
Bend Minimization
in Planar Orthogonal Drawings
– Theory, Implementation and Evaluation –

Bachelor Thesis of

Sebastian Lehmann

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Thomas Bläsius
Dr. Ignaz Rutter

Time Period: 1st September 2012 – 11th November 2012

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 11th November 2012

iii

Abstract

Minimizing the number of bends in orthogonal drawings of planar graphs is one
of the major steps for improving the readability of the drawing. While the general
problem is NP-hard if the embedding is not fixed, there exist multiple restrictions to
the problem which make it solvable in polynomial time and thus relevant for actual
use.

This thesis focuses on two such approaches.

1. The decision problem FlexDraw with positive flexibility: Given a graph G =
(V,E) and a function flex : E → N\{0}. Can G be drawn with at most flex(e)
bends per edge?

2. The bend minimization problem OptimalFlexDraw for series-parallel graphs:
Given a series-parallel graph G = (V,E) and for every edge e ∈ E a cost func-
tion coste : N0 → R. Find a drawing minimizing

∑
e∈E coste(bends(e)).

In this thesis we implement and evaluate an algorithm solving the decision problem
FlexDraw with positive flexibility. In the experimental evaluation we will discuss
several questions, the most interesting of them being: How much bends do we need
to allow in average, so that there exists a valid drawing? Since FlexDraw is a
decision problem, its major disadvantage for practical use is that it will not generate
any drawing if the instance does not admit one respecting the flexibility constraints
given. One idea is to allow a flexibility of two on every edge, resulting in good
but not optimal drawings. Thus, a demand for algorithms solving the optimization
problem arise.

We present a polynomial-time algorithm for OptimalFlexDraw for series-parallel
graphs minimizing the bends, giving us more control over the output.

Deutsche Zusammenfassung

Eine wichtige Eigenschaft übersichtlicher orthogonaler Zeichnungen von Graphen
besteht in einer möglichst geringen Anzahl Knicke auf den Kanten. Das allgemeine
Problem der Knickminimierung sowie die Entscheidung, ob sich ein Graph knickfrei
orthogonal zeichnen lässt, ist NP-schwer. Es gibt jedoch Ansätze, das Problem mit
leichten Einschränkungen in Polynomialzeit zu lösen, welche für einen praktischen
Einsatz relevant sind.

Das Problem FlexDraw behandelt die Entscheidung, ob sich ein Graph mit einer
pro Kante individuellen Maximalzahl an Knicken, welche echt positiv sein muss,
zeichnen lässt. Das Optimierungsproblem OptimalFlexDraw minimiert in se-
rienparallelen Graphen die Kosten verursacht durch Knicke, für welche jeweils eine
individuelle Kostenfunktion angegeben wird.

Wir stellen in dieser Arbeit einen Algorithmus vor, welcher das Problem Opti-
malFlexDraw für serienparallele Graphen in Polynomialzeit löst. Für das Entschei-
dungsproblem FlexDraw für allgemeine Graphen und echt positiver Flexibilität
wurde im Rahmen dieser Arbeit eine Implementierung angefertigt, deren Algorith-
mus zunächst skizziert wird und welche wir im Anschluss vorstellen und evaluieren.

v

Contents

1. Introduction 1
1.1. The Problem . 2
1.2. Related Work . 4

2. Preliminaries 5
2.1. The Class of Series-Parallel Graphs . 5
2.2. SPQR-Trees . 6
2.3. Block-Cutvertex-Trees . 9
2.4. Orthogonal Representations and Rotations 9

3. An Algorithm Solving OptimalFlexDraw for Series-Parallel Graphs 13
3.1. Biconnected Series-Parallel Graphs . 14

3.1.1. Finding the Cost Function of a Subgraph 15
3.1.2. Finding the Optimal Representation 17

3.2. Connected Series-Parallel Graphs . 20

4. An Algorithm Solving FlexDraw 23

5. Implementation of FlexDraw 25
5.1. The Class SubGraphInfo . 26
5.2. The Class EmbedderFlexDraw . 26
5.3. The Class FlexDrawLayout . 29
5.4. Using the Implementation . 29

6. Experimental Evaluation of FlexDraw 31
6.1. Experiments . 32
6.2. Results . 33

7. Conclusion 35

Bibliography 37

Appendix 39
A. Algorithms . 39

Glossary 43

vii

1. Introduction

In the field of computer science, we often deal with data which we want to visualize.
Depending on the nature of information this may be a graph with nodes interconnected
by edges. Graph visualization is a field in computer science which is about generating
drawings of graphs automatically. This field can be divided further by generating a lot of
different types of drawings depending on the class of graphs or what we want to express
with the drawings. In this work we focus on planar graphs, the class of graphs that can
be drawn without any edge crossings. We further restrict the class of graphs to have a
maximum degree of 4, meaning every node is connected to at most 4 nodes. These graphs
are also called 4-planar graphs.

Visualizing graphs is a complex task since in almost all use cases the drawings will be
read by human beings and thus should be easily readable. Furthermore, in most scenarios
we do not want to spend a lot of time generating the drawing, especially in interactive
applications, so the running time matters, too. Given a graph to be visualized, we have
to take three major steps in order to generate a drawing automatically.

First, we have to think about the type of drawing we want to generate. In this thesis we
want to draw 4-planar graphs on a grid where every node is placed on a grid crossing
and the edges are drawn on the grid lines as horizontal and vertical line segments without
crossing or touching each other. Such a drawing is commonly called an orthogonal grid
drawing ; an example is given in Figure 1.1.

Secondly, we have to define measurable properties of these drawings in order to measure
the overall readability. These might be the number of edge crossings, the number of bends

Figure 1.1.: An orthogonal grid drawing generated by our implementation of FlexDraw

1

1. Introduction

on edges, the total length of the edges, the size of the drawing, etc. In this work we focus
on minimizing the number of bends on the edges in a grid drawing.

Finally, we find an algorithm that optimizes the criteria we defined. A common problem
of optimization algorithms is the enormous numbers of possible solutions from which we
want to pick the best one; often the set is too large to be handled efficiently or even
infinitely large. There are some well-known methods for efficient optimization, one of
them being dynamic programming applicable in algorithms where we can construct the
optimal solution of the problem instance by solving and combining smaller pieces of the
instance. The algorithms introduced and implemented in this work are based on dynamic
programming.

One very important property of planar drawings is their combinatorial embedding, which
defines in which order the incident edges of a node are laid out. While some graphs have a
fixed combinatorial embedding by nature (e.g., street networks, where the streets leading
into a crossing have a fixed order), for most of them we can choose an arbitrary embedding,
which we use to draw the graph. In the case of bend minimization in orthogonal drawings,
the embedding is an essential “variable” we also want to optimize since some embedding
may admit drawings with substantially fewer bends than other. However, in general the
number of possible embeddings grows exponentially with the size of the graph. To deal
with this issue, we make use of the SPQR-tree, a data structure enabling us to optimize
the result over all possible embeddings efficiently using dynamic programming.

This thesis is divided into the following parts. We start with phrasing the problem in
a couple of interesting variants and introduce some preliminaries we will need later. We
introduce an algorithm solving the optimization problem OptimalFlexDraw for series-
parallel graphs in polynomial time of the input graph size. For this, we write a dynamic
program traversing the SPQR-tree in a bottom-up manner, generating a solution for the
problem out of smaller pieces recursively. Then, we will cover the decision problem Flex-
Draw as introduced by Bläsius et al. [BKRW12], which has been implemented as part of
this work. The algorithm is also based on a dynamic program traversing the SPQR-tree.
We provide a technical description of the algorithm and some pseudo-code for the most
interesting procedures. Furthermore, we cover some details of our implementation we have
done in this work. Finally, we evaluate our implementation experimentally and answer a
couple of interesting questions, also regarding the demand for better algorithms.

1.1. The Problem

We consider the following two general problems for bend-minimization in orthogonal draw-
ings of 4-planar graphs whose combinatorial embedding is not fixed.

Problem 1 (General FlexDraw: drawing with flexibility constraints). Given a 4-planar
graph G = (V,E) and a flexibility function flex : E → N0. Does G admit a planar
embedding on the grid with at most flex(e) bends for every edge?

Problem 2 (General OptimalFlexDraw: bend minimization with cost functions).
Given a 4-planar graph G = (V,E) and for every edge e ∈ E a cost function coste :
N0 → R. Find a drawing minimizing

∑
e∈E coste(bends(e)).

The problem to decide whether or not a graph is 0-embeddable, (admitting an orthogonal
drawing without any bends) has been proven to be NP-hard by Garg and Tamassia
[GT95]. Since an algorithm solving one of the two problems from above can be used to
decide 0-embeddability of a graph by setting flex(e) = 0 or coste(x) = x respectively for
every edge e in the graph, they both are NP-hard, too.

2

1.1. The Problem

0

3 2

4

1

2

11

11
1

1

1

(a)

4

1 2 0

3

(b)

Figure 1.2.: (a) An exemplary instance for FlexDraw with the flexibility constrained
labeled on the edges and (b) an orthogonal drawing respecting this constraints

In a similar way the NP-hardness of the following problems follows:

• We can test if a graph is 0-embeddable by setting flex(e) = 0 for every edge e ∈ E in
the problem General FlexDraw.

• By setting coste(n) = n for every edge e ∈ E in the problem General OptimalFlex-
Draw we treat all bends on all edges equally and thus minimize the total number of
bends.

• Given a weight function w : E → R+ we can minimize the total bends weighted per
edge. Therefore we set coste(n) = n · w(e) in the problem General OptimalFlex-
Draw.

Since all these problems are NP-hard, we are interested in algorithms solving slightly
modified versions of them in polynomial time in order to make them attractive for practical
use.

Problem 3 (FlexDraw). Given a 4-planar graph G = (V,E) and a function flex : E →
N\{0} that gives each edge a positive flexibility. Does G admit a planar drawing on the
grid such that each edge e has at most flex(e) bends?

Note that we do not allow flex(e) = 0 for any edge e ∈ E, otherwise this problem would
be NP-hard as pointed out above. An exemplary instance for FlexDraw and a valid
drawing is shown in Figure 1.2. We will use this instance for illustration throughout this
work.

For any instance of FlexDraw, we call a corresponding drawing of G a flex-drawing if it
respects the flexibility constraints, i.e., it has no more than flex(e) bends on each edge e.
We say G can be flex-drawn.

Problem 4 (OptimalFlexDraw). Given a 4-planar graph G = (V,E) and for each
edge an increasing and convex cost function coste : N0 → R with the restriction coste(0) =
coste(1) that defines the cost for a given number of bends on that edge. Find an orthogonal
drawing minimizing

∑
e∈E coste(bends(e)).

Note that we do not allow additional costs for the first bend on any edge e ∈ E. Without
loss of generality, we can just subtract the base cost coste(0) from the whole cost function
for every edge, thus also coste(1) = 0. A cost function coste : N0 → R is convex if
and only if ∆ coste(x + 1) ≥ ∆ coste(x) holds for all x ∈ N\{0}, where ∆ coste(x) :=
coste(x)− coste(x− 1) denotes the additional costs for the x-th bend on edge e.

3

1. Introduction

Problem 5 (OptimalFlexDraw for series-parallel graphs). Given a 4-planar series-
parallel graph G = (V,E) and for each edge e ∈ E a monotone cost function coste : N0 → R
defining the cost for a given number of bends on that edge. Find an orthogonal drawing
minimizing

∑
e∈E coste(bends(e)).

We call a cost function coste monotone if coste(x + 1) ≥ coste(x) for all x ∈ N0, i.e. we
never decrease the costs for an increasing number of bends. In other words, in contrast to
the general OptimalFlexDraw we restrict the input graph to be series-parallel, while
allowing a non-convex cost function and also costs for the first bend on any edge e ∈ G.

1.2. Related Work

As already addressed in the introduction, the 0-embeddability of a graph, deciding whether
it can be drawn without any bend, is shown to be NP-hard by Garg and Tamassia [GT95].
The NP-hardness of problems 1 and 2 from above follows directly.

Biedl and Kant [BK98] show that every 4-planar graph can be drawn with at most two
bends on each edge (2-embeddability) except for the tetrahedron. Di Battista et al. [DLV98]
introduce an algorithm minimizing the number of bends in an orthogonal drawing for 3-
planar graphs as well as for series-parallel graphs and thus decides 0-embeddability for
these special cases.

