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Abstract

Classic results from extremal graph theory state that if certain graphs are made large
enough, unavoidable substructures appear. Here we will cover this type of problem for
specific graphs when these substructures are certain trees or forests. After giving a sum-
mary on related results, the following two extremal main problems are presented:

For a given family of same-order trees including the star and the path, how large can a
tree be that contains none of them as subtree? We show that this value depends heavily
on the number of spiders in the family: For a family of k-vertex trees consisting of p
spiders and a constant number of non-spiders, we construct a tree of size 2Θ(k logp−1 k)

containing no trees from this family, and show that all asymptotically larger trees do
contain some of them. Here logp−1 denotes the (p− 1)-times-iterated logarithm.

For a balanced black-white-coloring of the complete bipartite graph Kn,n, we examine
the size of the largest fork forest contained as subgraph. A fork is a path of length 2
consisting of a black and a white edge. It is shown that there are at least (1− 1√

2
)n vertex-

disjoint forks all centered in the same partite set, and this is best possible, confirming
a conjecture by Tverentina et al. An efficient algorithm finding the largest number is
presented.

Zusammenfassung

Bekannte Resultate aus der extremalen Graphentheorie besagen, dass wenn bestimmte
Graphen groß genug gemacht werden, unvermeidbare Strukturen auftreten. Hier werden
wir dieses Problem für spezielle Graphen betrachten, wenn die Strukturen bestimmte
Bäume oder Wälder sind. Nach einem Überblick über verwandte Resultate werden die
folgenden zwei Hauptprobleme präsentiert:

Für eine gegebene Familie von Bäumen gleicher Größe, die Stern und Pfad beinhaltet,
wie groß kann ein Baum sein, der keinen Baum aus der Familie als Unterbaum enthält?
Wir zeigen, dass dieser Wert stark von der Anzahl der Spinnen in der Familie abhängt:
Für eine Familie von k-Knoten–Bäumen, bestehend aus p Spinnen und einer konstan-
ten Anzahl an Nicht–Spinnen, konstruieren wir einen Baum der Größe 2Θ(k logp−1 k), der
keinen Baum von der Familie enthält, und zeigen, dass alle asymptotisch größeren Bäume
einen davon enthalten müssen. Hier ist logp−1 der (p− 1)-Mal iterierte Logarithmus.

Für eine balancierte Schwarz–Weiß–Färbung des vollständigen bipartiten Graphen
Kn,n untersuchen wir die Größe des größten Gabelwaldes, der als Untergraph enthalten
ist. Eine Gabel ist ein Pfad der Länge 2 bstehend aus einer schwarzen und einer weißen
Kante. Es wird gezeigt, dass es mindestens (1 − 1√

2
)n knoten-disjunkte Gabeln, die

alle in der gleichen Hälfte des bipartiten Graphen zentriert sind, gibt, und dass dies
bestmöglich ist, was eine Vermutung von Tverentina et al. bestätigt. Ein effizienter
Algorithmus, der die größte Anzahl findet, wird vorgestellt.
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1 Introduction

1 Introduction

1.1 Definitions

The term graph always refers to an undirected graph without loops and double edges,
i.e., a graph G is a pair G = (V,E) consisting of a vertex set V and an edge set
E ⊆ {{v1, v2} : v1, v2 ∈ V, v1 6= v2}. For an edge {x, y} we write xy for short. The
number of vertices |V | is called the order of the graph and also denoted as |G|, the
number of edges |E| is called the size of the graph and also denoted as ||G||. We
implicitly assume for a graph G that V is the vertex set, E the edge set, n = |V | the
order and m = |E| the size of the graph, unless otherwise stated.

The degree of a vertex v, denoted d(v), is the number of incident edges. If all vertices
in a graph have the same degree d, then we call the graph d-regular. The average degree
of a graph is the average over the degrees of all vertices.

We say a graph G′ = (V ′, E ′) is a subgraph of G = (V,E) and write G′ ⊆ G if V ′ ⊆ V
and E ′ ⊆ E. We say that G′ is an induced subgraph of G if in addition the following
holds: v1v2 ∈ E ′ if and only if v1, v2 ∈ V ′ and v1v2 ∈ E.

An edge coloring c : E → C, henceforth just coloring for short, using some set of
colors C, assigns a color to each edge. If |C| = k, i.e., there are k colors available, we
call the coloring a k-coloring. We also say for example red-blue coloring if a coloring
uses only the colors red and blue. A graph is said to be monochromatic if all of its edges
are assigned the same color.

A path is a graph consisting of a non-repeating finite sequence of vertices together
with edges between any two consecutive vertices in the sequence. A cycle is a path where
the first and last vertex are linked by an additional edge.

A graph is connected if between any two vertices there is a path connecting them.
The maximal connected subgraphs of a graph are called connected components, or com-
ponents for short. A forest is a graph that does not contain cycles. A tree is a connected
forest.

The complete graph Kn on n vertices, also called a clique, is the graph that has an
edge between any pair of vertices. A bipartite graph G is a graph whose vertex set
can be partitioned into two disjoint subsets X and Y , X ∪ Y = V (G), called partite
sets, such that there is no edge between any two vertices of X, and no edge between
any two vertices of Y . For a bipartite graph G we implicitly assume the partite sets
to be X and Y unless otherwise stated. The bipartite graph with partite sets of size r
and s respectively that has an edge between any pair of vertices that are not in the same
partite set is called the complete bipartite graph, and denoted as Kr,s.

More generally, a k-partite graph is a graph with k partite sets with no edges whose
endpoints belong to the same partite set. The graph denoted by Ks1,s2,...,sk is a complete
k-partite graph with partite sets of size s1, . . . , sk, and edges between any two vertices
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1 Introduction

that are not in the same partite sets. We write Kk
s = Ks,s,...,s with k entries of s for the

complete k-partite graph with partite sets of size s.
The path on n vertices is denoted by Pn, and Sn := K1,n−1 is called a star.
A matching is a graph that consists of vertex disjoint copies of K2, i.e., each component

consists of two vertices linked by an edge. For a matching with s edges we write sK2.
For all other standard graph theoretic definition, we refer the reader to [14, 48].

K6 K3,4 K2,3,3 P3 S7 3K2

Figure 1: Various graphs.

1.2 Outline

In this thesis, we examine the topic of unavoidable trees and forests in graphs, and then
proceed to present two new theorems from this area.

Section 2 gives a short overview about unavoidable trees and forests in graphs. Ex-
tremal and Ramsey-type results, both classic and recent, are summarized, and a con-
nection of the main theorems to this kind of problems is made.

The first main theorem is presented in Section 3. It has an extremal flavor and ex-
amines unavoidable subtrees in larger trees. This theorem has resulted in a joint paper
authored by Maria Axenovich and Georg Osang [6], which this section is based on.

In Section 4 the second main theorem is presented. It concerns an unavoidable sub-
structure in balanced colorings of the complete bipartite graph Kn,n, and has charac-
teristics of a Ramsey-type problem. It results from a joint work by Maria Axenovich,
Marcus Krug, Georg Osang and Ignaz Rutter and is based on [5].

Section 5 concerns a partially solved problem about unavoidable paths that are totally
multicolored. While the bounds presented here have been known previously, no simple
proof specifically aimed at this problem has been published.

Section 6 gives an outlook on possible research directions related to the problems
presented here, and concludes the thesis.
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1 Introduction

1.3 Unavoidable subtrees

The first main theorem of this thesis, which Section 3 is dedicated to, concerns subtrees
of trees. Given a family of trees, how large can a tree be that contains no tree from the
family as subtree?

There is extensive literature on unavoidable trees in tournaments, see for example [42],
unavoidable trees in topological graphs [39], and more. The universal trees containing all
trees of given order have been studied as well, see [11, 10, 27]. The algorithmic aspect of
finding a given tree as a subtree in a larger given tree has been addressed in [43]: While
subtree isomorphism in general is a generalization of the maximum clique problem and
therefore NP-complete [36], for trees the problem can be solved in polynomial time.
However, the extremal problem of unavoidable subtrees in trees did not receive its due
attention.

Next we state the main result on unavoidable subtrees.

For a finite family T of k-vertex trees define ex(T ) to be the smallest integer such
that any tree of at least this size contains a tree from T as subtree, if this integer exists,
which it does exactly if T contains Pk and Sk.

Let f(k, p, q) be the minimum of ex(T ) over all families of k-vertex trees containing
Pk, Sk, p additional spiders and q additional non-spiders. Here a spider is a tree with at
most one vertex of degree greater than 2, non-spiders are all other trees. We show:

Theorem 1. f(k, p, q) = 2Θ(k logp+1 k), specifically,

24−q−1k logp+1 k(1+o(1)) ≤ f(k, p, q) ≤ 2k logp+1 k(1+o(1)).

The upper bound is guaranteed by a family T = {Sk, Pk, Q1, . . . , Qp}, where Qi is a
balanced spider of maximum degree logi k for i = 1, . . . , p.

Here, logi denotes the i-times-iterated logarithm in base 2, i.e., logi x = log log · · · log x.
With f(k, p) being the minimum of ex(T ) over all families containing p trees on k vertices
each, we get the following two corollaries:

Corollary 1. f(k, p) = f(k, p− 2, 0) = 2Θ(k logp−1 k), specifically,

20.25k logp−1 k(1+o(1)) ≤ f(k, p) ≤ 2k logp−1 k(1+o(1)).

Corollary 2. f(k, 0, q) = 2Θ(k log k), specifically,

20.5·4−qk log k(1+o(1)) ≤ f(k, 0, q) ≤ 20.5k log k.

1.4 Fork forests in bi-colored complete bipartite graphs

The second main theorem, as presented in Section 4, examines fork forests in bipartite
graphs.
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2 Overview about unavoidable trees and forests in graphs

In a graph whose edges are colored in black and white, let a fork be a path of length 2
with a black and a white edge. The question of concern is the following:

A balanced coloring is a coloring such that the number of edges in each color class
differs by at most 1. In a balanced black-white coloring of Kn,n, how many vertex-disjoint
forks all having their center in the same partite set can we find?

This problem was originally formulated as a lemma about matrices in [47] by Tver-
entina et al. They conjectured this to be (1 − 1√

2
)n, but only proved a weaker lower

bound of 1
2
(1− 1√

2
)n. We show that it is always possible to find such a fork forest con-

taining (1− 1√
2
)n forks, and show that this is best possible. Furthermore, an algorithm

finding the largest fork forest is presented.

