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Abstract

The importance of electric vehicles has increased steadily in recent years. As battery
capacities increase and charging stations for electric vehicles become more widespread,
long-distance routes that require charging stops are starting to become feasible.
While route planning problems for electric vehicles are well-studied, little research
has focused on incorporating charging stops. In this thesis we extend previous work
on the subject to develop two algorithms for finding energy-optimal routes while
taking several types of charging stations into account. Our first algorithm is based on
a multi-objective shortest path search which uses Pareto sets. While multi-objective
shortest path search algorithms generally have an exponential worst-case complexity,
we introduce a class of graphs for which we prove a polynomial complexity of our
algorithm. The second algorithm uses a precalculated graph that contains the
shortest paths between all charging stations to speed up the queries. We evaluate
our algorithms on real-world road network data, observing that both algorithms can
answer queries on the road network of Germany in a matter of seconds.

Deutsche Zusammenfassung

Die Bedeutung von Elektrofahrzeugen hat in den letzten Jahren stetig zugenommen.
Dank steigender Batteriekapazitäten und zunehmender Verbreitung von Ladesta-
tionen für Elektrofahrzeuge werden Langstreckenrouten mit Ladestopps allmählich
praktikabler. Während Routenplanungsprobleme für Elektrofahrzeuge bereits aus-
führlich untersucht wurden, hat sich nur wenig Forschung mit der Berücksichtigung
von Ladestationen beschäftigt. In dieser Arbeit erweitern wir frühere Arbeiten
zu diesem Thema und entwickeln zwei Algorithmen, die Energie-optimale Routen
finden und dabei Ladestopps erlauben. Unser erster Algorithmus basiert auf einer
multikriteriellen Kürzeste-Wege-Suche, die Pareto-Mengen verwendet. Obwohl mul-
tikriterielle Kürzeste-Wege-Algorithmen im Allgemeinen eine exponentielle Worst-
Case-Komplexität haben, führen wir eine Klasse von Graphen ein, für die wir eine
polynomielle Laufzeit unseres Algorithmus zeigen. Der zweite Algorithmus verwendet
einen vorberechneten Graph, der die kürzesten Wege zwischen alle Ladestationen
enthält, um die Anfragen zu beschleunigen. Wir werten unsere Algorithmen für echte
Straßennetzwerkdaten aus und beobachten für beide Algorithmen Anfragezeiten im
Sekundenbereich auf dem Straßennetzwerk Deutschlands.
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1. Introduction

In recent years, the importance of electric vehicles as a fossil fuel independent alternative
to conventional vehicles has increased steadily. However, their limited battery capacity,
which leads to comparatively small cruising ranges, still presents a major obstacle towards
a more widespread use. While the number of charging stations for electric vehicles is
increasing, they are still fairly rare compared to conventional gas stations. Furthermore,
the process of recharging the battery is time-consuming and may take several hours. This
makes it especially important to plan long-distance routes with charging stops beforehand,
presenting a new challenge for routing algorithms.

The constraints imposed by an electric vehicle’s limited battery capacity require special
algorithmic handling. In particular, route planning algorithms must ensure that the vehicle
never runs out of energy. Furthermore, electric vehicles can recharge their battery when
driving downhill; this effect is called recuperation. However, recuperation is only possible as
long as the battery does not exceed its maximum capacity. Therefore, routing algorithms
for electric vehicles must keep track of the battery’s state of charge to ensure that it always
remains within these constraints.

Previous research on the topic of electric vehicle route planning has focused mostly on finding
time- or energy-optimal routes while taking battery constraints into account. Research
on incorporating charging stations has been limited so far, mainly because small battery
capacities and long charging times make long-distance routes impractical. However, with
the advent of more powerful charging stations and vehicles with larger batteries, charging
stops are becoming increasingly feasible.

For the problem of finding energy-optimal routes, only battery swapping stations (BSS)
have been considered as a method of recharging. These are stations where the entire
battery is replaced with a new, fully charged battery. However, battery swapping stations
are currently not widely available. So far, route planning algorithms that take commonly
available types of charging stations into account exist only for the time-optimal electric
vehicle routing problem. In this thesis, we adapt existing approaches to develop algorithms
that find energy-optimal routes and can handle a variety of charging station types.

1.1 Related Work
The basis for many route planning algorithms is Dijkstra’s algorithm [Dij59], which finds
the shortest path between two points in a road network according to a single, static
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1. Introduction

metric. In the context of electric vehicles, this metric is usually either driving time or
energy consumption. For metrics without negative values, such as driving time, Dijkstra’s
algorithm can be implemented with a worst-case complexity of O(n log n + m), where m is
the number of edges in the road network graph (which represent road segments) and n is
the number of vertices (which represent end points and intersections of road segments).
Due to the capability of electric vehicles to recuperate energy, the energy consumption on
some road segments may be negative. In this case, the running time of Dijkstra’s algorithm
may become exponential in the size of the road network.

The main challenge when developing route planning algorithms for electric vehicles is to
take into account the limitations imposed by the vehicle’s limited battery capacity: Once
the battery’s entire energy has been consumed, the vehicle becomes stranded and cannot
drive any further. Consuming further energy when the battery is empty, which we call
undercharging, is impossible. Similarly, while the vehicle can recuperate energy when
driving downhill, it cannot do so if the battery is full. We call this situation overcharging.
Both undercharging and overcharging have to be avoided by an electric vehicle-aware
routing algorithm.

The energy-optimal route planning problem for electric vehicles, where the objective is to
minimize the overall energy consumption, was first introduced by Artmeier et al. [AHLS10].
Eisner et al. [EFS11] modified Dijkstra’s algorithm to solve the problem by replacing the
static edge costs with functions that take the battery constraints into account. To remove
negative edge costs, they adapt a technique called potential shifting, which was introduced
by Johnson [Joh77]. Furthermore, they adapt Contraction Hierarchies (CH), a speedup
technique introduced by Geisberger et al. [GSSD08], to obtain running times of less than
a second even on large road network graphs with several million road segments.

Baum et al. [BDPW13] improved on this by adapting a speedup technique called Cus-
tomizable Route Planning (CRP), first developed by Delling [DGPW11]. This yields an
average running time of less than 5 milliseconds even on the road network of Europe,
making the algorithm feasible for interactive applications. As part of this approach, they
also developed a method for answering profile queries: Whereas regular queries specify an
initial SoC for the vehicle at the start of the route, a profile query asks for the shortest
path for every possible initial SoC value.

Little research has been done so far on incorporating charging stations into route planning
for electric vehicles. For the energy-optimal version of the problem, Storandt and Funke
[SF12] developed an approach that only considers battery swapping stations as a possible
method of recharging. Their algorithm makes use of a precalculated auxiliary graph that
contains information about the shortest paths between all charging stations. To answer a
query, it then computes the set of all charging stations that can be reached from the source
vertex without recharging, as well as the set of all charging stations from which the target
vertex can be reached without recharging. The auxiliary graph is then used to calculate
the remainder of the path between these two sets of charging station.

The first algorithm that allows for various types of charging stations was developed by
Zündorf [Zün14] for the time-optimal electric vehicle routing problem. Specifically, this
algorithm considers three basic types of charging stations: In addition to regular charging
stations, where the battery can be recharged to any desired SoC, and the previously
mentioned battery swapping stations, it also considers superchargers. These are charging
stations with a high amount of charging power, allowing the battery to be recharged
much faster than at a regular charging station. However, due to technical limitations, the
achievable SoC is limited to 80% of the maximum battery capacity. Zündorf uses piecewise
linear functions to model the charging process, developing an algorithm that minimizes the
overall travel time, which includes both driving time and charging time.
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1.2 Contribution
In this thesis we incorporate charging stations into the energy-optimal shortest path problem
for electric vehicles and develop two algorithms for solving this problem. As in [Zün14],
we consider regular charging stations, superchargers and battery swapping stations as the
three basic types of charging stations. While we do not consider the overall charging time,
we minimize the number of charging stops to ensure that the routes are realistically usable.

The first algorithm we develop is based on the approach from [Zün14], using piecewise
linear functions to model the charging process. We show that in the energy-optimal case,
these functions can be simplified and represented entirely by static values. We then analyze
the complexity of the developed algorithm. Whereas the original time-optimal version of
the problem is NP-complete, we introduce a class of graphs on which our algorithm can
be proven to have a polynomial worst-case complexity.

For the second algorithm, we adapt the approach from [SF12], using an auxiliary graph
to precalculate the shortest paths between charging stations. By using profile queries, we
extend this approach to allow for other charging station types besides battery swapping
stations.

Finally, we analyze the performance of both algorithms on real-world road network data
and compare the results.

1.3 Outline
The remainder of this thesis is structured as follows:

Chapter 2. In the preliminaries chapter, we lay the foundation for the thesis, introducing
basic concepts and notation. We present algorithms for solving the shortest path
problem and the energy-optimal shortest path problem for electric vehicles, which
serve as a basis for our algorithms.

Chapter 3. A precise statement of the problem solved by our algorithms is given in this
chapter.

Chapter 4. In this chapter, we develop our first algorithm. We start by adapting the
approach of using piecewise linear functions to model the charging process, which
we then show can be simplified in our case. After stating our basic approach for the
algorithm, we discuss several methods for improving its performance.

Chapter 5. We continue by analyzing the complexity of the algorithm developed in the
previous chapter, introducing a class of graphs for which we can show a polynomial
worst-case complexity of our algorithm.

Chapter 6. In this chapter, we developed a second algorithm for solving our problem,
which uses a precalculated auxiliary graph to speed up the queries. After stating
the basic approach, we explain how it can be adapted to consider different types of
charging stations.

Chapter 7. In the evaluation chapter, we conduct experiments with both algorithms on
real-word road network data, evaluating their performance and comparing the results.

Chapter 8. Finally, we conclude the thesis with a summary of the achieved results and
an outlook on possible future work.
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2. Preliminaries

In this chapter we introduce basic concepts and algorithms that lay the foundation for the
remaining thesis.

2.1 Graph Theory
Graphs. A graph G = (V, E) is a tuple consisting of a set V of vertices and a set E ⊆ V ×V
of edges. We only consider directed graphs, which means that an edge e = (u, v) ∈ E is
always directed from u to v. We call u the tail and v the head of e. The number of vertices
in a graph is denoted by n := |V | and the number of edges is denoted by m := |E|. A graph
G′ = (V ′, E′) is called a subgraph of another graph G = (V, E) if V ′ ⊆ V and E′ ⊆ E hold.

For a vertex u ∈ V , the number of edges whose tail is u is called the out-degree of u; it is
defined as degout(u) := |{(u, v) ∈ E | v ∈ V }|. Similarly, the number of edges whose head
is u is called the in-degree of u; it is defined as degin(u) := |{(v, u) ∈ E | v ∈ V }|. The
number of all edges that are incident to u is called the degree of u; naturally, it is the sum
of the out-degree and the in-degree: deg(u) := degout(u) + degin(u).

In order to find energy-optimal routes in a road network, we need information about
the energy consumption on the roads, which are represented by edges. To model this
information, we use a scalar edge weight function ω : E → R, which assigns a value to
every edge in the graph. In our case this value is the energy consumption, so we define
the energy consumption edge weight cons : E → R, which assigns to every edge the energy
that is consumed when traversing it.

Paths. A path P in a graph G is a sequence of vertices (v1, v2, . . . , vk) in V such that an
edge (vi−1, vi) ∈ E exists for 1 < i ≤ k. The number of vertices contained in the path
is denoted by |P | = k. A path where v1 = vk is called a cycle. We call a vertex v ∈ V
reachable from another vertex u ∈ V if there exists a path P = (u, . . . , v) in G that starts
at u and ends at v. We call such a path a u-v-path. If u is reachable from v as well as v
from u, we call u and v connected.

A path Q = (u1, u2, . . . , ul) is called a subpath of another path P = (v1, v2, . . . , vk) (denoted
Q ⊂ P ) if l ≤ k and there exists an i ∈ [0, k − l] such that for all 0 < j ≤ l the condition
vi+j = uj holds. The subpath of P that contains only the first i vertices is called a prefix
of P and is denoted by P i := (v1, v2, . . . , vi).
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We can extend the definition of edge weights to also cover paths. Given an edge weight
function ω on E, the weight (or length) of a path P = (v1, v2, . . . , vk) is defined as the sum
of the edge weights in the path: ω(P ) :=

∑k
i=2 ω((vi−1, vi)).

A tree Tu rooted at a vertex u is a graph with m = n− 1 edges such that there is a unique
path from u to every other vertex v. The root vertex u is the only vertex in Tu whose
in-degree is zero, all other vertices have an in-degree of one. A vertex v in Tu is called a
leaf if its out-degree is zero.

Shortest Paths. Given two vertices u, v ∈ V and an edge weight function ω, the shortest
u-v-path P is the one with minimal weight ω(P ) among all u-v-paths in G. The distance
between u and v is formally defined as distω(u, v) := infP =(u,...,v) ω(P ). This is equivalent
to the length of the shortest u-v-path in all but two cases: If u and v are not connected,
there is no shortest u-v-path and distω(u, v) is thus ∞. If there exists a u-v-path that
contains a negative cycles, distω(u, v) is −∞. However, road networks can never contain
cycles with a negative energy consumption, since this would mean a vehicle could recharge
the battery infinitely by continuing to drive around the cycle. Therefore, we know that in
our case, distω(u, v) ∈ R ∪ {∞} for all vertices u, v ∈ V .

A shortest path tree Tu rooted at a vertex u is a subgraph of G that contains all vertices
that are reachable from u and is a tree rooted at u where the unique path from u to every
other vertex v is a shortest path in G.

2.2 Functions
A function f : X → Y is a relation between two sets X and Y that assigns to each x ∈ X
a value f(x) ∈ Y . We call x an argument of f and f(x) the value of f for x. The tuple
(x, f(x)) is called a point of f .

A piecewise linear function f : X → Y is a function that can be decomposed into a sequence
of continuous intervals (I1 = [x1, x2), I2 = [x2, x3), . . . , Ik = [xk,∞)) so that f restricted
to each interval Ii (1 ≤ i ≤ k) is linear. We call the endpoints (xi, f(xi)) of these intervals
the supporting points of f . Inside each interval Ii, the derivative of f is well-defined, except
at the supporting points themselves. We call the value of the derivative of f in Ii the slope
of f in Ii.

Given a sequence of supporting points and slopes [(x1, y1, s1), (x2, y2, s2), . . . , (xk, yk, sk)],
we can define the corresponding piecewise linear function f that goes through these
supporting points and has these slopes:

f(x) :=



y1 + s1(x− x1) if x1 ≤ x < x2

y2 + s2(x− x2) if x2 ≤ x < x3
...
yk + sk(x− xk) if xk ≤ x.

2.3 The Shortest Path Problem
In this section, we introduce problems related to the computation of shortest paths and an
algorithm for solving them.

Definition 2.1. We are given a graph G = (V, E) and an edge weight ω. We define four
basic shortest path problems:

6
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Algorithm 2.1: Dijkstra’s Algorithm
Input: Graph G = (V, E), edge weight function ω : E → R, source vertex s
Data: Priority queue Q
Output: Distances from s given by dist[·], shortest-path tree of s given by parent[·]
// Initialization

1 forall v ∈ V do
2 dist[v]←∞
3 parent[v]← ⊥
4 dist[s]← 0
5 Q.insert(s, dist[s])

// Main loop
6 while not Q.isEmpty() do
7 u← Q.deleteMin()
8 forall (u, v) ∈ E do
9 if dist[u] + ω((u, v)) < dist[v] then

10 dist[v]← dist[u] + ω((u, v))
11 parent[v]← u
12 if Q.contains(v) then
13 Q.decreaseKey(v, dist[v])
14 else
15 Q.insert(v, dist[v])

• The Single-Pair Shortest Path (SPSP) Problem: Given source and target
vertices s, t ∈ V , we ask for the shortest s-t-path.

• The Single-Source Shortest Path (SSSP) Problem: Given a source vertex s ∈ V ,
we ask for the shortest path from s to every other vertex in V .

• The Single-Destination Shortest Path (SDSP) Problem: Given a target
vertex t ∈ V , we ask for the shortest path from every other vertex in V to t.

• The All-Pairs Shortest Path (APSP) Problem: We ask for the shortest path
between every pair of vertices in V .

The goal of this thesis is to solve an extension of the SPSP problem that takes battery
constraints into account and allows for charging stops. As part of the algorithms we will
develop, we will also encounter the SSSP and SDSP problems. All three of these problems
are solved by Dijkstra’s algorithm.

2.3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is a well-known algorithm for solving the single-source shortest path
problem (and, by extension, also the single-pair and single-destination shortest path
problems). It was first published by Edsger W. Dijkstra in 1959 [Dij59]. Provided that all
edge weights in the graph are non-negative, Dijkstra’s algorithm has a polynomial running
time in the size of the graph. If this is not the case, the running time may be exponential,
but the algorithm will still terminate as long as the graph contains no negative cycles. The
pseudocode for Dijkstra’s algorithm is provided in Algorithm 2.1.

The algorithm takes a graph G = (V, E), an edge weight function ω : E → R and a source
vertex s as input. It outputs two arrays, dist[·] and parent[·]. After the algorithm has

7
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terminated, dist[v] holds the distance distω(s, v) from s to v for every vertex v ∈ V . The
parent[·] array is an implicit representation of the shortest path tree rooted at s: For
every vertex v ∈ V that is reachable from s, with the shortest s-v-path being SPω(s, v) =
(s = v1, v2, . . . , vk−1, vk = v), parent[v] points to the vertex vk−1 that precedes v in P . By
following the pointers in parent[·] from v to s, the shortest path P can be reconstructed
with the rule vi−1 = parent[vi] for all 1 < i ≤ k.

As an auxiliary data structure, the algorithm uses a priority queue Q. This queue contains
key-value pairs, where the value represents a vertex v ∈ V and the key represents the
tentative distance from s given by dist[v]. Q must provide the following operations:

• insert(v,d) inserts the vertex v into the queue and sets its key to d. A necessary
precondition for this operation is that v is not already contained in the queue.

• isEmpty() returns a boolean value, which is true if and only if the queue contains
no elements.

• deleteMin() finds the vertex v with the smallest key of all elements in the queue,
deletes it from the queue and returns it.

• contains(v) returns a boolean value, which is true if and only if the queue contains v
as an element.

• decreaseKey(v,d) finds the element whose value is v and sets its key to d. Necessary
preconditions for this operation are that v is contained in the queue and that the
current key of v is greater than or equal to d.

The idea of Dijkstra’s algorithm is to expand from s in increasing order of distance. In
the first step, the arrays dist[·] and parent[·] as well as the priority queue Q are initialized.
dist[s] is set to 0. Since we do not yet know the distances to any other vertices in the
graph, we set dist[v] =∞ for all other vertices v ∈ V . Likewise, since we have not found
any paths yet, parent[v] is initialized with ⊥ for every vertex v ∈ V . We initialize Q with s
as its only element. Once a vertex v has been inserted into Q, we call it visited; once it has
been removed from Q, we call it settled.

Once the initialization has finished, we begin the main loop of the algorithm, which
continues until Q is empty. In each step of the main loop, the algorithm extracts the
vertex u with the smallest key from Q and settles it. Among all visited but unsettled
vertices, u is closest to s. If the graph contains no negative edges, dist[u] now holds the
correct distance from s and the shortest s-u-path can be found via parent[u]. This property
is called the label-setting property of Dijkstra’s algorithm. It means that once a vertex has
been settled, it will not be re-inserted into Q.

After settling u, the algorithm scans all outgoing edges of u. For every such edge e = (u, v),
it is checked if the shortest path from s to u extended by e is shorter than the current
tentative distance dist[v] of v. If this is the case, we relax e, which means that we set
dist[u] + ω(e) as the new tentative distance of v and u as the new parent of v. We then
update Q to reflect the changes to v: If v has already been visited before, it is already
contained in Q, so we merely update its key. If v is not contained in Q, we insert it.

Correctness. We give a proof of correctness of Dijkstra’s algorithm for the case that the
graph contains no negative edges. Correctness in this case means that after the algorithm
has terminated, the array dist[·] holds the correct distances from s, i.e., dist[v] = distω(s, v)
for all v ∈ V .

Theorem 2.2. The following three statements are true for Dijkstra’s algorithm:
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1. Every vertex that is reachable from s gets settled in the course of the algorithm.

2. The invariant dist[v] ≥ distω(s, v) holds throughout the course of the algorithm for
all vertices v ∈ V , i.e., the tentative distance of a vertex is never smaller than the
actual distance.

3. Label-setting property: Once a vertex v is settled, dist[v] = distω(s, v) holds.

Proof. We prove the first claim by contradiction. Assume there is a vertex v that is
reachable from s but is never settled by the algorithm. We know that every vertex that is
visited (and thus inserted into Q) is also settled at some point, since the algorithm only
terminates once Q is empty. Thus, v was also never visited. Since v is reachable from s,
there exists a path P = (s = v1, v2, . . . , vk = v) from s to v. s was settled in the first
iteration of the main loop, so we know there must be an i ∈ [2, k] such that vi−1 was settled
but vi was not. Once vi−1 is settled, the edge e = (vi−1, vi) is examined. Since vi was never
visited, its tentative distance is ∞. The length of P is obviously smaller than this, so e is
relaxed and v is inserted into Q. This is a contradiction to the assumption that v is never
settled.

The second claim is true because the tentative distance dist[v] always corresponds to the
path that can be retrieved by following parent[v]. Since distω(s, v) corresponds to the
length of the shortest s-v-path, and the path corresponding to dist[v] is thus at least as
long, we know that dist[v] ≥ distω(s, v).

The third claim is again proven by contradiction. Assume that there is a vertex v for which
dist[v] > distω(s, v) holds after being settled. Since v is reachable from s, we know that
a shortest s-v-path SPω(s, v) = (s = v1, v2, . . . , vk) exists. This path cannot be the one
that is represented by parent[v], since otherwise dist[v] = ω(SPω(s, v)) = distω(s, v) would
hold. Therefore, SPω(s, v) must contain at least one unsettled vertex. However, this is
impossible due to the first claim, because all vertices in SPω(s, v) are obviously reachable
from s. Therefore, we know that dist[v] = distω(s, v) holds.