Tamassia [Tam87] introduces the following problem. Given a graph G with a fixed com-
binatorial embedding, compute a drawing with a minimum total number of bends and
minimum size. Tamassia introduces the orthogonal representation, an abstract descrip-
tion of an orthogonal drawing not yet defining any metrics but shapes of edges, which we
cover in the next chapter. It splits the problem into two parts: Finding an orthogonal
representation with a minimum total number of bends and generating a drawing with
minimum size based on this representation afterwards. For the former, Tamassia intro-
duces a polynomial-time algorithm using a flow network. The latter has been proven to
be NP-complete by [Pat99]. However, Tamassia introduced an algorithm which generates
a drawing with at most linear size in both dimensions, also based on a flow network. To
emphasize the difference in Tamassia’s problem and our OptimalFlexDraw problem
from above you should recall that we do not fix the combinatorial embedding of the input
graph, while Tamassia does.

Bläsius et al. [BKRW12] introduce the problem FlexDraw from above, deciding if a
graph and a given positive flexibility admit an orthogonal drawing without fixing the
combinatorial embedding. They provide an algorithm with a worst-case running time of
O(n ·Tflow(n)), where O(Tflow(n)) denotes the worst-case runtime to calculate a minimum-
cost flow in a planar network with multiple sources and sinks.

Bläsius et al. [BRW12] also cover the optimization problem OptimalFlexDraw mini-
mizing bends with the combinatorial embedding not being fixed. For this, they introduce
convex functions for each edge individually, not allowing any costs for the first bend.
They provide an algorithm with a worst-case time of O(n · Tflow(n)) for biconnected and
O(n2 · Tflow(n)) for connected graphs.

Both algorithms can be used to decide 1-embeddability for general graphs. The restriction
of the cost function not to be able to assign costs for the first bend as well as its convexity
motivated us to find better algorithms possibly restricted on the graph class.

Within this work, FlexDraw is implemented and evaluated. While being efficient, the
major inconvenience of both problems introduced by Bläsius et al. is that they do not
allow any restrictions on the first bend per edge. However, for some classes of graphs it
is possible to still allow costs for the first bend; for series-parallel graphs an algorithm is
introduced in this work.

4

2. Preliminaries

Before we start, we define some graph classes and introduce data structures as well as
some notations.

A graph is connected if, for every pair of vertices u, v ∈ V , there exists a path (u, . . . , v) in
G, otherwise it is disconnected. A vertex is called a cut vertex if its removal disconnects
the graph into two or more components. We call the maximal subgraphs of G in which v
is not a cut vertex the cut components with respect to v. A connected graph is biconnected
if it does not contain a cut vertex. A pair of vertices is called a separation pair if its
removal disconnects the graph. A biconnected graph is triconnected if it does not contain
a separation pair. A maximal biconnected subgraph of a graph is called a block. Note that
every vertex is part of at least one block and every cut vertex is part of at least two blocks.

Given an undirected graph G = (V,E). For every edge e = {s, t} ∈ E, we define the
undirected graph G− e := (V,E\{e}) with the poles s and t.

In the following sections we define the class of series-parallel graphs used in the version of
OptimalFlexDraw for which we provide an algorithm in Chapter 3. We will also briefly
cover two data structures we use for decomposition of graphs, namely the SPQR-tree and
the block-cutvertex-tree. As addressed in the introduction, in order to describe orthogonal
drawings on an abstract level without providing any metrics we define the orthogonal
representation as introduced by Tamassia [Tam87].

2.1. The Class of Series-Parallel Graphs

One of the algorithms in this work is restricted to the class of so-called series-parallel
graphs. Every series-parallel graph G has two poles s and t. The class is recursively
defined as follows.

• A graph G = (V,E) with two nodes V = {s, t} and a single edge E = {{s, t}} is a
series-parallel graph with the poles s and t.

• Let Gi = (Vi, Ei), i = 1 . . . k be series-parallel graphs with the poles si and ti. Then

– the parallel composition G = (
⋃
Vi,
⋃
Ei) is a series-parallel graph with the

poles s and t where all poles si are identified to s and all poles ti to t.

– the series composition G = (
⋃
Vi,
⋃
Ei) is a series-parallel graph with the poles

s1 and tk where ti is identified with si+1 for all i = 1 . . . k − 1.

This definition directly implies that all series-parallel graphs are connected.

5

2. Preliminaries

2.2. SPQR-Trees

The SPQR-tree is a data structure that can be used to handle the decomposition of
biconnected graphs into triconnected components. A detailed description of the SPQR-
tree can be found in the literature [DBT96, GM01].

The SPQR-tree T of a graph G is a tree with four different types of nodes, namely S-,
P-, Q- and R-nodes (hence its name). For every edge e ∈ E there exists a Q-node µe that
represents e and we define orig(µe) := e as the edge represented by a Q-node. S-, P- and
R-nodes define compositions of other subgraphs of G represented by child nodes in the
tree.

The structure of T is determined by the split pairs of G. A pair of vertices s, t is called a
split pair if it is either connected by an edge s = {s, t} in G or a separation pair. Recall that
a separation pair is a pair of vertices disconnecting G into two or more split components
Ss,t of the split pair. A split component is a maximal subgraph of G not having s, t as a
split pair. Note that a single edge s = {s, t} in G also is a split component. A split pair
defines a P-node if |Ss,t| ≥ 3. If |Ss,t| = 2 and one split component is not biconnected, it
defines an S-node. Otherwise, it is an R-node representing rigid structures in G.

s

t

eµ0

(a)

s

t

eµ0

(b)

s

t

eµ0

(c)

s

t

eµ0

(d)

Figure 2.1.: Exemplary skeletons of the four different node types in an SPQR-tree: (a) an
S-node with 3 children, (b) a P-node with 2 children, (c) an R-node with the
structure of the K4 and (d) a Q-node. eµ0 represents the reference edge in the
skeleton with the respect to the root of T . The gray edges represent children
nodes in T which for themselves represent subgraphs of G, while the edge of
a Q-node represents a single edge in G.

We typically consider an SPQR-tree T of a graph G = (V,E) to be rooted at a particular
Q-node µe(e ∈ E) of T . However, we can always re-root T at any other node, which does
not affect the structure of the tree. We denote the adjacent nodes of µ as µ0, . . . , µk, where
k + 1 is the number of adjacent nodes. If T is rooted, µ0 is the parent node of µ and the
other k adjacent nodes µ1, . . . , µk are called child nodes. Note that re-rooting T in general
changes those indices, as the parent node of a node µ might change.

In order to“describe”the structure of a node µ in T and where the child nodes in the SPQR-
tree are located, each node has an associated planar multi-graph, its skeleton skel(µ), which
can be seen as a simplified version of G. Its nodes correspond to nodes in G. The skeleton
contains one edge eµi for every adjacent node µi of µ in T . When T is rooted at a
particular root node, ref(µ) := eµ0 denotes the reference edge in skel(µ) with respect to
this root. The skeleton of a Q-node only contains two edges: The reference edge and an
edge representing an edge in the original graph. We denote this edge orig(µ). Figure 2.1
shows exemplary skeletons of the four node types.

6

2.2. SPQR-Trees

Notation Description

skel(µ) the skeleton graph of µ in the SPQR-tree
pert(µ) the pertinent graph of µ in the SPQR-tree
µi (i = 1..k) the child nodes of µ in the rooted SPQR-tree
µ0 the parent node of µ in the rooted SPQR-tree
eµi (i = 1..k) the edge in skel(µ) corresponding to µi
eµ0 = ref(µ) the reference edge in skel(µ)
orig(µ) the original edge e ∈ E in the original graph if µ is a Q-node
µe (e ∈ E) the Q-node in T corresponding to e ∈ E in the original graph G
emb(µ) all possible combinatorial embeddings of skel(µ)

Table 2.1.: Overview of notations regarding SPQR-trees used in this work

Since each skeleton is a planar graph, it has a certain combinatorial embedding. This
allows us to change the embedding of skel(µ) which implicitly changes the combinatorial
embedding of G. An embedding of G implies well-defined embeddings of all skeletons
of T as well as embeddings of all skeletons define one well-defined embedding of G. On
the other side, if we do not fix the embedding of G, the skeletons also don’t have a
fixed embedding. Very important is the fact that different combinations of all skeleton
embeddings in T implicitly define all possible embeddings of the whole graph G. We will
use this decomposition to optimize over all of them. Note that changing the embedding
of an skeleton skel(µ) of a tree-node µ does not flip the whole embedding of its pertinent
graph pert(µ) in G but only affects how the child nodes of µ are placed within the skeleton
skel(µ). Flipping the embedding of a whole pertinent graph pert(µ) in G requires flipping
of the skeletons of all nodes in the sub-tree rooted at µ.

To illustrate how the embedding of the skeleton of a node in T affects the embedding
of G, we have a look again at the exemplary instance as seen in Figure 2.2. The two
operations shown in (c) to (e) illustrate the steps needed to fully flip the embedding of
the whole pertinent graph of the R-node, resulting in the combinatorial embedding of G
of the output graph as seen in Figure 1.2 from the previous chapter.

We denote the set of possible combinatorial embeddings of skel(µ) by emb(µ). The number
of embeddings is 1 for Q- and S-nodes, 2 for R-nodes (they can only be flipped) and k! for
P-nodes (every possible permutation of the skeleton edges defines an embedding).

The subtree of T with root µ represents a subgraph in G called the pertinent graph of
µ with respect to the root node of T . We denote this pertinent graph as pert(µ) which
is the single edge orig(µ) if µ is a Q-node. Otherwise, we construct the pertinent graph
recursively by replacing every edge eµ1 , . . . , eµk in skel(µ) having k child nodes with pert(µi)
and removing the reference edge eµ0 . Note that if T is rooted at µ, its pertinent graph
pert(µ) is G− e.

Note that for 4-planar graphs a P-node can have at most four adjacent nodes in T of
which one is the parent node. Thus, the number of children of a P-node is limited to
three, limiting the number of possible embeddings of its skeleton to six. This limit is very
important for the time complexity in an algorithm handling all possible embeddings of a
skeleton as we do.

Table 2.1 shows an overview of all notations we defined for the SPQR-tree.

7

2. Preliminaries

0

3 2

4

1

2

11

11
1

1

1

(a) The original graph

e01

R

e03 e02 e32 e21 P

e31 S

e34 e41

(b) The SPQR-tree only, without any skeletons being shown

(c) Skeleton embeddings corre-
sponding to the input

(d) Skeleton embeddings after
flipping the R-node’s skeleton

(e) Skeleton embeddings after
also flipping the P-node’s skeleton

4

1 2 0

3

(f) The output of FlexDraw after flipping the
pertinent graph of the R-node

Figure 2.2.: The SPQR-tree of our exemplary instance from the previous chapter

8

2.3. Block-Cutvertex-Trees

2.3. Block-Cutvertex-Trees

The block-cutvertex-tree (BC-tree) is a data structure that can be used to handle the
decomposition of a connected component G into blocks and cut vertices. The tree consists
of B- and C-nodes. A B-node represents a block in G, a C-node represents a cut vertex
in G. A C-node in the tree is adjacent to a B-node if and only if it is part of that block.
Note that a cut vertex can be part of more than two blocks.

2.4. Orthogonal Representations and Rotations

Tamassia [Tam87] introduced the orthogonal representation of a graph based on a combi-
natorial embedding, describing the bends on edges and the angles of faces. We will use this
representation as a combinatorial description of a grid drawing. Note that an orthogonal
representation is not a complete description of a drawing, as it defines neither any metrics
nor absolute orientations of edges.

A slightly simplified definition of orthogonal representations suitable for this work is defined
as follows. For every face fi of G there is a face description consisting of a bend number
for every incident edge in clockwise order (counter-clockwise for the external face) and
the inner angle for every incident node as a multiple of 90◦. A bend number of an edge
incident to a face fi tells us the number of bends to the right (“convex” bends if fi is an
internal face). If this number is negative, the absolute value equals the number of bends
to the left (“concave” bends if fi is an internal face).

Note that every edge e ∈ E has exactly two bend numbers since it is incident to two (not
necessarily different) faces fl, fr. Every node v ∈ V is incident to one to four faces. The
following constraints have to be satisfied for every valid orthogonal representation.

1. For every edge e ∈ E the two bend numbers bl and br in its two incident faces fl and
fr respectively are consistent, i.e., bl = −br. We define bends(e) := |bl| = |br|.

2. The angular sum of any face fi is 4 if fi is an internal face and −4 if fi is the external
face. The angular sum is the sum of inner angles of all incident nodes plus the sum
of bend numbers of all incident edges.

