldórsson and Pradipta Mitra. Nearly optimal bounds for
distributed wireless scheduling in the SINR model. In Automata, Languages
and Programming, pages 625–636. Springer Science Business Media, 2011.

[KMW04] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Radio network
clustering from scratch. In In Proceedings of 12 th Annual European Symposium
on Algorithms (ESA, pages 460–472, 2004.

[KV10] Thomas Kesselheim and Berthold Vöcking. Distributed contention resolution in
wireless networks. In Distributed Computing, pages 163–178. Springer Science
Business Media, 2010.

39

Bibliography

[MA04] M. Moisio and K. Aschan. The effect of single-antenna interference cancellation
on GPRS performance. In 1st International Symposium onWireless Communi-
cation Systems, 2004. Institute of Electrical & Electronics Engineers (IEEE),
2004.

[MW08] Thomas Moscibroda and Roger Wattenhofer. Coloring unstructured radio
networks. Distributed Computing, 21(4):271–284, 2008.

[Pel00] David Peleg. Distributed Computing: A Locality-Sensitive Approach. Society
for Industrial & Applied Mathematics (SIAM), Jan 2000.

[SW08] Johannes Schneider and Roger Wattenhofer. A log-star distributed maximal
independent set algorithm for growth-bounded graphs. In Proceedings of
the Twenty-Seventh Annual ACM Symposium on Principles of Distributed
Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages 35–44,
2008.

[YWHL14] Dongxiao Yu, Yuexuan Wang, Qiang-Sheng Hua, and Francis C. M. Lau.
Distributed (∆+1)-coloring in the physical model. Theor. Comput. Sci., 553:37–
56, 2014.

40

Appendix

A. Local Broadcasting

Table A.1.: These are the top ten results of the Local Broadcasting experiment (Ex-
periment 3.3). If all nodes are transmitting with probability p, the length of a
local broadcasting round is d.

Scenario 1 2 3 4 5 6

1. p 0.088 0.14 0.047 0.1 0.028 0.08
d 177.0 126.0 385.0 245.0 600.0 361.0

2. p 0.08 0.13 0.043 0.09 0.03 0.06
d 179.0 130.0 392.0 251.0 601.0 364.0

3. p 0.082 0.11 0.048 0.07 0.025 0.07
d 182.0 133.0 392.0 264.0 632.0 370.0

4. p 0.078 0.16 0.045 0.11 0.033 0.05
d 185.0 134.0 396.0 264.0 636.0 378.0

5. p 0.086 0.15 0.038 0.12 0.032 0.09
d 186.0 141.0 400.0 265.0 642.0 382.0

6. p 0.09 0.12 0.041 0.08 0.031 0.1
d 186.0 143.0 401.0 272.0 643.0 417.0

7. p 0.092 0.19 0.037 0.13 0.034 0.04
d 186.0 143.0 404.0 283.0 653.0 439.0

8. p 0.074 0.17 0.044 0.14 0.029 0.11
d 187.0 145.0 407.0 287.0 657.0 442.0

9. p 0.076 0.1 0.039 0.06 0.026 0.12
d 194.0 151.0 411.0 293.0 659.0 498.0

10. p 0.096 0.18 0.046 0.05 0.027 0.13
d 194.0 153.0 411.0 314.0 659.0 529.0

41

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 Terminology
	2.2 Sinalgo
	2.3 Testing Environment
	2.4 Metrics for Evaluation

	3 Simple Coloring
	4 Moscibroda-Wattenhofer Coloring
	4.1 MIS Broadcasting
	4.2 Analyzing the flow of MW Coloring
	4.3 Practical improvements

	5 Yu et al. Coloring
	5.1 Determining optimal parameter combinations
	5.2 Practical improvements

	6 Comparison
	7 Conclusion
	Bibliography
	Appendix
	A Local Broadcasting