From the third statement, it follows that Dijkstra’s algorithm computes the correct distance
from s to every vertex v.

Complexity. We now analyze the complexity of Dijkstra’s algorithm for the case that
the graph contains no negative edges. The initialization phase takes O(n) time, since every
vertex is initialized once. Due to the label-setting property, each vertex is visited and
settled at most once, so the main loop has at most n iterations. Therefore, isEmpty(),
deleteMin() and insert(·, ·) are each called at most n times. This also means that each
edge is relaxed at most once, so contains(·) and decreaseKey(·, ·) are each called at
most m times. Altogether this yields a running time of

O(n(1 + TisEmpty + TdeleteMin + Tinsert) + m(Tcontains + TdecreaseKey).

The exact running time depends on how the priority queue is implemented. The best
known worst-case complexity is O(m + n log n), which is achieved with a Fibonacci heap
[FT87]. In many practical instances, however, a binary heap is sufficient, which yields a
worst-case complexity of O((m + n) log n).

Stopping Criterion. The algorithm as described above solves the single-source shortest
path problem. If we want to solve the single-pair shortest path problem, i.e., we only
want to find the shortest path to a single vertex t, we can terminate the algorithm once
we know distω(s, t). Due to the label-setting property, this is the case once t is settled.
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Therefore, we can insert a line after line 7 in Algorithm 2.1 that terminates the loop if
u = t holds. This improves the running time of the algorithm in most cases, but it does
not affect the worst-case complexity.

Backwards Search. If we want to solve the single-destination shortest path problem
for a target vertex t, the algorithm as described so far is not sufficient, since it assumes
the existence of a single source vertex. While running Dijkstra’s algorithm once for every
vertex v ∈ V while using v as the source vertex and t as the target vertex would solve the
problem, this approach is inefficient. Instead, Dijkstra’s algorithm can be modified to search
backwards from the target vertex instead of forward from the source vertex, which will yield
a backwards shortest path tree that contains the shortest path from every vertex v ∈ V
to t. The backwards version of the algorithm is the same as the forward version except for
two small changes: During initialization, dist[t] is set to 0 instead of dist[s] and t is inserted
into Q instead of s. In the main loop, when settling a vertex u, the backwards version
scans all incoming edges (v, u) instead of all outgoing edges (u, v).

Label-Correcting Algorithm. The proof of the correctness and the complexity analysis
given above both assume that the graph contains no negative edge weights. While this
condition holds for some practical applications, such as calculating time-optimal routes,
it is not fulfilled when using energy consumption as an edge weight, due to recuperation.
While Dijkstra’s algorithm still computes correct shortest paths when negative edge weights
are allowed, provided that the graph contains no negative cycles, the worst-case complexity
in this case is exponential in the size of the graph. This is caused by the fact that the label-
setting property no longer holds: Without negative edge weights, when settling a vertex u,
an edge to an already settled vertex v can never be relaxed, because dist[v] ≤ dist[u] holds.
However, if the edge e = (u, v) has a negative weight, the dist[u] +ω(e) may become smaller
than the current value of dist[v], which will cause v to be re-inserted into the queue. Thus,
the algorithm becomes label-correcting. In addition, the stopping criterion used for the
single-pair shortest path problem can no longer be used, because the distance of the target
vertex t may decrease further even after it is settled.

Another algorithm for solving the single-source shortest path problem is the Bellman-
Ford algorithm, which computes shortest paths with a polynomial worst-case complexity
of O(nm) even if the graph contains negative edge weights. However, on typical road
networks with only a small fraction of edges with a negative weight, Dijkstra’s algorithm is
usually faster than the Bellman-Ford algorithm because the number of vertices that are
settled more than once remains low. In the next section, we discuss a technique called
potential shifting, which uses an additional preprocessing step to remove the negative edge
weights in the graph. This makes the worst-case complexity polynomial again and also
re-enables the stopping criterion for the single-pair shortest path problem.

2.3.2 Potential Shifting

The potential shifting technique was first introduced by Donald B. Johnson in 1977 as part
of an algorithm for solving the all-pairs shortest path problem [Joh77]. The idea behind
the technique is to calculate a potential function Φ: V → R that assigns a potential to
every vertex in V . The potentials are then used to define a new edge weight function ω′.
The redefined edge weight function must fulfill two conditions: The edge weights assigned
by ω′ must be non-negative, i.e., ω′(e) ≥ 0 for all e ∈ E. Furthermore, the structure of the
shortest paths may not change, i.e., a shortest path between two vertices u, v ∈ V under ω
must also be a shortest path under ω′.

The simplest way of obtaining a potential function is to choose an arbitrary root vertex r and
calculate the shortest path distances from r to each vertex for the edge weight function ω.
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This can be done with Dijkstra’s algorithm (or the Bellman-Ford algorithm if polynomial
worst-case complexity is desired). The potential function is then defined as follows for
every vertex v ∈ V : Φ(v) := distω(r, v). Using this potential function, the new edge weight
function is defined as follows for every edge e = (u, v): ω′(e) = ω(e)− Φ(v) + Φ(u). This
edge weight function fulfills the two conditions outlined above:

Theorem 2.3. Let G = (V, E) be a graph with an edge weight function ω : E → R and a
root vertex r ∈ V . For this root vertex we define a potential function Φ: V → R and an
edge weight ω′ : E → R as follows:

Φ(v) := distω(r, v)

ω′((u, v)) := ω((u, v))− Φ(v) + Φ(u).

The following two conditions are fulfilled for ω′:

1. ∀e ∈ E : ω′(e) ≥ 0.

2. Given two vertices u, v ∈ V where v is reachable from u, every shortest u-v-path
under ω is also a shortest u-v-path under ω′.

Proof. The first claim can be proven by contradiction. Assume there is an edge e = (u, v)
such that ω′(e) < 0. This means that Φ(v) > Φ(u) + ω(e). Substituting with the definition
of Φ yields distω(r, v) > distω(r, u) + ω(e). This means that the shortest r-u-path extended
by e is shorter than the shortest r-v-path, which contradicts the definition of a shortest
path.

To prove the second claim, we observe that the weight of a path P = (u = v1, v2. . . . , vk = v)
under ω′ does not depend on the potentials of its vertices except for u and v. The potential
of a vertex vi (i ∈ [2, k − 1]) is added to ω′((vi, vi+1)) and subtracted from ω′((vi−1, vi)),
so when the weights of all edges on the path are added together, all potentials except Φ(u)
and Φ(v) cancel each other out. Thus, ω′(P ) = ω(P )− Φ(v) + Φ(u). Among all u-v-paths,
Φ(u) and Φ(v) are constant, so the shortest u-v-path under ω remains the shortest u-v-path
under ω′.

Because these two conditions are fulfilled, ω′ is suitable as a replacement for ω. The first
condition ensures that the label-setting property holds, which guarantees a polynomial
running time for Dijkstra’s algorithm and re-enables the stopping criterion for the single-
pair shortest path problem. The second condition ensures that the shortest paths that
are found under the new edge weight function are the same ones that would have been
found with the old edge weight function. However, their length will differ from the length
under the original edge weight function. We can calculate the original length as follows:
If distω′(s, t) is the length of the shortest s-t-path under ω′, then the length of that path
under ω is distω(s, t) = distω′(s, t) + Φ(t)− Φ(s).

In summary, potential shifting allows us the regain the advantages that were lost due
to negative edge weights at the cost of a single preprocessing step that only needs to be
performed once for a given graph and edge weight function.

2.4 Electric Vehicle Route Planning
Finding energy-optimal routes for electric vehicles on a road network is closely related to
solving the shortest path problem with the edge weight cons : E → R, which assigns to
every edge the energy that is consumed on it. However, it is not identical because we have
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to take into account the constraints imposed by the vehicle’s battery. The battery has a
maximum capacity which we denote by M . While the vehicle may recuperate energy and
recharge the battery on edges with a negative energy consumption, the battery’s state of
charge (SoC) may never exceed M . Once this limit is reached, any further energy that
might otherwise be recuperated is lost. Likewise, the SoC may never become negative.
Once the SoC reaches 0, the vehicle becomes stranded and cannot drive further without
recharging the battery. In realistic applications it may be undesirable to allow the battery
to be discharged entirely, to avoid getting stranded and to prevent damage to the battery.
However, for the sake of simplicity we define the lower bound for the battery’s SoC as 0,
since this has no impact on the problem’s complexity or the presented algorithms. The
range of valid battery states is thus B = [0, M ].

We call a path feasible if the SoC remains in B for all vertices on the path. Naturally, we
are only interested in feasible paths. To check if a path P is feasible, it is not sufficient
to look at the total energy consumption cons(P ) on the path, because this neglects two
special cases: If the path contains an edge that causes the vehicle’s SoC to drop below 0,
the battery is undercharged and the path is not feasible. If the path contains an edge that
would cause the vehicle’s SoC to exceed M , the battery is overcharged and we need to limit
its SoC to M . In order to handle these two special cases, we need to look at every vertex
and edge in P separately.

The initial SoC at the source vertex s is given by b(s). When traversing an edge e = (s, v),
we reduce b(s) by cons(e), unless this would cause the battery to be overcharged, in which
case we set the SoC to M . This yields for the SoC at v: b(v) = min(b(s) − cons(e), M).
If b(v) is negative, this indicates that traversing e would cause undercharging and is not
feasible for the initial SoC b(s). By expanding this formula to an entire path we obtain the
function b(P, i), which computes the vehicle’s SoC after traversing the first i vertices of the
path P = (v1, v2, . . . , vk):

b(P, i) :=
{

b(v1) if i = 1
min(b(P, i− 1)− cons(vi−1, vi), M) otherwise.

We thus call P feasible if b(P, i) ∈ B holds for all 1 ≤ i ≤ k.

Before we can give a definition of the electric vehicle route planning problem, we need to
reconsider our definition of a shortest path. Before battery constraints were involved, we
called a path P = (s = v1, v2, . . . , vk = t) the shortest s-t-path under an edge weight ω if
it minimized ω(P ). This is no longer possible because cons(P ) no longer represents the
total amount of consumed energy on P (although it is still a lower bound for the consumed
energy). Instead, the total amount of consumed energy is given by b(s) − b(t), which
is equivalent to b(P, 1) − b(P, k). Since b(s) is given as an input to our problem and is
constant, this is equivalent to maximizing b(t). We thus call P the shortest s-t-path if it
maximizes b(t). With this we can give a definition of our problem:

Definition 2.4. Energy-Optimal Electric Vehicle Route Planning (EEVR)
We are given a graph G = (V, E), an energy consumption function cons : E → R, source
and target vertices s, t ∈ V , a range of valid battery states B = [0, M ] and an initial state
of charge b(s). We ask for the shortest feasible path P = (s = v1, v2, . . . , vk = t) in G, i.e.,
the path that maximizes b(t) among all s-t-paths for which b(P, i) ∈ B for all 1 ≤ i ≤ k.

There are two possible approaches to adapting Dijkstra’s algorithm to solve this problem.
One is to use the current SoC as the key for the priority queue instead of the distance
(which is equivalent to the consumed energy in this scenario). Instead of extracting the
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element with the lowest key in each iteration of the loop, the element with the highest key
is extracted (since this is the vertex with the lowest consumed energy). When relaxing
an edge e = (u, v), the battery constraints are checked explicitly: If b(u) − cons(e) < 0,
traversing the edge is not feasible and it is simply discarded. If b(u)− cons(e) > M , b(v) is
simply set to M to prevent overcharging.

The second approach was introduced by [EFS11] and models the battery constraints
implicitly as part of the edge weight function. This can be achieved by replacing the scalar
edge weights with energy consumption functions that map each valid SoC to the energy
that is consumed when traversing the edge with that SoC. While this approach seems more
complicated at first, it makes it easier to solve profile queries, which are queries that do
not supply the initial SoC b(s) at the source vertex as an input and instead ask for the
shortest feasible path for every possible value of b(s). These queries will become important
when incorporating charging stations into our problem and are discussed in Section 2.4.3.

2.4.1 Energy Consumption Functions
An energy consumption function is a function c : B → R ∪ {∞} that maps SoC to energy
consumption. For an edge e = (u, v), the corresponding energy consumption function ce

describes for each possible SoC b the amount of energy that is consumed on e if the vehicle
arrives at u with a SoC of b. The special value∞ indicates that the SoC is not sufficient for
traversing the edge. This energy consumption function already takes battery constraints
into account, so an algorithm using these functions as edge weights will not need to handle
over- and undercharging explicitly.

Defining the energy consumption function ce for an edge e = (u, v) is fairly simple: If no
over- or undercharging occurs, the function simply returns the original edge weight cons(e).
Undercharging occurs if the SoC b(u) at u is smaller than the energy consumption of the
edge cons(e), i.e., if b(u)− cons(e) < 0. In this case, the SoC is insufficient for traversing
the edge and the function returns∞ to indicate this. Overcharging occurs if the SoC would
exceed M after traversing the edge, i.e., if b(u)− cons(e) > M . Since the vehicle can only
recuperate energy until the battery is full, the energy consumption in this case is b(u)−M .
In summary, this leads to the following definition for ce:

ce(b) =


∞ if b− cons(e) < 0
cons(e) if b− cons(e) ∈ B

b−M if b− cons(e) > M .

An example of an energy consumption function can be found in Figure 2.1. Using these
energy consumption functions, we can now calculate the SoC at v after traversing e as
b(v) = b(u) − ce(b(u)). The condition b(v) ∈ B will hold unless b(u) is not sufficient to
traverse e, in which case b(v) will have the special value −∞. Furthermore, as observed
in [EFS11], this definition fulfills the FIFO property: For two SoC values b1, b2 ∈ B with
b1 ≤ b2, b1 − ce(b1) ≤ b2 − ce(b2) is always fulfilled. This means that if the vehicle starts
with a higher SoC at u, it cannot end up with a lower SoC at v.

We observe that ce is a piecewise linear function. Each of the three parts of the function
definition corresponds to one interval. The value of ce in the first two intervals is ∞ and
cons(e), respectively, so in these intervals ce is constant and has a slope of 0. In the third
interval, ce is a linear function with slope 1. The size and position of the three intervals
depends on the value of cons(e), and some of the intervals may disappear entirely:

• If cons(e) is negative, the first part of the function definition disappears. The
function ce then consists of the two intervals [0, M +cons(e)) and [M +cons(e), M ] and
is represented by the two supporting points (0, cons(e), 0) and (M +cons(e), cons(e), 1).

13



2. Preliminaries

• If cons(e) is 0, only the middle part of the function definition remains. The function ce

then consists only of one interval [0, M ] and is represented by the supporting point
(0, 0, 0).

• If cons(e) is positive, the last part of the function definition disappears. The function ce

then consists of the two intervals [0, cons(e)) and [cons(e), M ] and is represented by
the two supporting points (0,∞, 0) and (cons(e), cons(e), 0).

Every energy consumption function can be represented with only three static values cost,
minIn and maxOut: cost is the energy consumption if neither over- nor undercharging
occurs. minIn is the minimal SoC that is needed for traversing the edge. maxOut is the
maximal SoC that can be achieved after traversing the edge. For an edge e, these values
can all be calculated from cons(e):

coste := cons(e)
minIne := max(0, cons(e))

maxOute := min(M, M − cons(e)).

With cost, minIn and maxOut, the energy consumption ce for an edge e can be redefined
as

ce(b) =


∞ if b < minIne

coste if b− coste < maxOute

b−maxOut otherwise.

If we replace the static edge weights with these energy consumption functions, we can use
Dijkstra’s algorithm directly to solve the EEVR problem. When relaxing an edge e = (u, v),
we evaluate the energy consumption function ce at the current SoC b(u) to obtain the
energy consumption for e without having to handle over- and undercharging explicitly.
In the version presented in Algorithm 2.1, Dijkstra’s algorithm stores only the tentative
distance from s for each vertex v in dist[v], but not the vehicle’s SoC at v, which we need
to evaluate the energy consumption function. To remedy this, we can either extend the
algorithm by another array SoC[·] that stores the tentative SoC at each vertex or calculate
the SoC implicitly as b(v) = b(s)− dist[v].

Linking. Just like with scalar edge weight functions, we can extend our definition of
energy consumption functions to apply to entire paths. However, this is no longer as
simple as calculating the sum of all edge weights since the total energy that is consumed
on a path may be affected by over- and undercharging. Instead we define the link op-
eration ◦. Given two edges e, f ∈ E, the link operation takes their energy consumption
functions ce and cf and calculates the linked energy consumption function ce◦f , which
describes the energy consumption for traversing e and f successively. Formally it is defined
as ce◦f (b) := cf (b − ce(b)). Like the energy consumption function for a single edge,
it can be represented with the three values coste◦f , minIne◦f , maxOute◦f . They can be
calculated from the values for ce and cf as follows:

coste◦f := max(coste + costf , minIne−maxOutf )
minIne◦f := max(minIne, minInf + coste)

maxOute◦f := min(maxOutf , maxOute− costf ).
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Figure 2.1: An example of the link operation for energy consumption functions. The
maximal possible SoC is defined as M := 4 in this example. The function
ce is defined by coste = −1, minIne = 2 and maxOute = 4. The function
cf is defined by costf = 1, minInf = 1 and maxOutf = 1. Linking the two
functions results in ce◦f , which is defined by coste◦f = 1, minIne◦f = 2 and
maxOute◦f = 1.

Obviously, e and f can only be traversed if the initial SoC is sufficient for traversing e.
Thus, minIne is a lower bound for minIne◦f . Additionally, after traversing e, there must still
be enough SoC left to also traverse f , which means minInf + coste is also a lower bound.
In total, minIne◦f is the maximum of these two lower bounds. The definition of maxOute◦f
is similar: After traversing both e and f , the SoC cannot be higher than the maximum
SoC that is possible after traversing f alone. However, it also cannot be higher than the
SoC that is achieved after traversing f with the maximum SoC that is achievable after
traversing e, so in total maxOute◦f is the minimum of maxOutf and maxOute− costf .

Usually, coste◦f will simply be the sum of coste and costf . However, there is one exception:
If traversing e and f successively will always cause either over- or undercharging to
occur, regardless of the initial SoC, the lowest possible energy consumption is higher than
coste + costf . An example of this is shown in Figure 2.1. Here the middle part of the
function definition disappears, causing either over- or undercharging to occur for every
SoC value. The minimal energy consumption is therefore not coste + costf = 0. Rather,
the minimal amount of energy is consumed at the point where the first and third part
of the function definition meet, i.e., at the intersection of the two lines b = minIn and
cost = b−maxOut. Thus, minIne−maxOutf is a lower bound for coste◦f .

The link operation can be easily applied to paths by simply iterating over the edges of
a path P and linking their energy consumption functions together in the order in which
they occur in P . In fact, since the link operation is associative, the energy consumption
function for P can be calculated by splitting P into any arbitrary configuration of subpaths,
calculating the energy consumption functions for these subpaths and then linking them
together in the correct order.

Since linked energy consumption functions are still covered by the same function definition
as single-edge energy consumption functions, just with different values for cost, minIn
and maxOut, they are also piecewise linear functions with at most three intervals. For
single edges, at least one case of the function definition always disappeared. This is no
longer necessarily the case for linked energy consumption functions, so we may need three
supporting points to represent them.
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2.4.2 Potential Shifting

In order to guarantee a polynomial running time and enable the stopping criterion for the
EEVR problem, we need to adapt the potential shifting technique to work with our new
energy consumption functions, which was first done in [EFS11].

We cannot simply use the shifted edge weight functions from Section 2.3.2 because instead
of static edge weights cons(e) we now have energy consumption functions ce. Accordingly,
for every edge e = (u, v) we need to replace the energy consumption function ce with a
shifted function c′e. Like ce, this function needs to map the SoC at u to the (shifted) energy
that is consumed when traversing e. For a suitable potential function Φ: V → R, we define
our shifted energy consumption function as follows: c′e(b) := ce(b) − Φ(v) + Φ(u). This
definition is equivalent to the one for static edge weights in Section 2.3.2, except that the
static edge weight ω(e) has been replaced with the energy consumption function ce.

In order to be able to evaluate our shifted energy consumption function, we need to know
the SoC at u, which Dijkstra’s algorithm does not save by default. We thus add an array
SoC[·] that holds for each vertex v the vehicle’s SoC at v, similar to the array dist[·], which
holds the energy consumed so far. Whenever an edge e = (u, v) is relaxed, we update the
SoC at v: SoC[v] = SoC[u]− ce(SoC[u]). Note that we use the original energy consumption
function ce to update SoC[v], whereas the shifted energy consumption function c′e is used
to update dist[v]. The reason for this is that c′ does not reflect the actual energy that is
consumed by the vehicle, so if we were to use it to update SoC[·], it would no longer reflect
the actual SoC of the vehicle, which we need to know to evaluate the energy consumption
function.

Now we need to choose a potential function. As it turns out, the one we defined in Section
2.3.2, which was obtained by choosing an arbitrary root vertex r and calculating the
distances to every other vertex using the original static edge weights, is still suitable. We
prove this and the suitability of our shifted energy consumption function in the following
theorem:

Theorem 2.5. Let G = (V, E) be a graph with an edge weight function cons : E → R and a
root vertex r ∈ V . For this root vertex we define a potential function Φ: V → R as follows:

Φ(v) := distcons(r, v).

For every edge e ∈ E, let ce : B → R∪{∞} be the energy consumption function corresponding
to the edge weight cons(e). We define the shifted energy consumption function c′e : B →
R ∪ {∞} as follows:

c′e(b) := ce(b)− Φ(v) + Φ(u).

The following two conditions are fulfilled for c′e:

1. ∀e ∈ E, b ∈ B : c′e(b) ≥ 0.

2. Given two vertices u, v ∈ V where v is reachable from u, every shortest u-v-path
under c is also a shortest u-v-path under c′.