3. The angles around each node sum up to 4.

Once we found an orthogonal representation of a graph, an orthogonal drawing, where
the bends and angles at the nodes correspond to the orthogonal representation, can be
computed efficiently [Tam87]. We define the number of bends bends(e) of an edge e in
an orthogonal drawing being the absolute bend number of that edge in the orthogonal
representation.

Bläsius et al. [BKRW12] introduce the following notations to describe “how well” a graph
can be bent in a flex-drawing. Given a graph G = (V,E), two poles s, t ∈ V and an
orthogonal representation, we define the rotation rot(π(s, t)) describing the path π(s, t)
from s to t along the outer face in counter-clockwise direction as being the number of
bends to the right minus the number of bends to the left. As an example, let us calculate
rot(π(4, 0)) in Figure 2.3: The edge (4, 1) has one bend to the left, the edge (1, 0) two
bends to the left. The node (1) introduces one bend to the right on the path π(4, 0), thus
the rotation of π(4, 0) is 1− 3 = −2 in this drawing.

The maximum rotation of a given embedding E , maxrotE(π(s, t)), is the highest possible
value rot(π(s, t)) can attain for any flex-drawing of this embedding E . A further gener-
alization is denoted by maxrot(π(s, t)), the maximum rotation of the path π(s, t) in any

9

2. Preliminaries

4

1 2 0

3

Figure 2.3.: Our exemplary instance for FlexDraw with the path π(4, 0) highlighted, on
which we count one bend to the right (+1) and three bends to the left (−3)

embedding of G, which is defined as the maximum value of maxrotE(π(s, t)) over all em-
beddings of G. If e = {s, t} is an edge in G, maxrot(π(s, t)) in G − e is also written as
maxrot(G−e). When not talking about chosen pole nodes but only a graphG, we define the
graph rotation with respect to an edge e ∈ E as graphrote(G) := maxrot(G−e)+flex(e)−2.

Given a graph G = (V,E) and a positive flexibility function flex : E → N\{0} a graph can
be flex-drawn if there exists a drawing with at most flex(e) bends for every edge e ∈ E.
Such a drawing is called a flex-drawing. We say e admits a flex-drawing if G can be
flex-drawn with e being on the external face, which is true if and only if graphrote(G) ≥ 0.

Tamassia [Tam87] introduces a flow network that can be used to calculate the orthogonal
representation having the minimum number of bends for a given graph G with a fixed
combinatorial embedding. The embedding is represented by the set of faces, F , and an
external face f0 ∈ F .

Definition 2.1. The network N(G) := ((W,A); l;u; d; cost) of a graph G = (V,E) with a
fixed combinatorial embedding F is defined as follows.

W := V ∪ F
A := {(v, f) ∈ V ×F , v incident to f} ∪

{(fa, fb) ∈ F × F , fa and fb adjacent}

The demand of a node is d(v) = 4 for nodes of v ∈ V and

d(f) :=

{
−2 · (dG(f) + 2) , if f = f0

−2 · (dG(f)− 2) , if f 6= f0

for face nodes f ∈ F . The edge capacity bounds l, u and the edge costs cost are defined as

l(v, f) := 1, u(v, f) := 4, cost(v, f) := 0

for node-to-face-edges with v ∈ V, f ∈ F and

l(fa, fb) := 0, u(fa, fb) :=∞, cost(fa, fb) := 1

for face-to-face-edges with fa, fb ∈ F .

This definition of the flow network N(G) can be interpreted as follows. For every node
v ∈ V there are four 90◦ angles that can and have to be “assigned” to incident faces, which
is done using the node-to-face-edges in A. Every face-to-face-edge in A corresponds to an
edge e in G, which is incident to both faces. We call the face-to-face-edge the dual edge
of e. The units of flow that pass through this edge represent one bend in the direction of
the flow.

10

2.4. Orthogonal Representations and Rotations

1

2

1

1

(a)

4

4

4
-2

0

-10

1
(-1..1)

1 (-2..2)

1 (-1
..1

)

1
(-1

..1
)

0
(1

..
4
)

0 (1..4)

0
(1

..
4
) 0

(1
..
4)

0 (1..4)

0
(1

..
4)

0
(1..4)

0
(1

..4
)

(b)

Figure 2.4.: An example graph with flexibility constraints (a) and the corresponding net-
work of our version of Tamassia’s algorithm computing an orthogonal repre-
sentation (b). Red edges and red square nodes represent the dual graph; the
blue edges connect dual nodes with original nodes. The bold labels besides
nodes are their demand, labels on edges denote their cost as well as the lower
and upper capacity written in parentheses. Between two adjacent faces we
have only drawn a single undirected edge denoting two directed edges in the
flow network.

The flow network can be solved using a minimum-cost flow algorithm which moves exactly
d(v) units away from a node if d(v) is positive and −d(v) units into a node, if d(v) is
negative. The flow which passes through an edge e has to be at least l(e) and at most u(e).
The flow algorithm minimizes the total cost of the flow. We can compute an orthogonal
representation for a flex-drawing by slightly modifying N(G). Since u(fa, fb) represents
the upper bound, we simply set it to flex(e) of the corresponding edge e ∈ E in the original
graph. An example is given in Figure 2.4.

In the following we want to calculate the maximum rotation maxrot(π(s, t)) of the pertinent
graph pert(µ) using the skeleton skel(µ) and already computed maximum rotations of the
subgraphs represented by the edges in the skeleton. Bläsius et al. [BKRW12] show that
each edge in the skeleton can be replaced by a gadget Gρdeg(s),deg(t) with the same behavior

so that the maximum rotation of this gadget graph equals maxrot(π(s, t)) of the pertinent
graph pert(µ). For this, we have to know the maximum rotation ρ := maxrot(π(s, t)) and
pole degrees deg(s), deg(t) of the subgraph represented by each skeleton edge. The gadgets
we will use are shown in Figure 2.5, which was taken from [BKRW12].

We introduce a network similar to Tamassia’s, which we will use to calculate maxrot(π(s, t))
of a pertinent graph pert(µ). First, we replace all edges in skel(µ) with appropriate gad-
gets. For this, we have to recursively calculate the maximum rotation of the corresponding
subgraph. Then we construct a network graph like Tamassia’s but again with the flexibility

11

2. Preliminaries

ρ

s

t

a) Gρ1,1
ρ

1
1

s

t

v

b) Gρ1,2
ρ+ 2

s

t
ρ+ 2

c) Gρ2,2

Figure 2.5.: Gadgets used to calculate the maximum rotation of pert(µ) using the skeleton
skel(µ) in a dynamic program, depending on the pole degrees

constraint used as the upper edge capacity u(e) := flex(e). We also have to give the face-
to-face-edge in the network corresponding to ref(µ) a negative cost of cost(ref(µ)) := −1
and all the other face-face-edges a zero cost. This will automatically pass as many units
of flow as possible through the gadget graph, either from left to right or from right to
left, depending on which results in a lower cost, and thus in a greater amount of flow
passed through the reference edge’s dual edge. This direction indicates whether or not the
skeleton’s embedding has to be flipped in order to achieve this rotation. The direction of
the flow through each gadget determines if a child node has to flip the embedding of its
pertinent graph in order to achieve the rotation we interpret into the flow. We make use of
this flow network in Chapter 5 when discussing the pseudo-code for the algorithm solving
FlexDraw.

12

3. An Algorithm Solving
OptimalFlexDraw for Series-Parallel
Graphs

In this chapter we introduce an algorithm solving the general problem OptimalFlex-
Draw for series-parallel graphs. Let us recall the problem definition.

Problem 5 (OptimalFlexDraw for series-parallel graphs). Given a 4-planar series-
parallel graph G = (V,E) and for each edge e ∈ E a monotone cost function coste : N0 → R
defining the cost for a given number of bends on that edge. Find an orthogonal drawing
minimizing

∑
e∈E coste(bends(e)).

In the following we define the cost of a combinatorial embedding E , the cost of an orthogonal
drawing of a 4-planar series-parallel graph G having its poles embedded on the external
face as well as the graph cost function of G. We need these definitions in the following
section, where we initially restrict the problem to such embeddings.

Definition 3.1. Given a 4-planar series-parallel graph G = (V,E), for each edge e ∈ E
a monotone cost function coste : N0 → R and an orthogonal drawing R of G. Let further
for any edge e ∈ E, bendsR(e) denote the number of bends of e in R. We define the cost
costR : Z→ R of the orthogonal representation R

costR(x) :=
∑
e∈E

coste(bendsR(e)).

We call R the optimal representation of G for rotation x if there is no other orthogonal
representation R′ with costR′(x) < costR(x).

Definition 3.2. Given a 4-planar series-parallel graph G = (V,E) with the poles s, t ∈ V ,
for each edge e ∈ E a monotone cost function coste : N0 → R and a combinatorial
embedding E of G having s and t embedded on the external face. Let Ωx

E denote the set of
orthogonal representations with the embedding E and a rotation of rotE(π(s, t)) = x ∈ Z.
We define the cost costE : Z→ R of the combinatorial embedding E

costE(x) := min
R∈Ωx

E

∑
e∈E

coste(bendsR(e)).

13

3. An Algorithm Solving OptimalFlexDraw for Series-Parallel Graphs

Definition 3.3. Given a 4-planar series-parallel graph G = (V,E) with the poles s, t ∈ V
and for each edge e ∈ E a monotone cost function coste : N0 → R. Let X denote the set
of all combinatorial embeddings of G having s and t embedded on the external face. We
define the graph cost function

costG(x) := min
E∈X

costE(x).

If costE(x) = costG(x), then E is called the optimal embedding of G for rotation x.

Note that minimizing costG(x) finds the rotation x = rot(π(s, t)) of the drawing with
minimal costs. The idea of the following algorithm is, for every block in G, to traverse
the SPQR-tree T of the block in a bottom-up manner and to compute the graph cost
function of a node µ in T with the cost functions of its child nodes in a dynamic program.
A drawing of G can be computed by generating and merging orthogonal representation of
all blocks in G afterwards.

Before we can start describing and proving this dynamic program, we have to transform
the edge cost functions in the problem instance into graph cost functions for every edge
e ∈ E. Let us denote the subgraph in G having only the edge e by Ge.

Corollary 3.4. Let G = (V,E) be any graph, e = {v, w} ∈ E any edge of G and coste its
edge cost function. Then, the following holds.

costGe(x) = coste(|x|).

Proof. The correctness is easy to see, as we can bend e in both directions leading to the
same costs and the bends on that edge will always equal the absolute value of its rotation.
Recall that the rotation is, in contrast to the bends of an edge, directed.

The algorithm in this chapter is based on an approach similar to FlexDraw as introduced
by Bläsius et al. [BKRW12], which we cover in the next chapter. Basically it is divided into
two parts: We first find the optimal representation for each block of G. Once found, we
merge those orthogonal representations in the second step allowing us to easily calculate
an optimal drawing using Tamassia’s approach as seen in Section 2.4.

3.1. Biconnected Series-Parallel Graphs

We now show how to find an optimal representation of a biconnected series-parallel graph
G. Given a biconnected series-parallel graph G = (V,E), the graph G − e is a series-
parallel graph for any edge e = {s, t} ∈ E, where s and t are the poles of G − e. We use
the SPQR-tree T of G in order to decompose G. Recall that we can root T at any Q-node
µe ∈ T . When choosing an edge e ∈ E and rooting T at the Q-node µe ∈ T , T represents
a series-parallel decomposition of G− e. Note that not only the graph G− e changes when
choosing a different edge e ∈ E to root T at, but also the parentship of the tree nodes.

Now we are ready to introduce the following modified version of the problem.

Problem 6 (OptimalFlexDraw for biconnected series-parallel graphs). Given a 4-
planar, biconnected series-parallel graph G = (V,E) and for each edge e = {v, w} ∈ E a
graph cost function costGe : Z → R defining the cost for a given rotation of the subgraph
Ge = ({v, w}, {{v, w}}). Find the drawing minimizing costG(x), where x is the rotation of
the orthogonal representation of this drawing.

Problems 5 and 6 only differ in the type of input graphs: where the original problem allows
any series-parallel graph, we further restricted them to being biconnected. Note that we
also replaced the term edge cost function with graph cost function. As seen above, this
transformation can easily be done. After solving this problem, we will later generalize it
back to series-parallel not necessarily being biconnected.

14

3.1. Biconnected Series-Parallel Graphs

3.1.1. Finding the Cost Function of a Subgraph

Once an SPQR-tree T has been constructed and rooted at an edge in the biconnected input
graph, the nodes in T describe serial and parallel compositions of smaller subgraphs which
can be single edges. We now write a dynamic program by expressing the cost function
of a tree node µ using the cost functions of its k children µ1, . . . , µk. We will also show
that such a step in the dynamic program leads to the correct cost function and can be
computed efficiently.