Theorem 2. In a balanced black-white coloring of Kn,n there is always a fork forest
containing (1− 1√

2
)n forks. There are colorings for which this is best possible.

There is an algorithm finding a largest fork forest centered at X in any two-
colored complete bipartite graph with partite sets X and Y and running in time
O(n2 log n

√
nα(n2, n) log n).

The theorem is presented more formally in section 4, including a complete proof. Solv-
ing this problem improves the exponential lower bound on resolution for ordered binary
decision diagrams from [47], which was the context the problem originally appeared in.
Beyond this application in formal logic, the problem also has connections to graph the-
ory, as it belongs to a class of problems seeking color-alternating subgraphs or general
large unavoidable subgraphs in two-edge colored graphs, see for example [3, 1, 15, 37].

2 Overview about unavoidable trees and forests in
graphs

This section gives an overview over results on unavoidable trees and forests in graphs.
Usually, the problems considered are of extremal nature.

“An extremal problem asks for the maximum or minimum value of a function over a
class of objects.” [48]

Here, the classes of objects are sets of certain (possibly colored) graphs that do not
contain certain subgraphs. The extremal problems usually ask for the order or size of
the largest graphs in such a class, meaning that any graph of greater order or size re-
spectively contains one of the subgraphs.

The classical extremal question asks for the maximum number of edges a graph on
n vertices can have without containing a certain subgraph H, or some graph from a
family of subgraphs. This is equivalent to asking for the greatest size of a subgraph of
Kn that does not contain H. More generally, we not only consider subgraphs of Kn,
but also edge-maximal subgraphs of other graphs not containing H. The problem on
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2 Overview about unavoidable trees and forests in graphs

unavoidable subtrees is of this flavor. Here the ground graph is not Kn, but an infinite
tree, and we impose the additional restriction that the subgraph has to be connected.

Ramsey problems ask for the minimum number of vertices n that a graph from a class
(in the classical version the complete graph Kn) must have such that any k-coloring
of its edges has a monochromatic copy of certain other graphs. Ramsey numbers for
matchings, especially in bipartite graphs, are of interest to the fork forest problem, as
monochromatic matchings are part of fork forests, and matching edges of different colors
can be joined into forks. There is a similar relation to paths, as crossing points of two
paths of different color also imply a fork.

There are many other Ramsey variants, not only involving unavoidable monochro-
matic subgraphs, but also totally multicolored subgraphs and other specifically colored
graphs. We might not just ask for what order a graph has to have such that a certain
subgraph will appear, but also other questions like: for a graph of fixed order, the use
of how many colors is required to force a certain subgraph. Other restrictions might be
imposed on the coloring as well.

We dedicate a subsection to each of these three types of problems.

2.1 Extremal results

For a graph F , how many edges can a graph on n vertices have without containing F as
subgraph?

The question was originally posed and solved by Turán [46] for the complete graph
F = Kk and earlier by Mantel for the triangle F = K3.

More generally, for a family of graphs F we define ex(n,F) to be the maximum number
m such that there is a graph G on n vertices and m edges not containing any member of
F as subgraph. If F contains only one element F , i.e., F = {F}, we also write ex(n, F )
for ex(n,F). Formally, ex(n, F ) = max{||G|| : |G| = n, F 6⊆ G}.

Turán’s theorem answers the question for F = Kk and shows that the edge maximal
graphs not containing Kk are the complete (k− 1)-partite graphs where the sizes of the
partite sets differ by at most 1. These graphs are called Turán graphs.

The next type of graphs of interest are complete k-partite graphs. Because every graph
can be embedded in Kk

s for some k and sufficiently large s, determining the behavior of
ex(n,Kk

s ) gives us information about ex(n,G) for any graph G if we know its chromatic
number, i.e., the minimal number k such that G is k-partite.

The Erdős-Stone theorem [19] gives us exactly this information:

Theorem 3 (Erdős-Stone).

ex(n,Kk
s ) =

(
k − 2

k − 1
+ o(1)

)(
n

2

)
.
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2 Overview about unavoidable trees and forests in graphs

For bipartite graphsG, and therefore for trees, this means in particular that ex(n,G) =
o(n2). For trees however we now prove a much stronger statement. For a tree T , ex(n, T )
is in fact linear in n. To show this, we first need the following lemma.

Lemma 1. A graph G on n vertices and m > 0 edges of average degree d = 2m/n
contains any tree T on d/2 + 2 vertices.

Proof. We first prove that there is a subgraph H ⊆ G with minimum degree at least
d/2 + 1: Iteratively remove a vertex of degree at most d/2, until all vertices have degree
greater than d/2. By doing so, in each step we remove at most d/2 edges and one vertex,
therefore reducing the sum of the degrees of all vertices by at most d. Therefore the
resulting graph still has an average degree of at least d.

We can greedily embed T in H: Order the vertices of T in such a way that each vertex
is adjacent to only one of the previous ones. Such an ordering can be obtained by for
instance doing a breadth-first search. Embed the first vertex anywhere in H, and for
each further vertex choose a vertex incident to its neighbor from the previous vertices.
This is possible due to the minimum degree of H.

Theorem 4. For a tree T on k vertices, ex(n, T ) ≤ (k − 2)n, and if n is divisible by
k − 1, then 1

2
(k − 2)n ≤ ex(n, T )

Proof. For the upper bound, consider a graph G on n vertices and (k − 2)n edges.
This graph has average degree 2(k − 2). Due to Lemma 1, we can find any tree on
2(k − 2)/2 + 2 = k vertices in G, and in particular T .

For the lower bound, n/(k− 1) vertex-disjoint copies of Kk−1 suffice as graph that does
not contain T .

The Erdős-Sós conjecture states that for any k-vertex tree T in fact ex(n, T ) ≤ n(k−
2)/2. Ajtai, and Komlós, Simonovits and Szemerédi recently proved the conjecture for
sufficiently large trees [2] making use of Szemerédi’s regularity lemma. Previously it had
been proven for instance for certain spiders [20], or for trees of diameter at most 4 [38].

Szemerédi’s regularity lemma receives special mention here because while it is a very
powerful tool in graph theory, it only yields meaningful statements for immensely large
graphs. Gowers showed in [28] that bounds given by it cannot be improved to make it
applicable to graphs of any practically relevant size.

For the star Sk, it is easy to see that ex(n, Sk) = bn(k − 2)/2c. For even n or k, any
(k− 2)-regular graph shows the lower bound. If both are odd, an almost (k− 2)-regular
graph with one vertex of degree k − 3 does. The upper bound follows as no vertex may
have degree greater than k − 2.

For paths, the Erdős-Sós conjecture holds and was already shown back in 1959 by
Erdős and Gallai [17]. The result was refined by Faudree and Schelp [22] to take into
account the cases when n is not divisible by k − 1:

10



2 Overview about unavoidable trees and forests in graphs

Theorem 5. For a path Pk on k vertices, and n = p(k − 1) + q for 0 ≤ q < k − 1,

ex(n, Pk) = p(k − 1)(k − 2)/2 + r(r − 1)/2.

The vertex-disjoint union of p copies of Kk−1 and one copy of Kq is the only graph which
achieves this number of edges without containing Pk.

Also due to Erdős and Gallai [17], the extremal number for a matching has been
determined:

Theorem 6.

ex(n, kK2) = max

{(
2k − 1

2

)
,

(
k − 1

2

)
+ (k − 1)(n− k + 1)

}

2.2 Ramsey results

The Ramsey number of two graphs G and H, R(G,H), is the smallest number n such
that any 2-coloring of the edges of Kn with the colors red and blue contains a red copy of
G or a blue copy of H. It is also sometimes called “the Ramsey number of G versus H”.
More generally, R(G1, G2, . . . , Gk) is the smallest number n such that any k-coloring of
Kn has a copy of Gi in color i for some i = 1, . . . , k.

The classic Ramsey numbers, R(Kn, Km), were proven to exist by Frank P. Ramsey in
1930 [41]. (In fact, he proved a much more general version.) Only for very few of these
the exact values are known. As any graph on n vertices is a subgraph of Kn, R(G,H)
exists as well for any two graphs G and H.

There are many results about the Ramsey numbers of a tree versus some other graphs,
like complete graphs or cycles. We shall only list some results for Ramsey numbers where
all the involved graphs are trees.

Ramsey numbers for complete graphs are exponential [13, 45] and only very few small
ones are known exactly. The latter is not too surprising, as all colorings have to be
considered, and the computational problem of determining whether a monochromatic
clique of at least a certain size exists is NP-complete [36].

Conversely, Ramsey numbers for trees are linear, and the exact values are known for
some classes of trees. A result by Chen and Schelp [9] implies that R(T, T ) is linear for
trees T , i.e., there is a constant c such that for sufficiently large n, for any tree T on n
vertices R(T, T ) ≤ cn. First they define a term p-arrangeable as follows: A graph is p-
arrangeable if there is an ordering of the vertices v1, . . . , vn such that for any 1 ≤ i ≤ n−1
with Li = {vj : j ≤ i} and Ri = {vj : j > i} it holds that |N(N({vi}) ∩ Ri) ∩ Li| ≤ p,
where N(S) denotes the neighborhood of the vertex set S. Using Szemerédi’s regular-
ity lemma, they show that for any p there is some c such that for sufficiently large n
the following holds: For any p-arrangeable graph G on n vertices R(G,G) ≤ cn. They
show that planar graphs are p-arrangeable for some p, and specifically that trees are

11



2 Overview about unavoidable trees and forests in graphs

1-arrangeable.

However, the linearity of Ramsey numbers for trees can also be proven more elemen-
tarily:

Theorem 7. For trees G and H each on n vertices, R(G,H) ≤ 4(n− 2) + 1

Proof. Assume a red-blue coloring of K4(n−2)+1, and consider the graph of the color class
that has more edges. Its average degree is at least d = 2(n−2). By Lemma 1 we find all
trees on d/2 + 2 = n vertices in this graph, so specifically G or H, depending on which
color class was greater.

For general trees T , good lower bounds on R(T, T ) are known as well, as mentioned
in [33]. As a tree is always a bipartite graph due to its lack of cycles and therefore
specifically odd cycles, we can consider a partition of its vertices into partite sets X and
Y . (Algorithmically, such a partition can be obtained by a simple breadth-first search.
Vertices whose depths from a root have the same parity belong in the same partite set.)