Proof. In order to prove the first claim, we observe that cons(e) ≤ ce(b) holds for every
edge e ∈ E and every SoC b ∈ B. In other words, the energy that is consumed when
traversing an edge is never lower than its weight. There are only three cases to consider: If
undercharging occurs, ce(b) returns ∞. Overcharging occurs if b−M > cons(e) holds, and
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in this case, b−M is returned. If neither over- nor undercharging occur, cons(e) itself is
returned.

With this, we can prove the first claim by contradiction. Assume there is an edge e = (u, v)
and a SoC b ∈ B such that c′e(b) < 0. This means that Φ(v) > Φ(u) + ce(b). Using the
above observation, this becomes Φ(v) > Φ(u) + cons(e). This was already proven to be a
contradiction in Theorem 2.3.

The proof for the second claim is also analogous to Theorem 2.3: The energy consumption
of a path P = (u = v1, v2. . . . , vk = v) under the shifted energy consumption function cP

of P only depends on the potentials of u and v and is given by c′P (b) = cP (b)−Φ(v) + Φ(u),
where b ∈ B is the SoC at u. Since Φ(u) and Φ(v) are constant among all u-v-paths, the
shortest u-v-path under c′ remains the shortest u-v-path under c.

As the theorem proves, the shifted energy consumption function c′e as defined above
removes all negative edge weights and does not change the structure of the shortest paths,
so replacing the original energy consumption function ce with it will re-enable our stopping
criterion and guarantee a polynomial running time.

2.4.3 Profile Queries

In addition to regular queries where the initial SoC b(s) is given as an input, we also want
to be able to solve profile queries, where we ask for the shortest feasible path for every
possible value of b(s). Since the range of valid battery states B = [0, M ] is a continuous set
and thus has infinitely many members, we cannot simply run a separate query for every
possible value of b(s). Instead, our output must be a function that maps each possible
initial SoC to the energy that is consumed on the shortest feasible path for that SoC.
Mapping initial SoC to consumed energy is exactly what the energy consumption functions
introduced in the previous section do, so by using them as vertex labels, we can easily
adapt our algorithm to solve profile queries.

Instead of maintaining a single shortest distance from s for each vertex v, we now store an
energy consumption function that maps each initial SoC b(s) to the shortest s-v-distance for
that value of b(s). We call this function the energy consumption profile of v. Accordingly,
we replace the array dist[·], which holds the distances from s, with an array of energy
consumption profiles profile[·]. In the initialization phase of the algorithm, we initialize the
profile of each vertex v with a constant function profile[v](b) =∞ that maps every value
of b(s) to ∞, to signify that no path to the vertex has been found yet. The profile of s is
set to a constant function profile[s](b) = 0.

The algorithm now maintains a priority queue Q of vertex profiles. As key, we use the first
non-infinite energy consumption value of the profile. When relaxing an edge e = (u, v), we
link the profile of u with the energy consumption function of e to obtain a new candidate
for the profile for v: newProfile← profile[u] ◦ ce. Now we need to compare this candidate
to the current profile at v to see which one represents the shorter path. This is no longer
as simple as it was for a regular query, where we only needed to compare two energy
consumption values and pick the lower one of the two. Now, however, we need to compare
two functions. It is possible that the new profile is superior than the current profile for
some SoC values yet inferior for others. An example of this can be seen in Figure 2.2.

In order to update the profile at v, we need to merge it with the newly calculated profile. For
each initial SoC b(s), we must evaluate both profiles, compare the energy consumptions and
pick the lower one of the two. Mathematically, this means computing the lower envelope of
the two functions. Thus, we define a merge operation that does exactly this for two given
profiles p and q: merge(p, q) := min(p, q). We can calculate the result of this operation
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Figure 2.2: An example of the merge operation for profile functions. To the left are two
profile functions that represent different paths to the same vertex. The black
function is superior for some SoC values, while the red function is superior for
others. To the right is the profile that results from merging the red and black
profiles, which is the lower bound of the two functions. Note that while the
original profiles only had three supporting points each, the merged profile has
six. Of these, the supporting point at (2.5, 1) appears in neither of the original
two profiles. It was added because it lies at the intersection of a function
segment with slope 0 in the black profile and a function segment with slope 1
in the red profile.

by performing a coordinated linear sweep over the supporting points of both functions.
An example of the merge operation is shown in Figure 2.2. In our algorithm, we can now
use this operation every time an edge e = (u, v) is relaxed. After computing newProfile←
profile[u] ◦ ce, we merge it with the profile of v: profile[v]← merge(profile[v], newProfile).
If profile[v] changed as a result of this merging operation, we recalculate its key and update
the priority queue.

So far, energy consumption functions were piecewise linear functions that could be repre-
sented with at most three supporting points as well as with the three values cost, minIn
and maxOut. However, as seen in Figure 2.2, the merge operation may increase the number
of supporting that are needed to represent the function. For this reason, it is no longer
possible to represent merged profiles with the values cost, minIn and maxOut. Instead, we
have to represent the profiles by their supporting points and perform the link and merge
operations by iterating over the supporting points of the functions.

Complexity. The energy consumption profiles can now represent multiple paths for
different initial SoCs, but the key for the priority queue is still a single value. This means it
is possible for the profile of a vertex v to be modified by a merge operation without its key
being changed. This in turn means that the label-setting property no longer holds, even
after potential shifting. The running time of the algorithm now depends on the complexity
of the profile functions [BDPW13].

Path Retrieval. While a profile query gives us shortest path distances for every possible
initial SoC, we may still want to retrieve the shortest path for a specific initial SoC b(s). In
order to do this, we must extend the vertex profiles by parent pointers. However, a single
parent pointer per vertex v no longer suffices, since the shortest s-v-path may be different
depending on the initial SoC b(s). Instead we need a parent pointer for every point in
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the profile of v where the path represented by the profile changes. This can only occur at
supporting points, so we extend the profiles to hold a parent pointer for each supporting
point.

When relaxing an edge e = (u, v), we link the profile of u with the energy consumption
function of e. In the resulting profile, we can set the parent pointer to u for all supporting
points, since this was the last visited vertex regardless of the initial SoC. When merging
the new profile with the current profile of v, there are two types of supporting points in
the merged profile: those that appeared in the original profiles and those that were added
at intersection points. For the former, we can simply retain the parent pointers of the
original supporting points. At a supporting point, a function segment with slope 0 from
one profile p intersects with a function segment with slope 1 from the other profile b. To
the left of the intersection point, the value of b is lower than the value of a, but at the
intersection point it overtakes a and the value of a becomes lower. Since the new supporting
point represents the interval to the right, where a is lower, we must use the parent pointer
from a. This is the parent pointer belonging to the last supporting point of a to the left of
the intersection point.

When asked for the shortest path from s to a target vertex t for an initial SoC b, we must
first identify the correct parent pointer in the profile of t. This is the parent pointer of
the supporting point whose corresponding interval includes b. Then we follow this parent
pointer to find the parent vertex u of t. At u, we must again find the correct supporting
point. All vertex profiles in the graph map the initial SoC from the same vertex s to
the energy that must be consumed in order to reach the vertex that the profile belongs
to. Therefore, we again look up the supporting point in the profile of u whose interval
includes b and follow its parent pointer. We continue doing this until we reach s.

Backwards Search. In order to solve single-destination profile queries, we can again
reverse the search direction of our algorithm by scanning incoming edges instead of
outgoing edges in the main loop. When relaxing such an edge e = (v, u), we link the energy
consumption function of e with the profile of u, but in reverse order compared to a forward
search: newProfile = ce ◦ profile[u]. We set the parent pointers of newProfile to u for all
supporting points.

While the algorithm itself remains unchanged except for reversing its search direction,
retrieving the shortest s-t-path for a given source vertex s and an initial SoC b is now
slightly more complicated: In the forward version of the algorithm, the profile of a vertex v
represents the path from the source vertex s to v, where the source vertex s is the same
for all profiles. This means that when retrieving a path, we can look up all profiles at the
same initial SoC b and find the corresponding supporting point. In the backwards version,
however, this is no longer the case: The profiles now all share the same target vertex t, but
the source vertex is different for every profile. Therefore, we need to update the initial SoC
during backtracking.

We start the path retrieval at s with an initial SoC b(s). We evaluate the profile of s at
the point b(s) to find the corresponding supporting point and its parent pointer. We then
follow the parent pointer to the next vertex u. After traversing the edge e = (s, u), our new
initial SoC is b(u) = b(s)− ce(b(s)). We use this new initial SoC to find the corresponding
supporting point and the next parent pointer. We continue doing this until we reach t,
always updating the initial SoC b by evaluating the energy consumption function of the
traversed edge at b and subtracting the resulting energy consumption from b.
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In the previous chapter we introduced an algorithm that finds energy-optimal routes for
electric vehicles by adapting the shortest path problem. This was achieved by replacing
the static edge weights with energy consumption functions. However, the length of the
routes that can be found with this approach is limited by the capacity of the battery. In
order to calculate long-distance routes, we need to consider charging stations where the
battery can be recharged. In this thesis we consider three types of charging stations:

• Regular charging stations allow the battery to be charged to any desired SoC within
the battery’s capacity B = [0, M ]. It may be recharged to full capacity or only
partially.

• Superchargers are a special type of charging station that recharge the battery much
faster than regular charging stations, but due to technical limitations, the battery
can only be charged up to 80% of its capacity. This means that the range of SoCs to
which the battery can be charged is [0, 0.8 ·M ].

• Battery swapping stations do not recharge the battery but rather exchange it with
another, fully charged battery. This means that the SoC to which the battery is
charged cannot be chosen; it is either "charged" to M or not at all.

For a graph G = (V, E) that represents a road network, we model the charging stations
as subset CS ⊆ V of the set of vertices. Additionally, we define a function type: CS →
{REG, SC, BSS} that assigns a type to each charging station: REG stands for regular
charging stations, SC for superchargers and BSS for battery swapping stations.

In order to completely describe a route that uses charging stations, we need to know
not only where to charge but also how much. For an energy-optimal path P , we define
a charging distribution function cd: CS∩P → B that assigns to every charging station
encountered on the path the amount of energy that is charged there. Depending on the
course of the path, this distribution might be ambiguous: We might encounter more
charging stations than we actually need to use in order to reach the target t. Since charging
stops are time-consuming, especially for electric vehicles, it is usually desirable to use
as few charging stations as possible, so we introduce an additional requirement that the
charging distribution minimizes the number of used charging stations on P . There may
still be multiple solutions that fulfill this requirement, for example if two charging stations
are close together and charging at either of them is sufficient to reach the target, but in
this case we are satisfied with either solution.
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With the addition of charging stations, our definition of a feasible path changes. As before,
the range of valid battery states is denoted by B = [0, M ] and the SoC at the source
vertex s is denoted by b(s). We consider a path P = (s = v1, b2, . . . , vk = t) feasible if
the SoC b(v) at every vertex v ∈ V in the path remains in B. Previously, the SoC at a
vertex vi (1 < i ≤ k) could be calculated from the SoC of the previous vertex vi−1 by
subtracting the energy consumed on the edge (vi−1, vi). This is still the case, but if vi

contains a charging station, we also have to consider the effects of recharging. For a given
charging distribution cd: CS∩P → B we thus define the function b(P, i), which computes
the SoC after traversing the first i vertices of P :

b(P, i) :=


b(v1) if i = 1
min(b(P, i− 1)− cons(vi−1, vi), M) if vi /∈ CS
min(b(P, i− 1)− cons(vi−1, vi), M) + cd(vi) otherwise.

The first two cases are identical to the previous definition. In the third case, the amount of
energy charged at vi is added to b(P, i). As before, we consider P feasible if b(P, i) ∈ B
holds for all 1 ≤ i ≤ k.

The definition of a shortest path must also be adapted to take charging stations into
account: Minimizing cons(P ) is again not sufficient because this would neglect the effects
of over- and undercharging. However, we can also no longer maximize b(t) like before, since
this would allow us to calculate routes with arbitarily large detours as long as the amount
of energy consumed between the last charging station to t is minimized. Indeed, the total
amount of consumed energy on P is no longer simply given by b(s)− b(t), since this ignores
the energy that was recharged on P . Instead, it can now be calculated as

cP (b(s)) = b(s)− b(t) +
∑

cs∈CS∩P

cd(cs).

The total amount of consumed energy is the amount of energy that was charged on P plus
the difference between the initial SoC at s and the eventual SoC at t. This is the value
that a shortest path must minimize. With these considerations, we can now define the
Energy-Optimal Electric Vehicle Routing with Recharging problem:

Definition 3.1. Energy-Optimal Electric Vehicle Routing with Recharging
(EEVRC)
We are given a graph G = (V, E), an energy consumption function cons : E → R, source and
target vertices s, t ∈ V , a range of valid battery states B = [0, M ], an initial state of charge
b(s), a set of charging stations CS ⊆ V and a function type: CS→ {REG, SC, BSS} that
assigns a type to each charging station.

We ask for a path P = (s = v1, v2, . . . , vk = t) ∈ G and a charging distribution function
cd: CS∩P → B so that P is the shortest feasible s-t-path, i.e., the path that minimizes
cP (b(s)) among all s-t-paths for which b(P, i) ∈ B for all 1 ≤ i ≤ k. We also require that
number of used charging stations |{cs ∈ CS∩P | cd(cs) > 0}| is minimized.

So far no algorithm exists for solving EEVRC, but there are approaches that solve similar
problems: Zündorf [Zün14] introduced an algorithm that finds time-optimal routes for
electric vehicles while considering all three types of charging stations introduced above.
This algorithm makes use of charging functions that map charging time to charged energy
and incorporates them into a multi-objective variation of Dijkstra’s algorithm in order
to solve the problem. The algorithm introduced in Chapter 4 adapts concepts from this
algorithm to find energy-optimal routes.
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An algorithm developed by Storandt and Funke [SF12] also computes energy-optimal routes
for electric vehicles, but only considers battery swapping stations as a method of recharging.
It makes use of an precalculated auxiliary graph Q in which the shortest path between
every pair of battery swapping stations (c, d) ∈ CS is contracted into a single edge with
the link operation. It then answers an s-t-query in three steps: First it calculates the set
CSs ⊆ CS of all battery swapping stations that can be reached directly from s with a
Dijkstra query. Next, it calculates the set of all battery swapping stations CSt ⊆ CS from
which t can be reached directly with a single-destination backwards query. As a last step,
it completes the shortest path query by finding the remaining connection between CSs

and CSt in Q with another Dijkstra query. This approach is adapted for other types of
charging stations in Chapter 6.
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4. Charging Label Algorithm

In this chapter, we will develop a first algorithm for solving the Energy-Optimal
Electric Vehicle Routing with Recharging problem. As a basis, we will use the
extension of Dijkstra’s algorithm that was introduced in Chapter 2.4 for solving the EEVR
problem. This algorithm already handles the battery constraints of the electric vehicle, but
it does not yet take charging stations into account. In order to handle charging stations,
we must decide how much energy to charge every time we encounter one.

At first, it might seem that an optimal approach is to always charge as much energy as
possible when a vertex v with a charging station is encountered. This maximizes the
SoC at v and therefore the distance that the vehicle can travel before having to recharge
again. However, this neglects the possible effects of overcharging in the further course
of the path: Consider an outgoing edge e = (v, u) from v with an energy consumption
cons(e) = −1. If the battery is charged to the maximum SoC M at v, the vehicle cannot
recuperate any energy and the effective consumption is ce(M) = 0. If the battery is
charged to M − 1, however, the energy can be recuperated and the effective consumption
is ce(M − 1) = −1 < ce(M). Since we want to minimize the total energy consumption,
it becomes clear that we cannot charge to M at v. We also do not know if M − 1 is the
optimal SoC to charge to, since there might be another edge after e on which overcharging
occurs for a SoC of M − 1 at v as well. The optimal amount of energy to charge depends
on the further course of the path, which is not yet known by the time the search reaches v,
so we must postpone the decision.

If we want to postpone the decision of how much energy to charge at v, that means we
need to consider every possible amount of energy that may be charged. Since the amount
of energy to charge is chosen from the continuous set B = [0, M ] of valid battery states,
there are infinitely many possibilities that all need to be handled at once. A similar issue
was encountered for the time-optimal version of the problem discussed in [Zün14], where it
was resolved by introducing piecewise linear functions called SoC functions which mapped
charging time to achieved SoC. We try to adapt this approach for the energy-optimal
version of the problem.

4.1 Distance and SoC Functions
So far our algorithm uses the two arrays dist[·] and SoC[·] to store the tentative energy
consumption and SoC for each vertex, respectively. These single values now have to be
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Figure 4.1: An example of SoC and distance functions. To the left are the SoC and distance
function at a vertex u that contains a charging station. The vehicle reaches u
with a SoC of 1 and a total energy consumption of 3. The SoC function
SoCu increases linearly as more energy is charged, until the maximum battery
capacity M := 4 is reached, at which point it becomes constant. The energy
consumption is unaffected by this, so distu is constant. To the right are the
SoC and distance function after traversing an edge (u, v) with a consumption
of -1. In the interval [0, 2], this causes the SoC function SoCv to be shifted
upwards by one unit and the distance function distv to be shifted downwards by
one unit. For higher amounts of charged energy, overcharging occurs because
the SoC at u is too high to recuperate all energy. Therefore, SoCv becomes
constant while distv increases linearly.

replaced with functions. Thus, every vertex v now has a distance function distv : R≥0 → R≥0,
which maps the amount of energy charged so far to the amount of energy consumed to
reach v, and a SoC function SoCv : R≥0 → B, which maps charged energy to the current
SoC at v. Examples of these functions are shown in Figure 4.1.

Before encountering a charging station, the only valid amount of charged energy is 0, so the
functions distv and SoCv are only defined at one single point, where they have the same
values dist[v] and SoC[v] as in the original algorithm without functions. We can model distv

and SoCv as piecewise linear functions with the single supporting point (0, dist[v], 0) and
(0, SoC[v], 0), respectively. In our definition of piecewise linear functions, the last interval
of the function (which in this case is the only interval) is open-ended, i.e., it extends to ∞.
However, in this case we only want to consider the first point of the interval as a valid
point, since it represents the only valid amount of charged energy so far. Therefore, we
establish the following convention for distance and SoC functions: In the last interval of the
function, only the supporting point is considered as a valid point; the rest of the interval is
ignored.

Once we encounter the first charging station, the range of possible values for charged energy
expands from the single point to an entire interval. The size of the interval depends on the
current SoC SoCv(0) before charging. If bmax ∈ B is the maximum SoC that the battery
can be recharged to at v (M for regular charging stations and 0.8 ·M for superchargers),
the interval of possible values for charged energy is [0, bmax − SoCv(0)]. Inside this interval,
the achieved SoC increases linearly, reaching M at the endpoint. The amount of consumed
energy is not affected by charging, so distv remains constant. Our functions are now
represented by the supporting points (0, distv(0), 0) and (bmax − SoCv(0), distv(0), 0) for
distv, as well as (0, SoCv(0), 1) and (bmax − SoCv(0), bmax, 0) for SoCv. Again, we ignore
the second interval except for its supporting point, which represents the last valid amount
of charged energy.
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When traversing an edge e = (u, v), we can use the energy consumption function ce to
calculate distv and SoCv. This scenario is shown in Figure 4.1. For each amount of charged
energy x, we evaluate ce with the corresponding SoC SoCu(x) at u to obtain the energy
consumption on e:

distv(x) = distu(x) + ce(SoCu(x))
SoCv(x) = SoCu(x)− ce(SoCu(x)).

If we encounter another charging station v ∈ CS on the path, we need to know the amount
of energy x that was charged before reaching v so that we can extend the distance and
SoC functions by the interval [x, x + bmax − SoCv(x)]. Since we do not know the value of x
yet and cannot determine it before the entire path has been found, we must consider every
supporting point as a possible value for x. In the case of superchargers, we can ignore
supporting points where the achieved SoC is already higher than 0.8 ·M , since the battery
cannot be recharged at v in this case.

For every supporting point x where SoCv(x) ≤ bmax we define new functions distx
v and

SoCx
v that represent the energy consumption and SoC for the case where we charge to x

before v and then switch over to the new charging station at v. These functions are
constructed similarly to the functions for the first charging station: For distx

v , we extend
distv by the supporting point (x + bmax − SoCv(x), distv(x), 0). For SoCx

v , we extend SoCv

by the supporting point (x + bmax − SoCv(x), bmax, 0) and also change the slope of the
previous supporting point (x, SoCv(x), 0) to 1 to signify that the battery can be recharged.

If v is a battery swapping station, we only have the option of either swapping the battery
or not at each supporting point x. If we choose to swap the battery, the amount of charged
energy is now fixed at x + M − SoCv(x) and we can discard all other possibilities. Thus,
for each supporting point x, we define distx

v as the function represented by the single
supporting point (x + M − SoCv(x), distv(x), 0) and SoCx

v as the function represented by
the single supporting point (x + M − SoCv(x), M, 0).

4.2 Simplified Vertex Labels
The distance and SoC functions as defined so far contain superfluous information: At a
vertex v that can only be reached by recharging at least once, the first interval of the
distance function distv has the constant value ∞ and the first interval of the SoC function
SoCv has the constant value −∞, signifying that v is not reachable for these amounts of
charged energy. Since this interval cannot contain the optimal solution, we can discard it.

A similar situation occurs when we traverse an edge e = (u, v) that causes overcharging
to occur for some values of charged energy. In this case, SoCv has the constant value M
in the last interval, while the energy consumption distv increases linearly in this interval
due to overcharging. Let x be the supporting point of this interval. No value of charged
energy above x can lead to the optimal solution, since it leads to a higher total energy
consumption without offering a higher SoC. Therefore, we can discard this interval as well,
except for x itself.

