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Abstract

There are many algorithms for dividing a graph into parts, so-called clusters. An essen-
tial question is how dense these clusters are. This can be measured by the intra-cluster
expansion. The cut-clustering algorithm as presented by Flake et al. [FTT04] provides a
theoretical guarantee on the intra-cluster expansion, which for example greedy clustering
approaches can not give, as calculating the intra-cluster expansion of a cluster is NP-hard.
This guarantee depends on a parameter value. A sequence of parameter values yields a
clustering hierarchy.

In the �rst part of this work we will present two algorithms for �nding di�erent clusterings.
In particular the second approach, which we have developed, does guarantee that all
possible clusterings are found and that the intervals of the parameter values for which a
certain clustering is returned by the algorithm are exact. This is possible with not more
than twice as many executions of the original cut-clustering algorithm as there are di�erent
clusterings in the hierarchy.

In the second part of this work we examine the hierarchies that are de�ned by these
clusterings and also compare the cut clusterings to clusterings calculated by a greedy
algorithm based on modularity, a popular measure for the quality of clusterings. For
most of the graphs in our test set of 304 graphs, the guarantee that the cut-clustering
algorithm gives was better than a trivial lower bound of the intra-cluster expansion. We
show that there is a tendency that the clusterings of the cut-clustering algorithm have
a higher intra-cluster expansion and that these clusters are not, like the clusters of the
modularity algorithm, of almost equal size but do have very di�erent sizes. Some of the
cut clusterings do still have a modularity value that almost reaches the modularity value
of the modularity clusterings.

Deutsche Zusammenfassung

Der Cut-Cluster-Algorithmus ist ein von Flake et al. [FTT04] vorgestellter Algorithmus
zur Clusterung von gewichteten, ungerichteten Graphen, d.h. zur Aufteilung von Graphen
in knoteninduzierte Teilgraphen, die im Vergleich zu den Kanten zwischen den Clustern
m�oglichst dicht sind. Eine M�oglichkeit, diese Dichte zu messen, ist die sogenannte Intra-
Cluster Expansion, die de�niert ist durch das Minimum der Gewichte aller Schnitte in
dem jeweiligen Subgraphen geteilt durch die kleinere Schnittseite. Da es NP-schwer ist,
die Intra-Cluster Expansion eines Clusters zu berechnen, ist der Cut-Cluster-Algorithmus
besonders interessant: Er gibt durch einen Parameter-Wert eine untere Schranke f�ur die
Intra-Cluster Expansion der zu berechnenden Clusterung an. Die Clusterungen f�ur ver-
schiedene Parameterwerte sind ineinander geschachtelt und bilden deshalb eine Hierarchie.

In dieser Arbeit werden im ersten Teil zwei Algorithmen vorgestellt, die es erm�oglichen,
Intervalle von Parameterwerten zu ermitteln, f�ur die der Cut-Cluster-Algorithmus jeweils
eine andere Clusterung berechnet. Das erste vorgestellte Verfahren basiert auf bin�arer Su-
che, der zweite, in dieser Arbeit neu entwickelte Ansatz nutzt Erkenntnisse aus einem
parametrischen maximalen s-t-Fluss-Algorithmus und kann garantieren, dass alle m�ogli-
chen Clusterungen mit exakten Parameter-Intervallen gefunden werden. Hierf�ur m�ussen
lediglich maximal doppelt so viele Clusterungen berechnet werden, wie tats�achlich unter-
schiedliche Clusterungen existieren.

In einem zweiten Teil wird untersucht, wie gut die Garantie, die der Cut-Cluster-Algorithmus
liefert, in der Praxis verglichen mit einer trivialen unteren Schranke f�ur die Intra-Cluster
Expansion abschneidet. F�ur die untersuchten 304 Graphen wurde dabei festgestellt, dass
die Garantie in den meisten F�allen deutlich besser ist als die triviale untere Schranke.
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Ein weiteres, weit verbreitetes Ma� f�ur die G�ute einer Clusterung ist Modularity. In dieser
Arbeit wurde der Cut-Cluster-Algorithmus mit einem Algorithmus verglichen, der Modu-
larity lokal optimiert. Die Clusterungen des Modularity-Algorithmus hatten dabei stets
bessere Modularity-Werte als die des Cut-Cluster-Algorithmus, f�ur einige Graphen kamen
die Modularity-Werte des Cut-Cluster-Algorithmus allerdings nahe an die des Modularity-
Algorithmus heran, obwohl der Cut-Cluster-Algorithmus nicht versucht, Modularity zu op-
timieren. In 32 F�allen hat der Cut-Cluster-Algorithmus eine Clusterung berechnet, die eine
h�ohere Intra-Cluster Expansion hatte als die Clusterung des Modularity-Algorithmus. F�ur

�uber 90% der Clusterungen des Cut-Cluster-Algorithmus kann au�erdem eine h�ohere un-
tere Schranke garantiert werden als f�ur die entsprechenden Clusterungen des Modularity-
Algorithmus.

Beim Vergleich der Clusterungen der verschiedenen Algorithmen wurde au�erdem fest-
gestellt, dass die Clusterungen des Cut-Cluster-Algorithmus Cluster sehr unterschied-
licher Gr�o�e aufweisen, darunter auch viele einzelne Knoten, w�ahrend der Modularity-
Algorithmus eher gleich gro�e Cluster berechnet. Interessanterweise hat sich gezeigt, dass
durch die Vereinigung von Clustern des Cut-Cluster-Algorithmus eine Clusterung berech-
net werden kann, die eine Modularity-aufweist, die in vielen F�allen der des Modularity-
Algorithmus sehr nahe kommt und in wenigen F�allen diese sogar �ubertri�t. Dies k�onnte
bedeuten, dass Clusterungen des Cut-Cluster-Algorithmus sich gut als Basis f�ur andere
Cluster-Algorithmen eignen.
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1. Introduction

Dividing a graph into di�erent parts, so-called clusters, is a good way to understand the
structure of a graph. The intuition says that we want to have many edges inside these
clusters and few between them. A simple solution for this problem are the connected com-
ponents of a graph. However, this trivial decomposition does not provide any interesting
structural information. So we need to formulate the problem di�erently: In a connected
graph we want to �nd signi�cantly dense subgraphs. The density of such subgraphs is the
more signi�cant, the sparser they are linked between each other. In some graphs such a
structure is quite obvious, there are clusters you look at and think that they are good, for
other graphs there just exists no clustering you could call "good" from looking at it.