Figure 2: A tree and a bipartition of its vertices.

Theorem 8. For a tree T with partite sets X and Y when viewed as a bipartite graph,
|X| = t1, |Y | = t2 with t2 ≥ t1, the following holds:

R(T, T ) ≥
{

2t1 + t2 − 1 for 2t1 ≥ t2 ≥ t1 ≥ 2,

2t2 − 1 for 2t1 < t2.

Proof. In the first case, consider the following red-blue coloring of G = K2t1+t2−1. Par-
tition the vertex set of G into C1 and C2 with |C1| = t1 + t2− 1 and |C2| = t1− 1. Color
all edges within C1 and those within C2 in red, color edges between vertices not in the
same set in blue. There is obviously no red copy of T as the connected components of
the red subgraph contain fewer vertices than T each. There is no blue copy of T as X
and Y each have more vertices than C2 can accommodate.

In the second case, consider a similar coloring with the sets C1 and C2 both having
size t2 − 1. The same argument applies.

We will see in the following survey that for some classes of trees, these lower bounds
are indeed the Ramsey numbers. However there are also trees where the actual Ramsey
number is greater. It has been shown [29] that for some trees called double stars the
Ramsey number is greater by 1 than the lower bound given above.

12



2 Overview about unavoidable trees and forests in graphs

Haxell et al. however managed to show, using Szemerédi’s regularity lemma, that
the actual Ramsey numbers cannot differ from these bounds by too large a factor for
sufficiently large trees with a sufficiently small maximum degree. [33]

Theorem 9. For any given η > 0 there are N = N(η) and δ = δ(η) such that the
following holds: For every tree T with a bipartition into X and Y with |X| = t1, |Y | = t2
and t2 ≥ t1, if t2 ≥ N and the maximum degree ∆(T ) ≤ δt2, then

R(T, T ) ≤
{

(1 + η)(2t1 + t2 − 1) for 2t1 ≥ t2 ≥ t1 ≥ 2,

(1 + η)(2t2 − 1) for 2t1 < t2.

We now review the Ramsey numbers for specific classes of trees.

Starting with Ramsey numbers for paths, Gerencsér and Gyárfás proved the following
result in 1967 [26]:

Theorem 10. For m ≥ n,

R(Pm, Pn) = m− 1 +
⌊n

2

⌋
.

Specifically, if m = n,

R(Pn, Pn) =

⌊
3n− 2

2

⌋
.

The lower bound can be seen by providing a red-blue coloring of the graph on
R(Pm, Pn) − 1 vertices that does not contain a red Pm or blue Pn. Pick a set M of
m vertices and color all edges between them in red, color the remaining edges of the
graph in blue. Evidently, there is no red Pm. As every second vertex along a blue path
must be in V (G)−M , it can consist of at most 2(R(Pm, Pn)−m)+1 = −1+2(bn

2
c) < n

vertices.
For more than two paths, the Ramsey number has not been determined for all cases

yet. However, several special cases have been analysed.

If the first path is significantly longer than the rest, and all but the first two paths
have an even number of vertices, Faudree and Schelp determined the Ramsey number
in [22]:

Theorem 11. If k ≥ 1, ri ≥ 1 for 1 ≤ i ≤ k, δ1 = 0 or 1, and r0 ≥ 6(
∑k

i=1 ri)
2, then

R(Pr0 , P2r1+δ1 , P2r2 , · · · , P2rk) =

(
k∑

i=0

ri

)
− k.

In the special case with 3 paths, with the constraints from above and δ2 = 0 or 1, the
following holds:

R(Pr0 , P2r1+δ1 , P2r2+δ2) =

(
2∑

i=0

ri

)
− k.
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2 Overview about unavoidable trees and forests in graphs

Figure 3: A coloring of the K12 avoiding both a red P10 and a blue P8. All edges having
at least one of the three rightmost vertices as endpoint are blue, the remaining edges
are red. R(P10, P8) = 13.

Bielak managed to relax the size condition on r0 to some extent in [7], however r0 is
still required to be quadratic in the sum of the other paths’ lengths.

For three paths of equal length, the following recent result gives a solution if the paths
are sufficiently long [32]:

Theorem 12. If n is sufficiently large, then

R(Pn, Pn, Pn) =

{
2n− 1 for odd n,

2n− 2 for even n.

The proof makes use of Szemerédi’s regularity lemma.

Paths in the complete bipartite graph have been examined as well. Let B(G1, G2) =
(n,m) for n and m defined as follows: Any 2-coloring of Kr,s contains a copy of G1 in
the first color or a copy of G2 in the second color if and only if r ≥ n and s ≥ m. Note
that this is not necessarily well defined. For instance, if the condition about containing
copies of G1 or G2 holds for (r, s) = (a, a + 1) and for (r, s) = (a + 1, a), but not for
(r, s) = (a, a) for some a, then there is no such pair (n,m).

For two paths, the above has been shown to be well defined and exact results are
known due to [21, 30].

Theorem 13. B(Pn, Pm) is well defined for positive integers n and m and the following
cases determine the values for all possible n and m:

14



2 Overview about unavoidable trees and forests in graphs

B(P2n, P2m) = (n+m− 1, n+m− 1),
B(P2n+1, P2m) = (n+m,n+m− 1) for n ≥ m− 1,
B(P2n+1, P2m) = (n+m− 1, n+m− 1) for n < m− 1,
B(P2n+1, P2m+1) = (n+m,n+m− 1) for n 6= m,
B(P2n+1, P2n+1) = (2n+ 1, 2n− 1).

Cockayne and Lorimer found the Ramsey number for c matchings in 1975 [12]:

Theorem 14. If m1, . . . ,mc are positive integers and n1 = max{m1, . . . ,mc}, then

R(m1K2, . . . ,mcK2) = m1 + 1 +
c∑

i=1

(mi − 1).

Powers [40] investigated unavoidable matchings in r-partite graphs Kr
i with balanced

partite sets. But instead of asking for the minimum value of n that enforces some
monochromatic matching of the required size in any coloring, he viewed the problem
from a slightly different perspective. The ith Ramsey number Ri(m1K2, . . . ,mcK2) asks
for the minimum index r such that any c-coloring of the edges of Kr

i using colors 1, . . . , c
forces a copy of mjK2 entirely colored in color j for some 1 ≤ j ≤ c.

Theorem 15. Let m1, · · · ,mc be positive integers and m1 = max{m1, . . . ,mc}. Define
s =

∑k
j=1(mj − 1) and p = m1 + s mod i.

Ri(m1K2, . . . ,mcK2) =

{
b(m1 + s)/ic+ 1 if p < m1,

b(m1 + s)/ic+ 2 if p ≥ m1.

Using this, in the same paper Powers determines the Ramsey number for matchings in
balanced bipartite graphs, here denoted as Rbipartite, i.e., the smallest number i such that
any c-coloring of the edges of Ki,i using colors 1, . . . , c forces a copy of mjK2 entirely
colored in color j for some 1 ≤ j ≤ c.

Theorem 16. If m1, . . . ,mc are positive integers and n1 = max{m1, . . . ,mc}, then

Rbipartite(m1K2, . . . ,mcK2) =
c∑

j=1

(mj − 1) + 1.

A generalisation of matchings are linear forests. Linear forests are vertex-disjoint
unions of paths. Specifically, an (n, j) linear forest is a forest of non-trivial paths with
n vertices in total, and j of the paths having an odd number of vertices. Faudree and
Schelp found the Ramsey number for two linear forests [23]:

Theorem 17. If L1 and L2 are (n1, j1) and (n2, j2) linear forests respectively, then

R(L1, L2) = max{n1 + (n2 − j2)/2− 1, n2 + (n1 − j1)/2− 1}.

For c stars, the Ramsey numbers are known as well due to Burr and Roberts [8].
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2 Overview about unavoidable trees and forests in graphs

Theorem 18. Let m1, · · · ,mc be positive integers t of which are even, then

R(Sm1+1, . . . , Smc+1) =

{
(
∑k

i=1mi)− k + 1 for even t 6= 0,

(
∑k

i=1mi)− k + 2 otherwise.

2.3 Other Ramsey-type results

There is a great variety of other Ramsey-type problems, asking for unavoidable structures
in colored graphs. The results are too numerous to be listed here, but in the following
some of the concepts are presented.

A graph is called rainbow if no two edges have the same color. Ramsey-type problems
that involve rainbow subgraphs have been surveyed by Fujita et al. [24]

The anti-Ramsey number ar(G,H) is the maximum number n of colors for which there
is an edge coloring of G with n colors such that there is no rainbow copy of H in G.
Equivalently, n+ 1 is the smallest number such that any coloring of G using n+ 1 colors
forces a rainbow copy of H. Anti-Ramsey have first been studied by Erdős, Simonovits
and Sós [18], and results with regards to trees are covered in the survey [24] in Section
2.3 and Section 2.4. Specifically, for the path in the complete graph, the anti-Ramsey
number has been determined in [44] under certain restrictions:

Theorem 19. There is some constant c such that for all t ≥ 5, n > c · t2 and ε = 0, 1,

ar(n, P2t+3+ε) = t · n−
(
t+ 1

2

)
+ 1 + ε.

Another variation of similar style are mixed Ramsey numbers. The maximal (minimal)
mixed Ramsey number Rmax(n,G) (Rmin(n,G)) is the maximum (minimum) number k
such that there is a coloring on k colors of Kn having neither a monochromatic nor a
rainbow copy of G.

Constrained or rainbow Ramsey numbers are a different variation asking to avoid both
monochromatic and rainbow subgraphs. The rainbow Ramsey number RR(G,H) of two
graphs is the minimum number n such that any coloring of Kn using arbitrarily many
colors contains a monochromatic copy of G or a rainbow copy of H. It is shown in [35]
that this number exists if and only if G is a star or H is a forest.

However, it is possible to add a third graph F such that the family of G, H and F
becomes unavoidable in some sense. For this purpose, we define a coloring to be lexical
if there is an ordering of the vertices such that edges having the same smaller endpoint
(with regards to the ordering) are colored with the same color.

Now the canonical Ramsey theorem, first proved by Erdős and Rado [16], states the
following:

Theorem 20 (Canonical Ramsey Theorem). For any graph H there is an n such that
any coloring of Kn using arbitrarily many colors contains a monochromatic, a rainbow
or a lexical copy of H.
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0

1 2

3

45

Figure 4: A lexically colored copy of K6.