In summary, we discard all parts of the distance and SoC functions that cause either
undercharging or overcharging which can be avoided by charging less. As a result, we are
left with only a single charging interval [x1, x2], where x1 is the first point at which no
undercharging occurs and x2 is the last point at which no avoidable overcharging occurs.
This is exactly the part of the function that was created by charging station, so inside
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this interval, distv is constant and SoCv increases linearly. We call the size x2 − x1 of
the charging interval the charging span of v. Instead of storing an entire function for
each vertex, it suffices to store a vertex label consisting of the values x1, x2, distv(x1) and
SoCv(x1). All other values inside the charging interval can be reconstructed from the values
in the label:

distv(x) = distv(x1) + (x− x1)
SoCv(x) = SoCv(x1) + (x− x1).

When encountering a new charging station, there are now only two supporting points to
be considered, and both of them cause the same new supporting point to be added:

x2 + bmax − SoCv(x2) = x2 + bmax − SoCv(x1)− (x2 − x1) = x1 + bmax − SoCv(x1).

This new supporting point simply extends the charging interval beyond x2 to x1 + bmax −
SoCv(x1), so instead of making a copy of the label, we can simply update x2. At a battery
swapping station, however, we still need make a copy: The original label, which represents
the choice of not swapping the battery, remains unchanged. Additionally, we add a second
label whose charging interval consists only of the single point x1 + bmax − SoCv(x1). This
label represents the choice of swapping the battery.

In Chapter 3, we established a relationship between the total energy consumption and
the amount of charged energy: The total energy consumption is equal to the amount of
charged energy plus the difference between the initial SoC at the source vertex s and the
current SoC. With the initial SoC at s denoted as S ∈ B, this means for the properties of
our vertex labels:

distv(x1) = x1 + S − SoCv(x1)
⇔x1 = distv(x1) + SoCv(x1)− S.

Using this relationship, we can eliminate x1 from our vertex labels and represent them
with only three values in total. We redefine the label of a vertex v as a tuple `v =
(cons, minSoC, maxSoC), where cons = distv(x1) is the amount of energy consumed so far,
minSoC = SoCv(x1) is the lowest SoC with which we can reach v and maxSoC = SoCv(x1)
is the highest SoC with which we can reach v. The following additional properties can be
calculated from these values:

• chargingSpan = maxSoC−minSoC is the charging span of the label, i.e., the range
of valid SoCs with which v can be reached.

• minCharged = cons + minSoC−S is the lowest amount of charged energy with
which v can be reached.

• maxCharged = minCharged + chargingSpan is the highest amount of charged energy
with which v can be reached.

We denote the set of all possible labels as L := R×B×B. There are three operations that
we can perform on labels: traversing an edge, recharging the battery at a charging station
and swapping the battery at a battery swapping station. For the former two operations,
we want to take one label and transform it into another label. For the last operation, we
want to add a second label while still keeping the original one.
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Figure 4.2: Three examples of the link operation for vertex labels. Each label represents
an interval of possible SoC values between minSoC and maxSoC, as well a
single energy consumption value cons. The left example shows the label (2, 1, 2)
encountering a charging station, which leads to a new label (2, 1, 4) with
an extended charging interval. The center example shows the label (3, 1, 3)
traversing an edge with an energy consumption of -2. The energy consumption
is added to cons and subtracted from minSoC and maxSoC, so the label moves
along the dotted diagonal lines. In this example, partial overcharging occurs:
The maxSoC value of the label reaches the maximum battery capacity M := 4,
at which point it can no longer increase, cause the charging span to decrease.
In the example to the right, the label (1, 1, 3) traverses an edge with an energy
consumption of 2. In this case, partial undercharging occurs, limiting minSoC
to 0 and decreasing the charging span.

Linking. We combine the two operations of traversing an edge and recharging the battery
into a single link operation ◦ : L × (V ∪ E)→ L similar to the one introduced in Chapter
2.4.1 for energy consumption functions. When supplied with a label and an edge, it returns
the label that results from traversing the edge. When supplied with a label and a vertex, it
returns the label that results from recharging the battery at the vertex, provided the vertex
contains a charging station. For a label ` and an edge e, the link operation is defined as
follows:

` ◦ e :=
{
⊥ if `. maxSoC < cons(e)
((` ◦ e). cons, (` ◦ e). minSoC, (` ◦ e). maxSoC) otherwise, with

(` ◦ e). cons := `. cons + max(cons(e), `. minSoC−M)
(` ◦ e). minSoC := min(max(0, `. minSoC− cons(e)), M)
(` ◦ e). maxSoC := min(`. maxSoC− cons(e), M).

Normally, we simply add the edge weight to cons and subtract it from both minSoC and
maxSoC. However, if under- or overcharging occurs for part or all of the charging interval,
we have to adapt the linked values accordingly:

• If `. maxSoC < cons(e) holds, the edge cannot be traversed even with the highest
possible SoC and the link operation returns ⊥ to signify this. We call this situation
complete undercharging because undercharging occurs inside the entire charging
interval.

• If `. minSoC < cons(e) holds, undercharging occurs in at least part of the charging
interval. We call this situation partial undercharging. Undercharging occurs exactly
for those SoC values that drop below 0 after subtracting the edge weight. We cut off
that part of the charging interval by setting minSoC to 0.
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• If `. maxSoC− cons(e) > M holds, overcharging occurs in at least part of the charging
interval. We call this situation partial overcharging. Overcharging occurs exactly for
those SoC values that rise above M after subtracting the edge weight. As already
outlined earlier, this part of the charging interval can never contain the optimal
solution, so we cut it off by setting maxSoC to M .

• If `. minSoC− cons(e) > M holds, overcharging occurs for the entire charging interval
and thus cannot be avoided. We call this situation complete overcharging. The energy
consumption of the edge now increases with the SoC at u while the SoC at v is
always M . In order to minimize the energy consumption, we pick minSoC as the
best available SoC and cut off the rest of the charging interval. This means that both
minSoC and maxSoC are M for ` ◦ e, while the consumption on e is `. minSoC−M .

For a label ` and a vertex v, the result of the link operation depends on whether the vertex
contains a charging station and which type it has. If the vertex contains no charging station,
the operation simply returns the original label uncharged. If it contains a regular charging
station, maxSoC is set to M . If it contains a supercharger, maxSoC is set to 0.8 ·M (unless
it is already higher than that, in which case the supercharger cannot be used):

` ◦ v :=


(`. cons, `. minSoC, M) if v ∈ CS and type(v) = REG
(`. cons, `. minSoC, max(`. maxSoC, 0.8 ·M)) if v ∈ CS and type(v) = SC
` otherwise.

The definition of the link operation can also be extended to paths: A label ` is linked with
a path P = (v1, v2, . . . , vk) by linking it with all edges and vertices on the path in the
order in which they appear in the path, i.e., first the edge (v1, v2), then the vertex v2, then
the edge (v2, v3), and so forth. With the set of all possible paths denoted as P, the link
operator becomes ◦ : L × P → L:

` ◦ (v1, v2, . . . , vk) := ` ◦ (v1, v2) ◦ v2 ◦ (v2, . . . , vk).

Examples of the link operation for both edges and vertices are shown in Figure 4.2.

Swapping. Battery swapping stations cannot be handled by the link operation because
they add a label instead of replacing an existing one. Instead, we define an operation
swap: L → L exclusively for battery swapping station. This operation calculates the label
that is added by the battery swapping station, which is the original label with minSoC
and maxSoC both replaced by M :

swap(`) := (`. cons, M, M).

4.3 Pareto Sets
Before we can adapt our algorithm to use the new vertex labels and operation, we need
to solve one remaining problem: One vertex can now have more than one label. We have
already seen that the swap operation for battery swapping stations duplicates each label,
but there is another reason why a vertex can have multiple labels: Before charging stations
were involved, each subpath of a shortest path was also a shortest path itself. Specifically,
for a shortest s-t-path P = (s = v1, v2, . . . , vk), every prefix P i = (s = v1, v2, . . . , vi) of P
was a shortest s-vi-path. This meant that in order to find the shortest s-t-path, it was
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Figure 4.3: In this graph, the vehicle starts at vertex s with an initial SoC of S = 5.
Vertex a contains a charging station. If we want to reach b, the shortest feasible
path is (s, b). However, if we want to reach t, we need to recharge, so the
shortest feasible path becomes (s, a, b, t).

sufficient to keep track of the shortest path from s to every vertex v. To see that this is no
longer the case once charging stations are involved, we consider the following two examples:

In Figure 4.3, there are two paths from s to b. One uses the direct edge (s, b), the other
visits a, which contains a charging station. If we want to reach b from s, the direct edge
(s, b) is optimal, since it only consumes 3 energy units while the path over a consumes 4.
However, if we want to reach t with an initial SoC of S = 5, the path over (s, b) is no
longer feasible: The edge (s, b) consumes 3 units, leaving the vehicle with a SoC of 2 at b.
This is not sufficient to traverse the edge (b, t), which requires 3 units. If we take the path
over a, however, we can recharge the battery at a. Recharging to a SoC of 5 allows us to
traverse both (a, b) and (b, t) and thus reach t. We see that while (s, a, b, t) is the shortest
feasible s-t-path, its subpath (s, a, b) is not the shortest feasible s-b-path. Since we do not
know the further course of the path to t when we reach b, we need maintain labels for both
paths. The reason why scenarios like this one can occur is because due to the possibility of
recharging at charging stations, the path with the lowest energy consumption is no longer
necessarily the one that leaves the vehicle with the highest SoC at its end. Taking a longer
path may be necessary if a shorter path results in a SoC that is too low to reach the target.
Thus, when deciding which labels to keep, we need to consider not only of the amount of
energy consumed so far but also the current SoC.

In Figure 4.4, there are two paths from a to c. One uses the direct edge (a, c), the other
visits b. The path over b consumes no energy in total, but it requires a SoC of at least 4 at a
to traverse. The direct edge (a, c) requires only a SoC of 1 to traverse but also consumes
one energy unit. The vertex a contains a charging station where the vehicle may recharge.
If we want to reach c from s with an initial SoC of S = 5, the path over b is optimal, since
since it consumes only 2 energy units, whereas the path over (a, c) consumes 3. However,
we reach a with a SoC of 3, which is not sufficient to traverse (a, b). If we charge one
energy unit at a, we are able to traverse (a, b) and reach c with a SoC of 4 and 2 units
of consumed energy in total. If we now want to reach t, we must traverse the additional
edge (c, t), which allows us to recuperate 3 energy units. However, if the maximum battery
capacity is M = 5, our current SoC is only one unit below M . Therefore, we can only
recuperate one unit, reducing the total amount of consumed energy to 1. If we take the
direct edge (a, c) instead of the path over b and do not recharge at a, we reach c with a
SoC of 2 and 3 units of consumed energy. When traversing (c, t), we can now recuperate
all 3 units of energy, resulting in a SoC of 5 and no energy consumed in total.

We see that recuperation allows a previously longer path to overtake the shortest path
if overcharging prevents the formerly shortest path from recuperating all possible energy.
Thus, when deciding which labels to keep, we need to consider not only the current total
energy consumption, but also lowest possible value that the total energy consumption may
reach in the further course of the path. The only way to reduce the total energy consumption
is to recuperate energy on an edge with a negative weight, and only so long as the battery
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Figure 4.4: In this graph, the vehicle starts at vertex s with an initial SoC of S = 5. The
maximum battery capacity is M = 5. Vertex a contains a charging station.
If we want to reach c, the shortest feasible path is (s, a, b, c), which requires
recharging at least one energy unit. If we want to reach t, this path leads to
overcharging on the edge (c, t), so the shortest feasible path becomes (s, a, c, t),
which does not require recharging.

is not already full. Thus, the lowest possible future value of the total energy consumption
can be calculated as the current total energy consumption minus the amount of energy
that can be recharged before the battery is full. For a given label ` this can be calculated
as `. cons−(M − `. minSoC). Note that `. cons is equal to S − `. minSoC +`. minCharged,
so the lowest possible energy consumption is S −M + `. minCharged. Since S and M are
constants, the lowest possible energy consumption depends only on the amount of energy
charged so far. Without charging stations, the amount of charged energy is always 0, the
lowest possible energy consumption is the same for all labels.

As these two examples demonstrate, it no longer suffices to maintain only one label per
vertex v. Instead, we have to maintain one label for each s-v-path that could possibly be a
subpath of the shortest s-t-path. Which of these paths is actually a subpath of the shortest
s-t-path depends on how the remaining path from v to t progresses.

In order to handle sets of multiple labels per vertex, we introduce a concept that is
commonly used in multi-objective optimization problems: the Pareto set [Mar84]. In
a typical multi-objective optimization problem, we ask for a set of points in a search
space S so that several objective functions f1, . . . , fn : S → R are minimized. We say that
a point x ∈ S dominates a point y ∈ S if fi(x) ≤ fi(y) holds for all 1 ≤ i ≤ n, i.e., if x is
equal to or better than y according to all objectives. We call a point x ∈ S Pareto-optimal
if no other point y ∈ S exists that dominates it, and we call the set of all Pareto-optimal
points the Pareto set.

In our case, the search space is the set of all possible vertex labels L. In order to compute
a Pareto set that contains exactly those labels that may be part of the optimal solution,
we must define a set of suitable objectives. One of these objectives should obviously be
minimizing the total energy consumption, since this is our ultimate goal. Additionally,
the examples discussed above demonstrate that at least two more objectives are necessary:
minimizing the lowest total energy consumption that may be reached in the further course
of the path and maximizing the current SoC. We thus define three objective functions
f1, f2, f3 : L→ R:

f1(`) = `. cons
f2(`) = `. cons +`. minSoC
f3(`) = `. maxSoC .

Of these functions, f1 and f2 must be minimized, while f3 must be maximized (which is
equivalent to minimizing a function f ′3 ≡ −f3). We call the values cons, cons + minSoC
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Figure 4.5: A graphical representation of the dominance relation for vertex labels. Each
label ` dominates the area enclosed by the three inequalities `. cons ≤ cons,
`. cons +`. minSoC ≤ cons + SoC and `. maxSoC ≥ SoC. Any labels that are
located entirely inside this area are dominated by `. In the example to the left,
neither of the two labels is located entirely within the area dominated by the
other, so neither label is dominated. In the example to the right, however, the
red label is located entirely inside the area dominated by the black label and is
therefore dominated.

and maxSoC our dominance criteria. A label `1 ∈ L dominates a label `2 ∈ L (denoted
by `1 ∝ `2) if all of the following three conditions hold:

`1. cons ≤ `2. cons (4.1)
`1. cons +`1. minSoC ≤ `2. cons +`2. minSoC (4.2)

`1. maxSoC ≥ `2. maxSoC . (4.3)

An illustration of the dominance relation is shown in Figure 4.5. Using this definition
of dominance, we can adapt our algorithm to handle a whole set of labels Lv at each
vertex v. This set contains one label for every Pareto-optimal path from s to v. Whenever
an edge e = (u, v) is relaxed, we check if the resulting label ` is dominated by any of the
labels currently in Lv. If this is not the case, ` is added to Lv and any labels in Lv that
are dominated by ` are removed.

We can extend the link operator to take label sets instead of single labels by performing the
link operation on every label in the label set. For a label set L and a path P , for example,
it is defined as follows (the definitions for vertices and edges are analogous):

L ◦ P := {` ◦ P | ` ∈ L}.

In order to model the effects of dominance on our label sets, we define an operation
trim: L → L that removes all labels from a label set L that are dominated by another
label in L.

Correctness. In order to prove that this strategy always finds the shortest feasible
s-t-path, we examine two important properties of our dominance relation:

Lemma 4.1. The dominance relation ∝ as defined above has the following two properties:

• Transitivity: If `1 ∝ `2 and `2 ∝ `3, then `1 ∝ `3.
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• Finality: If `1 ∝ `2, then swap(`1) ∝ swap(`2), and for any path P , (`1◦P ) ∝ (`2◦P ).

Proof. Transitivity follows directly from the definition of dominance, since the relations ≤
and ≥ are themselves transitive.

Finality for the swap operation is also simple to prove: The swap operation does not change
the value of cons but sets both minSoC and maxSoC to M . Therefore, if `1 ∝ `2, then
swap(`1) ∝ swap(`2) follows. For the link operation, we show that (`1 ◦ v) ∝ (`2 ◦ v) and
(`1 ◦ e) ∝ (`2 ◦ e) hold true for any vertex v and any edge e. Since the link operation for a
path P consists of consecutive link operations for edges and vertices, (`1 ◦ P ) ∝ (`2 ◦ P )
then follows from this.

The link operation for vertices always leaves the values of cons and minSoC unchanged.
The value of maxSoC depends on the charging station type of v:

• If v does not contain a charging station, then `1 and `2 remain entirely unchanged
and therefore (`1 ◦ v) = `1 ∝ `2 = (`2 ◦ v) holds true.

• If v contains a regular charging station, then (`1◦v). maxSoC = (`2◦v). maxSoC = M
and therefore (`1 ◦ v) ∝ (`2 ◦ v) holds true.

• If v contains a supercharger, then for a label ` the value of `. maxSoC is set to
max(`. maxSoC, 0.8 · M). We know that `1. maxSoC ≥ `2. maxSoC, from which
it follows that max(`1. maxSoC, 0.8 ·M) ≥ max(`2. maxSoC, 0.8 ·M). Therefore,
(`1 ◦ v) ∝ (`2 ◦ v) holds true.

Proving finality for the link operation on edges is more complicated, since the values of the
resulting label depend on whether over- or undercharging occured and on whether the entire
charging interval was affected or only part of it. For an edge e and our two labels `1 and `1,
we consider all possible combinations of situations. We define `′1 := `1 ◦ e and `′2 := `2 ◦ e.
It is impossible for overcharging to occur for one label and undercharging for the other,
since the former requires the edge weight to be negative and the latter requires it to be
positive. Therefore, we can group the situations by whether overcharging, undercharging
or neither of the two occurs for at least one label:

• Neither over- nor undercharging for both labels: In this case, the consumption
cons(e) of e is added to cons and subtracted from minSoC and maxSoC for both
labels. This means that cons + minSoC remains unchanged for both labels, while
cons and maxSoC are each shifted by a constant value that is the same for both
labels. Therefore, `′1 ∝ `′2 holds true.

• Undercharging occurs for at least one label: Whether complete undercharging
occurs depends on the value of maxSoC. Since `1. maxSoC ≥ `2. maxSoC, it is
impossible for complete undercharging to occur for `1 but not for `2. If complete
undercharging does occur for `2, then `′2 is removed from the label set and therefore
`′1 ∝ `′2 is trivially fulfilled. In the remaining possible cases, neither complete
undercharging nor overcharging occurs for either label. Therefore, the edge weight
cons(e) is simply added to `1. cons and `2. cons, and therefore `′1. cons ≤ `′2. cons
holds true. Because overcharging does not occur, maxSoC remains unchanged for
both labels. The changes to cons + minSoC depend on which label experiences partial
undercharging:

– Partial undercharging occurs for both labels: In this case, minSoC is set
to 0 for both labels, so cons + minSoC = cons. Since we know that `′1. cons ≤
`′2. cons, it follows that `′1 ∝ `′2 holds true.
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– Partial undercharging occurs only for `1: In this case, `′1. minSoC is set
to 0. Since we know that `′1. cons ≤ `′2. cons, it follows that `′1.(cons + minSoC) =
`′1. cons ≤ `′2. cons ≤ `′2.(cons + minSoC) holds true, and therefore `′1 ∝ `′2.

– Partial undercharging occurs only for `2: In this case, `′2. minSoC is set to 0.
This means that `′2.(cons + minSoC) = `2. cons + cons(e) = `2.(cons + minSoC)+
cons(e)− `2. minSoC. Partial undercharging occurs only if `2. minSoC < cons(e)
holds, and we already know that `1.(cons + minSoC) ≤ `2.(cons + minSoC).
With this, it follows that `′2.(cons + minSoC) > `2.(cons + minSoC) ≥
`1.(cons + minSoC) = `′1.(cons + minSoC). Therefore, `′1 ∝ `′2 holds true.

• Overcharging occurs for at least one label: Whether overcharging occurs
depends on the value of maxSoC. Since `1. maxSoC ≥ `2. maxSoC, it is impossible
for overcharging (either complete or partial) to occur for `2 but not for `1. Thus,
at least partial undercharging must occur for `1. This means that `′1. maxSoC =
M ≥ `′2. maxSoC automatically holds. We know that cons + minSoC is equivalent to
minCharged +S, and since the value of minCharged only changes when undercharging
occurs, we know that cons + minSoC remains unchanged. The changes to cons depend
on which label experiences complete overcharging:
– Neither label experiences complete overcharging: This means that cons(e)

is added to cons for both labels. Therefore, `′1 ∝ `′2 holds true.
– Complete overcharging occurs for both labels: This means that cons is set

to cons + minSoC−M for both labels. Therefore, `′1. cons = `1.(cons + minSoC)−
M ≤ `2.(cons + minSoC)−M = `′2. cons and thus `′1 ∝ `′2 holds true.

– Complete overcharging occurs only for `1: This means that `′1. cons
is set to `1.(cons + minSoC) − M and `′2. cons to `2. cons + cons(e). Since
complete overcharging does not occur for `2, we know that `2. minSoC ≤
M+cons(e) holds. From this it follows that `′1. cons = `1.(cons + minSoC)−M ≤
`2.(cons + minSoC) −M ≤ `2. cons +M + cons(e) −M = `2. cons + cons(e) =
`′2. cons. Therefore, `′1 ∝ `′2 holds true.

– Complete overcharging occurs only for `2: This means that `′1. cons is set
to `1. cons + cons(e) and `′2. cons to `2.(cons + minSoC) −M . Since complete
overcharging occurs for `2, we know that `2. minSoC > M +cons(e) holds. From
this it follows that `′2. cons = `2.(cons + minSoC)−M > `2. cons +M +cons(e)−
M = `2. cons + cons(e) ≥ `1. cons + cons(e) = `′1. cons. Therefore, `′1 ∝ `′2 holds
true.

In summary, we see that (`1 ◦ e) ∝ (`2 ◦ e) and (`1 ◦ v) ∝ (`2 ◦ v) hold for any edge e and
any vertex v. Thus, (`1 ◦ P ) ∝ (`2 ◦ P ) also holds for any path P .