There are many algorithms for clustering graphs, some work on a local level and try to
greedily analyze the neighbourhood of a node, others work on a global level and try to
take into account the whole graph at once. The cut-clustering algorithm, on which we
will focus in this work, works on a global level and in contrast to many other clustering
algorithms it also provides a theoretical guarantee on the quality of the result.

Given an undirected graph the cut-clustering algorithm introduced by Flake et al. [FTT04]
uses minimum s-t-cuts in order to construct a clustering. The result of the algorithm
is in
uenced by a parameter � and the resulting clustering ful�lls a quality guarantee
depending on this parameter value. On the one hand this quality guarantee limits the
strength of the connections between the clusters, on the other hand it gives a minimum
of the intra-cluster expansion, which describes the degree of connectivity inside a cluster.
The latter is especially interesting as the intra-cluster expansion is NP-hard to compute
but a nice measure for the quality of a cluster, since it says that cutting o� a part of the
cluster is quite expensive in proportion to the size of this part.

This theoretical guarantee of the quality is an advantage of the cut-clustering algorithm
compared to other clustering algorithms. We will try to see how good this theoretical
guarantee is in practice.

Flake et al. further showed that a sequence of parameter-values gives a hierarchy of cluster-
ings. We will present two approaches for calculating a clustering hierarchy, a �rst approach
that is based on binary search but can not guarantee that all possible clusterings in the
hierarchy are found, and in contrast, a second approach that allows for the exact calcula-
tion of the whole hierarchy with exact boundaries of the intervals in the parameter range
which correspond to the di�erent levels. This second approach is also faster.
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2 1. Introduction

Regarding the whole hierarchy gives us the possibility to see the whole spectrum of clus-
terings the algorithm can calculate for a given graph.

The aim of this work is to analyze the behavior of the hierarchical cut-clustering algorithm
in practice. We have implemented the algorithm and tested it on di�erent instances. We
will describe our observations and try to explain at least a part of them also from the
theoretical side. In addition to that we have applied an algorithm to our data set that
tries to optimize modularity, a popular quality measure for clusterings and compared the
results of this algorithm to the results of the cut-clustering algorithm.

After the preliminaries in the following section we present the cut-clustering algorithm and
the di�erent approaches for calculating cluster hierarchies in Section 2. In Section 3 we
give an overview of the implementation we used for the experiments that are described in
Section 4. We end this work with a conclusion in Section 5.

1.1 Preliminaries

Unless denoted otherwise, a graph G = (V;E; !) is an undirected, simple graph with a
non-empty set of nodes V and a non-empty set of edges E and an edge-weight function
! : E ! R+0 . If not di�erently de�ned n := jV j and m := jEj.

1.1.1 Clusterings and Cuts

De�nition 1.1. A clustering C = fC1; C2; : : : ; Ckg of a graph G = (V;E) is a partition
of V into non-empty clusters C1; C2; : : : ; Ck with [C2CC = V .

We call a cluster trivial if it is either a single node (a singleton) or a connected compo-
nent of the graph. A clustering is trivial if it contains only singletons or only connected
components.

In our analysis we will consider edge weights not only on single edges but also on the
adjacencies of a node, inside clusters and with respect to cuts. In order to avoid long
and unreadable expressions we will therefore introduce certain shorter notations for these
terms.

First of all, we de�ne the neighbourhood of a node v 2 V as N(v) := fu 2 V j fu; vg 2 Eg.
Then the weighted degree of a node v 2 V is de�ned as

!(v) :=
X

u2N(v)

!(fu; vg)

For a cluster C 2 C let in(C) := ffu; vg 2 E ju; v 2 Cg denote the set of edges inside C.
We de�ne the weight of a cluster C 2 C as the weight of all intra-cluster edges:

!(C) :=
X

e2in(C)

!(e)

We de�ne the weight of a clustering C as the sum of the weights of all clusters inside the
clustering:

!(C) :=
X
C2C

!(C)

2



1.1. Preliminaries 3

Regarding the whole graph G as a single cluster i.e. all edges are considered as intra-cluster
edges, we de�ne the weight analogous to to the weight of a cluster:

!(G) :=
X
e2E

!(e)

De�nition 1.2. A cut in a vertex-induced subgraph V 0 � V with jV 0j � 2 is de�ned as
(S; V 0 n S) with ; 6= S ( V 0. The cut edges are the edges between S and V 0 n S:

E(S; V 0 n S) := �fu; vg 2 E ju 2 S; v 2 V 0 n S or v 2 S; u 2 V 0 n S	
A cut in the graph G is a cut with V 0 = V .

A cluster C induces the cut (C; V n C) in G.

The weight of a cut is de�ned as

!(S; V 0 n S) :=
X

e2E(S;V 0nS)

!(e)

1.1.2 Quality Measures and Other Indices

In order to analyze the characteristics of clusterings we will introduce quality measures of
clusterings and some further indices.