The following lemma is used to restrict the cost functions to rotations up to four times the
graph size, which we will need to prove the efficiency (both time and space complexity) of
the algorithm.

Lemma 3.5. For every instance of OptimalFlexDraw for series-parallel graphs with
n nodes there exists an optimal solution in which all series-parallel subgraphs have their
rotation π(s, t) in the range {−5n, . . . , 5n}, where s, t denote the poles of the subgraph.

Proof. Recall the flow network introduced by Tamassia to calculate an orthogonal repre-
sentation given a combinatorial embedding sets a supply of 4 units per node, resulting in
a total supply of 4n. The sum of the demands of all faces is also 4n. On every edge of the
flow network resulting from a dual edge in the original graph has cost 1, all other edges
have cost 0.

Consider a solution to OptimalFlexDraw for series-parallel graphs having more than
4n bends in total, which is the case if we find a series-parallel subgraph having a rotation
rot(π(s, t)) not being in the range {−5n, . . . , 5n}, since at most n angles of the rotation
can be bends at vertices and at least 4n angles are bends on edges. We will show that a
solution with such a number of bends can not be optimal.

If we construct a flow network according to Tamassia using the combinatorial embedding
of the solution, we can show that the solution can not be optimal. The total supply of such
a network is 4n and thus any valid flow with minimum costs does not exceed a total cost
of 4n, otherwise at least one unit would have been routed along a cycle, implying that the
flow was not minimal. Since only the dual edges have any cost and they represent bends
in the drawing, there are at most 4n bends per edge in any optimal drawing.

Using this lemma, we will restrict the cost functions to the range {−5n, . . . , 5n} in order
to compute them efficiently.

In the following, we show how to compute costpert(µ) of a P- or S-node µ in T with k child
nodes using their cost functions costpert(µ1), . . . , costpert(µk). Note that a P-node can only
have at most three children as seen in Section 2.2, so k ≤ 3 in this case.

The degree of v in the whole graph G is denoted by deg(v). Note that the term “pole
degrees” always refers to the degree of poles in a subgraph only, not in the whole graph.

Lemma 3.6. Let G be a 4-planar, biconnected series-parallel graph, T the SPQR-tree of
G and µ an S-node in T with two child nodes µ1, µ2. Let costpert(µi) be their cost functions.
Then, the following holds.

costpert(µ)(x) = min
y∈Z

(
costpert(µ1)(y) + min

α∈A
(costpert(µ2)(x− y − α))

)
,

where A = {deg(v)− 3, . . . , 1}. The cost function can be computed in O(n2) time where n
is the size of G.

15

3. An Algorithm Solving OptimalFlexDraw for Series-Parallel Graphs

v
G1

G2
+1

. . .
v

G1

G2

−1

(a)

v

G1

G2
+1

(b)

Figure 3.1.: When combining two graphs G1, G2 in a series with the cut vertex v, the
rotation π(s, t) via v can introduce different additional angles α at v. In (a)
deg(v) = 2 and α is between −1 and 1, in (b) deg(v) = 4 and thus α = 1.

Proof. For any rotation number x in pert(µ) we can choose an integer y defining the
rotation of the first graph which implicitly chooses a very limited number of rotations for
the second graph, since at the cut vertex v connecting these graphs we only have a limited
number of possibilities for the angle α along the path π(s, t) in the drawing of pert(µ).
The smallest possible value for α is deg(v) − 3, where deg(v) denotes the degree of the
cut vertex v in G. If deg(v) = 4, there is only one possibility how the rotation of the
first graph (y) affects the rotation of the right graph (x − y − 1), since when adding the
additional angle the path π(s, t) has at v, this sums up to x. For every degree of deg(v)
less than 4 the lower bound of α decreases by 1 accordingly. The maximum flexibility at
v is achieved when it has degree 2. Figure 3.1 illustrates two different situations.

For a particular value y we can iterate through all values of A in constant time, since
its cardinality is at most 3. For a particular value x ∈ {−5n, . . . , 5n} we can calculate
costpert(µ) in linear time since we only need to iterate over a linear number of values for
y, as by Lemma 3.5, an optimal drawing of G has at most 5n bends on each edge. This
results in time O(n2) to calculate all values of the cost function for x ∈ {−5n, . . . , 5n}.

Corollary 3.7. For an S-node µ with k > 2 children, we can iteratively combine two
children using Lemma 3.6 until we combined all children. We can interpret µ as a binary
tree of serial compositions. In any case, this results in k − 1 applications of Lemma 3.6.

Lemma 3.8. Let G be a 4-planar, biconnected series-parallel graph, T the SPQR-tree of G
and µ a P-node in T with two child nodes µ1, µ2. Let costpert(µi) be their cost functions and
dpert(µi) the sum of the pole degrees within the pertinent graphs of µi. Then, the following
holds.

costpert(µ)(x) = min{ costpert(µ1)(x) + min
α∈A2

(costpert(µ2)(x+ α)),

costpert(µ2)(x) + min
α∈A1

(costpert(µ1)(x+ α)) } ,

where Ai := {dpert(µi), . . . ,deg(s) + deg(t) − 4} for i ∈ {1, 2}. The cost function can be
computed in O(n) time where n is the size of G.

Proof. The pole degrees of the pertinent graphs dpert(µi) are at most 3 each, since otherwise
their degree in G would be greater than 4 (recall that there is also the reference edge, so the
sum of degrees in the subgraphs is at most 3). The skeleton of a P-node can be embedded
in two ways, with either eµ1 or eµ2 being on the left.

The rotation x of pert(µ) in any drawing equals the rotation of the pertinent graph of
the node being embedded on the left. For the right subgraph, a certain value α has to be

16

3.1. Biconnected Series-Parallel Graphs

added to the rotation. This value α ∈ Ai is at least the degree of the left graph Gpert(µi).
Its upper limit is in the range {2, . . . , 4}, depending on the degrees of s and t in the whole
graph G, which can be 3 or 4 each. If both are 4, the rotation of the parallel composition
has no additional “flexibility”; if both are 3, it has an additional “flexibility” of 1 at both
poles.

Thus, the set Ai describes all possible differences between the two rotations of the left and
the right subgraph. We select the difference resulting in a minimal cost value. Given a
certain rotation x of pert(µ) its cost is given by the minimum of the combined costs for
the two possible embeddings.

Since for a particular value x we take the minimum value of |A1|+|A2| ≤ 6 different values,
we can compute all values of the cost function for x ∈ {−5n, . . . , 5n} in linear time.

Now we can similarly combine three subgraphs as a parallel composition. Note that in
this case, deg(s) = deg(t) = 4 and dpert(µi) = 2 for all i ∈ {1, 2, 3}. Thus, fixing the
rotation x of the leftmost subgraph also fixes the rotation for the other, being x + 2 and
x + 4 respectively. Note that we now have to consider six embeddings as represented by
all permutations {i, j, k} = {1, 2, 3}.

Corollary 3.9. For a P-node µ with three children µ1, . . . , µ3, the following holds.

costpert(µ)(x) = min
{i,j,k}={1,2,3}

(costpert(µi)(x) + costpert(µj)(x+ 2) + costpert(µk)(x+ 4))

Similar to Lemma 3.8, calculating the cost function of a P-node having three children can
obviously be done in linear time, too. Let us sum things up.

Theorem 3.10. Let G be a 4-planar, biconnected series-parallel graph with n nodes, T
the SPQR-tree of G with root µe. The graph cost function costpert(µe) can be computed in
time O(n3).

Proof. As the number of nodes in an SPQR-tree is limited to the graph size n, there are
at most n steps in which we compute a new cost function using one of the lemmas from
above, where the time complexity O(n2) for S-nodes with two children clearly dominate
the runtime over P-nodes. S-nodes with k > 2 children are processed using k − 1 times
Lemma 3.6, resulting in time O(k · n2). However, since each vertex in G can only appear
in exactly one skeleton as a vertex not being one of its poles, we use Lemma 3.6 only once
per vertex in G, resulting in a worst-case runtime of O(n3).

3.1.2. Finding the Optimal Representation

So far, we can efficiently compute the cost function costG of a 4-planar, biconnected series-
parallel graph G = (V,E) with the poles s, t ∈ V . Recall that this function tells us the
minimum costs of an orthogonal drawing of G with the two poles embedded on the external
face having a certain rotation along the path from s to t. However, embedding them on
the external face is not a restriction in the original problem. Recall also that traversing
an SPQR-tree bottom up ends at the root node of T which is a Q-node as explained in
Section 2.2, but we did not specify how to compute the graph cost function in this case;
we can only compute it for the S- or P-node adjacent to the root Q-node.

The idea now is to iterate over all edges in G which we want to allow to be embedded on
the external face. We call those edges the candidate edges for being external. To solve
OptimalFlexDraw for biconnected series-parallel graphs, we want any edge to be a

17

3. An Algorithm Solving OptimalFlexDraw for Series-Parallel Graphs

candidate. We will see in the following section that we have to restrict the set of candidate
edges to solve OptimalFlexDraw for connected and general series-parallel graphs.

Let us denote the set of candidate edges allowed to be embedded on the external face as
E?. We iterate over all candidate edges e? = {s?, t?} ∈ E? and root the SPQR-tree T at
µe? . We can then compute the cost function costG−e? of the series-parallel graph G − e?
with the poles s? and s? efficiently by Theorem 3.10 using the following dynamic program.

We traverse the rooted SPQR-tree T of G in a bottom-up manner. For every Q-node
µe representing an edge e ∈ E, its cost function is calculated by Corollary 3.4. For every
S-node µ with k children µ1, . . . , µk, its cost function is calculated by Lemma 3.6 (if k = 2)
or Corollary 3.7 (if k ≥ 3). For every P-node µ with k children µ1, . . . , µk, its cost function
is calculated by Lemma 3.8 (if k = 2) or Corollary 3.9 (if k = 3). Since we have shown that
the cost function is only relevant on the range {−5n, . . . , 5n}, we limit all computations
on this range.

Finally, we add the edge e? = {s?, t?} to the cost function costG−e? as follows. Similar to
a P-node having two children, adding the edge e? to an orthogonal drawing of G− e? may
introduce a small flexibility for the number of bends on e? depending on the degrees of s?

and t? in G. For every rotation rot(π(s?, t?)) =: x ∈ {−5n, . . . , 5n}, we add to the graph
cost costG(x) the minimum cost introduced by adding the edge in an optimal way to the
drawing of G−e?. With d denoting the sum of the pole degrees in G, deg(s?)+deg(t?), the
allowed number of directed bends for e? is in the range Ae?(x) := {x− (10−d), . . . , x−2}.
This implies no flexibility on the number of bends of e? if both poles have degree 4. The
cost introduced by e? is then

ce?(x) = min
α∈Ae? (x)

(coste? |α|)

which results in an overall cost c for an optimal drawing of G of

c := min
e?∈E?

(
min

x∈{−5n,...,5n}
(costG−e?(x) + ce?(x))

)
.

Corollary 3.11. The cost c of an optimal drawing of OptimalFlexDraw for biconnected
series-parallel graphs can be found in time O(n4).

Proof. For a particular e? ∈ E?, the cost function costG−e? can be calculated in O(n3)
time by Theorem 3.10. We can add the cost of e? in constant time. Once calculated, we
find the rotation of π(s?, t?) in an optimal representation of G with e? on the external face
by finding the minimum of costG−e? in linear time. To find the optimal drawing of G with
any edge e? on the external face by iterating over E? and finding the minimum cost, which
introduces an additional linear factor, resulting in a total running time of O(n4)

So far, we have only found the cost of an optimal representation of G. However, we
still have to compute the representation itself. Recall that Tamassia [Tam87] introduces
an algorithm computing a complete drawing once we have an orthogonal representation.
Tamassia also introduces an algorithm computing an orthogonal representation minimizing
the number of bends from a fixed combinatorial embedding, however, in our case we can
not make use of this approach, since non-convex edge cost functions can not be expressed
in an analogous flow network.

Recall that when computing the graph cost function of the pertinent graph pert(µ) of a
node µ in T with the poles s and t for a particular rotation π(s, t), we find the embedding
and angles at the nodes of skel(µ) leading to the minimum cost induced by the child nodes

18

3.1. Biconnected Series-Parallel Graphs

of µ. In the same step we choose a particular rotation for each child node µi. For every
calculated value at x ∈ {−5n, . . . , 5n} of the cost function of pert(µ), we store this choices
at µ in the SPQR-tree. A final step finding the orthogonal representation is now easy to
add to the algorithm.