Together, these two properties mean that once a label ` is dominated by another label `′,
we can safely delete it from its label set. For any further path P , finality ensures that ` ◦P
will continue to be dominated by `′ ◦P , while transitivity ensures that even if `′ ◦P is itself
dominated by another label `′′, ` ◦ P will still be dominated by `′′. Thus, every further
label set will contain at least one label that dominates `. Using this, it is easy to show
that our strategy always finds the shortest feasible s-t-path:
Theorem 4.2. Given a graph G = (V, E) with source and target vertices s, t ∈ V , the label
set L of t always contains a label ` that corresponds to a shortest s-t-path P .

Proof. We prove this claim by contradiction: Assume that ` /∈ L. This means that there is
another label `′ ∈ L that dominates `. This, however, means that `′. cons ≤ `. cons, so `′

itself corresponds to a shortest s-t-path, which contradicts our assumption.
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Algorithm 4.1: Charging Label Algorithm
Input: Graph G = (V, E), energy consumption function cons, source and target

vertices s, t, range of valid battery states B = [0, M ], initial SoC b(s),
charging stations CS ⊆ V

Data: Priority queue Q
Output: Array labels[·] containing a label set for each vertex in V
// Initialization

1 forall v ∈ V do
2 labels[v]← ∅
3 labels[s]← {(0, S, S)}
4 Q.Insert(s, Key(labels[s])

// Main loop
5 while not Q.IsEmpty() do
6 u← Q.DeleteMin()
7 `← Settle(labels[u])
8 forall e = (u, v) ∈ E do
9 `′ ← ` ◦ e ◦ v

10 L← {`′}
11 if v ∈ CS and type(v) = BSS then
12 L← L ∪ {swap(`′)}
13 if Add(labels[v], L) then
14 if Q.Contains(v) then
15 Q.DecreaseKey(v, Key(labels[v])
16 else
17 Q.Insert(v, Key(labels[v])

18 if HasUnsettledLabels(labels[u])) then
19 Q.Insert(u, Key(labels[u])

4.4 Basic Approach
By using Pareto sets at each vertex to represent all labels that might lead to the optimal
solution, we can extend our algorithm to solve the EEVRC problem. The resulting
algorithm is a variation of the Multi-Objective Shortest Path Search algorithm introduced
by Martins [Mar84]. Because the labels of our algorithm use intervals to represent each
valid amount of charged energy, we call our algorithm the Charging Label Algorithm (CLA).
The pseudocode for this algorithm is shown in Algorithm 4.1.

Instead of two arrays dist[·] and SoC[·] which hold the tentative energy consumption dist[v]
and SoC SoC[v] for each vertex v, the algorithm now stores a set of labels for each vertex v.
Each label represents one tentative Pareto-optimal s-v-path and consists of a tuple of three
values (cons, minSoC, maxSoC), which represent the energy consumption and the minimal
and maximal SoC with which v can be reached, respectively.

As before, we use a priority queue Q that maintains visited but unsettled labels during the
main loop of the algorithm. In Dijkstra’s algorithm, the key for the priority queue was
the tentative distance from s, which caused the labels to be settled in increasing order of
consumed energy. We still want this to be the case, but it is now possible for two labels to
have the same cons value if they differ in the other two values. To prevent ambiguities,
we sort the labels according to their lexicographical order, with cons as the first criterion,
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minSoC as the second and maxSoC as the third. This way, the labels are still sorted in
increased order of consumed energy, but the other two label values are used to break ties if
necessary.

The label sets are stored in an array labels[·] that contains one entry labels[v] for every
vertex v. Each label set itself is an array in which the labels are sorted according to their
key, which is the order in which they will be settled by the algorithm. Additionally, the
label set maintains a pointer to its first unsettled label. Whenever we visit a new vertex v,
we insert its label set labels[v] into Q, using the key of its first unsettled label. In each
iteration of the main loop, we extract the label set with the lowest key from the queue.
Then we extract its first unsettled label and settle it. The label sets must provide the
following operations:

• Key(L) returns the key of the first unsettled label in L. This is used as the key for L
itself in Q.

• Settle(L) returns the first unsettled label of L and marks it as settled, which is
done by advancing the pointer to the first unsettled label in L to the next label.

• HasUnsettledLabels(L) returns a boolean value, which is true if and only if L
contains at least one unsettled label. This is the case if the pointer to the first
unsettled still points to an actual label in L. If L contains no more unsettled labels,
the pointer points behind the end of the array in which the labels are stored.

• Add(L, L′) adds the labels in L′ to L while removing dominated labels. For every
label ` ∈ L′, the operation checks if ` is dominated by an existing label in L, and if
so, discards it. Otherwise, ` is inserted into L so that L remains sorted according to
key. All labels in L that are dominated by ` are removed. If necessary, the pointer to
the first unsettled label is adjusted. The operation returns a boolean value, which is
true if and only if at least one label in L′ was successfully added to L.

During the initialization phase, the label sets of all vertices are initialized as empty sets,
to signify that no paths have been found yet. The label set labels[s] is initialized with
the initial label (0, S, S), where S ∈ B is the initial SoC. Then, they key of labels[s] is
calculated and s is inserted into Q.

In each step of the main loop, we extract the vertex u from Q whose label set labels[u]
has the smallest key. Then we settle the first unsettled label ` from labels[u]. Because
we used the key of ` as the key of labels[u] in Q, we know that this is the label with the
lowest energy consumption among all unsettled labels currently in Q. After settling `, we
scan all outgoing edges of u. We relax each edge e = (u, v) by linking ` with e and v to
obtain a new label `′ for v. If v contains a battery swapping station, we also calculate the
additional label swap(`′) that represents swapping the battery at v.

We try to add `′ (and possibly swap(`′) as well) to the label set of v and remove all labels
that become dominated. If at least one of the two labels was successfully, we recalculate
the key of labels[v] and update Q accordingly. If the label set of u still has unsettled labels
after settling `, we reinsert it into Q as well, using the key of its next unsettled label.

Label-Correcting Algorithm. Due to the existence of negative edge weights, it is
possible that a label is added to a label set whose key is lower than that of the first
unsettled label. It is also possible that a newly added label dominates already settled
labels, which means they were settled unnecessarily. Because of this, we call the algorithm
label-correcting. If all edge weights are non-negative, it is guaranteed that an already settled
label is not dominated later, and thus we call the algorithm label-setting.
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Path Retrieval. Once the algorithm has terminated, the first label in the label set
labels[t] of t represents the shortest feasible s-t-path P , since it is the one with the lowest
energy consumption. In order to reconstruct P , we extend the labels by parent pointers
that point both the previous vertex in P and the label at that vertex from which the
current label originates. By following these parent pointers until s is reached, P can be
reconstructed. However, in order to completely solve the EEVRC problem, we also need
to determine the charging distribution function cd: CS∩P → B, which tells us where to
charge and how much.

The problem statement requires that the number of used charging stations is minimized.
We can achieve this by iterating through P , keeping track of the current SoC and the last
visited charging station. Whenever the current SoC drops below 0, we go back to the last
visited charging station and charge as much as possible there. This will give us enough
energy to continue, because otherwise P would not be feasible, which we know it is. This
strategy minimizes the number of used charging stations because it charges only when it is
necessary to continue, and then as much as possible. Charging when it is not necessary to
continue would unnecessarily increase the number of used charging stations, while charging
less than is possible at a used charging station would result in a lower SoC, which would
decrease the distance the vehicle could travel before having to charge again.

However, one problem remains: Determining how much can be charged at a given charging
station cs is not trivial. We decide to charge at cs whenever the SoC at the current vertex v
drops below. We could charge just enough energy to reach the maxSoC value of the label
at v. This would maximize the SoC at v and prevent overcharging between cs and v, but
overcharging might still occur after v, for example if the next edge has a negative weight.
To avoid this, we must delay the decision and iterate further across P until we reach a
point where the amount of energy that was charged at cs no longer has an influence on the
current SoC. This is the case once we use another charging station cs′. After cs′, the current
SoC only depends on the amount of energy we charged at cs′ and not on the amount of
energy we charged at cs.

To decide how much to charge at cs, we need to know the value of maxSoC when cs′ is
reached, but before it is used. However, the way the algorithm works, the label at cs′ only
contains the maxSoC value after using cs′. To retrieve the value we need, we can either go
back to the previous vertex and re-traverse the edge that led to cs′, or we can adapt the
algorithm so that whenever it links a label with a charging station, it makes a copy of the
label beforehand.

In summary, the charging distribution cd for the shortest feasible path P can be found
as follows: We iterate through P , keeping track of the current SoC as well as the last
visited and last used charging station. Whenever the SoC at the current vertex v drops
below 0, we go back to the last visited charging station cs and set the preliminary value
of cd(cs) so that the vehicle reaches v with the maxSoC value of the label at v. If cs is a
supercharger, it is possible that it does not offer enough energy for this. In this case, there
must be another charging station before cs that does offer enough energy, so we charge
there instead. After setting cd(cs), we mark cs as used. Then we go back to the last used
charging station cs′ before cs. We set the permanent value of cd(cs′) so that the vehicle
reaches cs′ with the maxSoC value of the label at cs′ before recharging. We also do this
once we reach t.

The worst-case complexity of this procedure is linear in the size of P , so compared to the
running time of the main algorithm it is likely to be fast. On realistic graphs, overcharging
is unlikely to occur after a charging station, since it is not practical to place a charging
station in a location where energy can be recuperated directly after recharging the battery.
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Therefore, our algorithm will usually charge the battery to full capacity at every used
charging station (and 80% of the full capacity at superchargers).

Complexity. We analyze the complexity of our algorithm under the condition that it is
label-setting. This is only the case if the graph does not contain negative edges, so in the
next section we will adapt the potential shifting technique to ensure this. Unlike Dijkstra’s
algorithm, which settled every vertex and relaxed each edge only once, our algorithm may
settle vertices and relax edges multiple times, once for each label in the label set of the
vertex. The complexity of the algorithm thus depends on the size of the label sets, which
we will analyze in Chapter 5. For now, we denote the maximum size of any label set in G
after the algorithm has terminated by |L| and analyze the complexity of our algorithm
depending on the value of |L|.

As before, the initialization phase takes O(n) time. In each iteration of the main loop, one
label is settled. Due to the label-setting property, we know that after the algorithm has
terminated, the label set of a vertex v consists exactly of those labels that were settled by
the algorithm. The number of labels that are settled per vertex is thus at most |L| and
the main loop is executed at most n|L| times. Each iteration of the main loop calls the
operations IsEmpty(), DeleteMin(), Settle(·), HasUnsettledLabels(·), Insert(·, ·) and
Key(·) at most once each. Additionally, Insert(·, ·) is called every time a vertex is settled.

Each edge e = (u, v) is relaxed at most once for every label in the label set of u, so the
inner loop of the algorithm is executed at most m|L| times. Each iteration of the main
loop calls the operation ◦ twice and the operations swap(·), Add(·, ·), Contains(·) and
DecreaseKey(·, ·) at most once.

The operations Key(·), Settle(·) and HasUnsettledLabels(·) of a label set can all be
implemented in constant time. The complexity of Add(·, ·) depends on how many labels
are added. In our algorithm, these are never more than two. Each added label has to be
compared with every other label in the label set in order to determine which labels are
dominated. Therefore, Add(·, ·) has a worst-case complexity of O(|L|). Altogether this
yields a running time of

O(|L|(n(1 + TIsEmpty + TDeleteMin + TInsert) + m(1 + |L|+ TContains + TDecreaseKey)).

With a Fibonacci heap, this yields a worst-case complexity of O(n|L| log n + m|L|2). With
a binary heap it yields O((n + m)|L| log n + m|L|2).

4.5 Speedup Techniques
We have now established an algorithm that solves the EEVRC problem with a worst-case
complexity that is polynomial in the size of the graph and the size of the label sets if the
graph contains no negative edges. However, this is not the case in our scenario, so the
complexity may be exponential. In order to improve the running time of our algorithm, we
examine several speedup techniques.

Pruning. So far our algorithm does not have a stopping criterion, so it only terminates
once every edge that is reachable from s is relaxed. If the algorithm were label-setting, we
could stop once we reach t for the first time, because we would know that first label ` that
is added to t will have a lower cons value than all other labels that might be added later
on. However, due to negative weights, this is not the case in our scenario. The shortest
path may cause the energy consumption to rise above `. cons momentarily but then drop
below it again due to recuperation.
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Because our graph contains no negative cycles, there is a limit to how much energy the
vehicle can recuperate when starting at a given vertex v. Energy can only be recuperated
on paths with a negative total energy consumption, so the maximum amount of energy
that can be recuperated from v is given by the path with the lowest energy consumption
starting from v (or 0 if all of these paths have a positive energy consumption). Under our
energy consumption metric, this is the shortest path starting from v.

To calculate the maximum recuperation for a vertex v, we could simply perform a Dijkstra
query from v and return the lowest energy consumption value that was seen at any settled
vertex. If we want to calculate the maximum recuperation for every vertex in G, however,
the following approach is faster: We set the energy consumption for every vertex to 0 and
initialize the priority queue by inserting all vertices at once. Then we perform a backwards
search. Because the energy consumption values are initialized with 0, paths whose energy
consumption is positive will automatically be discarded. Once the algorithm has terminated,
the energy consumption value at any given vertex v represents the maximum recuperation
that is possible when starting from v.

We use this query to precalculate an array recup[·], which holds the maximum recuperation
recup[v] for every vertex v. Using this information, we can prune our main algorithm: We
know that the cons value of the first label `t in the label set labels[t] of t is an upper bound
for the length of the shortest feasible s-t-path. Every time we relax an edge e = (u, v) to
obtain a new label ` for v, we check if `. cons− recup[v] > `t. cons holds. If this is the case,
we can discard the label, because even if it recuperates the maximum possible amount of
energy, its energy consumption will still be higher than that of `t.

While this pruning technique still does not give us a stopping criterion, it allows us to
discard labels once their energy consumption reaches too high above that of the shortest
path found so far. Because paths with negative energy consumption are fairly short in
realistic graphs, this will usually cause the algorithm to terminate shortly after the shortest
feasible path has been found.

Improved Dominance Criteria. We can also use the information about maximum
recuperation to improve our dominance criteria for the label sets. As outlined in Section
4.3, one of our dominance criteria is the lowest possible total energy consumption that
can be reached in the further course of the path. It can be calculated as the current total
energy consumption minus the amount of energy that can be recharged before the battery
is full. For a label ` at a vertex v, this value is given by `. cons−(M − `. minSoC). We
removed the constant value M to obtain the dominance criterion `. cons +`. minSoC.

By incorporating the information about maximum recuperation from each vertex, we
can make this dominance criterion even stricter: The maximum amount of energy that
can be recuperated when starting from v is recup[v], so the lowest possible total energy
consumption cannot be lower than `. cons− recup[v]. It may be higher than this value if
(M − `. minSoC) < recup[v] holds, which means that the battery becomes full before all
energy can be recharged. In this case the lowest total energy consumption is still given by
`. cons−(M − `. minSoC). By combining these two lower bounds, our new value for the
lowest possible energy consumption becomes `. cons−min(M − `. minSoC, recup[v]).

We replace the dominance criterion cons + minSoC with this new, stricter criterion, obtain-
ing the following definition of dominance: A label `1 at a vertex v1 dominates a label `2 at
a vertex v2 if all of the following three conditions hold:
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`1. cons ≤ `2. cons
`1. cons−min(M − `1. minSoC, recup[v1]) ≤ `2. cons−min(M − `2. minSoC, recup[v2])

`1. maxSoC ≥ `2. maxSoC .

Potential Shifting. In order to make our algorithm label-setting, we use the potential
shifting technique for electric vehicles as discussed in Chapter 2.4.2. We extend our labels
by a fourth value shiftedCons, which holds the energy consumption under the shifted energy
consumption functions c′e. However, we also retain the original energy consumption value
cons in our labels, so when performing the link operation, we have to update both values.
To ensure that the labels are settled in increasing order of shifted energy consumption,
we modify the operation Key(·): Instead of using cons as the primary values for the
lexicographical ordering, we use shiftedCons. The other values remain unchanged. We only
use shiftedCons for sorting the labels; for all other purposes, especially for determining
dominance, we still use the original energy consumption value cons.

Because the algorithm is now label-setting, we can terminate the algorithm once we reach t
for the first time. This stopping criterion eliminates the need for the pruning technique
developed earlier, but we can still use the improved dominance criteria.
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In the previous chapter, we introduced the Charging Label Algorithm (CLA), a variation
of the multi-objective shortest path search algorithm that solves the EEVRC problem.
We observed that the complexity of this algorithm depends on the size of the Pareto sets
that hold the labels for each vertex. In general, the size of the Pareto sets used in a
multi-objective shortest path search algorithm may be exponential in the size of the graph.
In this chapter, we will analyze the size of the Pareto sets for our algorithm and introduce
a class of graphs called chain graphs in which the Pareto sets have polynomial size, yielding
a polynomial running time for our algorithm on these graphs.

5.1 Exponential Label Set Size for Multi-Objective Dijkstra
A common application for a multi-objective version of Dijkstra’s algorithm is the Con-
strained Shortest Path (CSP) problem, which is NP-complete [GJ79]. In addition
to an edge weight ω : E → R, this problem also features a resource consumption function
rc : E → R≥0. The objective is to find a shortest path P under the edge weight ω whose
total resource consumption rc(P ) does not exceed an upper bound R ∈ R≥0. The resource
consumption function is similar to the energy consumption function in our problem, except
that the resource consumption may not be negative, i.e., recuperation is impossible. In
this section we will examine a version of the CSP problem where the edge weight is the
driving time dt: E → R. The objective is to find a path that minimizes the driving time
while not exceeding the upper bound R for the resource consumption.

This problem can be solved with a multi-objective version of Dijkstra’s algorithm where the
vertex labels are tuples (dt, rc), where dt is the total driving time so far and rc is the total
resource consumption so far. A label is linked with an edge by simply adding the driving
time and resource consumption to the values in the label. If the resource consumption of a
label exceeds R, it is discarded.

Consider two labels `1 = (dt1, rc1) and `2 = (dt2, rc2) with dt1 < dt2 and rc1 > rc2.
Normally, `1 will be superior to `2 because its driving time is lower. However, its resource
consumption is higher. In the further course of the path, rc1 may exceed R, causing `1
to be discarded. In this case, `2 will be optimal. Because both labels may be optimal
depending on the further course of the path, we must maintain a Pareto set of labels for
each vertex. In order to use Pareto sets, we must define a dominance relation. We say

43



5. Complexity Analysis for Charging Label Algorithm

s`s = (0, 0) v1 v2 v3 ... vk t

(0,1) (0,2) (0,4) (0,2k)

(1,0) (2,0) (4,0) (2k,0)

Figure 5.1: An example of a graph that leads to Pareto sets of exponential size. The vehicle
starts at s with the initial label `s = (0, 0). Each new vertex vi (1 < i ≤ k + 1)
can be reached via two edges, so for each label in the Pareto set of vi−1 there
are two in the Pareto set of vi. None of these labels dominate each other, so
after k vertices, the Pareto set contains 2k labels.

that a label `1 dominates another label `2 (denoted by `1 ∝ `2) if both of the following
conditions hold:

`1. dt ≤ `2. dt
`1. rc ≤ `2. rc .

Defined as such, the label sets may have exponential size in the size of the graph. Consider
for example the graph shown in Figure 5.1. This graph consists of a sequence (s =
v0, v1, . . . , vk, vk+1 = t) of vertices. From each vertex vi (0 ≤ i ≤ k), there are two edges
leading to the next vertex vi+1 in the sequence: one with the weight (0, 2i) and one with
the weight (2i, 0). If we perform an s-t-query on this graph with the initial label `s = (0, 0),
the size of the Pareto set will double at each vertex, eventually reaching a size of 2k labels
at t. At each vertex vi, there are two edges leading to the next vertex vi+1, so for each label
in the Pareto set of vi, there will be two at vi+1. Neither of these two labels dominates
the other one, since one edge is superior to the dominance criterion dt and the other is
superior according to rc.

Eventually, the vehicle reaches t with the Pareto set L = {(i, 2k − i) | 0 ≤ i ≤ 2k},
provided that R ≥ 2n holds. None of these labels dominate each other: Consider two labels
(i, 2k − i), (j, 2k − j) ∈ L. Without loss of generality, assume that i < j. This implies
2k − i > 2k − j and therefore neither of the two labels dominates the other. There are 2k

labels in L, compared to k + 2 vertices and 2(k + 1) edges in the graph. Thus, the size
of L is exponential in the size of the graph.

Note that in this version of the CSP problem, the two label properties dt and rc are
independent of each other and each one directly corresponds to one edge weight and one
dominance criterion. This allows us to create edges that manipulate only one dominance
criterion without influencing the other, which was exploited in the example graph to avoid
dominance and create exponentially many labels. Returning to the EEVRC problem and
CLA, we observe that this is no longer the case. There is only one edge weight cons, which
affects the values of all three label properties and thus all three dominance criteria. This
means that manipulating one dominance criterion may also inadvertently influence the
others.

In the following sections, we generalize the graph from Figure 5.1 to a class of graphs called
chain graphs. These graphs have the same basic structure as our example graph, consisting
of a sequence of vertices connected by multiple concurrent paths. For these graphs, we can
show that the size of the label sets cannot become exponential because a sufficient number
of labels is always deleted due to dominance.
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5.2 Irrelevance of Dominance Criteria
Before we analyze the characteristic structure of chain graphs, we must be able to identify
situations in which labels are deleted due to dominance. For this purpose we introduce the
concept of the irrelevance of dominance criteria. We call a dominance criterion irrelevant
among a label set if the dominance relation between any two labels in the set remains
exactly the same if we omit the criterion from our definition of dominance and evaluate only
the other two criteria. Because our dominance criteria take the form of simple inequations
between label properties, there is always a label in every label set that is optimal according
to a specific dominance criterion. This means that if two out of the three dominance
criteria become irrelevant, the label that is optimal according to the remaining criterion
will dominate all the other ones and thus all but one label in the set will be deleted.