A widely used quality measure for clusterings that is close to human intuition of cluster
quality is modularity, introduced by Newman and Girvan [NG04]:

De�nition 1.3. Let C denote a clustering of an undirected graph G = (V;E; !). Then
using the de�nitions of the previous section the modularity of the clustering C is de�ned
as (see also [G�o10], Section 1.2.2):

mod !(C) := !(C)
!(G)

� 1

4 � !(G)2
X
C2C

 X
v2C

!(v)

!2

The �rst term in De�nition 1.3 is the fraction of edges covered by clusters, the so-called
coverage, the second term is the expected value of the coverage of the clustering, i.e. the
coverage of the same clusters with randomly distributed edges. This means modularity
measures how much the distribution of the edges di�ers from randomness and thus how
good the clustering matches the distribution of the edge weights. The value can be positive
or negative, the range of modularity is [�0:5; 1] (see also [G�o10], Lemma 2.2.1). The
maximum is reached for unconnected cliques, the minimum for a complete bipartite graph
clustered by the two sides.

Another possibility to measure the quality of a clustering is to look at the cuts inside
clusters and the cuts that separate a cluster from the rest of the graph. The fundamental
measure we will use for this purpose is expansion, which is the weight of the cut in relation
to the size of the cut sides:

De�nition 1.4. The expansion of a cut (S; V n S) in G is:

 (S) =
!(S; V n S)

minfjSj; jV n Sjg

3



4 1. Introduction

We de�ne the intra-cluster expansion of a cluster C 2 C as the minimum expansion of all
cuts in the subgraph induced by the nodes of the cluster:

intraExp(C) := min

�
!(S;C n S)

minfjSj; jC n Sjg
����S ( C; S 6= ;

�

As this de�nition does not involve singletons we de�ne the intra-cluster expansion of a
singleton as +1.

The intra-cluster expansion thus gives a guarantee on the minimum weight of a cut in a
cluster in proportion to the size of the parts of the cluster that are separated by the cut.
The intra-cluster expansion of a clustering C is the minimum intra-cluster expansion of all
clusters C 2 C: intraExp(C) := minfintraExp(C) jC 2 Cg.
Even for one cluster C the intra-cluster expansion is NP-hard to compute. However, it
is possible to calculate a trivial lower and upper bound. Calculating a cut of minimum
weight in C, which is possible in polynomial time, and dividing the cut weight by the half
of the cluster size jCj=2 rounded down yields a lower bound, while dividing by the size of
the smaller cut side yields an upper bound. As there is no cheaper cut than the minimum
cut and no minimum cut side is larger than the half of the cluster size, the lower bound
holds. As an upper bound the expansion of any existing cut in C can be used.

The inter-cluster expansion interExp(C) :=  (C) of a cluster C is the expansion of the
cut induced by C. The inter-cluster expansion of a clustering C is the maximum expansion
of all clusters C 2 C: interExp(C) := maxfinterExp(C) jC 2 Cg. Given a clustering the
inter-cluster expansion can be easily calculated in linear time.

A simpli�ed form of the inter-cluster expansion is the inter-cluster expansion* of a cluster
C which is de�ned as interExp*(C) := !(C; V n C)=jV n Cj. Like the inter-cluster expan-
sion, inter-cluster expansion* can also be de�ned for a clustering as the maximum of the
inter-cluster expansion* of all clusters. For a cluster C with jCj � jV j=2 it holds that
interExp(C) = interExp*(C).

A good clustering should have a high intra-cluster expansion and a low inter-cluster ex-
pansion in order to guarantee that the nodes inside the clusters are well connected while
the clusters are less connected. While the intra-cluster expansion is best for singletons
the inter-cluster expansion is best for connected components as clusters. This means that
inter- and intra-cluster expansion are con
icting measures and an optimal clustering should
provide a compromise between them. However directly optimizing these properties does
not work, also not optimizing them in a greedy algorithm, since intra-cluster expansion
can not be calculated e�ciently and the trivial lower bound is not precise enough. There
is no guarantee how good this lower bound is. In fact, it can become arbitrarily bad in
large clusters with very unbalanced minimum cuts.

While the modularity of a clustering is not in
uenced by scaling the edge weights, all
expansion values scale linearly with the edge weights. In this work we will often scale
edge weights such that the maximum edge weight is one which is consistent to unweighted
graphs where we assume an edge weight of one for each existing edge. It is still di�cult to
compare weighted and unweighted graphs as for weighted graphs not only the structure
of the graph but also the distribution of the edge weights decides on the quality of a
clustering. However, the scaling of the maximum edge weight to one gives at least a limit
of the maximum weight, and thus, a guarantee that the weight of a cut will never exceed
the number of edges in the cut. This is, the expansion of a cut in a weighted graph will
never be larger than the expansion of the same cut in the same graph without edge weights.

4



2. The Hierarchical Cut-Clustering

Algorithm

In this work we analyze the behavior of the cut-clustering algorithm as introduced by
Flake et al. [FTT04]. Given an undirected, weighted graph G = (V;E; !) and a parameter
� 2 R+0 it calculates a clustering C� of the graph G.

The algorithm is interesting because any clustering C that is calculated by the algorithm
holds a quality guarantee in terms of expansion. This guarantee is de�ned by the following
inequality for any C 2 C (see also [FTT04], Theorem 3.3):

interExp*(C) � � � intraExp(C) (2.1)

This means that � acts as an upper bound for the inter-cluster expansion* as well as a
lower bound for the intra-cluster expansion of the clustering. One question we will answer
in this work is how this lower bound for the intra-cluster expansion behaves compared to
the trivial lower intra-cluster expansion bound.

C5

C4

C3

C2

C1

Figure 2.1: Example for a simple
clustering hierarchy.

We will call clusterings that are calculated using the
cut-clustering algorithm cut clusterings. Cut clus-
terings regarding the same graph but di�erent pa-
rameter values are nested, i.e., can be sorted such
that for two consecutive clusterings it holds that
the clusters of the previous clustering result from
merging clusters of the latter one. Lower parameter
values yield larger clusters, higher parameter values
smaller clusters. Given an decreasing sequence of
parameter values �1 > �2 > � � � > �k we thus get a
hierarchy of clusterings C1; C2; : : : ; Ck. In Figure 2.1
we have depicted an example for such a hierarchy of
�ve clusterings of a graph consisting of eight nodes.