For this, we root T at µe? for which we found the minimum cost c. We again traverse
the SPQR-tree recursively, starting with the node µ′e? adjacent to the Q-node µe? . We
pass the optimal rotation during traversation as stored before, starting with the optimal
rotation x for G−e? as found when c was computed. Each node µ in T now decides based
on the stored information what the optimal embedding is for this rotation as well as the
rotation for the child nodes, which it passes down the tree.

For each Q-node, we use this rotation as the directed bends in the orthogonal represen-
tation. For each S-node with the poles s and t, we only have to determine the angle at
each cut vertices on the side of π(s, t); the angle on the other side can be calculated at the
very end since all angles of a node sum up to 4. For each P-node with k children and the
poles s and t, we apply the best combinatorial embedding of the skeleton to G as well as
denote the angles of s and t in the k − 1 faces between each subgraph in the orthogonal
representation as stored in the SPQR-tree. Finally, the angles in the face between the
edge e? chosen as the root of T and the rest of the graph, G− e?, are determined by the
value of α we have chosen when finding ce? as well as the number of directed bends on
that edge. Note that it does not matter for which of the two poles s? and t? we assign
how many right angles, as long as they lead to a valid representation.

This leads to the following final theorem for solving Problem 6.

Theorem 3.12. An optimal drawing to an instance of the problem OptimalFlexDraw
for biconnected series-parallel graphs can be computed in time O(n4) with a storage of
polynomial size.

Proof. The cost of an optimal drawing can be computed in time O(n4). We extended this
algorithm with storing information at every node in the SPQR-tree. This information has
a maximum size of O(n) for each rotation value and tree node, leading to a total storage
size of O(n3). Generating and storing this information does not introduce an additional
factor in the time complexity, as we needed them anyways to compute the minima.

We again traversed the SPQR-tree top-down and calculated a part of the optimal repre-
sentation based on the information stored at each tree-node by looking up this information
for a particular rotation of the pertinent graph represented by that node only.

However, if we force a particular vertex to be incident to the external face, we can get
better results which we use when combining blocks of a non-biconnected graph in the next
section.

Lemma 3.13. An optimal drawing to an instance of the problem OptimalFlexDraw
for biconnected series-parallel graphs can be computed in time O(n3) with a storage of
polynomial size, if a particular vertex is forced to be incident to the external face.

Proof. Similar to Theorem 3.12, we compute the orthogonal drawing by storing additional
info and accumulating them afterwards. However, when we force a particular node v to
be incident to the external face, we only have to root the SPQR-tree at all edges e? ∈ E?
incident to v. Since this set is limited to four edges, we use 3.10 only a constant number
of times and thus save the additional factor of n when compared to Theorem 3.12.

19

3. An Algorithm Solving OptimalFlexDraw for Series-Parallel Graphs

3.2. Connected Series-Parallel Graphs

In the previous section we focused on biconnected series-parallel graphs. Now we want
to generalize our algorithm to solve the original problem OptimalFlexDraw for general
series-parallel graphs.

A series-parallel graph G is obviously always connected. We compute its block-cutvertex-
tree B as introduced in Section 2.3 which decomposes G into blocks and cut vertices
connecting these. Note that similar to the SPQR-tree, B can be rooted at any node.

If B has only one block B = G, we can simply use the algorithm from the previous section
to compute an optimal drawing of B and are done. Otherwise, we have to merge orthogonal
representations, which we explain in the following. Recall that a cut vertex v cuts G into
two or more cut components C1, . . . , Ck represented by the k subtrees rooted at the blocks
B1, . . . , Bk incident to v in B.

Lemma 3.14. Let G be a 4-planar, series-parallel graph. Let v be a cut vertex of G cutting
G into k cut components C1, . . . , Ck of G and R1, . . . ,Rk orthogonal representations of
these cut components. We can merge R1, . . . ,Rk at their common cut vertex v in G into
one orthogonal representation if and only if the following holds.

(1) At most one of the representations R1, . . . ,Rk has v not embedded incident to the
external face.

(2) If k = 2 and v has degree 2 in both cut components, v has to have only one right angle
at an incident internal face in the orthogonal representations. (In this case, both have
three right angles in one face incident to v. In combination with (1), this face has to
be external for one of them.)

Proof. It’s easy to see that if (1) does not hold, the representations can not be merged, as
more than one of them require all others to be drawn inside one of their internal faces. As
illustrated in Figure 3.2, if (2) does not hold, the angles at the cut vertex within the two
representations forbid merging those into one representation.

For the other direction, we show that if both constraints hold, we can actually construct
an orthogonal drawing. Without loss of generality, let C1 be the cut component having
the cut vertex v on one of its internal faces in its orthogonal representation R1. We now
show how to draw all other cut components within faces incident to v in R1. For this, we
make a case distinction over the degree of v within R1.

(Case 1) v has degree 1 in R1. Let f0 be the face incident to v in R1. If k = 4, we can
draw all other cut components in any order at v within f0. If k = 2 we can
draw R2 inside of f0. If k = 3 and deg(v) is 4 within G, one of the other cut
components has to have degree 2 at v; without loss of generality let this be R2.
If v is tight within R2, we can draw both R2 and R3 inside of f0. If it is not, we
draw R2 inside of f0 and R3 inside of the face incident to v in R2 not being the
external face.

(Case 2) v has degree 2 in R1. If k = 2 and deg(v) is 4, there has to be a face f0 in R1 at
which v has three right angles since (2) holds. Thus, we can draw R2 inside of
f0, since v is tight within R2. If k = 2 and deg(v) is 3, we can draw R2 within
the face incident to v in R1 with the greater angle (within any of the two faces if
the angles are the same). If k = 3, v has degree 1 in both other cut components,
so they can easily be drawn without the faces incident to v in R1.

(Case 3) v has degree 3 in R1. As there is exactly one face f0 in R1 where v has two right
angles, we can draw R2 within f0.

20

3.2. Connected Series-Parallel Graphs

s

t

(a)

s1

t2

t1 = s2 ?

(b)

Figure 3.2.: Two blocks with orthogonal representations as in (a) do not allow merging
them at the cut vertex v = s2 = t1. The embedding in (b) requires the
orthogonal representations of both blocks to have three right angles at the cut
vertex at the external face.

If a cut vertex v is incident to exactly two blocks and has degree 2 within both, we have
to restrict the representations to those having an angle of 1 at v on its internal incident
face in order to not violate (2). We put this as an additional constraint when computing
the cost these two blocks.

At least all but one blocks incident to a cut vertex have to embed v on the external face
in the orthogonal representation. We have to decide which of them does not have to, since
this affects the overall costs of the drawing. The cost and the drawing of a block B having
v embedded on the external face can be done by setting E? in the algorithm from the
previous section to the edges incident to v within B. For the block in which we do not
force v to be embedded on the external face, we simply set E? to all edges in the block.

Choosing a root node in B defines a reference block B0 for each cut vertex v in B in which
we do not force v to be drawn on the external face. This results in different total costs for
the drawing of G when rooting B at different B-nodes. We want to calculate this cost for
every B-node and choose the block Bopt with the minimum cost.

Theorem 3.15. An optimal drawing to an instance of the problem OptimalFlexDraw
for series-parallel graphs can be computed in time O(n4) with a storage of polynomial size.

Proof. The block-cutvertex-tree B of a series-parallel graph G of size n has b ∈ O(n) blocks.
The costs and drawings of a block B can be computed in O(|B|4) time by Theorem 3.12.
The drawings for all blocks can be computed in

∑
B of GO(|B|4) = O(n4) time, since their

total size is in O(n).

For every block B of G, we calculate the cost and optimal drawing without forcing any
vertex on the external face in O(n4) and denote this cost at the nodes in B. In all drawings
of G, there is only one block B? for which we do not have to force any incident cut vertex
to be embedded on the external face, since we can draw all cut components inside of its
drawing. This can be done by rooting B at B? and forcing for every other block B in B
the parent cut vertex on the external face. We can calculate a drawing of all blocks in the
tree in time O(n3) by Lemma 3.13.

However, the overall cost of the drawing depends on the chosen tree root B?. Thus, we
still have to find the root node leading to the minimum costs. For this, we root at all
blocks once, calculate the costs and drawings for all other blocks in time O(n3) for each
root node and find the minimum in a total running-time of O(n4).

21

4. An Algorithm Solving FlexDraw

In this chapter we describe the algorithm introduced by Bläsius et al. [BRW12] solving
an instance of the decision problem FlexDraw with positive flexibility in O(n · Tflow(n))
worst-case time, where Tflow(n) denotes the time complexity to calculate a min-cost max-
flow instance of size n. As seen before, the most challenging part is to find a feasible
embedding of an input graph G out of the enormous number of possible embeddings. For
this, we will use the following dynamic program on an SPQR-tree. The “best” embedding
of a subgraph pert(µ) of G represented by any tree node µ is calculated by choosing the
best embeddings of the subgraphs represented by its child nodes µ1, . . . , µk in the SPQR-
tree. We’ll see that we also have to find which Q-node of the SPQR-tree has to be the
root node where the program starts. In the worst case we have to try to embed G at most
m = |E| times (the number of Q-nodes), since the root will always be embedded on the
external face and thus one single root node will not represent all embeddings of G.

First, we split the graph in its connected components and these into blocks connected
via cut vertices using a BC-tree as seen in Section 2.3. Thus we only have to consider
biconnected graphs and merge them afterwards, which puts some more constraints on the
embeddings of the blocks. Consider the BC-tree of a connected component. In order to
merge the blocks in the resulting drawing, all but the root block have to have the cut
vertex corresponding to the parent node in the BC-tree embedded on the outer face. If
there is exactly one block for which we can’t hold this constraint this block has to be the
root of the BC-tree. If all blocks can hold this constraint, we can choose an arbitrary
root. If more than one block can’t hold this constraint, it is not possible to merge the
drawings and thus the whole algorithm can be canceled since G does not admit a valid
representation.

In the following we only consider the sub-algorithm taking a biconnected graph and op-
tionally a vertex to be drawn incident to the outer face as its input. The algorithm either
generates a drawing satisfying the flexibility constraints or decides that such a drawing
does not exist.

For this, the idea is to construct and traverse the SPQR-tree of the input graph G in a
bottom-up manner and process only the skeleton graph of such a node in the SPQR-tree.
We write a dynamic program in order to constructively calculate some characteristics
of G by using characteristics of subgraphs of G and putting them together using the
skeletons of the SPQR-tree. This makes it possible to efficiently solve the major difficulty
of FlexDraw, namely the enormous number of possible embeddings that need to be

23

4. An Algorithm Solving FlexDraw

considered when trying to find an embedding with which G can be flex-drawn. Bläsius et
al. found out that we only need to look at all possible embeddings of a particular skeleton in
the SPQR tree and pass some piece of information to the parent node in order to virtually
test the flexibility constraints against all possible embeddings.

We now look at the algorithm from a practical point of view. In order to implement
FlexDraw, we first need to define what kind of information is required for each child
node in order to process a node in the SPQR tree. This includes

• A binary value feasible(µ) ∈ {0, 1} telling if µ admits a valid representation.

• The pole degrees deg(s) and deg(t) in the pertinent graph of µ.

• The maximum rotation maxrot(pert(µ)) of the pertinent graph of µ.

We now describe the main procedure of FlexDraw, namely processSkelEdge, which
takes a skeleton and any virtual edge within this skeleton, representing an S-, P- or R-
node µ in T . It calculates the characteristic properties from above of the pertinent graph
pert(µ).

When processing a node µ with k children we first call the procedure processSkelEdge

recursively on the skeleton edges representing its child nodes µ1, . . . , µk. If at least one of
the child nodes does not admit a valid representation, i.e. feasible = 0, µ also does not
and we return feasible = 0 immediately.

The pole degrees deg(s) and deg(t) in the pertinent graph are simply the sum of the pole
degrees of the subgraphs whose skeleton edge in skel(µ) is incident to s or t respectively.

In order to find the maximum rotation maxrot(pert(µ)) of the pertinent graph of µ we
have to make a case distinction based on the type of µ:

• µ is a Q-node:
maxrot(pert(µ)) = flex(original(µ)),

where original(µ) gives us the original edge e in G corresponding to the Q-node µ in
the SPQR-tree.