Before we can establish a definition of irrelevance, we need to identify the conditions that
allow us to omit a criterion from the definition of dominance:

Definition 5.1. Let L ⊆ L be a set of labels and crit and crit′ be two different dominance
criteria (crit 6= crit′ ∈ {cons, cons + minSoC,−maxSoC}).

• We call L crit-equal if ∀` ∈ L : `. crit = c for a constant value c ∈ R.

• We call crit and crit′ equivalent in L if ∀` ∈ L : `. crit−`. crit′ = c for a constant
value c ∈ R.

Both of these conditions allow us to omit a dominance criterion: If a label set L is crit-equal,
then `1. crit ≤ `2. crit is always fulfilled for any two labels `1, `2 ∈ L, so we no longer have
to evaluate crit at all. If two criteria crit and crit′ are equivalent, they always evaluate to
the same result for any two labels `1, `2 ∈ L: `1. crit ≤ `2. crit⇔ `1. crit′ ≤ `2. crit′. This
means that we only need to evaluate one of the two criteria and can omit the other.

With these two conditions, we can give a definition of irrelevance:

Definition 5.2. Let G = (V, E) be a graph, L ⊆ L a set of labels at a vertex v ∈ V ,
crit ∈ {cons, cons + minSoC, maxSoC} a dominance criterion and P = (s, v1, v2, . . . , vk) a
path in G.

• We call crit irrelevant in L if L is crit-equal or if crit is equivalent to another
dominance criterion crit′ ∈ {cons, cons + minSoC, maxSoC} (crit 6= crit′) in L.

• We call P crit-omitting if crit is not irrelevant in L but is irrelevant in L ◦ P .

Before we analyze under which circumstances the link and charge operations in our
algorithm allow us to omit dominance criteria, we observe that cons and cons + minSoC
become equivalent among a label set if minSoC has the same value for all labels in the set:

Lemma 5.3. cons and cons + minSoC become equivalent among a set of labels L if ∀` ∈ L :
`. minSoC = c for a constant value c ∈ R.

Proof. Assume that there exists a constant value c so that ∀` ∈ L : `. minSoC = c. Then
we observe:

∀` ∈ L : (`. cons +`. minSoC)− `. cons = `. minSoC = c.

Because c is constant, cons and cons + minSoC fulfill the definition of equivalence.

With this we can examine the available operations, starting with charging stations:
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• Regular charging station: A regular charging station sets maxSoC = M for all labels
and is therefore maxSoC-omitting in the entire label set.

• Supercharger : A supercharger does not affect labels with maxSoC > 0.8 ·M . For
all other labels, the supercharger sets maxSoC = 0.8 ·M and is therefore maxSoC-
omitting among them.

• Battery swapping station: A battery swapping station duplicates every label in the
label set. Among the duplicated labels, minSoC and maxSoC are both set to M.
Per Lemma 5.3, this means that cons and cons + minSoC become equivalent, so we
can omit cons + minSoC. Since maxSoC = M , we can also omit maxSoC, so cons
remains as the only relevant criterion among the newly added labels. This means
that the label with the smallest cons value dominates all the other ones, and thus a
battery swapping station can add at most one label to the label set.

When traversing an edge, the result depends on whether over- or undercharging occurs.
If neither occurs, traversing an edge simply adds the edge weight to cons and subtracts
it from minSoC and maxSoC. cons + minSoC is therefore not changed at all. Shifting a
dominance criterion by the same constant value for all labels has no effect on dominance,
since the shifted criterion is equivalent to the original criterion. Therefore, no dominance
criterion is omitted in this case. However, over- and undercharging have additional effects
on the labels. We can divide the label set into five groups according to whether they are
affected by over- or undercharging:

• Not affected by over- or undercharging: As observed above, no dominance criterion
becomes irrelevant.

• Affected by complete undercharging: These labels become infeasible and are removed
from the label set.

• Affected by partial undercharging: Partial undercharging sets minSoC = 0 among all
affected labels, so per Lemma 5.3 cons and cons + minSoC become equivalent and
we can omit cons + minSoC among this group.

• Affected by partial overcharging: Partial overcharging sets maxSoC = M among all
affected labels and we can thus omit maxSoC among this group.

• Affected by complete overcharging: Complete overcharging sets minSoC = M and
maxSoC = M . This causes both cons + minSoC and maxSoC to become irrelevant.
cons remains as the only relevant criterion, and thus one label dominates all others.

Note that undercharging can only occur when the edge weight is positive and overcharging
can only occur when the edge weight is negative, so overcharging and undercharging never
occur on the same edge. However, both can occur on a single path.

In total, we observe that the only operation that does not omit any criterion is traversing
an edge without over- or undercharging. Regular charging stations, superchargers and
partial overcharging omit maxSoC, partial undercharging omits cons + minSoC, and battery
swapping stations and complete overcharging omit both cons + minSoC and maxSoC.
However, these operations may omit their respective criteria only on part of the label set.

The only operation that adds labels is a battery swapping station. Aside from that, the
only situation in which the size of the label set can increase is when two edges lead to
the same vertex, causing two label sets to be merged. In the following, we assume that
the graph contains no battery swapping stations or superchargers, only regular charging
stations.

Now that we know which operations cause which criteria to become irrelevant, we can try to
partition label sets into different groups, depending on which operations they encountered.
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If done correctly, this allows us to identify groups among which one or more dominance
criteria are irrelevant. To aid us in finding these groups, we make the following observations:

Lemma 5.4. Let P = (s = v1, v2, . . . , vk = t) be a path and Ls the label set at s. The
following is true of the label set Lt := trim(Ls ◦ P ) at t:

1. cons + minSoC is irrelevant among all labels that have encountered partial under-
charging in P .

2. There is at most one label in Lt that has encountered complete overcharging in P .

3. maxSoC is irrelevant among all labels in Lt that have encountered overcharging in P .

4. If P contains at least one charging station, maxSoC is irrelevant among Lt.

Proof.

1. Directly after encountering partial undercharging, minSoC is 0 among all affected
labels, so per Lemma 5.3 cons + minSoC is irrelevant among them. Let B be the
set of labels that have already been affected by undercharging. Because minSoC
cannot drop below 0, no label has a lower minSoC value than the ones in B. This
remains true in the further course of P, regardless of which operations are performed:
Charging does not affect minSoC at all while traversing an edge without complete
overcharging or partial undercharging shifts minSoC by the same value for all labels.
If partial undercharging occurs again, it affects all labels whose minSoC value is
smaller than the weight of the edge. Because the labels in B have the lowest minSoC
value among the label set, they will be affected again now. Further labels may be
added to B, but since minSoC is set to 0 among both the old labels and the new
labels in B, cons + minSoC is still irrelevant among all of B. Since all labels in B have
the same minSoC value, complete overcharging will affect either all or none of B. If
it affects all of B, minSoC will be set to M, so cons + minSoC will still be irrelevant.

2. Complete overcharging sets both minSoC and maxSoC to M, which causes both
cons + minSoC and maxSoC to become irrelevant. Therefore, once complete over-
charging occurs on a set of labels, only one label ` remains among them. ` now has
the highest minSoC value in the label set, so if complete overcharging occurs again
and affects other labels, ` will also be affected, so again only one label will remain
among them.

3. Directly after encountering overcharging, maxSoC is M among all affected labels
and thus obviously irrelevant among them. Let B be the set of labels that have
already been affected by overcharging. Because maxSoC cannot exceed M, no label
has a higher maxSoC value than the ones in B. This remains true in the further
course of P, regardless of which operations are performed: Traversing an edge without
overcharging shifts maxSoC by the same value for all labels. A charging station will
set maxSoC to M for all labels, including the ones in B, so it will still remain irrelevant
among them. If overcharging occurs again, it affects all labels whose maxSoC value
would otherwise exceed M after traversing the edge. Because the labels in B have the
highest maxSoC value among the label set, they will be affected again now. Further
labels may be added to B, but since maxSoC is set to M among both the old labels
and the new labels in B, it will still be irrelevant among all of B.

4. As observed earlier, a charging station sets maxSoC = M for all labels, regardless
of the operations on the previous path. Thus, all labels are certainly maxSoC-equal
directly after encountering a charging station. This remains true in the further course
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of the path: Edges without overcharging in the remaining path will only shift maxSoC
by the same value for all labels, leaving them maxSoC-equal. Overcharging occurs
when maxSoC would otherwise exceed M after traversing an edge. Since maxSoC
is already equal for all labels, overcharging can only affect all labels at once, so the
labels remain maxSoC-equal in this case as well.

With these observations, we can partition our label sets. Consider a label set L′ at a
vertex s, a path P = (s = v1, v2, . . . , vk = t) and the label set L := trim(L′ ◦ P ) at t. We
can divide L into the following disjoint groups:

L0x: Labels that have encountered partial undercharging but no maxSoC-omitting opera-
tion in P. cons + minSoC is irrelevant among this group.

L0M : Labels that have encountered both partial undercharging and a maxSoC-omitting
operation in P, but not complete overcharging. Since cons + minSoC and maxSoC
are both irrelevant among this group, it consists of at most one label.

Lxx: Labels that have encountered neither a cons + minSoC-omitting operation nor a
maxSoC-omitting operation in P. This is the only group in which no criterion is
irrelevant.

LxM : Labels that have encountered a maxSoC-omitting operation but no cons + minSoC-
omitting operation in P. maxSoC is irrelevant among this group.

LMM : Labels that have encountered complete overcharging in P. Since cons + minSoC and
maxSoC are both irrelevant among this group, it consists of at most one label.

The indices of each group denote the effect that the operations in P have had on the
labels. The first index denotes the effect on minSoC: 0 means that partial undercharging
has occured, which sets minSoC = 0, M means that complete overcharging has occured,
which sets minSoC = M , and x means that neither has occured and that minSoC may
have any value (including M). The second index denotes the effect on maxSoC: M means
that overcharging has occured, which sets maxSoC = M , whereas x means that it has not
occured and that maxSoC may have any value. A group exists for any combination of
indices except LMx, which is impossible since it would have required minSoC to be higher
than maxSoC at some point in P .

The groups are disjoint by definition, but some of the groups may be empty. For example,
if P contains neither under-/overcharging for any label nor charging stations, Lxx will
contain all labels and the other groups will be empty. If the path contains a charging
station, maxSoC will be omitted per Lemma 5.4, so L0x and Lxx will become empty.

5.3 Chain Graphs
In the following we will introduce a class of graphs called chain graphs and, using the
observations made in the previous section, prove that the size of the label sets in these
graphs cannot exceed O(m2), where m is the number of edges in the graph. To begin, we
give a definition of chain graphs:

Definition 5.5.

• A path graph is a graph that consists entirely of the vertices and edges of a path
P = (v1, v2, . . . , ...vk).
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Figure 5.2: Examples of a path graph (left), a chain segment of width 3 (center) and a
chain graph (right).

• A chain segment C is the union of a set S of (pairwise) disjoint path graphs, where the
first vertices of each path graph are merged together into a single source vertex s and
the last vertices of each path graph into a single sink vertex t. We call w(C) := |S|
the width of the chain segment.

• A chain graph G is the union of a sequence S = (C1, C2, . . . , Ck) of (pairwise) disjoint
chain segments, where the sink of each Ci (1 ≤ i < k) is merged with the source
of Ci+1. We call the source of C1 the source of G and the sink of Ck the sink of G.

In Section 5.1, we used an example graph (see Figure 5.1) to demonstrate that the label
sets may have exponential size for general multi-objective shortest path search problems.
This example graph fulfills the definition of a chain graph where every chain segment has
width 2. Chain graphs have the same general structure as this example graph, but instead
of single edges between the individual vertices of the sequence, there may now be entire
paths. Additionally, the number of paths is not restricted to two and may be arbitrarily
large. Several examples of chain graphs are shown in Figure 5.2.

To find an upper bound for the size of the label sets in the graph, we can iterate through
the chain segments: If we know the structure of the label set at the source of a chain
segment, we can use the observations from the previous section to characterize the label
sets at the end of each path in the segment. When merged together, these label sets become
the label set of the segment’s sink, which is the source of the next segment.

When the label sets of each path are merged together at the end of a segment, labels from
different paths may dominate each other. We observe that this is always the case for labels
that encountered no charging station or over-/undercharging in the segment:

Lemma 5.6. Let C be a chain segment with a source s, a sink t and two paths P = (s =
u1, u2, . . . , uk = t) and Q = (s = v1, v2, . . . , vk = t). Let Ls be the label set of s, Lt the
label set of t, and LP := L ◦ P and LQ := L ◦Q the label sets of uk and vk, respectively,
before being merged into Lt and before applying dominance. Let ωP and ωQ be the sum of
all edge weights in P and Q, respectively, and without loss of generality, let ωP ≤ ωQ.

For every label ` ∈ Ls that encounters over-/undercharging or a charging station neither
in P nor in Q, the following is true: (` ◦ P ) ∝ (` ◦Q).

Proof. Because ` does not encounter undercharging, we know that `◦P ∈ LP and `◦Q ∈ LQ.
With ωP ≤ ωQ we observe:

• (` ◦ P ). cons = `. cons +ωP ≤ `. cons +ωQ = (` ◦Q). cons.

• (` ◦ P ). minSoC = `. minSoC−ωP ≥ `. minSoC−ωQ = (` ◦Q). minSoC.

• (` ◦ P ). cons +(` ◦ P ). minSoC = `. cons +ωP + `. minSoC−ωP =
`. cons +`. minSoC = `. cons +ωQ + `. minSoC−ωQ =
(` ◦Q). cons +(` ◦Q). minSoC.

• (` ◦ P ). maxSoC = `. maxSoC−ωP ≥ `. maxSoC−ωQ = (` ◦Q). maxSoC.

49



5. Complexity Analysis for Charging Label Algorithm

In total, this means that (` ◦ P ) ∝ (` ◦Q) and thus ` ◦Q /∈ Lt.

We can generalize this observation for two paths to apply to a whole chain segment.
This gives us an upper bound for the number of labels that encountered neither over-
/undercharging nor a charging station:

Lemma 5.7. Let G be a chain segment with a source s and a sink t. Let Ls be the label
set of s, Lt the label set of t, and Lxx ⊆ Lt the set of all labels in Lt that have encountered
neither a charging station nor over-/undercharging since Ls. Then, the following holds
true: |Lxx| ≤ |Ls|.

Proof. Assume that |Lxx| > |Ls|. That means that there must be two labels `1, `2 ∈ Lxx

that originate from a common label in Ls but took different paths. Per Lemma 5.6, one of
these labels must dominate the other, so Lxx cannot contain both.

When labels that did encounter a charging station or over-/undercharging are involved,
however, it is possible that multiple labels that originate from the same label at the source
but took different paths all remain in the label set of the sink without dominating each
other. For example, consider a path that contains a charging station but has a higher total
energy consumption than another path without a charging station. The labels from the
former path will be superior according to maxSoC, while the labels from the latter will be
superior according to cons, so the labels will not dominate each other.

To make the deduction of an upper limit for the size of the label sets simpler, we will assume
in the following that two labels from different paths of a chain segment only dominate each
other if neither encountered a charging station nor over-/undercharging in the segment.
While there are situations where labels without this restriction dominate each other, we
can ignore those cases because doing so will only increase our upper bound for the size of
the label sets.

The observations from the previous chapter allowed us to divide the label sets at the end
of each path in a chain segment into groups according to which dominance criteria are
irrelevant among them. In the following Lemma, we will show that there is another way
to group the label set at the sink of a chain segment so that dominance criteria become
irrelevant among some groups:

Lemma 5.8. Let C be a chain segment with a source s, a sink t and w s-t-paths P1, . . . , Pw.
Let Ls be the label set at s and Li the label set at the end of each path Pi (1 ≤ i ≤ w). Let
U :=

⋃p
i=1 Li

0x ∪Li
xx be the union of all label groups among which maxSoC was not omitted

and V :=
⋃p

i=1 Li
xx ∪ Li

xM the union of all label groups among which cons + minSoC was
not omitted. For every label ` ∈ Ls, let L` := {` ◦ Pi | i ∈ {1, . . . , p}} be the set of labels at
the end of C that originate from `. Then, the following is true:

1. maxSoC and cons are equivalent among U` := U ∩ L`.

2. V` := V ∩ L` is (cons + minSoC)-equal.

Proof.

1. U` contains only labels from groups among which maxSoC has not been omitted.
This means that the labels in U` have encountered neither overcharging nor a
charging station. Therefore, if ωi is the sum of all edge weights in Pi, we know that
(` ◦ Pi). cons = `. cons +ωi and (` ◦ Pi). maxSoC = `. maxSoC−ωi. Together, this
yields for every label `′ ∈ U`:
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s` = (0, 5, 10)

a

b

t
`1 = (4, 2, 6)
`2 = (5, 0, 5)
`3 = (4, 1, 5)

5

6 -2

-1 5

Figure 5.3: An illustration of case 1 of Lemma 5.8. This chain segment consists of
three paths, denoted from the top to the bottom as P1, P2 and P3. Pick-
ing the label ` ∈ Ls, L` ⊆ Lt consists of the labels `1, `2 and `3, all of
which originate from `. `1 encountered partial undercharging but no maxSoC-
omitting operation and is therefore part of L1

0x. `2 encountered no criterion-
omitting operation at all and is thus part of L2

xx. `3 encountered no under-
charging but partial overcharging and is therefore part of L3

xM . U` consists
of the labels in L` that encountered no maxSoC-omitting operation, which
are `1 and `2. In compliance with the statement of the Lemma, we observe:
`1. cons +`1. maxSoC = `2. cons +`2. maxSoC = `. cons +`. maxSoC = 10, but
`3. cons +`3. maxSoC = 9. maxSoC and cons are equivalent among U`, but not
among all of L`.

`′. cons +`′. maxSoC = (`. cons +ωi) + (`. maxSoC−ωi) = `. cons +`. maxSoC =: c.

The value c is constant among U` and thus maxSoC and cons are equivalent according
to Definition 5.1. An illustration of this case can be seen in Figure 5.3.

2. V` contains only labels from groups among which cons + minSoC has not been
omitted. This means that the labels in V` have not encountered undercharging.
Since undercharging is the only operation that changes the value of cons + minSoC,
we know that: ∀`′ ∈ V` : `′. cons +`′. minSoC = `. cons +`. minSoC. This value is
constant among V` and thus V` is (cons + minSoC)-equal.

By combining these two approaches, we can examine the label sets on each path of a new
chain segment and find groups in which two dominance criteria become irrelevant. Because
only one label may survive from each such group, this gives us a restriction on the number
of labels that each chain segment may add.

Lemma 5.9. Let G = (V, E) be a chain graph consisting of a sequence of chain seg-
ments T = (C1, C2, . . . , Ck). For each segment Ci, let wi be the width of Ci and Ti =
(Pi,1, Pi,2, . . . , Pi,wi) an enumeration of the paths in Ci. Let Li,j be the label set at the end
of each path Pi,j and Li the label set at the sink of Ci, which is the result of merging the
label sets of all paths and applying dominance. Let L0 := {(0, S, S)} be the Pareto set at
the source of C1, which consists of only one label.

For every label set Li,j at the end of a path Pi,j in segment Ci, the following is true:

• |Li,j
0x| ≤ 1 + 3

i−1∑
k=1

wk.
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• |Li,j
0M | ≤ 1.

• |Li,j
xx| ≤ |Li−1|.

• |Li,j
xM | ≤ 1 + 3

i−1∑
k=1

wk.

• |Li,j
MM | ≤ 1.

After merging these label sets into Li and applying dominance, the following is true:

|Li| ≤ |Li−1|+ 2wi(2 + 3
i−1∑
k=1

wk).

Proof. First we prove that the upper bound for |Li| holds true if the upper bounds given
for the groups in Li,j hold true: We know that Li,j is the union of the five groups Li,j

0x,
Li,j

0M , Li,j
xx, Li,j

xM and Li,j
MM . This gives us:

|Li,j | ≤ |Li−1|+ 2(2 + 3
i−1∑
k=1

wk).

There are wi paths in Ci, so if none of these labels dominated each other, our upper bound
for |Li| would be:

|Li| ≤ wi(|Li−1|+ 2(2 + 3
i−1∑
k=1

wk)).

We divided Li,j such that Li,j
xx contains labels that have encountered neither a (cons + minSoC)-

omitting operation nor a maxSoC-omitting operation in Ci. According to Lemma 5.7, Li

can contain at most |Li−1| labels from all groups Li,j
xx (1 ≤ j ≤ wi). The labels in the other

groups have all encountered a (cons + minSoC)-omitting operation or a maxSoC-omitting
operation, so it is possible that none of these labels are dominated in Li. In total this gives
us:

|Li| ≤ |Li−1|+ 2wi(2 + 3
i−1∑
k=1

wk).

Now we can prove the rest of the lemma by induction over the segments C1, . . . , Ck in T:

Base case (i = 1):

Because |L0| = 1, the label set L1,j at the end of each path P1,j in C1 can have at most
one label. This implies the statement of the lemma, since

∑0
k=1 wk = 0 holds.

Inductive step (i→ i + 1):

Assume that the upper bounds given by the statement hold true for Ci. For each path Pi+1,j

in Ci+1 we analyze the label set Li+1,j at the end of the path:

• Li+1,j
xx encountered no criterion-omitting operations, so all labels from Li are retained.

Therefore, |Li+1,j
xx | ≤ |Li| holds.

• Both cons + minSoC and maxSoC are irrelevant in Li+1,j
0M and Li+1,j

MM , so each of these
groups contains at most one label. Therefore, |Li+1,j

0M | ≤ 1 and |Li+1,j
MM | ≤ 1 hold.
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• Among Li+1,j
0x , cons + minSoC becomes irrelevant.