In the following we will use the term clustering hierarchy for the tree that is induced by
such a hierarchy of clusterings where the clusters correspond to nodes and a node of level
i + 1 is connected to a node of level i if the corresponding clusters are nested. If not
existing yet we add an arti�cial clustering level as a root of the hierarchy that consists of
exactly one cluster containing all nodes of the graph. Following this metaphor of a rooted
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6 2. The Hierarchical Cut-Clustering Algorithm

tree we call the levels of larger parameter values and smaller clusters lower levels and the
levels of smaller parameter values and larger clusters higher levels.

The algorithm for constructing a single cut clustering, i.e., a single hierarchy level is based
on minimum s-t-cuts, or more precisely, s-t community-cuts which are special maximum s-
t-
ows and can be calculated using the pre
ow-push maximum-
ow algorithm introduced
by Goldberg and Tarjan [GT88].

De�nition 2.1. The s-t community-cut is the cut of all minimum s-t-cuts for which the
cut-side that contains s is smallest. The community of a node s 2 V with respect to a
node t 2 V is the side of the s-t community-cut that contains s. We call the node s the
representative of its community with respect to t.

The pre
ow-push maximum-
ow algorithm has a running time of O(n3). It was optimized,
for example by Cheriyan and Mehlhorn who presented a variant of the algorithm with a
running time of O(n2

p
n) [CM99]. This is also the running time of the implementation we

have used in our experiments.

We will now present the cut-clustering algorithm for calculating a single cut clustering with
respect to a given parameter value and a graph G = (V;E; !). In the hierarchical cut-
clustering algorithm we will use this cut-clustering algorithm for calculating the individual
levels of the hierarchy.

2.1 The Algorithm Step-by-Step

The cut-clustering algorithm as introduced by Flake et al. is quite simple.

For constructing a cut clustering of a graph G, the input graph G is augmented to a graph
G� = (V�; E�; !�) by an arti�cial node t that is connected to each node in G with an edge
weighted by � (line 1, Algorithm 1).

Algorithm 1: Cut-Clustering Algorithm

Input: Graph G = (V;E; !), � 2 R+0
Output: Cut clustering C

1 G� = (V�; E�; !�) (V [ ftg; E [ (V � t); !�),

!� : E� ! R+0 ; e 7!
(
!(e); e 2 E
�; otherwise

;

2 Vs  V sorted by !(v) in decreasing order;
3 C; R fg;
4 foreach v 2 Vs do
5 if v =2 [C2CC then

6 U  community of v with respect to t in G�;
7 foreach r 2 R do

8 if r 2 U then

9 C  C n fC 2 C j r 2 Cg ;
10 R R n frg;
11 C  C [ fUg;
12 R R [ fvg;

The algorithm computes the clusters iteratively by considering each node as potential
representative of a community in G� with respect to t (line 6). This is, the clustering

6



2.2. Finding all Di�erent Hierarchy Levels 7

is built by calculating communities of the nodes in V . In the pseudocode the current
temporary clustering is denoted by C, the set of representatives is R. Flake et al. pointed
out (see Lemma 3.9, [FTT04]) that for two nodes u; v the communities with respect to
t are either disjoint or subset of each other. This means that whenever we calculate a
community U of a node v with respect to t we can simply check for all other, already
calculated representatives if they are inside the new community U (line 8). If this is the
case, we delete these representatives (line 10) and their clusters (line 9) from the temporary
clustering C.
Note that all nodes in a community U have communities inside this community, otherwise,
if there was a node w 2 U with a community W ) U the cut of W would be cheaper
than U and thus U would not be a community. We can thus skip any node that is already
contained in a community U (line 5).

Finally, the inclusion-maximal communities form the clusters.

Flake et al. state that sorting the nodes by the weighted node degree (line 2) reduces the
number of calculated communities in practice to almost the number of clusters.

2.2 Finding all Di�erent Hierarchy Levels

So far we have assumed a given sequence of parameter values for constructing a clustering
hierarchy. However, constructing such a sequence of parameter values is not trivial.

In this section whenever we consider a clustering hierarchy we assume that no two levels
are the same unless di�erently noted. If there exists no further parameter value for which
the cut-clustering algorithm calculates a clustering that is not contained in the hierarchy
yet, we call the hierarchy a complete clustering hierarchy.

In a complete clustering hierarchy we can select a suitable clustering out of all cut clus-
terings. In a complete hierarchy the parameter values for which the di�erent clusterings
are valid decompose R+0 into intervals, each assigned to one level respectively clustering.
This is, if we knew the interval boundaries of the parameter values, instead of any value,
for which a certain clustering is returned by the cut-clustering algorithm, we would know
a possibly much better upper bound for the inter-cluster expansion* and also a possibly
much better lower bound for the intra-cluster expansion.

Note that for � = 0 the cut-clustering algorithm returns all connectivity components as
clusters. On the other hand, if � is greater or equal than the largest edge weight in G, the
cut-clustering algorithm returns only singletons. This is, a complete hierarchy is bounded
by trivial clusterings. All non-trivial clusterings result from parameter values between
these extremes.

The �rst question we want to address is one that has already been answered by Flake et
al.: How many hierarchy levels exist at maximum? The answer is that there are at most n
di�erent levels. As in the lowest hierarchy level there are (at most) n clusters and in each
level in the hierarchy at least two clusters are merged, the number of clusters is reduced
by one in each level.

There also exists a family of graphs that has exactly n levels in the clustering hierarchy.
Stars with one node in the center and an arbitrary number of nodes around, connected to
the center by edges of di�erent weights. Then from the lower to the higher levels, in each
level one further node is merged into the cluster of the center. The node connected by
the cheapest edge is added last. As the leaves are not connected among each other they
remain singletons till they are merged.