A very general notion are pattern Ramsey numbers. A pattern is a graph with colored
edges. For a given pattern or family of patterns F , the pattern Ramsey number f(F)
is the minimum number n such that any coloring of Kn with arbitrarily many colors
contains a copy of some pattern. A family F for which f(F) exists is called a Ramsey
family. Using these terms, another formulation of the canonical Ramsey theorem is
to say that a family is a Ramsey family if it contains the monochromatic colorings of a
graph, the rainbow colorings of another graph, and the lexical colorings of a third graph.

Pattern Ramsey numbers also allow us to describe the rainbow path problem covered
in Section 5 in a new way. A coloring where no two incident edges have the same color
is called a proper coloring. This is equivalent to the coloring having no monochromatic
P3 as subgraphs. If we define the family F to contain the monochromatic colorings of
P3 and the rainbow colorings of Pn, then f(F) is exactly the number the rainbow path
problem asks for.

A fork forest can also be considered a pattern, and the corresponding problem asks
for the smallest n such that any balanced 2-coloring of the Kn,n contains this pattern as
subgraph. Compared to the general pattern Ramsey numbers, here we have additional
restrictions imposed on the coloring, and the graph we seek the pattern in is the Kn,n

instead of the Kn.

3 Unavoidable subtrees

3.1 Introduction

In this section we investigate how large trees can be without containing certain subtrees.
For a finite family T of k-vertex trees and a tree T , we write T → T if T contains at

least one of the trees from T as a subtree, we write T 6→ T otherwise. We call a family
T unavoidable if there is an integer n such that for any tree T on at least n vertices
T → T . We denote the set of all n-vertex trees Tn. Recall that Sn denoted an n-vertex
star and Pn an n-vertex path.

Clearly, not every family of trees is unavoidable. Observe that each unavoidable family
T of trees must contain a path and a star, otherwise either an arbitrarily large star or

17



3 Unavoidable subtrees

an arbitrarily long path will avoid T .
Here, we investigate the smallest value of n such that any tree on n vertices contains

a member of T . Let, for an unavoidable family T of trees,

ex(T ) = min{n : ∀T ∈ Tn, T → T }.

In particular, for any tree T on at least ex(T ) vertices T → T , but there is a tree on
ex(T )− 1 vertices such that T 6→ T .

We pick up more definitions in a separate subsection, as well as definitions only used
in specific places along the way in the respective subsections.

Before working on the main theorem, we consider the special case where the family
of trees to avoid consists of only the star and the path. We find the exact value of
ex(Sk, Pk) and thereby solve this problem in Section 3.3.

We then proceed to the main theorem. Recall that

f(k, p, q) = min{ex(T ) : T ⊆ Tk is a union of p+ 2 spiders and q non-spiders}.

The theorem we aim to prove is the following:

Theorem 1. f(k, p, q) = 2Θ(k logp+1 k), specifically,

24−q−1k logp+1 k(1+o(1)) ≤ f(k, p, q) ≤ 2k logp+1 k(1+o(1)).

The upper bound is guaranteed by a family T = {Sk, Pk, Q1, . . . , Qp}, where Qi is a
balanced spider of maximum degree logi k for i = 1, . . . , p.

Here and also in the following, the logarithms are base 2 and logi x = log log · · · log x,
where log is iterated i times.

To prove it, we proceed in 3 steps.

We first show the upper bound, by taking the family of spiders from above and show-
ing that any tree on more than 2k logp+1 k(1+o(1)) vertices has one of them as a subtree.

In the second step we show that 20.25k logp+1 k(1+o(1)) ≤ f(k, p, 0). We do this the fol-
lowing way: For any family containing the star, the path and p additional spiders, we
construct a tree T that avoids all the trees of T , and show that it has at least the size
20.25k logp+1 k(1+o(1)). This does not give a bound for the main theorem yet, but provides
the basis to establish the lower bound in step 3.

In the third and final step we consider general families of trees containing the star, the
path, p additional spiders and q non-spiders. For each of those families we construct a
tree to avoid it. We first only consider the spiders in the family, and use the construction
from step 2 as a basis which avoids them. We then trim this tree in a certain way to
avoid the remaining non-spiders, and estimate the effect this has on the size of the tree.
The resulting tree has at least 24−q−1k logp+1 k(1+o(1)) vertices, giving us the lower bound.
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3 Unavoidable subtrees

3.2 Definitions

Before formulating and proving the theorems in this section, we need some definitions.
Recall that a spider is a tree with at most one vertex of degree greater than 2. For

a spider that is not a path, the vertex of maximum degree is the head or center of the
spider; the spider is a union of paths, called legs, where one endpoint is a leaf and the
other is the head.

We denote the maximum degree of a graph and its diameter with ∆ and diam respec-
tively.

Observe that if Q ⊆ T , then ∆(Q) ≤ ∆(T ) and diam(Q) ≤ diam(T ).
Henceforth, sequences and vectors are written in bold script, and their elements re-

ferred to in subscript, e.g., a sequence b = (b0, . . .), or a vector u = (u0, u1, . . . , um) for
some m ≥ 0. We shall always index the elements of the vectors starting with 0. Most
of our results use balanced (stable) rooted trees where the vertices at the same distance
from the root have the same degree. Formally, for a vector u, with ui ≥ 2, i = 1, . . . ,m
and u0 ≥ 1, let a balanced tree with vector u, B(u), be a rooted tree of depth m + 1 in
which all vertices at distance i from the root have degree ui, i = 0, . . . ,m. The vertices
of distance m + 1 from the root are the leaves. The diameter of B(u) is 2m + 2. We
have that

|V (B(u))| = 1 + u0 + u0(u1 − 1) + · · ·+ u0(u1 − 1)(u2 − 1) · · · (um − 1)

≥ u0

m∏

i=1

(ui − 1). (1)

A complete k-ary tree, T , of depth r is a balanced tree with vector (k, k+ 1, . . . , k+ 1),
where k + 1 is repeated r − 2 times.

In all calculations we omit floors and ceilings when their usage is clear from the
context.

3.3 Star and path

We start off with just the star and the path to avoid. In this situation we can find the
exact size of the largest tree that avoids both of these trees as subtrees, and subsequently
ex({Sk+1, Pk+1}), which is larger by 1:

Proposition 21. ex({Sk+1, Pk+1}) =

{
2 + k−1

k−3
((k − 2)(k−1)/2 − 1) if k is odd

3 + 2k−2
k−3

((k − 2)(k−2)/2 − 1) if k is even

= 20.5k log k(1+o(1)).

Proof. Observe first that if T is a tree of largest order avoiding Sk+1 and Pk+1, then the
longest path in G has length k − 1, otherwise one can subdivide an edge in a longest
path of T to obtain a larger such graph.

If k is odd, then B(k− 1, . . . , k− 1) of depth (k− 1)/2 has diameter k− 1, maximum
degree k−1 and 1+ k−1

k−3
((k−2)(k−1)/2−1) vertices. Consider some tree T avoiding Pk+1
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3 Unavoidable subtrees

and Sk+1. Let {c} be the center of a longest path P of length k − 1. Any other vertex
of T is at distance at most (k − 1)/2 from c because otherwise a path of length at least
(k + 1)/2 from c and a sub-path of P with endpoint c together give a longer path than
P . Thus T is a tree rooted at c with depth at most (k − 1)/2 and maximum degree at
most k − 1, so |V (T )| ≤ 1 + k−1

k−3
((k − 2)(k−1)/2 − 1).

If k is even, then two graphs isomorphic to B(k−2, k−1, . . . , k−1) of depth (k−2)/2,
linked together at the roots by another edge, form a graph of diameter k− 1, maximum
degree of k − 1 and with 2 + 2k−2

k−3
((k − 2)(k−2)/2 − 1) vertices. Consider some tree

T avoiding Pk+1 and Sk+1. Let {r, l} be the center of the longest path P of length
at most k − 1. Define L and R to be the trees rooted at r and l, respectively, and
obtained from T by deleting the edge rl. As in the previous case, any v ∈ V (L) has
distance at most (k − 2)/2 from l, and the degree of l in L is at most k − 2 within
L. So, L, and by symmetry, R are rooted trees of depth at most (k − 2)/2, the degree
of each vertex is at most k − 1 and the degree of the root is at most k − 2. So,
|V (T )| = |V (L)|+ |V (R)| ≤ 2 + 2k−2

k−3
((k − 2)(k−2)/2 − 1).

3.4 The upper bound

As the first part of the main theorem, we prove the upper bound:

Theorem 1 (Part 1). Let T be the family {Sk, Pk, Q1, . . . , Qp}, where Qi is a bal-
anced spider of maximum degree logi k for i = 1, . . . , p. Then any tree on more than
2k logp+1 k(1+o(1)) vertices will contain a tree from T as subtree.

We need the following definitions for the proof:

For a tree T , and a root r ∈ V (T ), define a partial order on V (T ) naturally with v′ ≤ v
if v is on the v′-r-path. Intuitively, the closer to the root a vertex is, the greater it is
with regards to this partial order. All subtrees are rooted respecting the original order.
We say that a subtree is inherited by a vertex v if its vertex set consists of all vertices
u such that u ≤ v. The children of a vertex v are those vertices v′ adjacent to v with
v′ ≤ v. The parent of a vertex v, v 6= r is a vertex u adjacent to v, v ≤ u. The inherited
subtree depth of a vertex v in a rooted tree is the largest distance to a vertex u with
u ≤ v, i.e., the depth of the tree inherited by v. For a rooted tree we always assume
that the partial order with respect to this root is implied.

We now prove the upper bound:

Proof. Let T = {Sk, Pk, Q1, . . . , Qp}, where Qi is a balanced spider of maximum de-
gree logi k for i = 1, . . . , p. Let T be a tree that avoids all T . We have to show that
|V (T )| ≤ 2k logp+1 k(1+o(1)). Observe first that ∆(T ) ≤ k − 2 and diam(T ) ≤ k − 2. Fix
some vertex r to be the root of T and consider the partial order of vertices with respect
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to this root. We say that a vertex is i-small if its inherited subtree has depth at most
k/ logi+1 k.