• µ is an R- or P-node:

maxrot(pert(µ)) = max
E∈emb(µ)

maxrotE(µ),

maxrotE(µ) = flow(networkE(µ)),

where flow(networkE(µ)) is the maximum possible flow through the gadget graph
based on the combinatorial embedding E as introduced in Section 2.4. We calculate
this for all possible embeddings E ∈ emb(µ) of the skeleton. Recall that an R-node
only allows two embeddings while a P-node with k children allows k! embeddings.
Since k is either two or three, it has at most six possible embeddings, so this step
requires a constantly limited number of max-flow instances to be calculated.

We embed the skeleton graph according to the combinatorial embedding resulting
in the highest maximum rotation value possible and return this as the maximum
rotation of the pertinent graph.

• µ is an S-node:

maxrot(pert(µ)) =
k∑
i=1

maxrot(µi) + k − 1

We simply sum up the maxrot values of the child nodes and add one rectangular
angle per cut vertex between the subgraphs. There are k − 1 cut vertices in the
pertinent graph of an S-node with k children.

24

5. Implementation of FlexDraw

In this section, we provide an implementation of the algorithm solving FlexDraw from
above. First, we will discuss the algorithm in a more technical way and provide some
pseudo-code. Within this work, we implemented FlexDraw in C++ using OGDF for
which we’ll see an overview, some more technical details and finally an evaluation at the
end of this section.

The pseudo-codes for the procedures referenced in this section are found in the appendix.

The algorithm can be divided into two steps. In the first step, we find an embedding
providing the maximum graph rotation. This step takes the graph and the flexibility
function as its input and applies the best combinatorial embedding on the input graph. If
no feasible embedding could be found, the algorithm terminates and returns “infeasible”.

In the second step, we minimize the bends in the drawing of the embedding found in the
first step. For this we calculate an orthogonal representation using a flow network similar
to Tamassia’s [Tam87], while still restricting the number of bends per edge as defined
by the given flexibility function. Based on this orthogonal representation the rest of the
orthogonal grid layout algorithm in [Tam87] computes the final drawing.

When implementing FlexDraw within this work, care was taken to follow the object-
oriented code style and naming convention of OGDF. Analogous to the two major steps as
described above, we implemented the following two main classes and a helper class which
can be found in the UML class diagram as seen in Figure 5.1:

• Class EmbedderFlexDraw (extending ogdf::EmbedderModule):
Finds and applies the optimal embedding as described in Chapter 4.

• Class FlexDrawLayout (extending ogdf::GridLayoutPlanRepModule):
Calls EmbedderFlexDraw, then calculates the final layout based on this embedding.

• Class SubGraphInfo:
Characterizes a pertinent graph pert(µ) of a node µ in the SPQR tree.

OGDF provides some data structures for graph algorithms we needed to implement Flex-
Draw. The class ogdf::StaticPlanarSPQRTree implements a linear-time algorithm cal-
culating the SPQR-tree of any biconnected graph. The data structure only uses S-, P-
and R-nodes to represent the tree, while in the skeletons of the nodes non-virtual edges
implicitly represent Q-nodes. Virtual edges always correspond to another tree node. In
this thesis, the pseudo-code expects such an implementation of the SPQR-tree.

25

5. Implementation of FlexDraw

ogdf

embedder1

GridLayoutPlanRepModule

+ call(AG : GraphAttributes&) : void
doCall(PG : PlanRep&, ext : adjEntry, layout : GridLayout&) : void

EmbedderModule

+ call(g : Graph&, ext : adjEntry&) : void

FlexDrawLayout

+ flexibilityFunction : EdgeArray<int>

doCall(PG : PlanRep&, ext : adjEntry, layout : GridLayout&) : void

EmbedderFlexDraw

+ flexibilityFunction : EdgeArray<int>
+ strategy : EmbedStrategy
+ forceExternal : node
+ feasible : bool

+ call(g : Graph&, ext : adjEntry&) : void

SubGraphInfo

+ maxRot : int
+ sDeg : int
+ tDeg : int

+ isFeasible() : bool
+ replaceWithGadget() : void

return sDeg > 0 && tDeg > 0;return sDeg > 0 && tDeg > 0;

Figure 5.1.: UML class diagram of the FlexDraw implementation

5.1. The Class SubGraphInfo

The major concept of the algorithm FlexDraw is the dynamic program which first pro-
cesses smaller subgraphs of G, collects pieces of information about them and combines
these to a description of a greater subgraph. These pieces of information are collected
and passed around using an instance of the class SubGraphInfo in order to realize the
bottom-up traversation in the SPQR-tree.

In order to process a graph µ in T having k child nodes, we have seen in the previous
chapter that we need to know the feasibility, the maximum rotation and pole degrees
of every subgraph represented by the child nodes µ1, . . . , µk. Exactly this information
is stored within this class. Whenever a node has been processed and the information
has been stored in an instance of this class, it is returned to the caller which can then
process the parent node by combining the collected information. If a node µ happens to
be infeasible, i.e. it does not admit a flex-drawing, we know that the whole graph G can
not be flex-drawn. In this case we want to terminate the whole algorithm. We stored this
boolean value implicitly by just setting the pole degrees both to zero, as the pole degrees
are at least one for valid subgraphs and we do not need the real pole degrees in the case
a subgraph is infeasible.

Note that we do not have to explicitly store the feasibility, since if a subgraph is infeasible,
the maximum rotation is undefined and we also do not need the pole degrees since the
algorithm terminates. We indicate the infeasibility by setting both pole degrees to 0.

5.2. The Class EmbedderFlexDraw

Given a 4-planar graph G = (V,E) and a positive flexibility function flex : E → N\{0},
the class finds and applies a combinatorial embedding with that G can be flex-drawn.
In this class, we implemented the major part of the algorithm introduced in the previous
chapter, namely the dynamic program with which we traverse the SPQR-tree in a bottom-
up manner in order to calculate an optimal embedding of a graph by first calculating the

26

5.2. The Class EmbedderFlexDraw

optimal embeddings of its subgraphs. It is called by the class FlexDrawLayout which uses
this embedding to generate a flex-drawing.

The class EmbedderFlexDraw inherits from the abstract class ogdf::EmbedderModule re-
quiring to implement the pure virtual function void call(Graph &g, adjEntry &ad-

jExternal). Where the abstract class in OGDF does not return anything (since it is
intended to always succeed), we want to return a boolean value whether or not the prob-
lem instance is feasible; this can be queried after calling call using the method bool

feasible() const.

Let E? denote the edges being candidates to be put on the outer face. We set E? = E
if we do not force any vertex to be embedded on the outer face and E? = {e ∈ E :
vext incident to e} if vext is forced to be on the outer face. As in the original paper
[BKRW12] we want to root the SPQR-tree T of G at every edge e ∈ E? in order to
find a feasible embedding with any of them on the external face.

While, by the problem definition, it is sufficient to find only one such edge (since then we
know that G admits a valid drawing and we can flex-draw it with this edge being on the
external face), we may obtain better results if we choose the edge with the maximum graph
rotation. For this, EmbedderFlexDraw is configurable to choose either the first candidate
found or the one providing the maximum graph rotation. This is done via the setter void
embedStrategy(EmbedStrategy strategy), passing either EmbedFirstFeasibleExter-

nalEdge or EmbedHighestGraphFlexibility.

The implementation of the class EmbedderFlexDraw itself is split into two parts: In the first
step we iterate over all candidate edges e ∈ E? and test if G admits a valid representation
with e on the outer face. After the best (or first, depending on the strategy) candidate
was found, the embedding implied by e is applied on G in a second step. If no candidate
satisfies the problem instance, the input graph remains unchanged. Algorithm 7.1 shows
the pseudo-code which puts these steps together.

Testing if e ∈ E? admits a flex-drawing: We root the SPQR-tree at the Q-node
µe. Recall that e now is represented by the reference edge ref(µ′e) in skel(µ′e) and that
ref(µ′e) = {s, t} where s, t are the poles of the graph skel(µ′e)− ref(µ′e).

We define the function processSkelEdge that calculates the SubGraphInfo of a given
edge e of a skeleton S := skel(µ) in the SPQR-tree T as in Algorithm 7.3. Note that
in SPQR-tree implementations with implicit Q-nodes (as the one in OGDF), µ might be
implicit; thus we provide a skeleton edge e rather than µ. This method either directly
returns a SubGraphInfo describing the Q-node (an edge in the original graph G) or calls a
method that processes the node µ and returns its result. We implement separate routines
to handle S-, P- and R-nodes in the Algorithms 7.5 to 7.7. Note that these methods
recursively call processSkelEdge on all but the reference edge in the skeleton of µ. If any
of the subgraphs happens to be infeasible, we also return “infeasible” immediately in order
to terminate the whole algorithm with no further processing.

In the algorithms processing tree nodes, the pole degrees deg(s) and deg(t) in the pertinent
graph can be calculated easily by summing up the corresponding pole degrees of the child
nodes whose representative skeleton edge is incident to the pole in the skeleton. Note that
in the SPQR-tree the skeleton edges of µ might be stored in arbitrary directions, regardless
of the node type. Thus, s in µ might be identified with s or t in µi (i = 1 . . . k). If µ is a
Q-node, it obviously has degree 1 at both s and t since it represents a single edge in G.

The maximum rotation of a pertinent graph pert(µ) is calculated depending on the type
of µ. As seen in the previous section, in the case of P- and R-nodes we use a flow network
for every possible embedding (two or six exist) and return the maximum flow we found.

27

5. Implementation of FlexDraw

The procedures to handle P- and R-nodes are almost the same. However, for R-nodes we
only have to construct one single flow network and testing the flow in both directions to
simulate both possible embeddings. For P-nodes we have to construct one or three flow
networks (if it has two or three child nodes respectively) and use the same technique as for
R-nodes to calculate the flow in both directions. We immediately change the embedding of
the skeleton graph such that its embedding allows this rotation. Since S-nodes only have
one possible embedding, we don’t have to change it in its procedure. We also don’t need
a flow network since the maximum rotation can directly be expressed with the maximum
rotations of its subgraphs.

In order to calculate the SubGraphInfo of G − e we call processSkelEdge on the root
node µ′e. We then calculate graphrote(G) = maxrot(G− e) + flex(e)− 2. The embedding
is feasible if and only if graphrot(G) ≥ 0.

Applying the embedding with e ∈ E? on the external face: In the previous step,
we only found out which edge e admits a valid flex-drawing. We have also embedded the
skeletons in a way that, with respect to µe being the root of T , they admit a maximum
rotation on the left path π(s, t). For this, we flipped the skeletons whenever the right path
admitted better results. Note that we have to apply this embedding again as, in general,
e has not been the last root edge at which we rooted T . Thus we again root T at µe and
re-run processSubGraph again.

Furthermore, it may be the case that in order to obtain the maximum rotation possible
for a node µ, the skeleton edge eµi for a child node µi has to be rotated in the other
direction. Recall that the value of maxrot(µi) stands for the maximum rotation on the
left path, where positive values mean that concave bends dominate on the external face.
Whenever the algorithm processing µ (the parent of µi) decides that it would result in a
better maximum rotation for itself if it bends the subgraph represented by the edge eµi to
the right instead to the left, we have to flip the entire pertinent graph represented by µi.

However, the SPQR-tree implementation provided by OGDF (as will probably most other
implementations) only allows us to flip the embedding of a skeleton graph skel(µ) in con-
stant time. In order to flip the embedding of the pertinent graph pert(µ) we are required
to flip the embeddings of all nodes in the subtree below µ, which results in a linear time
complexity handling only a single node in T .

We found a better way to do this, only requiring linear time for the whole tree T . For
this, we introduce a boolean value for every node µ in T which we call the flipSubGraph

mark. Its name has been derived from the fact that the procedure handling µ decides
whether or not the subgraphs of G represented by its child nodes µ1, . . . , µk have to be
flipped in order to obtain the maximum rotation for µ which it returns to its caller in the
SubGraphInfo instance. For all nodes µ in T we now want to flip the pertinent graph
pert(µ) if flipSubGraph[µ] = true. This can easily done by flipping the skeleton skel(µ) if
the number of marked nodes on the path up to the root (including µ) with is even. This
is because flipping a pertinent graph is equivalent to flipping all skeletons on the subtree
and flipping a skeleton twice is equivalent to not flipping it at all.

Now let’s see how this is done in the algorithm. In the first step as described above we do
not need the array, thus we pass an empty set ∅ in line 9 of Algorithm 7.1 to processVir-

tualNode. In this second step the array is initialized to “false” for every node µ in T . After
invoking processVirtualNode on the root node µe again in line 18 of Algorithm 7.1, the
subroutines have set the mark to “true” where the pertinent graphs have to be flipped.
Finally, we can apply the embeddings by calling the subroutine flipSkeletons in line 20
providing this array.