7



8 2. The Hierarchical Cut-Clustering Algorithm

The second question we want to address is the question how we can �nd the interval
boundaries in the parameter range, i.e., all di�erent clusterings in the hierarchy. Flake et al.
suggest to use binary search for �nding all di�erent hierarchy levels and they also mention
that it is possible to use the parametric maximum-
ow algorithm introduced by Gallo
et al. [GGT89] for �nding all di�erent communities of a node when the parameter value
changes. Based on the idea of binary search we have �rst developed a simple algorithm for
calculating a clustering hierarchy. However with this algorithm we can not guarantee that
all di�erent hierarchy levels are found and do not get exact interval boundaries. We then
had a closer look at the parametric maximum 
ow algorithm. We used the ideas presented
there in order to construct a much better algorithm that is faster than binary search, both
in theory and practice, and guarantees that the calculated hierarchy is complete and the
boundaries are exact. Not that we do not use the parametric maximum-
ow algorithm
itself.

We will �rst present the approach based on binary search and then our new algorithm.
Both approaches start from an unweighted, undirected graph G = (V;E; !). The result
is a list that stores the clusterings together with the corresponding lower boundary of the
parameter interval as calculated by the respective approach.

2.2.1 Binary Search

In order to apply binary search we need to convert the continuous range of parameter
values into discrete values. This is also the major disadvantage of this approach as this
means we possibly miss certain parameter values that are fractions of these discrete values.

Algorithm 2: binSearchRecursion

Input: Graph G, int �u, Clustering Cu, int �l, Clustering Cl, map hierarchy
1 while �u < �l � 1 do
2 �m  (�u + �l)=2;
3 Cm  Cut-Clustering(G, �m);
4 if jCuj == jCmj then
5 �u  �m;
6 else if jCmj == jClj then
7 �l  �m;
8 else

9 binSearchRecursion(G, �u, Cu, �m, Cm, hierarchy);
10 Cu  Cm;
11 �u  �m;

12 hierarchy[�l]  Cl;

The main component of this approach is a recursive function named binSearchRecursion

(see Algorithm 2). This function takes the graph G and a pair of an upper and lower
clustering (Cu and Cl) with the respective parameter values �u and �l as input parameters.
For storing the clusterings, an initially empty map from parameter values to clusterings is
passed to the function, too.

The binSearchRecursion function uses a binary search in a while loop in order to �nd
the lower boundary of each interval with respect to the discretization. The binary search
calculates the parameter value �m between �u and �l. If the cut clustering Cm for �m
is equal to Cl or Cu, the respective parameter value �l or �u is set to �m and the loop
continues the binary search.

If Cm is di�erent from Cl and Cu, then the previous interval is split. For the new clustering
Cm a new call to the function is made with Cm as lower clustering and the old Cu as upper

8



2.2. Finding all Di�erent Hierarchy Levels 9

clustering. Furthermore, the while loop continues the search for the lower boundary for
the interval of Cl, now using Cm as upper clustering and the parameter value �m as �u.
Note that the lower boundary is the boundary to the next higher level.

Initially, Algorithm 2 is called with the lower and upper trivial clustering and the extremes
of the parameter values as described before.

As in each iteration of the while loop the interval is cut in halves and in each iteration
one clustering is calculated, the number of clusterings calculated in one recursive call is
log2(�l � �u). Each new clustering in the hierarchy causes only one recursive call. Let
a denote the number of discrete steps in the parameter range, r the running time of the
cut-clustering algorithm and h the number of levels in the resulting clustering hierarchy,
which is at most n. Then the running time of the binary-search algorithm is O(h�log(a)�r).
As an optimization of this algorithm we have also added contractions as already suggested
by Flake et al. Instead of calculating a clustering based on the original graph we contract
the clusters of the next lower level we already know and use the resulting graph. This
is, we contract the clustering Cl at the beginning of each recursive call and calculate all
clusterings in that call based on this contraction.

Due to the nesting property of the clusters on di�erent hierarchy levels, using contractions
does not change the resulting clustering hierarchy.

2.2.2 Intersection Points and Clustering Levels

A fast parametric maximum 
ow algorithm including an algorithm for �nding all com-
munities of a node was published by Gallo et al. [GGT89]. The way the communities
can be found can be directly applied to the hierarchical cut-clustering algorithm. Flake
et al. [FTT04] already proposed the use of the parametric maximum 
ow algorithm for
calculating clusterings but without giving a concrete algorithm. In this work we apply the
ideas of Gallo et al. in order to �nd all levels in the clustering hierarchy. This leads to
an algorithm that is able to calculate a complete clustering hierarchy with at most twice
as many clustering calculations as there are levels in the hierarchy. Let h be again the
number of levels in the clustering hierarchy and r the running time of the cut-clustering
algorithm. Then the running time of the hierarchical clustering algorithm using our new
approach is O(h � r).
In order to calculate the interval boundaries of the clustering hierarchy we use the following
cut-weight function:

De�nition 2.2. Let G = (V;E; !) be a weighted, undirected graph and S � V . Then the
cut-weight function for the cut of S in G� for a variable � is de�ned as

!s : R
+
0 ! [!(S; V n S);1)

� 7! !(S; V n S) + � � jSj

Obviously it is !(S; V� n S) = !S(�).

The slope of the cut-weight function is jSj, i.e., if S denotes a cluster this corresponds to
the size of the cluster. This is, the slope of the cut-weight function for a cluster Cu is
higher than for a cluster Cl ( Cu. The maximum slope is n, the minimum slope is 1.

If we consider two clusters Cl ( Cu for two parameter values �l > �u, then the slope
of the cut-weight functions of these two clusters is di�erent, this is, the two straight

9



10 2. The Hierarchical Cut-Clustering Algorithm

lines induced by the linear cut-weight functions have an intersection point at a parameter
value �m for which !Cl(�m) = !Cu(�m) holds. As we show in Lemma 2.3 it holds that
�l � �m > �u. The boundaries of the intervals of the parameter values for each level in
the hierarchy are such intersection points, however, it is possible that for each level we
need to consider a di�erent pair of clusters for intersection. Finding these pairs of clusters
is the main challenge of the algorithm. We will present the algorithm �rst and then prove
its correctness.