Claim: For i = 0, . . . , p − 1 a tree inherited by an i-small vertex in T has at most
si := 2(i+1)k(1+o(1)) vertices.

We proceed by induction on i. If v is a 0-small vertex and S is the tree inherited by v, then
∆(S) ≤ ∆(T ) ≤ k and depth(S) ≤ k/ log k by definition. Thus |V (S)| ≤ kk/ log k = 2k.

Consider an (i + 1)-small vertex v and its inherited subtree S. Obtain S ′ from S by
removing all i-small vertices. Observe that each of the remaining vertices has inherited
subtree depth greater than k/ logi+1 k in T . If there is a vertex u in S ′ of degree at
least logi+1 k in S ′, then each child of u in S ′ has inherited subtree depth greater than
k/ logi+1 k in T due to being in S ′, so u is a center of a copy of Qi+1, a contradiction.
Thus ∆(S ′) < logi+1 k in S ′. As depth(S ′) ≤ depth(S) ≤ k/ logi+2 k by definition, we
get that |V (S ′)| ≤ (logi+1 k)k/ logi+2 k = 2k. We have that a tree S is a union of S ′ and
i-small trees inherited by children of some vertices of S ′. Each vertex in S ′ has at most
k children in S, each of which inherits (in S) at most one such a subtree of size at most
si. This yields

|V (S)| ≤ |V (S ′)|ksi ≤ k · 2k · 2(i+1)k(1+o(1)) = 2(i+2)k(1+o(1)) = si+1,

and proves the claim.
Now, we shall consider a tree T and apply an argument almost identical to the one

used in the claim. Delete all (p − 1)-small vertices from T . The resulting tree T ′ has
maximum degree at most logp k and it has depth at most k since diam(T ) ≤ k. Thus
|V (T ′)| ≤ (logp k)k = 2k logp+1 k. As before, each vertex of T ′ has at most k neighbors,
each of which inherits (in T ) at most one such a tree of size at most sp−1 = 2pk(1+o(1)).
Thus,

|V (T )| ≤ |V (T ′)|ksp−1 ≤ 2k logp+1 k · k · 2pk(1+o(1)) = 2k logp+1 k(1+o(1)),

concluding the proof of the upper bound.

3.5 Construction of a tree avoiding a family of spiders

We first find a simplified family T ′′ of spiders such that if we avoid T ′′, we can guarantee
that we also avoid T . We then construct a tree which avoids T ′′.

For a given family T of k-vertex spiders of diameter at most k/2 with maximum
degrees ∆1, . . . ,∆x, for some x, define a reduced family of spiders T ′′ = T ′′(T ) to
consist of x balanced spiders, where the ith spider has maximum degree ∆i and leg
length (k/2)/∆i, i = 1, . . . , x.

Lemma 2. For any balanced tree B of diameter at most k/2, and any family T of
k-vertex spiders, B 6→ T ′′ implies that B 6→ T .
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Proof. Let B be a balanced tree of diameter at most k/2. Assume that Q ⊆ B, for
some Q ∈ T with ∆ legs of lengths `1 ≥ `2 ≥ · · · ≥ `∆. Since B is balanced, it
contains a balanced spider with ∆ legs of length `2. Because `1 ≤ k/2, we have that
`2 ≥ (k − `1)/(∆ − 1) ≥ (k/2)/∆ =: `. The balanced spider with ∆ legs of length ` is
in T ′′.

Construction 1 (Construction avoiding a family of spiders). Let T be a given family of
k-vertex spiders containing Sk and Pk. We will construct a tree of diameter k/2, so let T ′
be a subfamily of T consisting only of spiders of diameter at most k/2. Let T ′′ = T ′′(T ′)
be the reduced family of spiders of maximum degrees ∆i and leg-length `i, respectively,
i = 0, . . . , x, for some x, x ≤ |T |− 2. Let k− 1 = ∆0 > ∆1 > ∆2 > · · · > ∆x ≥ 3. Note
that 1 = `0 < `1 < `2 < . . . < `x, `i = (k/2)/∆i, and define `x+1 := k/4− 1. Let

u = (∆x − 1,∆x − 1, . . . ,∆x − 1︸ ︷︷ ︸
`x+1−`x

, . . . ,∆i − 1, . . . ,∆i − 1︸ ︷︷ ︸
`i+1−`i

, . . . ,∆0 − 1, . . . ,∆0 − 1︸ ︷︷ ︸
`1−`0

)

be a vector with a total of k/4−1 entries. Define the intervals Ii := {j ≥ 1: uj = ∆i−1},
i.e., the set of positions (except for position 0) occupied by ∆i − 1, for i = 0, . . . , x. Let
our desired tree to avoid the family of spiders T (including Sk and Pk) be

T = Ts(T ) := B(u).

Note that, using (1), |V (T )| ≥∏x
i=0(∆i − 2)|Ii| =

∏x
i=0(∆i − 2)`i+1−`i.

Theorem 1 (Part 2). The constructed tree T avoids all trees of the family T and has

size at least 2
k
4

logp+1 k(1+o(1)).

Proof. T avoids all trees of the family:

Any vertex v of degree at least ∆i in T has inherited subtree depth of less than `i in
T , i = 1, . . . , q − 2, that is, any path leading from v away from the root has length less
than `i. So if v were chosen as the center to embed the spider from T ′′ of maximum
degree ∆i in, it would be impossible to fit in the legs of the spider in T . Thus T 6→ T ′′.
By Lemma 2 the tree T avoids the trees of diameter at most k/2, and by the fact that
T has diameter less than k/2, we have that T 6→ T .

Analysis of the size of T :

Recall that the number of spiders in the reduced family x is at most p. Recall further
that `x+1 := k/4 − 1 and formally define ∆x+1 := (k/2)/∆x+1 so the property `i =
(k/2)/∆i is also fulfilled for i = x + 1. Recall that T = B(u), where u has blocks of
indices Ix, . . . , I0 with entries of ∆i − 1 in the block corresponding to Ii, i = 0, . . . , x.
We bound the number of vertices in T from below by the number of leaves:
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|V (B(u))|
(1)

≥ u0

m∏

i=1

(ui − 1)

≥
x∏

i=0

(∆i − 2)|Ii|

=
x∏

i=0

(∆i − 2)`i+1−`i

=
x∏

i=0

(∆i − 2)
k
2

(∆−1
i+1−∆−1

i ). (2)

We compare two monotone sequences ∆i and fi := logi k/ logi+1 k, i = 1, . . . , x and
define a corresponding index ι.

• Case 1. ∆1 ≤ f1 = log k
log log k

.

Then the first term in the product of (2) is (∆0 − 2)
k
2

(∆−1
1 −∆−1

0 ) ≥ (k −
3)

k
2 ( log log k

log k
− 1
k−1) = 2

k
2

log log k(1+o(1)). Set ι := 0.

• Case 2. ∆x ≥ fx = logx k
logx+1 k

.

Then the last term in the product of (2) is (∆x − 2)
k
4
−1− k

2
∆−1
x ≥

(
logx k

logx+1 k
− 2
) k

4
−1− k

2
logx+1 k
logx k

= 2(logx+1 k−logx+2 k)( k
4
− k

2
logx+1 k
logx k

)(1+o(1)) = 2
k
4

logx+1 k(1+o(1)).

Set ι := x.

• Case 3. There is some i, 1 ≤ i ≤ x− 1 with ∆i ≥ fi and ∆i+1 ≤ fi+1.

In this case we bound the ith term in the product of (2): (∆i − 2)
k
2

(∆−1
i+1−∆−1

i ) ≥
(

logi k

logi+1 k
− 2
) k

2

(
logi+2 k

logi+1 k
− logi+1 k

logi k

)
= 2

k
2

logi+2 k(1+o(1)). Set ι := i.

So, we not only bound the number of vertices in T , thereby showing the lower bound for
spiders, but more specifically show the following fact that we will need for the general
lower bound:

∃ι ∈ {0, 1, . . . , x} (∆ι − 2)|Iι| ≥ 2
k
4

logx+1 k(1+o(1)) ≥ 2
k
4

logp+1 k(1+o(1)). (3)

3.6 Construction of a tree avoiding a general family of trees

Before beginning the next construction, we need some more definitions and lemmas:

For a tree Q that is not a spider, let the span of Q, denoted span(Q), be the set of
distances between vertices of degree at least 3.
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w

x

y
z

Figure 5: A non-spider whose span is {2, 3, 5, 6}. The distances come from the vertex
pairs (y, z), (x, y), (x, y) and (w, x) respectively.

Observe that if Q ⊆ T , then span(Q) ⊆ span(T ).
We will use this property to avoid non-spiders. We trim the previously constructed

tree avoiding the spiders in such a way that we can ensure that for each non-spider Q
in the family, some element in span(Q) is not in span(T ).

So we need a way to trim the tree without reducing its size too much. To do this, we
map the property of a (balanced) tree not having a certain element d in its span to
binary sequences in some sense. We then define an operation of a binary sequence on
a balanced tree (or more exactly, on a vector u defining a balanced tree B(u)), which
ensures that if the binary sequence avoids the value d, then the tree will not contain d
in its span after the operation.

For each value d, we find some binary sequence avoiding d which does not affect the
size of the tree being operated on by too much. To avoid multiple values simultaneously,
we find a way to combine binary sequences while still not affecting the size of the tree
too much. This eventually allows us to avoid all the non-spiders by avoiding an element
of its span for each of them.

Let’s shape these roughly outlined ideas into definitions:

Let b be a binary sequence, and D a set of positive integers. We say that b avoids D
if we have |y − x| + |z − y| 6∈ D for any three indices x, y, z such that bx = by = bz = 1
(here x, y, z do not need to be distinct). If a set D consists just of one element d, instead
of writing that b avoids {d} we simply write that b avoids d. We define the relative
frequency of 1s of a binary sequence b in the interval I = [s, t], or frequency freq(b, I) for
short, as the number of 1s in the sequence (bs, bs+1, . . . , bt), divided by the total amount
of integers in the interval, i.e., by t − s + 1. For a binary sequence b and a vector u,

define b ◦ u := u′ as follows: u′i =





ui if bi = 1,

1 if bi = 0 and i = 0,

2 if bi = 0 and i 6= 0.

Lemma 3. If a binary sequence b avoids d, then for any vector u, d /∈ span(B(b ◦ u)).