28

5.3. The Class FlexDrawLayout

5.3. The Class FlexDrawLayout

Given a 4-planar graph G = (V,E) and a positive flexibility function flex : E → N\{0},
this class finds a flex-drawing. For this, it first calls EmbedderFlexDraw to find and apply
a combinatorial embedding on G that admits such a drawing.

Since we now have a fixed combinatorial embedding, we can apply Tamassia’s classical
approach by calculating the orthogonal representation using a flow network, but restricting
the edge capacity to make sure that the resulting drawing has no more than flex(e) bends
for any edge e ∈ E, as explained in Section 2.4.

Finally, we draw the graph on a grid by using the compaction step of Tamassia’s grid
layout algorithm [Tam87] which has already been implemented in OGDF.

5.4. Using the Implementation

Using the implementation developed in this work in a C++ application is very easy. The
main class of the implementation is FlexDrawLayout. Given an instance of the class
GraphAttributes describing the input graph and an instance of EdgeArray<int> de-
scribing the flexibility function, FlexDraw is invoked with the method FlexDrawLay-

out::call. The drawing is written into the GraphAttributes instance given by reference.

The source code in Listing 5.1 is enough to implement a standalone CLI application taking
an input graph as the first argument and writing the results to the file that is given as
the second argument. It uses the GML file format in which the flexibility constraints are
encoded as edge labels (defaulting to one when missing).

1 #include <ogdf/basic/GraphAttributes.h>

2 #include "flexdrawlayout.h" // The FlexDrawLayout class

3 using namespace ogdf;

4

5 int main(int argc , char *argv []) {

6 if(argc != 3)

7 return 1;

8 Graph G;

9 GraphAttributes GA(G, GraphAttributes :: nodeGraphics |

10 GraphAttributes :: edgeGraphics |

11 GraphAttributes :: edgeLabel);

12 GA.readGML(G, argv [1]); // read input graph

13

14 EdgeArray <int > flex(G);

15 edge e;

16 forall_edges(e, G) {

17 String label = GA.labelEdge(e); // edge labels denote flex(e)

18 flex[e] = (label.length () > 0) ? atoi(label.cstr ()) : 1;

19 }

20 FlexDrawLayout flexdraw;

21 flexdraw.flexibilityFunction(flex); // set flexibility function

22 flexdraw.call(GA); // run FlexDraw

23

24 if(flexdraw.feasible ())

25 GA.writeGML(argv [2]); // write output graph

26 return 0;

27 }

Listing 5.1: Standalone application illustrating the usage of the FlexDrawLayout class

29

6. Experimental Evaluation of FlexDraw

In this chapter we will analyze some results and the efficiency of our implementation of
FlexDraw. We will discuss how the input parameters (the graph size and the flexibility
function) affect both the feasibility and the runtime. In Section 1.2 we have seen that all
graphs except the tetrahedron are 2-embeddable. This introduces a couple of questions:

1. Will most graphs be 1-embeddable?

2. If we set the flexibility of only a couple of edges to two instead of one, can most
graphs be flex-drawn? How many edges need a flexibility of two?

3. How fast is FlexDraw? Is the average runtime notably better than the theoretical
worst-case time? Can we save time using the strategy selecting the first edge admit-
ting a feasible drawing instead of testing all edges? Does the feasibility of the input
affect the runtime?

4. Will FlexDraw produce satisfying results in practice or is there a demand for better
algorithms like OptimalFlexDraw?

In order to evaluate these questions, we need a lot of graphs which we generated auto-
matically. We implemented a simple graph generator which we briefly describe now, since
the structure of the input graphs may be important for the results of the algorithm. Note
that we only generated biconnected graphs, as this is the most interesting input.

To generate graphs with a size of at most n nodes, our graph generator starts with a
triangulated planar graph G = (V,E) with |V | = n, randomly generated by OGDF using
the method ogdf::planarTriconnectedGraph1. Triangulated planar graphs are graphs
with a maximum number of edges (|E| = 3n − 6). While these graphs are obviously not
necessarily 4-planar, we successively remove edges until it is. This is achieved by iterating
over all nodes v ∈ V and removing incident edges randomly until deg(v) ≤ 4. Finally, we
choose the biconnected component G1 of G with the maximum number of nodes n1. This
results in a 4-planar graph G1 of size n1 ≤ n suitable for FlexDraw. The average node
degree for a generated graph is about 3.26.

1We used this method in version 2012.07 of OGDF. The official documentation can be found at
http://www.ogdf.net/doc-ogdf/namespaceogdf.html#a181c070c885d02d1611cd83efd529611

31

http://www.ogdf.net/doc-ogdf/namespaceogdf.html#a181c070c885d02d1611cd83efd529611

6. Experimental Evaluation of FlexDraw

6.1. Experiments

We have done the following experiments for which we used the graph generator from above
to create appropriate inputs:

(1) To measure the efficiency of our implementation of FlexDraw as well as test 1-
embeddability depending on the graph size n, we generated each 500 graphs for every
graph size 20 ≤ n ≤ 1000 in steps of 10 with flex(e) = 1 for every edge e.

(2) To measure the efficiency of our implementation of FlexDraw as well as test 2-
embeddability depending on the graph size n, we generated each 500 graphs for every
graph size 20 ≤ n ≤ 1000 in steps of 10 with flex(e) = 2 for every edge e. We expect
that every instance is feasible.

(3) We want to know how the amount of edges with a flexibility of 2 instead of 1 affects
the amount of feasible instances in average. For every probability 0 ≤ p ≤ 1 in steps of
0.05 we generated 1000 graphs of arbitrary sizes 400 ≤ n ≤ 1000 with flex(e) randomly
chosen from {1, 2} with the probabilities P (flex(e) = 1) = p − 1, P (flex(e) = 2) = p.
Note that for p = 0 and p = 1 we test for 1- and 2-embeddability respectively like
above. We expect an increasing rate of feasible instances for an increasing p.

The experiments in which we measure the runtime have been evaluated on a machine with
a Dual-Core AMD OpteronTM Processor 2218 which has 128 KiB L1 and 1 MiB L2 cache
per core and is clocked at 2600 MHz2. Our implementation of FlexDraw however only
uses one thread. The machine has 16 GiB RAM and runs OpenSUSE Linux with the
Linux kernel version 2.6.34.103. FlexDraw has been compiled and linked with g++ in
the version 4.5.0 using the optimization level -O3. We used OGDF in the version 2012.07.
Running times have been measured with the POSIX function getrusage which returns
the user CPU time used by the process in milliseconds granularity.

For the experiments, we implemented a simple standalone command line program. It takes
an input graph in the GML file format, runs the algorithm and writes the drawing as a GML
file. It also measures and prints the running time of the function FlexDrawLayout::call

as well as some bend statistics (total number of bends in the drawing and the number of
edges with the maximum allowed number of bends) if the instance was feasible.

To simplify debugging and verification of the results, some optional debug output can
be enabled, describing the internal steps finding the optimal embedding as well as some
information about the flow network to find the final bends on the edges. In addition to
FlexDraw we also implemented a user interface which we equipped with a simple graph
editor with very restricted functionalities and the option to run the FlexDraw standalone
application on the edited graph.

To complete the evaluation environment, we also implemented a script invoking Flex-
Draw on a set of generated graph files and summarizing the results (timings and bends
statistics) in a data file. Finally, the data files have been visualized using gnuplot.

2For details see the vendor’s website at http://products.amd.com/pages/OpteronCPUDetail.aspx?id=318
3The FlexDraw implementation does not make use of any platform-dependent functionality and should

run on every system OGDF is also running.

32

http://www.gnuplot.info/
http://products.amd.com/pages/OpteronCPUDetail.aspx?id=318

6.2. Results

6.2. Results

We now present the results of the experiments we have made. In Figure 6.1 on the next
page you see some diagrams which we generated from accumulated statistics.

In our first two experiments, we applied the FlexDraw algorithm on a set of generated
graphs of up to 1000 nodes and measured the running time the implementation needed
to both decide the feasibility as well as, if feasible, compute an orthogonal drawing for
it. Reading and parsing the graph file as well as writing the results are not included
in this running time as this is not needed when invoking a layout algorithm in real-world
applications like interactive graph editors, resulting in experiments near realistic scenarios.

In experiment (1), we measure the runtimes for instances having a flexibility of 1 on every
edge, which we also call flex-1-instances. Similarly, experiment (2) is about flex-2-instances
which we all expect to be feasible. The two first plots in Figure 6.1 show the results.

One can see, the running time of our implementation of FlexDraw in experiment (1)
is in the range up to a couple of seconds and behaves roughly proportional to n2 if the
instance is infeasible. Since only a few instances have been feasible, the timing statistics
for them is of no great significance. However, when we look at the small peaks for n = 430
and 460 we note an interesting fact about FlexDraw. Most feasible instances allow most
of the edges being embedded on the external face. These peaks most probably are caused
by instances for which this is not the case.

In the benchmark tests of experiment (2) we see a curve below quadratic complexity for the
average running time of FlexDraw for flex-2-instances. This difference when compared
to the previous experiment is easy to describe. For most feasible instances, not only one
but a lot of edges where we root the SPQR-tree T at result in a feasible drawing, saving
a factor of |T | ∈ O(n). Note that, as predicted by theory, all instances in our second
experiment have been feasible.

Experiment (3) evaluates the behavior of the feasibility rate when changing the average
number of edges having a flexibility of 2, while the other edges have a flexibility of 1. The
third plot in Figure 6.1 has the probability of any edge to have a flexibility of 2, that is
p := P (flex(e) = 2), on its axis to the right. We divided our tests in samples for p from 0
to 1 in steps of five percent. We plotted the number of feasible instances divided by the
number of all instances for each sample as a point and connected them with a line. One
can see a curve increasing slowly for small values of p, while increasing very fast around
p = 0.5. For p ≥ 0.8, almost all instances have been feasible. Again, all instances for
p = 1, where we test for 2-embeddability, have been feasible.

Interpretating the results of our third experiment leads to interesting conclusions. While we
know that every 4-planar graph is 2-embeddable, almost no graph has been 1-embeddable
in our experiment, where nodes have an average degree of 3.26. As expected, an increasing
number of edges with a flexibility of two leads to a higher rate of feasible instances. Among
the sample graphs in which we uniformly choose a flexibility of 1 or 2 randomly (p = 0.5),
about one third is still infeasible. When we want to draw a graph without having a
flexibility function and still want to minimize the number of bends in a certain way, one
idea would be to set the flexibility to 1 for every edge and to try to generate a drawing.
Then, we could successively set the flexibility to 2 for a couple of edges until the instance
becomes feasible.

To sum things up, the worst-case running time of FlexDraw of O(n5/2) in theory do not
promise very fast results at a first glance. However, since the algorithm has to assume an
unlikely worst-case scenario like a linear number of edges we have to root the SPQR-tree
at in order to find a feasible drawing, in the practice we achieve much better results. A big
disadvantage of FlexDraw is that we do not obtain any drawing for infeasible instances.

33

6. Experimental Evaluation of FlexDraw

0

2

4

6

8

10

12

14

16

0 100 200 300 400 500 600 700 800 900 1000

A
v
g.

ru
n
n

in
g

ti
m

e
in

se
co

n
d
s

Input graph size n

feasible instances
infeasible instances

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 100 200 300 400 500 600 700 800 900 1000

A
v
g.

ru
n
n

in
g

ti
m

e
in

se
co

n
d
s

Input graph size n

feasible instances

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1P
ro

b
ab

il
it

y
fo

r
a
n

in
st

an
ce

to
b

e
fe

a
si

b
le

Probability for any edge e having a flexibility of 2

Figure 6.1.: Plots showing the average running time of FlexDraw as well as the rate of
feasible instances with an increasing amount of edges having a flexibility of 2

34

7. Conclusion

In this work, we covered two algorithms for bend minimization in orthogonal drawings of
4-planar graphs.

We introduced an algorithm solving the optimization problem OptimalFlexDraw for
series-parallel graphs of size n in time O(n4) with the only restriction that the cost function
for each edge has to be monotone. A demand for solving the problem with non-monotone
cost functions will hardly arise. However, if we want to optimize bend costs in general
graphs, we need another algorithm. Bläsius et al. [BRW12] introduce an algorithm taking
convex cost functions for every edge individually, not allowing any costs for the first bend.
While the convexity of the cost functions is not a very problematic restriction, the other
forbids us to minimize the overall number of bends, which is proven to be NP-hard as such
an algorithm could decide the 0-embeddability.