Algorithm 3: intersectionPointRecursion

Input: Graph G, �u, Clustering Cu, �l, Clustering Cl, map hierarchy

1 M  
n
max

n
!(Cl;V nCl)�!(Cu;V nCu)

jCuj�jClj

��� Cl 2 Cl; Cl ( Cu

o ��� Cu 2 Cu
o
n f�lg;

2 if M 6= ; then
3 �m  min(M);
4 Cm  Cut-Clustering(G, �m);
5 if jCmj == jClj then
6 hierarchy[�m]  Cl;
7 else

8 intersectionPointRecursion(G, �u, Cu, �m, Cm, hierarchy);
9 intersectionPointRecursion(G, �m, Cm, �l, Cl, hierarchy);
10 else

11 hierarchy[�l]  Cl;

The structure of the algorithm is similar to the binary search algorithm. There is a
recursive function named intersectionPointRecursion (see Algorithm 3) that takes the
same parameters as the binary search algorithm and the initial call of it is done with the
same trivial clusterings and parameter values.

At the beginning, the function calculates the set M that contains for each parent cluster
Cu 2 Cu the maximum of the intersection points of its cut weight function and the cut
weight function of its children in the current intermediate hierarchy. As we are only
interested in parameter values that are smaller than �l we exclude �l from M .

It is possible that M is empty, in this case �l is already the lowest parameter value for
which Cl is returned by the cut-clustering algorithm and we can add Cl to the result with
�l as parameter value.

Otherwise, we assign the minimum of M to �m and calculate the corresponding clustering
Cm. If Cm and Cl are equal, we know by Theorem 2.5 that �m is the lower boundary
for the parameter interval of Cm and we can add Cm to the resulting hierarchy with �m
as parameter value. As there is no parameter value lower than �m in M and for all
parameter values higher than �m the clustering Cl is returned, we are �nished with the
interval [�u; �l].

In the case that Cm is not equal to Cl we split the interval at �m and call the function
again for both halves.

We will now prove the claims we made in the description of this algorithm and show
that this algorithm returns a complete clustering hierarchy with exact boundaries. In
Section 3 we will show how this algorithm can be implemented such that these guarantees
(completeness, exact boundaries) can be kept in practice.

Lemma 2.3. Let Ci and Cj denote two di�erent clusterings in a clustering hierarchy
C1; : : : ; Ck, 1 � i < j � k and �i, �j the corresponding parameter values that induce Ci
and Cj respectively (i.e. �i > �j).

10



2.2. Finding all Di�erent Hierarchy Levels 11

Let C1; : : : ; Cl 2 Ci be the children of a cluster C 0 2 Cj with C1 [ � � � [ Cl = C 0 and l > 1.
Let �0 := maxy=1;:::;lf� j!Cy(�) = !C0(�)g denote the maximum intersection point and
Cmax 2 Ci the corresponding child.

Then it holds �j < �0 � �i.

α

ωC(α)

αj

α′

αi

ωCmax
(α)ωC′(α)

(a) First assumption

ωC(α)

αj

α′

αi

ωCmax
(α)ωC′(α)

α

(b) Second assumption

Figure 2.2: Illustration of the assumptions in Lemma 2.3.

Proof. Assume �0 is smaller or equal to �j as shown in Figure 2.2(a). This means that in
G�j the cluster Cmax induces a cut at most as expensive as the cut induced by C 0. However,
Cmax has already the maximum point of intersection with the cut-weight function of C 0.
This means that the cluster Cr 2 fC1; : : : ; Clg that contains the representative of C 0 with
respect to �j has a point of intersection of at most �0 and thus for �j its cut is also
cheaper or equal to the cut of C 0. This is a contradiction to C 0 being a community of its
representative as Cr in G�j has a cheaper or equal cut weight compared to C 0 and Cr ( C 0.

Now let us assume that �0 is larger than �i as shown in Figure 2.2(b). This means that in
G�i the cut weight of C

0 is cheaper than of Cmax as the slope of the cut-weight function
of C 0 is higher than the slope of the cut-weight function of Cmax. This is a contradiction
to Cmax being a community of its representative in G�i .

The following lemma is only needed in the proof of Theorem 2.5.

Lemma 2.4. Consider the same situation as in Lemma 2.3. If �0 does not induce a cluster
Ĉ such that Cmax ( Ĉ ( C 0 then the representative of Cmax in G�i is also a representative
for C 0 in G�j .

Proof. Let r be the representative of Cmax in G�i . We need to show that the community
of r in G�j is C 0. Recall that communities of nodes in a community are subsets of this
community. This is, the community S of r in G�j is a subset of C 0, i.e. Cmax � S � C 0.

We can exclude that Cmax = S as the cut of C 0 in G�j is cheaper than the one of Cmax

and the cut of S must be cheaper or equal to the cut of C 0 as otherwise S would not be a
minimum r-t-cut for �j . Further !S has a smaller or equal slope compared to !C0 and it
holds !S(�

0) � !C0(�0) = !Cmax(�
0). If !S(�

0) < !Cmax(�
0) = !C0(�0) was true as shown

in Figure 2.3, neither Cmax nor C 0 would be a valid cluster at �0. However our initial
situation is that either C 0 or Cmax is a valid cluster for �0, as otherwise Ĉ = S would exist.
This means that !S(�

0) = !C0(�0). As S 6= Cmax and for �0 !S has a smaller or equal

11



12 2. The Hierarchical Cut-Clustering Algorithm

slope compared to C 0, this is only possible if the slope of !S equals the one of !C0 and
!C0(�j) = !S(�j) which implies that S = C 0. This means that C 0 is the community of r
with respect to t and thus r is a representative of C 0 as we have claimed.

α

ωC(α)

αj

α′

αi

ωCmax
(α)

ωC′(α) ωS(α)

α̂

Figure 2.3: The additional community S in Lemma 2.4 and Theorem 2.5.