Proof. Let B = B(b ◦ u). Assume d ∈ span(B). Then there is a path P of length d
in B with its endpoints x′ and z′ of degree at least 3. Let y′ be the vertex in this path
closest to the root of B. If y′ is the root, then it must have degree at least 2. If y′ is not
the root, y′ must have degree at least 3, as it is either x′ or z′, or has two vertices in P
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0

1

0

0

3

3

3

3

3

1

3

2

2

1 3

Figure 6: A tree B(u), a sequence u, a binary sequence b avoiding the value 3, a sequence
b ◦u, and a tree B(b ◦u), where the entries of the sequences correspond to the layers of
the trees depicted on the same horizontal line. Here u = (3, 3, 3, 3, 3), b = (0, 1, 0, 1, 0),
b ◦ u = (1, 3, 2, 3, 2).

adjacent to it. Let x, y and z be the distances of x′, y′ and z′ from the root respectively.
It holds that |x− y|+ |y − z| = |x− z| = d. However due to the degree of x′, y′ and z′

we must have b(x) = b(y) = b(z) = 1, showing that b doesn’t avoid d.

The frequency of a binary sequence gives us a sense of how much the size of tree is
be affected under the operation of the binary sequence. Now that we have the means of
avoiding non-spiders through their span, we show that we can do so without reducing
the size of the tree being operated on too much.

Lemma 4. For any finite set of positive integers D, and any interval I, there is a binary
sequence b avoiding D, with a frequency at least 4−|D| in I.

Proof. For two binary sequences b and b′, let b ⊗ b′ be the binary sequence whose
ith element is the product of the iths elements in b and b′, i.e., element-wise logical
“and”. For a positive integer s, a shift, bs of a sequence b is defined by bsx := bx+s,
x = 0, 1, . . .. For a periodic binary sequence b with period p, we define the frequency
freq(b) as freq(b) := freq(b, [0, p− 1]).

Recall that for a set of positive integers D, a binary sequence b avoids D if there are
no three indices x, y, z with bx = by = bz = 1 such that |x − y| + |y − z| = d for some
d ∈ D. Note that if b avoids D, then a shift bs avoids D as well for any s; if furthermore
b′ avoids D′, then b⊗ b′ avoids D ∪D′.

First we shall prove the following claim by induction on m.

Claim 1. Let bi be periodic binary sequences with period pi and relative frequency
fi = freq(bi), i = 1, . . . ,m. Then for every interval I, there are shift values si ∈ [0, pi−1],
such that b = bs11 ⊗ · · · ⊗ bsmm has frequency f := freq(b, I) ≥∏m

i=1 fi.

Let l be the number of integers in the interval.
Induction step: Let b′ be the sequence obtained for b1, . . . ,bm, with the period p′ and a
frequency f ′ = freq(b′, I) ≥∏m−1

i=1 fi in the interval I. We have that b′ has f ′ · l entries
1 in the interval I, and bm has fm · pm entries 1 in any interval of length pm.
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3 Unavoidable subtrees

For each 1 of b′ in I, there are fm · pm shifts s ∈ [0, pm − 1] such that the 1 from b′

gets matched up with a 1 from bm. Summing up the amount of 1s that b′ ⊗ bsm has in
I over all shifts s ∈ [0, pm − 1], we get fm · pm · f ′ · l as the number of 1s in total. That
means that on average over all s, there are fm · f ′ · l 1s. So there is at least one shift
value sm such that the interval contains at least fm · f ′ · l entries of 1 for b := b′ ⊗ bsmm .
As the length of the interval is l, this means that freq(b, I) is at least fm · f ′ ≥

∏m
i=1 fi.

Induction base: To get the statement for m = 1, apply the induction step to the
sequence b′ consisting only of 1s, and note that b1 = b1 ⊗ b′. For this sequence b′, the
statement is obviously true. This proves the Claim 1.

Claim 2. For every d, there is a periodic binary sequence b avoiding d with frequency
at least 1

4
.

For d = 1, 3, 5, the repeated sequence of 10 serves the purpose, as any two 1s have a
distance divisible by 2. For d = 2, 4, the repeated sequence of 100 serves the purpose,
as any two 1s have a distance divisible by 3. For d ≥ 6, consider a periodic binary
sequence b formed by a block of bd−1

2
c 1s followed by d 0s. We show that b avoids d

by showing that the contrary is false: Assume that there is a set of indices x, y, z such
that bx = by = bz = 1 and |x − y| + |z − y| = d. Then we see that all three x, y and z
must correspond to the same block of 1s. However, the difference in indices within such
a block is at most bd−1

2
c, so |x− y|+ |z − y| ≤ 2bd−1

2
c < d. This concludes the proof of

Claim 2.

The lemma now follows from these two claims.

We now have all the means to construct the tree to avoid a family containing spiders
and non-spiders, and to analyze its size.

Construction 2 (Construction of a tree avoiding a general family of trees). Let T =
Qs∪Qn, |Qs| = p+ 2, |Qn| = q be a given family of k-vertex trees, where Qs is a family
of spiders containing Pk and Sk and Qn is a family of non-spiders. Let Ts = Ts(Qs) be
the tree from Construction 1, i.e., a tree avoiding Qs. We have that Ts is a balanced
tree T = B(u), for some vector u = (u0, . . . , uk/4−2). We shall construct a tree avoiding
T by trimming Ts in such a way that its span avoids some element of the span of each
non-spider in T . For that, we need parameters ι,D and b.

• Choose ι from i = 0, . . . , x as the index for which the product of elements in the
interval Ii, i.e.,

∏
j∈Ii(uj − 1) = (∆i − 2)`i+1−`i, is maximal.

• Let D be a set of representatives of spans of the trees from Qn, i.e., |D∩span(Q)| ≥
1 for each Q ∈ Qn, and |D| ≤ |Qn| = q.

• Let b be a binary sequence avoiding D with frequency at least 4−|D| in Iι, guaranteed
by Lemma 4.
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4 Fork-forests in bi-colored complete bipartite graphs

Finally, let our desired tree be

T = T (Qs ∪Qn) := B(b ◦ u).

Theorem 1 (Part 3). The constructed tree T avoids all trees of the family T and has

size at least 2
k
4

logp+1 k(1+o(1))4−q .

Proof. T avoids all trees of the family:

By Lemma 3, span(T ) ∩ D = ∅. With that, we get that for any non-spider Q ∈ Qn
there is a d ∈ span(Q) with d /∈ span(T ), and therefore T avoids all Q ∈ Qn. Since T is
a subtree of Ts, and Ts avoids the spiders Qs, we have that T avoids Qs too.

Analysis of the size of T :

Let u′ := b ◦ u. Split up Iι into I ′ and I ′′, where I ′ = {i ∈ Iι : bi = 1} and
I ′′ = {i ∈ Iι : bi = 0}. From Lemma 4 we have that freq(b, I) ≥ 4−|D| ≥ 4−q,

so |I ′| ≥ |Iι|4−q. It follows from (3) that (∆ι − 2)|Iι| ≥ 2
k
4

logp+1 k(1+o(1)). Using this
information, we get the following lower bound (note that 0 /∈ Iι ensuring that the
second product is not 0):

|V (B(u′))|
(1)

≥ u′0

m∏

i=1

(u′i − 1)

≥
∏

i∈Iι

(u′i − 1)

=
∏

i∈I′
(∆ι − 2)

∏

i∈I′′
1

= (∆ι − 2)|I
′|

≥
(

(∆ι − 2)|Iι|
)4−q

≥ 2
k
4

logp+1 k(1+o(1))4−q .

4 Fork-forests in bi-colored complete bipartite graphs

This section is concerned with global unavoidable substructures in balanced 2-colorings
of Kn,n. Before proving the main theorem concerning fork forests, we need to introduce
some required terminology.

After that a classic theorem about bipartite graphs, Kőnig’s theorem, is presented.
The proofs in this part are based on the ideas presented in [48]. Kőnig’s theorem is very
useful in proving the results in this section.
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4 Fork-forests in bi-colored complete bipartite graphs

We then proceed to consider a simplified version of the main problem, presenting
techniques that are used later in the proof of the main theorem of this section.

The proof of the main theorem concludes this section. This part is based on [5]. We
first prove how many forks it is always possible to find, and then reduce the problem
of finding largest fork forests to a problem of finding perfect matchings of minimum
weight in edge-weighted graphs. With a known algorithm for the latter problem, our
main theorem, Theorem 2, follows.

4.1 Definitions

Recall that a matching is a vertex disjoint forest whose components are K2, i.e., two
vertices linked a by a single edge.

A maximum cardinality matching M in a graph G, or maximum matching for short,
is a matching in G such that no other matching in G has more edges than M . A perfect
matching is a matching that contains all vertices of G.

A vertex cover S of G is a set of vertices such that every edge of G is incident to some
vertex in S.

For a graphG and a matchingM , anM-augmenting path P is a path inG alternatingly
using edges from G−M and M , beginning and ending in an edge not in M .

For any sketches, edges colored in “white” are drawn in light gray.
Again, for a bipartite graph the partite sets are implicitely X and Y unless otherwise

stated, and in all calculations we omit floors and ceilings when their usage is clear from
the context.

4.2 Kőnig’s theorem

Before starting with the proof to Kőnig’s theorem, we show a lemma giving a necessary
and sufficient condition for a matching to be of maximum cardinality.

Lemma 5. Let G be a graph and M a matching. M is a maximum matching in G if
and only if there are no M-augmenting paths in G.

Proof. If there is an M -augmenting path P in G, then substituting the edges along P
that belong to M with the edges that do not belong to M gives a matching with one
more edge.

Now assume there is a matching M ′ with more edges than M . Consider the graph
F ⊆ G whose edge set contains exactly the edges of G that are in M or in M ′, but not
in both. As each vertex of G can only have one matching edge of M and M ′ respectively
incident to it, the maximum degree of F is at most 2. Therefore the components of
F consist of cycles and paths. The cycles are of even length, as they must alternate
between edges of M and M ′ in G. Because |M ′| > |M |, one of the paths must start and
end with edges from M ′ in G. Therefore this path is an M -augmenting path.
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4 Fork-forests in bi-colored complete bipartite graphs

Theorem 22 (Kőnig’s theorem). Given a bipartite graph, the size of a maximum match-
ing is equal to the size of a minimum vertex cover.

Proof. Obviously, a vertex cover has to have to least the size of the matching, as it has
to cover all of the matching edges, which have no incident vertices in common.