The other algorithm we focused in this work, which solves the decision problem FlexDraw
in polynomial time, has been implemented and evaluated in practice. We demonstrated
briefly how such an implementation might work by providing some pseudo-code as well
as descriptions of some of the most important procedures. In our evaluation we answered
a couple questions about the efficiency of our implementation as well as the feasibility of
instances of FlexDraw. To sum things up, we demonstrated that, if we assign a flexibility
of two for every edge in an instance, we gain short running-times suitable for interactive
applications like graph editors. However, we do not solve the bend minimization problem
for arbitrary embeddings but only those allowing 2-embeddability.

We can imagine our implementation to be integrated in OGDF easily. However, in the
future an implementation of the optimization problem as introduced by Bläsius et al. would
promise even better results, as does an implementation of the algorithm for series-parallel
graphs.

We did not answer some questions which are interesting for future works. Can FlexDraw
with positive flexibility be modified such that we can force some of the edges to have no
bends while still being solvable in polynomial time? For which other graph classes than
series-parallel graphs is the 0-embeddability as well as bend minimization problem solvable
in polynomial time?

35

Bibliography

[BK98] Therese Biedl and Goos Kant. A Better Heuristic for Orthogonal Graph Draw-
ings. Comput. Geom., 9(3):159–180, 1998.

[BKRW12] Thomas Bläsius, Marcus Krug, Ignaz Rutter, and Dorothea Wagner. Orthogo-
nal graph drawing with flexibility constraints. Algorithmica, pages 1–27, 2012.

[BRW12] T. Bläsius, I. Rutter, and D. Wagner. Optimal Orthogonal Graph Drawing
with Convex Bend Costs. ArXiv e-prints, April 2012.

[DBT96] Giuseppe Di Battista and Roberto Tamassia. On-Line Maintenance of Tricon-
nected Components with SPQR-Trees. Algorithmica, 15:302–318, 1996.

[DLV98] G. Di Battista, G. Liotta, and F. Vargiu. Spirality and Optimal Orthogonal
Drawings. SIAM J. Comput., 27(6):1764–1811, 1998.

[GM01] Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-
trees. In Proceedings of the 8th International Symposium on Graph Drawing,
GD ’00, pages 77–90, London, UK, UK, 2001. Springer-Verlag.

[GT95] Ashim Garg and Roberto Tamassia. On the Computational Complexity of Up-
ward and Rectilinear Planarity Testing. In DIAMCS International Workshop,
volume 894 of Lecture Notes in Computer Science, pages 286–297. Springer,
January 1995.

[Pat99] Maurizio Patrignani. On the complexity of orthogonal compaction. Computa-
tional Geometry: Theory and Applications, 19:56–61, 1999.

[Tam87] Roberto Tamassia. On Embedding a Graph in the Grid with the Minimum
Number of Bends. SIAM Journal on Computing, 16(3):421–444, 1987.

37

Appendix

A. Algorithms

Algorithm 7.1: The main algorithm of FlexDraw: Find and apply a combina-
torial embedding of G, optionally with vext on the external face

input : (by ref.) G = (V,E), flex : V → N\{0}, (optional) vext ∈ V , strategy1

output: “feasible” if G admits a valid drawing, “infeasible” otherwise
1 if Optional parameter vext was given then
2 E? ← {e ∈ E : e incident to vext}
3 else
4 E? ← E

5 T = (VT , ET)← SPQR-tree of G
6 for e ∈ E? do
7 Root T at µe
8 µ′e ← (unique) node in T adjacent to µe
9 info ← processVirtualNode(G, T , µ′e, ∅)

10 if info is feasible then
11 graphRot[e]← info.maxRot + flex(e)− 2
12 if graphRot[e] ≥ 0 ∧ strategy is “first feasible external edge” then
13 break

14 else
15 graphRot[e]← −∞

16 Choose e ∈ E? with maximum graphRot[e]
17 Initialize flipSubGraph[µ]← false ∀µ ∈ T
18 processVirtualNode(G, T , µ′e, flipSubGraph)
19 if graphRot[e] ≥ 0 then
20 flipSkeletons(T , µ′e, flipSubGraph)
21 return “feasible”

22 else
23 return “infeasible”

1Either “first feasible external edge” or “highest graph rotation”

39

Appendix

Algorithm 7.2: Helper routine calculateDegrees

input : subGraphInfo : Set of SubGraphInfo, s, t
output: sDeg, tDeg ∈ {1, . . . , 4}

1 (sDeg, tDeg) ← (0, 0)
2 for i = 1 . . . size(subGraphInfo) do
3 if s = source node of subGraphInfo[i] then
4 sDeg← sDeg + subGraphInfo.sDeg

5 if s = target node of subGraphInfo[i] then
6 sDeg← sDeg + subGraphInfo.tDeg

7 if t = source node of subGraphInfo[i] then
8 tDeg← tDeg + subGraphInfo.sDeg

9 if t = target node of subGraphInfo[i] then
10 tDeg← tDeg + subGraphInfo.tDeg

11 return (sDeg, tDeg)

Algorithm 7.3: Routine processSkelEdge processing the edge e in a skeleton S

input : G = (V,E), T = (VT , ET), S, e ∈ S, (by ref.) flipSubGraphs : VT → {0, 1}
output: An instance of SubGraphInfo describing e ∈ S

1 if e is virtual then
2 µi ← the corresponding tree node in T of the skeleton edge e
3 return processVirtualNode(G, T , µi, flipSubGraphs)

4 else
5 e′ ← the original edge in E corresponding to e in S
6 f ← flex(e′)
7 return SubGraphInfo(feasible ← true, maxRot ← f , sDeg ← 1, tDeg ← 1)

Algorithm 7.4: Routine processVirtualNode processing an S-, P- or R-node in T
input : G = (V,E), T = (VT , ET), µ ∈ VT , (by ref.) flipSubGraphs : VT → {0, 1}
output: An instance of SubGraphInfo describing pert(µ)

1 if µ is an S-node then
2 return processSNode(G, T , µ, flipSubGraphs);

3 if µ is an P-node then
4 return processPNode(G, T , µ, flipSubGraphs);

5 if µ is an R-node then
6 return processRNode(G, T , µ, flipSubGraphs);

40

A. Algorithms

Algorithm 7.5: Routine processSNode processing the skeleton of an S-node in T
input : G = (V,E), T = (VT , ET), µ ∈ VT , (by ref.) flipSubGraphs : VT → {0, 1}
output: An instance of SubGraphInfo describing pert(µ)

1 info ← SubGraphInfo(feasible ← true, maxRot ← 0, sDeg ← 0, tDeg ← 0)
2 (s, t)← the poles of skel(µ) = the nodes of ref(µ)
3 k ← number of child nodes of µ
4 for i = 1 . . . k do
5 e← edge in skel(µ) corresponding to µi
6 subGraphInfo[i] ← processSkelEdge(G, T , skel(µ), e, flipSubGraphs)
7 if subGraphInfo[i] is infeasible then
8 return “infeasible”

9 info.maxRot ← k − 1 +
∑k

i=1 subGraphInfo[i].maxRot
10 info.sDeg, info.tDeg ← calculateDegrees(subGraphInfo, s, t)

Algorithm 7.6: Routine processPNode processing the skeleton of a P-node in T
input : G = (V,E), T = (VT , ET), µ ∈ VT , (by ref.) flipSubGraphs : VT → {0, 1}
output: An instance of SubGraphInfo describing pert(µ)

1 info ← SubGraphInfo(feasible ← true, maxRot ← 0, sDeg ← 0, tDeg ← 0)
2 (s, t)← the poles of skel(µ) = the nodes of ref(µ)
3 for e ∈ skel(µ), e 6= ref(µ) do
4 µi ← the corresponding SPQR-node of the skeleton edge e
5 subGraphInfo[i] ← processSkelEdge(G, T , skel(µ), e, flipSubGraphs)
6 if subGraphInfo[i] is infeasible then
7 return “infeasible”

8 info.sDeg, info.tDeg ← calculateDegrees(subGraphInfo, s, t)
9 for ε ∈ emb′(µ) do

10 Ggadget ← copy of skelε(µ)
11 for i = 1 . . . k do
12 egadget ← edge in Ggadget corresponding to µi
13 subGraphInfo[i].replaceWithGadget(Ggadget, flexgadget, egadget)

14 e′ ← edge in Ggadget corresponding to ref(µ)
15 (maxRot[ε], feasible[ε], flip[ε], flipChild[ε]) ← gadgetFlow(Ggadget, flexgadget,

e′)

16 ε0 ← embedding in emb′(µ) having the maximal maxRot[ε]
17 Apply the embedding ε0 on skel(µ)
18 if flip[ε0] then
19 Flip the embedding of skel(µ)

20 for e ∈ skel(µ), e 6= ref(µ) and e is virtual do
21 flipSubGraphs(e)← flipChild[ε0](e)

41

Appendix

Algorithm 7.7: Routine processRNode processing the skeleton of an R-node in T
input : G = (V,E), T = (VT , ET), µ ∈ VT , (by ref.) flipSubGraphs : VT → {0, 1}
output: An instance of SubGraphInfo describing pert(µ)

1 info ← SubGraphInfo(feasible ← true, maxRot ← 0, sDeg ← 0, tDeg ← 0)
2 (s, t)← the poles of skel(µ) = the nodes of ref(µ)
3 Ggadget ← copy of skel(µ)
4 for e = (se, te) ∈ skel(µ) do
5 µi ← the corresponding SPQR-node of the skeleton edge e
6 egadget ← the corresponding gadget edge in Ggadget of the skeleton edge e
7 if e = ref(µ) then
8 flexgadget(e)← 0
9 else

10 subGraphInfo[i] ← processSkelEdge(G, T , skel(µ), e, flipSubGraphs)
11 if subGraphInfo[e] is infeasible then
12 return “infeasible”

13 subGraphInfo[i].replaceWithGadget(Ggadget, flexgadget, egadget)

14 info.sDeg, info.tDeg ← calculateDegrees(subGraphInfo, s, t)
15 e′ ← edge in Ggadget corresponding to ref(µ)
16 (info.maxRot, info.feasible, flip, flipChild) ← gadgetFlow(Ggadget, flexgadget, e

′)
17 if flip then
18 Flip the skeleton embedding of µ in T
19 for e ∈ skel(µ), e 6= ref(µ) and e is virtual do
20 flipSubGraphs(e)← flipChild(e)

Algorithm 7.8: Routine flipSkeletons flipping the embedding of pert(µ)

input : T = (VT , ET), µ ∈ VT , flipSubgraphs : VT → {0, 1}, flipThisSubgraph ∈ {0, 1}
1 if flipThisSubgraph = 1 then
2 Flip the embedding of skel(µ) in T
3 for e : skel(µ), e 6= ref(µ) and e is virtual do
4 µi ← the corresponding SPQR-node of the skeleton edge e
5 flipChild ← flipSubgraphs[µi] xor flipThisSubgraph
6 flipSkeletons(T , µi, flipSubgraphs, flipChild)

42

Glossary

GML Graph Markup Language. A human-readable file format describing graphs (includ-
ing their layout, style information and more) used in OGDF as one of the exchange
formats. A lot of other programs can also handle this file format. Within this work,
GML was used to store the input graphs as well as their drawings. Not to be con-
fused with GraphML (sometimes also abbreviated “GML”), an XML based graph
description format.

OGDF Open Graph Drawing Framework. An open source C++ graph library mainly for
graph drawing, maintained by Carsten Gutwenger at the time of writing. Within
this work, OGDF was used to implement FlexDraw. The official website can be
found at http://www.ogdf.net.

43

http://www.ogdf.net

	Contents
	1 Introduction
	1.1 The Problem
	1.2 Related Work

	2 Preliminaries
	2.1 The Class of Series-Parallel Graphs
	2.2 SPQR-Trees
	2.3 Block-Cutvertex-Trees
	2.4 Orthogonal Representations and Rotations

	3 An Algorithm Solving OptimalFlexDraw for Series-Parallel Graphs
	3.1 Biconnected Series-Parallel Graphs
	3.1.1 Finding the Cost Function of a Subgraph
	3.1.2 Finding the Optimal Representation

	3.2 Connected Series-Parallel Graphs

	4 An Algorithm Solving FlexDraw
	5 Implementation of FlexDraw
	5.1 The Class SubGraphInfo
	5.2 The Class EmbedderFlexDraw
	5.3 The Class FlexDrawLayout
	5.4 Using the Implementation

	6 Experimental Evaluation of FlexDraw
	6.1 Experiments
	6.2 Results

	7 Conclusion
	Bibliography
	Appendix
	A Algorithms

	Glossary