Theorem 2.5. Assume �0 as in Lemma 2.4. All clusterings for � 2 [�0; �i] contain Cmax

as cluster and all clusterings for � 2 [�j ; �
0) contain C 0 as cluster.

Proof. First consider the clustering for �0. According to the supposed situation it either
contains C 0 or Cmax. However, if C

0 was a valid cluster for �0 it would induce a cheaper
cut than the cluster in Ci that contains the representative of C 0 for �0. This is not possible
as the cluster C 0 has the same cut weight as the cluster in Ci with the maximum cut weight
for �0 and thus C 0 can not be a valid cluster. This means that Cmax is contained in the
clustering for �0 and thus in all clusterings for � 2 [�0; �i].

Now we need to show that C 0 is a valid clustering for � 2 [�j ; �
0). We already know that

it is a valid clustering for �j . Now take an arbitrary �̂ 2 [�j ; �
0). Let Ĉ be the cluster the

algorithm returns for �̂ with Cmax � Ĉ which is possible because of the nesting property
of communities for di�erent parameter values. Now we have the situation Cmax � Ĉ � C 0.
Note that Ĉ = Cmax is not possible as for all parameter values smaller than �0 C 0 has a
cheaper cut than Cmax and thus Cmax = Ĉ can not induce a minimum cut.

We know from Lemma 2.4 that the representative r of Cmax for �j is also a representative
of C 0 for �i. As r is also in Ĉ it has a community S in G�̂ that is subset of Ĉ � C 0. This
community S is also larger or equal compared to Cmax because of the nesting property of
communities for di�erent parameter values.

For �̂, the cluster Ĉ has a cut weight that is lower or equal to the cut induced by C 0. The
community S has also a cut weight that is smaller or equal to the cut weight of C 0 for �̂
as shown in Figure 2.3.

If this community S was smaller than C 0 or had a cut weight smaller than the weight of
the cut induced by C 0 at �̂, it would have a smaller cut weight than C 0 and Cmax at �0

and thus Cmax would not be a valid cluster at �0 which is a contradiction to what we have
proved before. This means that S = Ĉ = C 0.

This shows the correctness of the algorithm: Whenever we look at the maximum inter-
section point of a parent clustering C 0 and its children as in Lemma 2.3, we either �nd

12



2.2. Finding all Di�erent Hierarchy Levels 13

a new cluster between C 0 and Cmax, or we �nd the lower boundary of the interval of pa-
rameter values for which Cmax is returned according to Theorem 2.5. This shows that our
algorithm returns a complete clustering hierarchy.

This also shows the running time we have claimed: For each parameter value we either
calculate a new di�erent clustering or we �nd a new a lower boundary of a level. This
means that for each level we need to calculate at most two cut clusterings.

Contractions can be added to this approach in the same way as we have used them in
the approach based on binary search by simply contracting the lower clustering at the
beginning of each recursive call.

13





3. Implementation

The implementation of the hierarchical cut-clustering algorithms and analysis tools is based
on LEMON [LEMb] version 1.2.1. LEMON is short for Library for E�cient Modeling and
Optimization in Networks, a C++ template library for optimization tasks with a focus on
graphs and networks. It provides an e�cient implementation of a pre
ow-push maximum

ow algorithm, its worst case time complexity is O(n2

p
m)[LEMa]. We have used this

maximum 
ow algorithm as the basis of the cut-clustering algorithm. The library also
provides graph data structures like maps that allow O(1) access to values associated with
nodes or edges.

Based on the LEMON library we have created a set of data structures to represent and
analyse the various aspects of clusterings. This includes a clustering class that provides
functions for calculating various indices and other properties describing the clustering.

The representation of an individual clustering uses both a linked list for iterating over the
nodes of a cluster as well as a union �nd data structure for �nding the representative of a
cluster.

Figure 3.1 shows an example of a merge operation in the data structure for two clusters.
The data structure is shown �rst before the merge operation (Figure 3.1(a)) and then
after the merge operation (Figure 3.1(b)). The items that are shown in the upper part of
the �gures are not the actual node objects, but rather simple container objects that are
stored in a node map. Before the merge operation, there are two clusters containing nodes
n1; : : : ; n4 and n5; : : : ; n8 respectively. The solid lines show the linked list structure we use
to provide an iterator class for the nodes inside a cluster. The nodes n1 and n5 are the
representatives of the two clusters, they are referenced using a union �nd data structure
that is denoted by the dashed lines. The representatives point to themselves in the union
�nd data structure so they can be easily recognized. The representatives are additionally
stored in a linked list that is indicated in the box below the clustering. The representatives
in the cluster structure contain additional pointers to the items in the linked list in order
to be able to quickly delete them.

For merging these two clusters, the linked lists are connected which is indicated by the
solid green arrows in Figure 3.1(b) and in the union �nd data structure the pointer of
the representative of the one cluster is changed to point to the representative of the other
cluster. Then the representative is deleted from the linked list using the pointer to the
item in the linked list. This means that merge operations as used in the cut-clustering
algorithm can be done in O(1). Adding nodes to a cluster or creating a new cluster can be
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16 3. Implementation

n1 n2 n3 n4 n5 n6 n7 n8

n1 n5

(a) Before the merge operation.

n1 n2 n3 n4 n5 n6 n7 n8

n1

(b) After the merge operation.

Figure 3.1: Representation of a clustering.

done in O(1) as well. The complexity of the check if two nodes are in the same cluster is
also very fast but depends on the union �nd data structure, our implementation uses only
a very simple path compression. Deleting clusters or nodes from a cluster C is in O(jCj)
as the union �nd data structure needs to be updated for all nodes in the deleted cluster.

The clustering hierarchy is stored in a simple map using the parameter value as key and
the clustering as value. For generating a hierarchy tree we have also implemented a class
that generates a (LEMON) graph of the hierarchy. Each cluster is represented by a pair
of its representative and the parameter value associated to the level of the cluster.