It remains to show that we can always find a vertex cover of the size of the maximum
matching.

Let M be a matching. We show that we can either find a matching of larger size, or a
vertex cover of the same size as M . Let S0 be those vertices in X that are not incident
to a matching edge.

Iterate the following loop:
Let Ti be the set of vertices that can be reached from Si via an edge, but that are not

contained in any Tj for j < i yet. If some vertex in t ∈ Ti has no matching edge incident
to it, then we have found an augmenting path. t was reached by a non-matching edge
from a vertex s ∈ Si, which was reached by a matching edge from a vertex in Ti−1, and
so on. The augmenting path ends in a non-matching edge leading into a vertex from S0.
The matching edges along the path can be substituted as in Lemma 5 to get a larger
matching.

If every vertex in Ti has a matching edge incident to it, let Si+1 be the set of vertices
that can be reached from Ti via edges of the matching. Continue the loop increasing
i 1 in each step, until we have found an augmenting path or Ti is empty, i.e., no new
vertices in Y can be reached from Si.

If at some point Ti is empty, we shall show that T ∪ (X − S) is a vertex cover of size
||M ||, where S is the union of the Si and T is the union of the Ti.

To show that T ∪ (X − S) is a vertex cover, we need to show that there are no edges
between Y −T and S. Assume there is an edge st with s ∈ Si for some i and t ∈ Y −T .
If it were a non-matching edge, then t would have been put into Ti. If it were a matching
edge, then s /∈ S0, and t is the vertex in Si−1 from which s was reached via some matching
edge.

Each t ∈ T is matched via some edge of M to a vertex in S. Now take some matching
edge that is not incident to a vertex in T . It must be incident to some vertex in X − S,
as S0 contains the vertices not incident to a matching edge, and the rest of S those
vertices that are linked to a vertex in T by a matching edge. On the other hand, every
vertex of X − S is incident to a matching edge, as otherwise it would be in S0, but not
matched to a vertex in T . This shows that each matching edge is incident to exactly
one vertex in T ∪ (X − S), and vice versa, showing that |T ∪ (X − S)| = ||M ||.

Note that the proof from above also provides us with an algorithm to find the max-
imum matching and minimum vertex cover, by starting with an empty matching and
repeatedly applying the algorithm to find a larger matching. As the size of the maximum
matching is at most n/2, and as the algorithm above considers each vertex only once,
and therefore each edge only twice, we can find the maximum matching in running time
O(nm), where n is the number of vertices and m the number of edges.
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4 Fork-forests in bi-colored complete bipartite graphs

Faster algorithms for finding the maximum matching are known, the Hopcroft-Karp
algorithm runs in O(

√
nm) [34], another algoritm was found by Alt et al. running in

O(n1.5
√
m/ log n) [4].

4.3 A related problem

Theorem 16 computed the minimum number i needed such that any c-coloring of Ki,i

forces a copy of mjK2, i.e., a matching of size mj, in color j for some 1 ≤ j ≤ c. In
particular, for c = 2 matchings of size k, it showed that this number is 2k − 1. This
implies that in any 2-coloring of the complete bipartite graph with partite sets of size
n, we find a monochromatic matching of size n/2.

If we require in addition that the coloring has to be balanced, we now show that we
can find a matching of the same size n/2 for both colors.

Recall that a balanced coloring is a coloring where each color is used almost the same
number of times, that is, the number of edges of one color differs from the number of
edges of another color by at most one.

Proposition 23. Given a balanced black-white coloring of the complete bipartite graph
G = Kn,n, there is always a black matching of size n/2. There is some balanced coloring
for which no larger matching exists.

Proof. To find a coloring with no matching on more than n/2 edges in either color, take
half of the vertices in X, and color all edges incident to them in black. For the remaining
n/2 vertices of X, color all incident edges in white. As the first half of the vertices in X
are a vertex cover for the black edges, the maximum matching has size at most n/2.

X

Y

Figure 7: A coloring with no monochromatic matching of size greater than n/2.

For the lower bound consider a balanced coloring of the edges of Kn,n with partite sets
X and Y in black and white. Let G1 be the graph formed by the black edges, and let
G2 be such a graph formed by the white edges. Let M be a maximum matching of G1.
By Kőnig’s theorem applied to G1, there is a vertex cover S of G1 such that |S| = |M |.
We have that S ⊆ V (M). Let A = V (M)∩X, B = V (M)∩Y , A′ = A∩S, B′ = B ∩S,
A′′ = A−A′ and B′′ = B−B′. Note that |A′| = |B′′| and |A′′| = |B′|. Then we see that
the vertex set (X −A′)∪ (Y −B′) induces no edges in G1, as otherwise S would not be
a vertex cover.
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X

Y

A′ A′′

B′′ B′

Figure 8: The matching edges M and vertex cover S of G1, and the labelling of vertex
sets introduced above. A = A′ ∪ A′′, B = A′ ∪ A′′.

As none of the edges between X−A and Y −B are incident to any of the vertex cover
edges, they all must be white. Assume for contradiction that the matching has fewer
than n/2 edges, and therefore |X −B| > n/2. Counting the white edges, we get

|X − A′| · |Y −B′| = (|A′′|+ |X − A|)(|X −B′|)
> (|B′|+ n/2)(n− |B′|)
= n2/2− |B′|(n/2− |B′|)
≥ n2/2

in contradiction to the balanced coloring, which requires that exactly n2/2 edges in G
are white.

4.4 Main theorem

While we have seen that we can find a both a black and a white matching of size n/2
each in a balanced black-white coloring of Kn,n, if we require the black and white edges
to be paired up into structures called forks, we now show that we cannot guarantee as
many such forks.

Let G = Kn,n with partite sets X and Y be edge colored with two colors.
For a two-coloring c of E(G) we call a path on 3 vertices whose central vertex is in X

(or Y ) and which has a edges of two different colors a fork centered in X (or Y ).

Y

X

Figure 9: A fork centered in X. (The other edges of G = Kn,n have been left out.)
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A set of vertex-disjoint forks all centered in X (or Y ) is called a fork forest centered
at X (or Y ). The number of forks in a fork forest F is the size of a forest, denoted |F |.
For a coloring c of G let f(G, c) be the largest size of a fork forest centered either at X
or at Y . Finally, let f(n) be the minimum f(G, c) taken over all balanced colorings c
using two colors. The first part of our main result of this section is

Theorem 2 (Part 1). For any n > 1, f(n) = (1− 1√
2
)n.

Proof. For the upper bound, take G to be a two-colored Kn,n with edges of one color

forming a graph isomorphic to K n√
2
, n√

2
. This coloring is balanced because n√

2
· n√

2
= n2

2

edges are black.
Only n/

√
2 of the vertices in X (or Y respectively) have both white and black edges

incident to them, so only these are possible centers for biforks. All the white edges inci-
dent to them have the same (1−1/

√
2)n common endpoints, so after picking (1−1/

√
2)n

biforks, no more vertices remain that are linked to the possible bifork centers by a white
edge.

︸ ︷︷ ︸ ︸ ︷︷ ︸
n√
2

(1− 1√
2
)n

Figure 10: Schematic sketch of a coloring admitting no more than (1− 1/
√

2)n biforks.
Note that for most n we have that b n√

2
c · b n√

2
c is slightly less than bn2

2
c, so a few of the

white edges have to be black for the coloring to be exactly balanced, allowing for one
additional bifork.

For the lower bound consider a balanced coloring of edges of Kn,n with partite sets
X and Y in black and white. Let G1 be the graph formed by the black edges, and let
G2 be such a graph formed by the white edges. Let M be a maximum matching of G1,
and S the vertex cover given by Kőnig’s theorem. Define A, A′, A′′, B, B′, B′′ as in
Proposition 23 and Figure 8.

Assume, without loss of generality, that |A′| ≥ |B′|.

Case 1: |A′| ≤ n√
2
.

We have that n2

2
= |E(G1)| ≤ n|A′|+(n−|A′|)|B′| ≤ n|A′|+(n−|A′|)|A′| = 2n|A′|−|A′|2.

So, from this we have that |A′| ≥ (1 − 1√
2
)n. Since |X − A′| ≥ (1 − 1√

2
)n, there

is a fork forest centered at B′′, using edges of M and edges of G2[B′′, X − A′] with
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min{|B′′|, |X − A′|} ≥ (1− 1√
2
)n forks.

Case 2: |A′| > n√
2
.

Let |A′| = n√
2

+ c for some positive c. We can assume that there is a matching M ′ in
G2 of size at least n√

2
, as otherwise Case 1 applies for G2. By counting, we can observe

that at least x := |M ′| − |Y − B′′| − |X − A′| ≥ n√
2
− 2(n − n√

2
− c) = n( 3√

2
− 2) + 2c

edges of M ′ have both endpoints in A′ ∪ B′′. In the next two paragraphs we show that
there are at least x

2
forks between B′′ and A′ centered at B′′:

Consider the union G′ = (M ∪M ′)[A′ ∪B′′], i.e., the black and white matching edges
with one endpoint in A′ and the other in B′′. There are x edges on M ′ in this graph
and each component is either an iterated even cycle or a path ending with edges of M .
It is easy to see that one could choose at least k

2
forks centered at B′′ from a component

of G′ containing k edges of M ′ that is either a path or a cycle of length divisible by 4.
We also observe that one can choose 1

2
(k1 + k2) forks centered at B′′ from two cycles of

G′ with k1 and k2 edges of M ′, where k1 and k2 are odd, by using a single edge between
these cycles and additional edges from the cycles.

(a) P5 (b) C8 (c) pair of C6 (d) remaining C6

Figure 11: Finding forks in the components of G′, with one example for each type. White
edges are drawn in light gray, the vertices belonging to B′′ are positioned at the top.
The outlined edges have been chosen to be used in forks. In the latter two cases this
choice depends on the color of the single edge not contained in the cycles.

So, we can pair up all but at most one of the components of G′ that are cycles of
length 2 modulo 4. In the remaining such component with k edges of M ′ we can choose
k+1

2
forks centered at B′′ by using one additional edge going from the component into a

previously unused vertex in A′ if available. If not, then all vertices in A′ have been used
up from the previously chosen forks, so we already have got b1

2
|A′|c ≥ b n

2
√

2
c forks. By

combining the selected forks, we see that there are at least x
2

forks centered in B′′ and
having leaves in A′.