– Let U :=
⋃wi

j=1 Li,j
0x ∪ Li,j

xx be the union of all groups at the end of Ci among
which maxSoC was not omitted. For every label ` ∈ Li−1, let L` := {` ◦ Pi,j |
j ∈ {1, . . . , wi}} be the set of labels at the end of Ci that originate from `. To
the union U` := U ∩L` we can apply Lemma 5.8, which tells us that maxSoC is
irrelevant among each U`. After traversing Pi+1,j , consider (U` ◦Pi+1,j)∩Li+1,j

0x ,
which contains all labels from U` that have become part of Li+1,j

0x . Obviously
maxSoC is still irrelevant among these labels, and because cons + minSoC has
now become irrelevant among them as well, at most one label remains in each
such group. Since we constructed one such group for every label in Li−1, the
remaining labels originate from a subset of Li−1. Per induction hypothesis,
each Li,j

0x group in Ci contained at most 1 + 3
∑i−1

k=1 wk labels, all of which
originated from Li−1. Because the remaining labels in Li+1,j

0x group all originate
from a subset of Li−1, we can apply the same upper bound.

– In each Li,j
xM group in Ci, maxSoC was already irrelevant. Since cons + minSoC

is now irrelevant as well, only one label may remain at most in Li+1,j
0x from each

of those groups. Since there were wi paths in Ci, these are at most wi labels.

– The labels from the Li,j
0M and Li,j

MM groups in Ci may all be retained. Since
there were wi paths in Ci, these are at most 2wi labels.

– In total this yields: |Li+1,j
0x | ≤ 1 + 3

i−1∑
k=1

wk + 3wi = 1 + 3
i∑

k=1
wk.

• Among Li+1,j
xM , maxSoC becomes irrelevant. The argument for this case is equivalent

to the Li+1,j
0x case, with the roles of Li+1,j

xM and Li+1,j
0x , Li,j

0x and Li,j
xM , as well as

cons + minSoC and maxSoC, swapped. This yields: |Li,j
xM | ≤ 1 + 3

i∑
k=1

wk.

We see that the upper bounds also hold true for Ci+1.

Using this upper bound for the number of labels added per segment, we can easily deduct
an upper bound on the total number of labels:

Theorem 5.10. Let G = (V, E) be a chain graph consisting of a sequence of chain segments
T = (C1, C2, . . . , Cp). For each segment Ci, let wi be the width of Ci and Li the label set at
the sink of Ci. Let |L| the maximum size of any label set in V. Then we have |L| ∈ O(m2),
where m = |E|.

Proof. Per Lemma 5.9, we know that the size of the label set after i chain segments is:

|Li| ≤ |Li−1|+ 2wi(2 + 3
i−1∑
k=1

wk).

Because every path in a chain segment of non-zero width must contain at least one edge,
we know that:

p∑
k=1

wk ≤ m.

With this, we can find an upper bound for Li:
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|Li| ≤ |Li−1|+ 2wi(2 + 3
i−1∑
k=1

wk) ≤ |Li−1|+ 2wi(2 + 3m).

This yields for every segment Ci:

|Li| ≤
i∑

k=1
2wk(2 + 3m) ≤ 2(2 + 3m)

p∑
k=1

wk ≤ 2(2 + 3m)m ∈ O(m2).

The worst-case complexity we deducted for our algorithm in Chapter 4.4 was O(n|L| log n +
m|L|2) for a Fibonacci heap and O((n + m)|L| log n + m|L|2) for a binary heap, where |L|
was the maximum size of any label set in the graph G. If G is a chain graph and only
contains regular charging stations, Theorem 5.10 tells us that |L| ∈ O(m2) holds. With this,
the worst-case complexity of our algorithm becomes O(m2n log n + m5) for a Fibonacci
heap and O(m2(n + m) log n + m5) for a binary heap.

In a road network, the edges represent road segments and the vertices represent end points
or intersections of road segments. This means that every vertex is connected to at least
one edge and thus n ∈ O(m) holds. Using this relation to substitute n, the worst-case
complexity becomes O(m5) for both heap types.
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The algorithm we developed in Chapter 4 solves the EEVRC problem, but it requires the
introduction of Pareto sets in order to handle the addition of charging stations. As observed
in Chapter 5, this dramatically increases the worst-case complexity of the algorithm. In
this chapter, we will develop an alternative algorithm that avoids the use of Pareto sets
by precalculating the shortest feasible paths between all pairs of charging stations. This
information can be used to significantly reduce the algorithm’s search space, leading to
faster running times in practice.

6.1 Basic Approach for Battery Swapping Stations
In [SF12], a version of this algorithm was introduced that only considers battery swapping
stations as a possible method of recharging. The basic idea is to precalculate the shortest
feasible paths between all pairs of charging stations. In order to answer an s-t-query, we
then only need to calculate the path from s to the first charging station and from the last
charging station to t; the remainder of the path can be found by using the precalculated
information.

Given a graph G = (V, E) with a set of charging stations CS ⊆ V , we precalculate an
auxiliary graph H = (CS, EH) consists only of the charging stations. For every pair
u, v ∈ CS of charging stations, H contains an edge e = (u, v) if and only if v can be reached
from u without recharging, provided that the vehicle starts at u with a full battery, i.e.,
b(u) = M . For the edge weight cons(e), we choose the amount of energy that is consumed
on the shortest feasible u-v-path. We call this edge a shortcut between u and v, since it
compresses the shortest feasible u-v-path into a single edge. Accordingly, we call H the
shortcut graph of G. We can calculate the outgoing shortcut edges from each charging
station u ∈ CS by performing a Dijkstra query from u that takes battery constraints into
account. Once the query has finished, we add shortcut edges according to the distances
that it calculated to the other charging stations: For every other charging station v ∈ CS
with dist[v] < ∞, we add an edge e = (u, v) to EH with the weight cons(e) = dist[v].
The shortcut graph H can thus be calculated by performing one Dijkstra query for each
charging station in G.

Once we have calculated the shortcut graph H (which only needs to be done once for every
graph), we can answer an s-t-query as follows:
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• First we perform a single-source Dijkstra query from s that takes battery constraints
into account but does not allow for recharging. If this query reaches t, then no
charging stations are required and we can simply return the found path. Otherwise,
we must continue our query on the shortcut graph. We save the set CSs ⊆ CS of
charging stations that were reached from s, along with their distances from s as given
by the array dist[·].

• We can use H to calculate the path up to the last charging station before reaching t,
but unless t is a charging station itself, it does not contain any information about the
path from the last charging station to t. Therefore, we add t to H and calculate a
shortcut edge e = (v, t) for every charging station v ∈ CS from which can be reached
without recharging. This can be done by performing a single-target backwards
Dijkstra query from t. For every charging station v ∈ CS with dist[v] < ∞, we
add e = (v, t) to EH with the weight cons(e) = dist[v].

• Now H can be used to calculate the remainder of the path, starting at CSs. We know
that every time a battery swapping station u ∈ CS is used, the SoC of the vehicle is
reset to M . This is exactly the SoC that the outgoing shortcut edges from u require,
so we can use them to continue the query. We thus find the shortest feasible s-t-path
as follows: We reinsert each charging station v ∈ CSs into the priority queue, using
dist[v] as the key. Then we continue the Dijkstra query, but now using the edges
in H instead of the ones in G. At each vertex, we reset the SoC to M in order to use
the outgoing shortcut edges. Once the query has finished, dist[t] is the length of the
shortest feasible s-t-path.

We see that this algorithm does not require Pareto sets for deciding whether to use a
battery swapping station or not. In fact, due to the structure of our shortcut graph H,
this decision is no longer necessary because superfluous charging stations are automatically
skipped: Consider a shortest feasible s-t-path that visits three consecutive charging stations
u, v, w ∈ CS. Assume that it is necessary to charge at u and w, but that w can be
reached directly from u without recharging, so charging at v is unnecessary. Since w
can be reached directly from u, the shortcut graph H must contain an edge (u, w) in
addition to the edges (u, v) and (v, w). Both the single edge (u, w) and the pair of edges
(u, v) and (v, w) represent the same path in G, but (u, w) skips over v without recharging
there. If charging at v causes overcharging, cons((u, w)) < cons((u, v)) + cons((v, w)) holds
and (u, w) will lead to a lower energy consumption at w than (u, v) and (v, w). Otherwise,
cons((u, w)) = cons((u, v)) + cons((v, w)) holds. Because the vehicle reaches u before v,
the edge (u, w) is relaxed before (v, w). Because (v, w) does not improve the energy
consumption at w, it is discarded and the query finds the path that skips recharging at v.

Because Pareto sets are not required, the algorithm can simply use regular Dijkstra queries
for electric vehicles in all steps. Precalculating H requires one Dijkstra query for every
charging station in G. Each s-t-query requires three Dijkstra queries: One from s in G,
one to add t to H, and one to reach t in H. Thus, the entire algorithm has polynomial
complexity in the size of graph when applying potential shifting. Additionally, its search
space is fairly small: The queries that are performed in G do not allow for recharging, so
they will abort once the battery is depleted, regardless of the distance between s and t.
Only the query in H allows for recharging, but for realistic road networks, H contains
much fewer vertices than G.

Path Retrieval. Each shortcut edge e = (u, v) represents a shortest u-v-path Pe =
(u, . . . , v), but H no longer stores any information about the other vertices in Pe besides u
and v. However, we need to know these vertices if we want our algorithm to output the
shortest s-t-path. Thus, when adding e to H, we retrieve Pe by following the parent pointer
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of v and store it alongside e. During our Dijkstra query in H, each shortcut edge e = (u, v)
now represents an entire path, so we must adapt our parent pointers accordingly: Instead
of pointing only to u, we save the entire path Pe between u and v. We can then retrieve
the s-t-path by following the parent pointers and concatenating the resulting paths.

6.2 Incorporating Other Charging Station Types
So far, the algorithm makes the assumption that every charging station always resets the
SoC of the vehicle to exactly M . This is true for battery swapping stations, but not for
other types of charging stations, where we can choose how much energy to charge. While
regular charging stations still allow us to charge to M , this might cause overcharging in the
further course of the path that must be avoided. Furthermore, superchargers can at most
charge to 0.8 ·M . This means that we can no longer know beforehand what the resulting
SoC at a given charging station will be. However, we need this information to calculate
the weights of our shortcut edges.

In order to solve this problem, we use profile queries as introduced in Chapter 2.4.3.
Whereas a regular Dijkstra query calculates the shortest s-t-path for a given SoC b(s)
at s, a profile query calculates the shortest s-t-path for every possible SoC at s. We thus
replace the static edge weights of our shortcut edges with energy consumption profiles
that we calculate via profile queries: During the preprocessing phase, we perform a profile
query from every charging station u ∈ CS. For every other charging station v ∈ CS that is
reachable from u for any SoC in B = [0, M ], we add a shortcut edge e = (u, v) to EH , using
the calculated u-v-profile as the edge weight. This profile gives us the shortest u-v-path
for any SoC at u. Likewise, we perform a backwards profile query from t to calculate the
profiles for the shortcut edges from each charging station to t.

When performing the Dijkstra query in the shortcut graph H, we now need to decide at
every charging station how much energy to charge there. As observed in Chapter 4, this
decision can only be made once we have reached the next charging station that is used.
In order to solve this problem, our previous algorithm maintained an entire interval of
possible values for the amount of charged energy and only calculated the actual amount to
charge once the query had finished and the shortest feasible path was known. Due to the
structure of our shortcut graph H, this is no longer necessary: As observed in the previous
section, the query will automatically skip charging stations if it is not necessary to charge
at them. Therefore, we can assume that all charging stations that are visited during our
query are also used.

When relaxing an edge e = (u, v), we check if e is traversable without recharging at u.
If this is the case, we do not need to relax e, since it is not part of the optimal solution.
Otherwise, we must decide how much energy to charge at u. As observed in Chapter 4, the
optimal strategy is to avoid overcharging in the further course of the path, but otherwise as
much as possible. Because we know that the vehicle will recharge again at v, we only need
to avoid overcharging on e. The optimal SoC at u can thus be found by evaluating the
profile p of u: If bmin ∈ B is the SoC with which the vehicle reaches u and bmax ∈ B is the
maximal SoC that the charging station can charge to, then the optimal SoC is the highest
SoC b ∈ [bmin, bmax] that minimizes the energy consumption p(b) on e. After finding this
optimal SoC b, we can then traverse e with the energy consumption p(b).

Because our algorithm uses a shortcut graph whose edge weights are energy consumption
profiles, we call it the Profile Shortcut Algorithm (PSA). Due to the involvement of profile
queries, it is label-correcting even after applying potential shifting and we can no longer
guarantee a polynomial running time in the size of G.
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Figure 6.1: An example of an energy consumption profile (black) and its trimmed profile
(red). Note that the trimmed profile is monotonically increasing.

Path Retrieval. Since the shortcut edges now represent entire energy consumption
profiles, there is no longer one definite shortest path associated with every shortcut
edge e = (u, v). Instead, one shortest path is associated with every supporting point of e.
Therefore, when adding e to H, we need to retrieve the shortest path for every supporting
point in the profile of e and store it alongside e. During our Dijkstra query in H, the path
associated with a shortcut edge e = (u, v) is now the one associated with the supporting
point whose interval includes the current SoC at u.

Trimming Profiles. When deciding how much to charge at a given charging station
u ∈ CS before traversing an edge e = (u, v), we consider the interval [bmin, bmax], where bmin
is the SoC with which the vehicle reaches u and bmax is the maximum SoC that the charging
station at u can charge to. In this interval, we choose the highest SoC that minimizes the
energy consumption on e. We can use this knowledge to simplify our energy consumption
profiles: Given a profile p, we know for every SoC bmin ∈ B that the best possible energy
consumption is given by

consmin(bmin) := min
b∈[bmin,bmax]

(p(b)).

We know that the energy consumption on e after recharging is consmin(bmin), so we can
define a new profile function p′ that uses this value instead of p(b):

p′(b) :=
{

consmin(b) if b ≤ bmax

p(b) otherwise.

As shown in Figure 6.1, p′ is monotonically increasing in [0, bmax]. If we use p′ instead
of p as the profile for e, the energy consumption on e after recharging at u is directly
given by p′(bmin). However, we also need to know how much to energy charge to achieve
this energy consumption. Therefore, for every supporting point (bmin, p′(bmin)) in the new
profile p′ we save the SoC that the vehicle must charge to at u to achieve the energy
consumption p′(bmin). This SoC can be calculated as

SoCmax(bmin) := max({b ∈ [bmin, bmax] | p′(b) = p′(bmin)}).
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In this chapter we evaluate our implementations of the algorithms introduced in Chapter 4
and 6 on real road network data. First we discuss the experimental setup and the input
data used for our experiments. Then we evaluate the performance of the two algorithms
and their various speedup techniques.

7.1 Experimental Setup and Input Data
We evaluate our algorithms on road network data kindly provided to us by the PTV AG
for scientific use. This data contains information about road segments and intersection,
including geographical coordinates and road types. For each road type, an average driving
speed is given. By multiplying this value with the length of the edges, we obtain an average
driving time for each road segment. We extracted the road networks of Luxembourg and
Germany from this data, obtaining the two graphs luxembourg and germany.

In order to compute energy-optimal routes, we need an edge weight function that maps the
energy consumption to each road segment. Among other factors, the energy consumption
of an electric vehicle depends of the slope of the road segment. We compute the slopes
for the edges in our graphs by using the elevation data provided by the Shuttle Radar
Topography Mission (SRTM), which is freely available from the CGIAR Consortium for
Spatial Information 1. This data covers over 80% of the globe with a precision of 90 meters.
Parts of the graphs which are not covered by this data are removed.

We compute the energy consumption data using PHEM (Passenger car and Heavy duty
vehicle Emission Model) [HRZL09], which is developed by the Graz University of Technology.
This model computes the energy consumption for a variety of electric vehicle types and
driving situations, taking into account the road category, driving speed and slope of a road
segment. We mapped the road types provided by the PTV AG data to the PHEM road

1http://srtm.csi.cgiar.org/

Table 7.1: An overview of the graphs used for our experiments.
Graph # vertices # edges # edges with cons ≤ 0 # charging stations

luxembourg 36 457 81 950 12 947 (15.79%) 37 (0.10%)
germany 4 692 091 10 805 429 1 119 710 (10.36%) 1 970 (0.04%)
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categories using a heuristic previously used by Baum et al. [BDPW13]. As a vehicle type
we choose the Peugeot iOn model, which is equipped with a 16kWh battery. We use this
battery capacity for our experiments on the germany graph. On the luxembourg graph,
a battery capacity of 16kWh is sufficient for traversing the entire graph without needing
to recharge the battery. In order to study the effect of charging stops, we therefore use a
battery capacity of 4kWh on this graph.

In addition to the road networks and energy consumption data, we also need information
about the location of charging stations. We obtain this information from ChargeMap2,
which lists the locations of many charging stations worldwide. We map the location of each
charging station to the vertex which is closest in our graph, discarded it if the distance to
the closest vertex exceeds 20 meters. Using this method, we obtain coordinates for 1 970
charging stations in the germany graph and 37 charging stations in the luxembourg graph.
To each of these charging stations we randomly assign a charging station type. Unless
otherwise noted, we use a distribution of 80% regular charging stations, 10% superchargers
and 100% battery swapping stations.

An overview of the data used in our experiments is given in Table 7.1, including information
about the size of the graphs, the number of edges with a negative energy consumption and
the number of charging stations.

7.2 Experiments
We now evaluate the performance of our algorithms. All algorithms were implemented
in C++ and compiled using g++ version 4.8.3 (64 bit) with optimization level 3. The
experiments were conducted on machine with two 8-core Intel Xeon E5-2670 processors
clocked at 2.6GHz and 64GB of DDR3-1600 RAM. In order to ensure reproducibility of the
experiments, only one algorithm was running at any given time. Unless otherwise noted,
each algorithm used only a single core.

7.2.1 Charging Label Algorithm

We start by evaluating the Charging Label Algorithm introduced in Chapter 4. For the
purpose of comparison, we also evaluate an implementation of CLA that uses the distance
and SoC functions introduced in Chapter 4.1. We call this version of the algorithm Naive
CLA. In addition to the basic algorithm, we also developed three speedup techniques:
By calculating the maximum recuperation possible at each vertex, we were able to prune
the search by discarding labels whose energy consumption is too high to improve the
current consumption at the target. The same information was also used to develop stricter
dominance criteria. Finally, we used potential shifting to introduce a stopping criterion.

In order to test the performance of CLA as well as its speedup techniques, we evaluated
the same randomly chosen 100 queries on the germany graph for Naive CLA, basic CLA
without speedups, as well as every useful combination of speedups. The results are shown
in Tables 7.2 and 7.3. Note that combining the pruning technique and potential shifting is
not useful: The pruning technique only starts discarding labels once the target vertex has
been visited for the first time. After applying potential shifting, however, the entire query
can already be aborted once the target vertex is reached, so the pruning technique will
never take effect. Therefore, this combination was not evaluated.

We observe that CLA without any speedups is almost three times as fast as Naive CLA,
improving the average running time from 63 seconds to 22 seconds. The reason for this
vast improvement in performance is that the operations for traversing an edge and using

2http://chargemap.com/
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Table 7.2: This table shows the performance of CLA with various combinations of speedup
techniques. For this experiment, the same 100 random queries on the germany
graph were evaluated for each configuration of the algorithm. This table shows
the results for three out of seven configurations that were tested; the remaining
results are shown in Table 7.3.

Algorithm Naive CLA CLA
Potentials? 5 5 5

Pruning? 5 5 5

Improved dominance? 5 5 3

Time [s] 63.378 22.170 19.006
Avg. label set size 3.07 3.57 2.98
Max. label set size 37 41 16

Visited vertices 4 692 091 4 692 091 4 692 091
Visited labels 19 668 609 22 773 258 19 577 307

Visited labels per vertex 4.19 4.85 4.17
Rescanned labels 556 399 603 390 88 791

Added labels per vertex 4.52 5.23 4.50

Table 7.3: The continuation of Table 7.2, showing the results for the remaining four
configurations.

Algorithm CLA
Potentials? 5 5 3 3

Pruning? 3 3 – –
Improved dominance? 5 3 5 3

Time [s] 11.528 9.568 7.937 6.576
Avg. label set size 3.36 2.88 3.25 2.74
Max. label set size 34 14 33 14

Visited vertices 2 378 449 2 378 449 2 170 353 2 170 353
Visited labels 11 374 719 9 859 942 9 971 268 8 398 825

Visited labels per vertex 4.58 4.02 4.26 3.63
Rescanned labels 302 825 47 498 0 0

Added labels per vertex 4.95 4.34 4.64 3.96

a charging station are much simpler: Naive CLA represents information about energy
consumption and current SoC with piecewise linear functions, and both operations require
a linear sweep over the supporting points of these functions, whereas for CLA, they only
need to update the three values of the vertex label.

Without speedups, there is no stopping criterion, so CLA visits all vertices in the graph.
Per vertex, it adds 5.23 labels and visits 4.85 labels on average. This implies that the
majority of added labels remain in their label sets until they are settled for the first time,
while a small portion of labels is dominated and removed before being settled. Because
the algorithm is label-correcting, it is possible for labels to be settled more than once. We
call these labels rescanned labels. Without speedups, approximately 2.7% of all visited
labels are rescanned. Using improved dominance criteria decreases the number of added
labels by 14%. Additionally, the ratio of rescanned labels decreases to about 0.5%. This
decreases the running time by about three seconds.
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Table 7.4: This table shows the performance of the PSA preprocessing phase, which com-
putes the shortcut graph by performing one profile query for each charging
station in the graph. The first row gives the overall time for computing the en-
tire shortcut graph, while the remaining values are averaged from the individual
queries.

Graph luxembourg germany
Potentials? 5 3 5 3

Overall time 803ms 725ms 25m 36s 23m 29s
Time per query [ms] 22 20 798 732

Visited vertices 20 918 20 918 526 577 526 577
Rescanned vertices 1 449 129 14 354 2 694

Avg. profile size 1.26 1.26 1.19 1.19

If the pruning technique is enabled, the number of visited vertices decreases to about 50.7%
of the graph on average, which approximately halves the average running time. Potential
shifting makes the algorithm label-setting, which makes it impossible for labels to be
rescanned. Furthermore, it adds a stopping criterion, which allows the search space to
be restricted even further. However, this only results in a slight improvement, reducing
the ratio of visited vertices to 46.3%. The reason for this is that the germany graph only
contains relatively short paths with a negative energy consumption. Therefore, the pruning
technique causes the remaining labels to be discarded shortly after the target is reached
for the first time.

By enabling potential shifting and improved dominance criteria, CLA achieves its best
average running time of 6.6 seconds. This is a speedup of 9.6 compared to Naive CLA
and 3.4 compared to CLA without speedups.

7.2.2 Profile Shortcut Algorithm

In this section we evaluate the performance of the Profile Shortcut Algorithm introduced
in Chapter 6. We start by evaluating the preprocessing phase of the algorithm, in which
the shortcut graph is computed by performing a profile query from every charging station.
For this purpose, we ran the preprocessing on both the luxembourg graph and the germany
graph. For the luxembourg graph we used a smaller battery of 4kWh, since otherwise the
entire graph would be traversable without recharging. On each graph, we performed the
preprocessing twice, once with potential shifting and once without. The results are shown
in Table 7.4.

On the luxembourg graph, the preprocessing is fairly fast. On average, each profile query
takes 22 milliseconds without potential shifting. Since there are 37 charging stations in total,
this leads to a total running time of 803 milliseconds. Each query stops once the initial
battery capacity is depleted. Even with a small 4kWh battery, the queries still visit 57.3%
of the vertices in the graph on average, since the graph is so small. Without potential
shifting, 6.9% of the visited vertices are rescanned; potential shifting reduces this to 0.6%
but cannot eliminate rescanning entirely, since the profile queries remain label-correcting.
The size of the computed energy consumption profiles is very low, containing only 1.26
supporting points on average. This indicates that most profiles consist only of a single
constant value.

On the germany graph, the average running time for each query is much longer, averag-
ing 798 milliseconds without potential shifting. The reason for this is that the increased
battery capacity of 16kWh allows a much larger range of vertices to be explored. While the
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Figure 7.1: This figures shows the speedup for the parallelized preprocessing phase of PSA,
depending on the number of cores used.

number of visited vertices is approximately 25 times as large as in the luxembourg graph,
they still constitute only 11.2% of all vertices in the graph. Only 2.7% of all visited vertices
are rescanned without potential shifting; potential shifting reduces this to 0.5%. With 1.19
supporting points per profile, the average profile size is lower than in the luxembourg graph,
likely because the overall ratio of charging stations is smaller in the germany graph.

Because the germany graph contains so many charging station, the entire preprocessing
phase takes over 23 minutes even with potential shifing. To improve the running time, we
parallelize the preprocessing phase: Since the individual profile queries for each charging
station are independent of each other, we can easily distribute them among the 16 cores
of our test machine. We thus repeat the previous experiment, this time distributing the
queries among an increasing number of cores. Since the previous experiment showed that
potential shifting improves the running time, we always enable it for this experiment.
Figure 7.1 shows the achieved speedup for each number of used cores.

If the preprocessing phase were perfectly parallelizable, we would expect a speedup factor
of 16 for 16 cores. As the data shows, the actual speedup factor is 4.8 for the germany
graph and 2.6 for the luxembourg graph. One reason for this discrepancy is that each thread
needs its own copies of the vertex labels, to prevent different queries from interfering with
each other. The code for copying the vertex labels cannot be parallelized, since every thread
needs to perform it. On the luxembourg graph, the queries themselves have a very short
running time, even when compared to the overall size of the graph. Therefore, copying the
vertex labels takes up a larger ratio of the overall time when compared to the germany
graph, which contributes to the lower speedup factor.

Additionally, we observe that the speedup increases almost monotonically except for the
change from 8 to 9 cores, where it decreases momentarily. The reason for this is most likely
that the machine on which the experiments were performed has two processors with eight
cores each. As long as eight cores or less are used, the queries are all performed by the
same processor. Once nine cores or more are used, however, the queries have to distributed
among both processors, which leads to an additional coordination overhead.

Even though the speedup factor is lower than expected, parallelization with 16 cores still
leads to a significantly improved preprocessing time of 277 milliseconds for the luxembourg
graph and 4:55 minutes for the germany graph.
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Table 7.5: This table shows the performance of PSA with various combinations of speedup
techniques. For this experiment, the same 1000 random queries on the germany
graph were evaluated for each configuration of the algorithm.

Potentials? 5 5 3 3

Trimmed profiles? 5 3 5 3

Preprocessing Parallelized time [m:ss] 5:02 5:14 4:51 4:55
Time per query [s] 1.732 1.816 1.728 1.751

Initial query Time [ms] 396 390 352 352
Visited vertices 478 721 478 721 445 664 445 664

Rescanned vertices 13 238 13 238 0 0
Target processing Time [ms] 674 689 675 684

Visited vertices 420 606 420 590 420 606 420 590
Rescanned vertices 19 225 19 091 3 903 3 736

Shortcut query Time [ms] 56 56 35 33
Visited vertices 1 717 1 717 871 871

Overall Total query time [s] 1.126 1.135 1.062 1.070
Avg. profile size 1.21 1.19 1.21 1.19

We continue by evaluating the performance of the query part of PSA. In addition to the
basic algorithm, we developed two speedup techniques: Potential shifting was applied to all
of the four phases that make up PSA. This introduced a stopping criterion for the initial
query from the source vertex and the query on the shortcut graph, as well as reducing the
number of rescanned vertices in the other phases. Additionally, we introduced a method
for trimming the energy consumption profiles, making them monotonically increasing. We
tested the performance of PSA as well as its speedup techniques by evaluating the same
randomly chosen 1000 queries on the germany graph for every possible combination of
speedups. The results are shown in Table 7.5.

Without speedups, the overall running time of an average query is 1.126 seconds. This is
distributed among the three phases of the query as follows: The initial query from the source
vertex takes 392 milliseconds (35%), adding the target vertex to the shortcut graph takes 674
milliseconds (60%), and the query on the shortcut graph takes 56 milliseconds (5%). We
observe that the query on the shortcut graph is much faster than the other two phases.
The reason for this is that the first two phases scan all vertices that are reachable from
the source or target vertex with a 16kWh battery, while the shortcut graph query only
scans the charging stations in the graph, of which there are much fewer. If a larger graph
with more charging stations or a smaller battery capacity is used, the share of the shortcut
query in the overall running time will increase.

When examining the running time per settled vertex, we observe that the shortcut query
is much slower: The initial query and target processing query settle 1253 and 594 vertices
per milliseconds, respectively, while the shortcut query processes only 28. There are two
reasons for this: One is that when relaxing an edge, the shortcut query has to scan the
profile of the query to find the optimal SoC. The other reason is that the density of edges
is much higher in the shortcut graph than in the original graph, since there is an edge
between every pair of charging stations that are reachable from each other. Therefore,
more edges are relaxed per vertex in the shortcut graph.

We observe that trimming the profiles has only a miniscule effect on their average size,
decreasing it from 1.21 to 1.19 supporting points. This is not surprising, since the majority
of profiles already consist of only one supporting and thus cannot be trimmed further.
Since the trimming operation itself is linear in the size of the profiles, it slightly increases
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the running time of the preprocessing and target processing phases, where the profiles are
calculated. The resulting speedup in the other two phases cannot make up for this, leading
to a slightly increased overall running time.

Even without potential shifting, the overall ratio of rescanned vertices is low, averaging 2.8%
for the initial query and 4.6% for the target processing phase. Potential shifting decreases
this to none for the initial query and 0.9% for the target processing phase. Additionally, it
adds a stopping criterion to the initial query and the shortcut query. In the initial query,
this stopping criterion only takes effect if the target is reached directly, which is rare for
the given input data. Therefore, the number of visited vertices decreases only slightly.
The effect is more dramatic for the shortcut query, where the number of visited vertices
is approximately halved. Overall, potential shifting leads to a slightly improved overall
running time of 1.062 seconds without profile trimming and 1.070 seconds with profile
trimming.

Overall, we observe that the best performance is achieved when enabling potential shifting
and parallelizing the preprocessing phase. This leads to a preprocessing time of slightly
below 5 minutes and a query time of slightly over a second. Trimming the profiles increases
the running times slightly, but the effect is very small.

7.2.3 Comparison

To conclude our evaluation, we compare the performance of the two algorithms, now with
speedup techniques enabled. First we compare the overall running time for the same set
of randomly chosen queries. Then we analyse the impact of the initial SoC at the source
vertex and the overall ratio of battery swapping stations in the graph. Finally, we examine
the behavior of the running time for increasing query distances.

Overall Running Time. To analyse the overall performance, we evaluated the same
randomly chosen 10000 queries on the germany graph for both algorithms. The results are
shown in Tabless 7.6 and 7.7.

We observe that the query performance of PSA is vastly superior to that of CLA. There
are two main reasons for this: The first reason is that the average search space of PSA is
much smaller. The original graph is only used to find the path from the source to the first
charging station and from the last charging station to the target, while the remainder of
the search is conducted on the much smaller shortcut graph. The searches on the original
graph are stopped as soon as the initial battery capacity is exhausted, so the overall search
space is mainly determined by the battery capacity rather than the distance between the
source and the target, as is the case for CLA.

The second reason is that CLA uses Pareto sets to handle charging stops, which causes
it to settle an average of 3.70 labels per vertex, while PSA only settles each vertex once
(save for a very small number of rescanned vertices). While PSA uses energy consumption
profiles in several phases, the complexity of these profiles is very limited, averaging only 1.19
supporting points. The major performance downside of PSA, however, is that it requires a
fairly long preprocessing phase that takes approximately 23 minutes on a single core and 5
minutes on 16 cores. This preprocessing phase has to be performed once per graph and
vehicle. Therefore, the use of PSA is only feasible if a moderately large number of queries
is expected to be performed for a particular vehicle on a particular graph.

Impact of Initial SoC. To evaluate the impact of the initial SoC, we evaluate 100
randomly chosen queries for CLA and 1000 randomly chosen queries for PSA on the
germany graph. We evaluate these queries ten times each, starting with an initial SoC
of 10% and increasing it in 10% steps each time. The results are shown in Figure 7.2.
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Table 7.6: This table shows the performance of CLA for 10000 random queries on the
germany graph. The performance of PSA for the same 10000 queries is shown
in Table 7.7.

Charging Label Algorithm

Time [s] 7.992
Avg. label set size 2.77
Max. label set size 14

Visited vertices 2 342 145
Visited labels 9 184 331

Visited labels per vertex 3.70
Added labels per vertex 4.29

Table 7.7: This table shows the performance of PSA for 10000 random queries on the
germany graph. The performance of CLA for the same 10000 queries is shown
in Table 7.6.

Profile Shortcut Algorithm

Preprocessing Parallelized time [m:ss] 4:53
Time per query [s] 1.697

Visited vertices 526 577
Rescanned vertices 2 694

Initial query Time [ms] 371
Visited vertices 452 915

Target processing Time [ms] 706
Visited vertices 422 559

Rescanned vertices 3 756
Shortcut query Time [ms] 24

Visited vertices 882
Overall Total query time [s] 1.101

Avg. profile size 1.19
Max. profile size 16
Visited vertices 876 356

For CLA, we observe that the running time is much lower for a SoC of 10%, averaging 4.5
seconds. The running time quickly increases for higher SoCs, and from 30% upwards no
general trend is observable. This can be explained by the fact that for a very low initial
SoC, no nearby charging stations may be reachable, making it impossible to reach the
target. In this case, the query stops early, lowering the average running time. Once the
initial SoC is high enough to reach the first charging station, however, it has no further
impact.

For PSA, we observe a slight increase in running time with increasing initial SoC, from 0.82
seconds for an initial SoC of 10% to 1.07 seconds for an initial SoC of 100%. This is because
the initial SoC directly impacts the size of the search space for the initial query: Since
there is no stopping criterion, the query will run until the initial SoC is depleted. For a
higher SoC, the range of reachable vertices increases, thereby also increasing the running
time. The average running time for the target processing phase, however, decreases. This
can be explained by the fact that for a higher initial SoC, it is more likely that the vehicle
can reach the target without using a charging station. In this case the algorithm will finish
before the target processing phase. Since the increase in the running time of the initial
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Figure 7.2: Average running times of CLA and PSA, as well as the various phases of PSA,
depending on the initial SoC of the vehicle.

query is more dramatic than the decrease in the running time for the target processing
phase, the overall running time increase with the initial SoC.

Impact of Battery Swapping Stations. So far, we used the same distribution of
charging stations for all experiments. To examine the effect that battery swapping stations
have on the performance of our algorithms, we perform a series of queries, gradually
increasing the ratio of battery swapping stations. We start with only regular charging
stations, evaluating 100 randomly chosen queries for CLA (once with and once without
improved dominance criteria) and 1000 randomly chosen queries for PSA on the germany
graph. We repeat these queries ten times, each time increasing the ratio of battery swapping
stations in the graph by 10%, until only battery swapping stations are used. The results
are shown in Figure 7.3.

We observe that the running time of CLA without improved dominance criteria increases
dramatically as the ratio of battery swapping stations increases, from 6.5 seconds on average
with no battery swapping stations to 37.7 seconds with only battery swapping stations,
whereas the running times of CLA with improved dominance criteria and PSA both stay
approximately constant. This can be explained by the fact that CLA handles battery
swapping stations differently than regular charging stations: When encountering a battery
swapping station while relaxing an edge, a duplicate of the current label is made that
represents swapping the battery at this station.

Without improved dominance criteria, neither of these two labels dominates the other: The
duplicated label has a higher maxSoC value, allowing the vehicle to drive farther without
having to recharge again. The sum cons + minSoC, however, is lower for the original label.
This criterion represents the lowest possible energy consumption that can be reached in the
further course of the path, so if overcharging occurs, the energy consumption value of the
duplicated label may rise above that of the original label. Since both labels are retained,
the overall number of labels in the graph increases with each additional battery swapping
station. Thus, the average label set size increases from 2.8 for no battery swapping stations
to 11.6 for only battery swapping stations, which explains the increased running time.

If improved dominance criteria are used, the second dominance criterion, which was
previously cons + minSoC, is modified to take into account the maximum recuperation
that is possible from the current vertex. Because there are relatively few edges with a
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Figure 7.3: Average running times of CLA (with and without improved dominance criteria)
and PSA depending on the ratio of battery swapping stations in the graph.
The remaining charging stations are regular charging stations.

negative energy consumption value in the graph, the maximum recuperation possible at
many vertices will be 0. This means that the energy consumption value cannot sink below
its current value and that the second dominance criterion is equivalent to cons. Since
cons has the same value for both the original label and its duplicate, the only remaining
dominance criterion in which they differ is maxSoC, where the duplicated label is superior.
Therefore, it dominates the original label. Since this situation occurs at most battery
swapping stations, the overall number of labels in the graph does not increase significantly,
which explains the approximately constant running time for CLA with improved dominance
criteria.

For PSA, we also observe that the ratio of battery swapping stations does not significantly
affect the running time. This is not surprising, since the algorithm requires no special
handling for battery swapping stations. In fact, the shortcut query becomes slightly faster
with an increasing ratio of battery swapping stations, since deciding how much to charge
does not require a linear sweep over the supporting points of the profile function. However,
since most profiles have only one supporting point and the shortcut query only constitutes
a small fraction of the overall running time, this effect is negligible.

Impact of Query Distance. Now we want to analyze the impact of the query distance
on the performance of our algorithms. In order to measure the distance of a query, we
use the Dijkstra rank. In a label-setting version of Dijkstra’s algorithm, each vertex is
settled only once. Therefore, the order in which the vertices are settled is well-defined.
Given a fixed source vertex s, we run a single-source Dijkstra query from s, using energy
consumption as the edge weight and applying potential shifting to make the algorithm
label-setting. We do not take battery constraints into account. The Dijkstra rank of a
vertex v is then defined as the number of vertices that were settled before v.

Using Dijkstra rank, we perform the following experiment: For every 0 ≤ i ≤ 22, we
randomly choose 100 queries for CLA and 1000 queries for PSA on the germany graph
such that for each query the Dijkstra rank of the target vertex as measured in relation to
the source vertex is 2i. This way, the distance of the query as measured by the Dijkstra
rank doubles with each step. Since a Dijkstra rank of 223 is not possible in our graph, we
stop the experiment at this point. The results of the experiment are shown in Figure 7.4.
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Figure 7.4: Average running times of CLA and PSA, as well as the various phases of PSA,
depending on the Dijkstra rank of the query.

We observe that the running time of both algorithms increases with the Dijkstra rank
of the query. For low ranks, the performance of both algorithms is approximately equal.
However, as the rank increases, the label sets used by CLA start to become larger, making
it slower than PSA. From this point onwards, the running time of CLA rises fairly steadily.
The running time of PSA also rises steadily until a rank of approximately 215. Up until
this point, the initial SoC of 16kWh always suffices to reach the target, so only the initial
query is performed. For a rank of approximately 217 to 220, we observe a sharp rise in
the running time of PSA. At this point, it becomes increasibly common that the vehicle
requires recharging to reach the target, in which case the target processing query and
shortcut query must be performed. As a result, the average running times of these queries
rise sharply, and starting at a rank of 219, the target processing query starts to dominate
the running time.

At a rank of 220, the overall running time becomes mostly stable. At this point, the target
is always too far away from the source to be reached without recharging, so the target
processing query and shortcut query are always performed. Since the running time of the
target processing query depends only on the position of t and not that of s, it remains
approximately constant from now on. Likewise, the initial query now always runs until the
entire battery is depleted, so its running time also becomes constant. Only the running time
of the shortcut query on the shortcut graph may still increase with the rank, since more
charging stops become necessary with increasing distance. However, since the shortcut
graph for the germany graph contains fewer than 2000 vertices, the running time of the
shortcut query contributes only a small amount to the overall running time, which therefore
remains almost contant. In larger graphs with more charging stations, the shortcut query
has a larger contribution to the overall running time and may eventually start to dominate
it for high ranks.

In summary, we conclude that the performance of PSA is superior to that of CLA in most
respects. Using the Peugeot iOn model with a battery capacity of 16kWh on the germany
graph, its query times are approximately seven times faster on average than those of CLA.
The performance of both algorithms is independent of the ratio of battery swapping stations
in the graph, although improved dominance criteria have to be used for CLA to achieve
this. Both algorithms perform slightly better for a lower initial SoC, but the PSA is always
several times faster than CLA for any initial SoC. The downside of PSA is that it requires
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a preprocessing phase that takes approximately 23 minutes when using a single core. The
preprocessing phase can be parallelized, improving the running time to approximately 5
minutes for 16 cores. Thus, while PSA is superior when performing many queries for a
fixed combination of input graph and used vehicle, CLA is superior if the graph or the
used vehicle are expected to change every few queries.
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To conclude this thesis, we give a short summary of our results as well as an outlook on
possible future work.

8.1 Summary
In this thesis, we formulated the Energy-Optimal Electric Vehicle Routing with
Recharging problem and developed two algorithms for solving it. After giving a precise
problem statement in Chapter 3, we introduced the first algorithm in Chapter 4, which
we called the Charging Label Algorithm (CLA). We began by modelling the charging
process with piecewise linear functions, which we then showed could be simplified into
vertex labels consisting of three static values. Using these labels, we developed a variation
of the multi-objective shortest path search algorithm which uses Pareto sets to represent
all tentatively optimal solution.

In Chapter 5, we analyzed the complexity of CLA by studying the sizes of the involved
Pareto sets. We presented an example graph which generates Pareto sets of exponential
size for the multi-objective shortest path search algorithm. By analyzing the situations in
which vertex labels are dominated, we were able to prove that the Pareto sets of CLA are
polynomial for chain graphs, a class of graphs which we defined as generalization of the
example graph, under the condition that the graphs only contain regular charging stations.
This yields an overall worst-case complexity of O(m5) for CLA.

In Chapter 6, we developed an alternative algorithm which uses profile queries to precalculate
the shortest paths between all pairs of charging stations. This information is then used to
speed up the queries. We called this algorithm the Profile Shortcut Algorithm (PSA).

We evaluated the performance of both algorithms on the road network of Germany in
Chapter 7, observing average query times of 8 seconds for CLA and 1 second for PSA.
While the query times of PSA are significantly faster than that of CLA, it requires a long
preprocessing phase of 23 minutes. By parallelizing the preprocessing phase, it can be
shortened to 5 minutes on 16 cores.

8.2 Future Work
While we were able to develop two algorithms for solving the EEVRC problem with fairly
short query times even on large graphs, several open questions and possibilities for further
improvement still remain.
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To further improve the running times of the two algorithms, well-known speedup techniques
such as Contraction Hierarchies and A* Search could be adapted. When applied to similar
algorithms such as the ones developed in [Zün14] and [EFS11], these techniques resulted in
vastly improved running times, making the algorithms feasible for interactive applications
even on large graphs like the road network of Europe.

Another possible approach for improving the performance of CLA could be to employ
heuristics in order to reduce the size of the used Pareto sets. One such heuristic could be
to assume that the battery is always charged to its full capacity at every charging station,
which would eliminate the need for considering entire charging intervals. While this can
lead to overcharging in the further course of the path in some cases, the results of our
experiments suggest that these cases are rare and only result in a slightly increased overall
energy consumption.

While we were able to prove the polynomiality of CLA for chain graphs with regular
charging stations, it is unclear if this holds true for all road network graphs or for other
charging station types. Further research could focus on extending our proof to more
general graph classes by showing that they can be reduced to chain graphs. Regarding
other charging station types, the results of our evaluation suggest that the addition of
superchargers does not increase the size of the Pareto sets. While we observed increasing
Pareto set sizes when adding battery swapping stations, we were able to show that each
battery swapping station can add at most one label to the Pareto set of its corresponding
vertex.

For PSA, we observed that the complexity of the algorithm depends on the size of the
calculated energy consumption profiles. Our evaluation data suggests that these profiles
are very small in practice, but it is unclear if their worst-case size is always polynomial in
the size of the graph.
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