We observe that with each chosen fork, at most two matching edges of M have become
unavailable for later use, so there are at least |B′′| − x black matching edges with both
endpoints in A′ ∪B′′ remaining. These can be combined into forks centered at B′′ with
non-edges leading into X − A′. This results in a total of x

2
+ min{|B′′| − x, |X − A′|}

forks. Since
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x

2
+ min{|B′′| − x, |X − A′|} ≥ n(

3

2
√

2
− 1) + c+ min{n(2− 2√

2
)− c, n(1− 1√

2
)− c}

= min{n(2− 2√
2

+
3

2
√

2
− 1), n(1− 1√

2
+

3

2
√

2
− 1)}

= min{n(1− 1

2
√

2
), n(

1

2
√

2
)} =

n

2
√

2
≥ n(1− 1√

2
),

it follows that f(G, c) ≥ n(1− 1√
2
).

4.5 Algorithm for the main theorem

The second part of the theorem is

Theorem 2 (Part 2). There is an algorithm finding a largest fork forest centered in X
in any two-colored complete bipartite graph with partite sets X and Y and running in
time O(n2 log n

√
nα(n2, n) log n).

We show that there is an efficient algorithm for finding the largest fork forest centered
at X in G by reducing this problem to the problem of finding a perfect matching of
minimum weight in an edge-weighted graph G′. The case of a fork forest centered at Y
is symmetric.

Informally, G′ is obtained from G by first splitting each vertex of X into two adjacent
vertices, with one of them being assigned the black edges incident to the original vertex,
and the other taking the white edges. Then all edges in Y are added, and if n is odd,
one additional vertex is added adjacent to all vertices of Y .

X

Y

(a) original graph G
X

Y

(b) transformed graph G′

Figure 12: A coloring of G = K4,4 with white edges drawn in light gray, and its trans-
formed version G′ on the right. For x ∈ X, vertices xb ∈ G′ with the black edges incident
to them are drawn in black, while xw ∈ G′ with white incident edges are drawn in light
gray.
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5 Rainbow paths

Construction
For a {b, w}-coloring, c, of G = Kn,n with partite sets X and Y , let V (G′) be a disjoint
union Y ′ ∪ {xb : x ∈ X} ∪ {xw : x ∈ X}, where Y ′ = Y if n is even and Y ′ = Y ∪ {y} if
n is odd. Let E(G′) be the union of {xbxw : x ∈ X}, {yxb : c(yx) = b, x ∈ X, y ∈ Y },
{yxw : c(yx) = w, x ∈ X, y ∈ Y }, and all possible edges with endpoints in Y ′. Let
τ : E(G′) → {0, 1} be such that τ(xbxw) = 1 for all x ∈ X, and τ(e) = 0, for all other
edges.

Further, if M is a perfect matching in G′, denote by fork(M) a fork forest in G
containing all forks on vertices x, y, y′ if xby ∈ M,xwy

′ ∈ M . Recall that | fork(M)| is
the number of forks in fork(M).

Lemma 6. If M is a minimum weight perfect matching of (G′, τ) then fork(M) is a
maximum fork forest of (G, c) centered at X.

Proof. Let M be a minimum weight perfect matching of (G′, τ). Note that the weight
of M is equal to the number of edges xbxw ∈ E(M). We see that x 6∈ V (fork(M)) if and
only if xbxw ∈ E(M), so the weight of M is n− | fork(M)|.

Assume that fork(M) is not a largest fork forest of (G, c) centered at X. Then, for
a larger fork forest F ′ of (G, c) centered at X, let M ′ be a perfect matching of G′ that
contains edges xby and xwy

′ if x, y, y′ induces a fork of F ′, and edge xbxw, otherwise.
Note that one can always match vertices of Y that are not in F ′ with remaining vertices
of Y ′. This matching M ′ has weight n− |F ′| < n− | fork(M)|, a contradiction.

In [25] it is shown that the time complexity of finding the minimum weight matching in
a graph with n vertices, m edges, and edge-weights 0 or 1 is O(

√
nα(m,n) log nm log n),

where α denotes the slowly growing inverse of the Ackermann function. Since G′ contains
at most 3n + 1 vertices and 3

2
(n2 + n) edges, the minimum weight perfect matching

problem for (G′, w) can be solved in O(n2 log n
√
nα(n2, n) log n) time. Thus, the second

part of the main theorem follows as well.

5 Rainbow paths

Unlike the classic Ramsey problem for paths, as seen in Section 2, there is an equivalent
rainbow Ramsey-like problem using proper colorings that is far from solved. That is, for
what minimal f(Pn) = k does any proper coloring of Kk contain a rainbow copy of Pn?
Recall that a proper coloring is a coloring where no two incident edges have the same
color.

The best known bounds are n ≤ f(Pn) ≤ b(3n + 1)/2c with a non-trivial bound
n + 1 ≤ f(Pn) for certain n. Both are not difficult to prove. While these bounds have
been known for a while, and an algorithm from [31] can find such paths as a side-effect,
no concise proof specifically aimed at this problem has been published.
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5 Rainbow paths

Proposition 24.
f(Pn) ≤ b(3n− 1)/2c.

That is, in each properly colored Kb(3n−1)/2c there is a rainbow path on n vertices.

Proof. Let c be a proper coloring of the complete graph Kb(3n−1)/2c. Let P be the longest
rainbow path in this colored graph. Assume it has fewer than n vertices, and define x > 0
so that the number of vertices it contains is |P | = n − x. Let s be the starting vertex
and t the ending vertex of the path. Let S be the set of edges incident to s that do not
have an endpoint in V (P )− s, and T the set of edges incident to t that do not have an
endpoint in V (P )− t.

Due to the maximality of P , the sets S and T only contain colors in c(P ), i.e., colors
that are also used in P . Now consider the set D of edges in P that have a color in c(S).
We have that |T | = |S| = b(n− 1)/2c+ x, and thus |D| = b(n− 1)/2c+ x as well.

Now consider the edges incident to t. Out of the ||P || edges from t into P , at most
||P || − |T | have a color that is already used along P , as all edges in T have a color in
c(P ), and no color incident to t appears twice. So at least ||P || − (||P || − |T |) = |T | =
b(n − 1)/2c + x of these have a color that is not used in P . Define this set of edges as
F . |F | ≥ |T | = b(n− 1)/2c+ x.

Recall that the size of D, which contained the edges along P using colors from c(S),
was b(n− 1)/2c+ x. We get that if x > 0, then one edge d from D shares its endpoint
that is further from t along P with some edge f in F . Replacing d with f , we get a new
rainbow path of the same length as P and one endpoint s. Note that f has a different
color from d as the coloring is proper. As d used a color from c(S), the color is now
available and the path can be extended by the edge incident to S that used that color.

This is a contradiction to the maximality of P . So x must be 0 or less, meaning that
a longest rainbow path P contains at least n vertices.

f

d

s t

S T

P

h

Figure 13: The edge d gets replaced by the edge f . As d and some edge h ∈ S have the
same color, this new path can be extended by h.
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6 Conclusion

Note that the proof above gives rise to an algorithm to find a path of at least such
length, by iteratively applying the method from the proof to extend the path. As in
each step, the edges of the path, and in addition the edges incident to its endpoints
need to be considered, the algorithms runs in time O(n2). While not having impact on
the asymptotic runtime, until half of the vertices of the complete graph have been used
up, the path can simply be extended using a greedy strategy: As fewer than half of the
colors are used, there is an edge incident to one endpoint of a color not yet used.

The lower bound is briefly noted in [31].

Proposition 25. There are infinitely many n such that

f(Pn) > n,

that is, there is a proper coloring of Kn such that there is no rainbow path on n vertices.

Proof. Let n = 2k. Let the vertex set be V = {0, . . . , n − 1} and E the set of edges.
Let the coloring be c : E → {1, . . . , n − 1}, c(uv) = u ⊕ v where ⊕ denotes the binary
“xor”, the exclusive or. This coloring is called geometric factorization and it is a proper
coloring.

Assume there is a rainbow path of length n. It uses all available colors. The binary
“xor” of all colors is 0. However, as the binary “xor” of a value with itself is 0, the binary
“xor” of the colors along the path is the same as the binary “xor” of its endpoints. This
value being 0 however means that the endpoints are equal, a contradiction.

000

001

011

010

101

111

100

110

Figure 14: The geometric factorization of Kn for n = 23.

6 Conclusion

With many problem having been covered in the past, and two new problems solved,
what remains to be done?
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6 Conclusion

The solution to the problem about unavoidable subtrees gives us the insight that
spiders are the determining factor for the size of a tree avoiding subtrees, and that gen-
erally we can construct a tree of exponential size to avoid the subtrees. However, what
happens if we are more concerned about the general structure of the trees we want to
avoid, i.e., if we also want to avoid all subdivisions of the trees from a family? Obvi-
ously, this does not have any effect on spiders, but it makes impossible the technique to
avoid non-spiders while compromising the size of the constructed tree only marginally.
Could non-spiders be the determining factor of the maximum size of a tree to avoid sub-
divisions of trees from a family now, and would the size of these trees still be exponential?

The problem on fork forests opens up a whole range of possible problems to be exam-
ined. Generalizations could ask for other unavoidable patterns to be examined, or more
than two colors to be used. Other restriction on the coloring than “balanced” could be
imposed, for instance on the number of edges of a color incident to a vertex, or other
graphs than complete bipartite graphs as host graphs could be considered.

The problem concerning rainbow paths in properly colored complete graphs still re-
mains unsolved. An interesting question is: Can we find longer paths if we limit the
colorings to factorizations, i.e., consider colorings where the color classes are (almost)
perfect matchings, meaning that for each color there is at most one vertex not having an
edge of that color incident to it? Might the additional structure of factorizations make
a difference here, or might it be possible to reduce colorings that are not factorizations
to such? Could examining this problem for other trees than paths give us more insight
into the problem?

There are also other Ramsey generalizations for which the rainbow path problem could
be examined. Or what happens if we restrict the number of edges of one color that may
be incident to a vertex not to 1, but some other number?

Evidently, the topic of unavoidable trees and forests in graphs still offers plenty of
research opportunities, and there are still many problems left to be solved.
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[26] L. Gerencsér and A. Gyárfás. On Ramsey-type problems. Ann. Univ. Sci. Budapest.
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