For the contractions we simply construct a new graph and then maintain a bidirectional
mapping between the nodes of the contracted graph and the representatives in the original
graph. Thus a clustering of the contracted graph can be expanded to a clustering for the
original graph using the iterators and operations the clustering implementation provides.

3.1 File Formats

Our implementation supports two di�erent input formats for the graph: The format used
in the DIMACS graph clustering challenge [DIM] which is the METIS format [METa] and
a format which is only slightly di�erent from the format used for the DIMACS maximum

ow problem description [Max]. We have also written a tool for converting graphs from
the DIMACS maximum 
ow problem format into the latter format.

For the METIS graph �le format please refer to the METIS User's Guide, Version 4.0
[METb], our implementation supports both unweighted and weighted edges and ignores
node weights.

The second input format begins with a line "p cluster n m" where n and m denote the
node and edge count. It can contain comment lines that start with "c" and are ignored by
our implementation. Edge de�nitions, one on each line, have the format "e source target
weight" where source and target are the node IDs and weight is the (positive, integer)
edge weight. Node IDs are the numbers from 1 to n.

16



3.2. Structure of the Calculation Process 17

As output �les we have on the one hand a very simple text format that describes a certain
clustering or a clustering hierarchy and on the other hand we are generating GraphML
�les describing either a single clustering or a whole hierarchy tree that can be read by yEd
[yEd].

The simple text format for describing a single clustering begins with a line that contains
the number of nodes n. Then n lines follow that represent the nodes in the graph, ordered
by node ID. Each line contains the ID of the representative of the cluster the node belongs
to.

The format for whole hierarchies begins with a line that contains the maximum edge
weight used in the computation. Then the �le contains for each clustering a line with the
parameter value followed by the same format as used for single clusterings. The maximum
edge weight is included in the hierarchy format as the found parameter values are relative
to it and change, when the edge weights are scaled. For the analysis of the experiments
we need to know the maximum edge weight in order to rescale the parameter values for
comparability.

3.2 Structure of the Calculation Process

We have split the calculation process into two steps: In the �rst step, the hierarchical cut-
clustering algorithm is executed and produces the output text-�le describing the clustering
hierarchy. In a second step GraphML �les for individual clusterings or the hierarchy can be
generated and also di�erent indices and statistics can be calculated without recalculating
the whole clustering hierarchy.

We have split the process as the hierarchical cut-clustering algorithm needs some time to
be executed. For the larger graphs in our test sample it took some hours till some days
(compare Table 4.1).

3.3 Handling Edge Weights and Parameter Values

The two di�erent approaches for calculating the clustering hierarchy require a di�erent
handling of edge weights in practice. For the binary search we have scaled the edge weights
before the whole calculation process. For the algorithm based on points of intersection
we have used rational numbers for the parameter values and for the actual minimum-
cut calculations we have then scaled the edge weights by the denominator of the rational
parameter value. We will now explain the di�erent approaches in detail.

For the binary search algorithm on the one hand we wanted to scale the edge weights by a
large factor in order to ensure that there is no hierarchy level missed. On the other hand,
however, we wanted to keep the running time, which is directly in
uenced by the scaling,
low. We scaled the smallest edge weight to either 1000 �n if n < 1000 or n2 otherwise with
a limit of max_long=(n + 2 �m) for the largest edge weight. This limit makes sure that
sums of all edge weights including reverse edges and edges to the additional node t can be
calculated without over
ows.

For the approach based on points of intersection we wanted to make sure that we can
exactly calculate and store the parameter values. The denominators of the points of
intersection are always the di�erence of two cluster sizes (compare Algorithm 3, line 1).
This means that this value is very limited for a single point of intersection, however for
representing all possible values we would need to scale in a dimension of n!, which is of
course not possible for graphs with over thousand nodes. Thus we have tried to only scale
by the actually needed factors by increasing the scale factor every time we encounter a non-
integer intersection point but even then 64 bit integers were not enough for representing
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18 3. Implementation

the values even for graphs with less than thousand nodes. However for a single execution
of the non-hierarchical cut-clustering algorithm this means that we only need to scale by
a factor smaller than n so we simply scale the weights for each calculation of a single
cut-clustering and reset the edge weights afterwards. The parameter values themselves
are then stored as rational numbers using the implementation of rational numbers of the
boost library [boo].

We have implemented contractions only for the �rst approach and not for the second one
as implementing contractions for the second approach would require that the contraction
class handles the scaling or that the cut-clustering algorithm knows about the contraction
which is not easily possible in our implementation. As our experiments have shown (see
Table 4.1) the second approach is still faster than the binary search based algorithm with
contractions.

18



4. Experiments

With a set of 304 graphs we tested both hierarchical cut-clustering algorithms, the ap-
proach based on binary search and the approach based on intersection points. We start
with a brief description of the graphs we used. After this we will have a look at the running
times of our implementations. We will then have a closer look at some hierarchies and will
select one level of each hierarchy for the further analysis. For this particular clustering we
will then see how good the theoretical guarantee in terms of expansion is compared to the
trivial expansion bounds.

As a second part of the experiments we compared the cut-clustering algorithm with an
algorithm that tries to locally optimize modularity. We will �rst compare the clusterings
directly, then we will have a look at the expansion values.

4.1 Test Instances

In this work we used instances provided by di�erent sources. We used 27 instances of the
test bed of the 10th DIMACS Implementation Challenge - Graph Partitioning and Graph
Clustering [DIM] and 275 snapshots of the dynamic network of email communication at
the Department of Informatics at Karlsruhe Institute of Technology (KIT) [KIT]. In
addition we used a graph describing a protein interaction network published by Jeong
et al. [JMBO01] and a graph generated of a snapshot of the wiki pages of http://www.
dokuwiki.org on November 13, 2010. The latter contains the pages as nodes and internal
links as edges, counting links in both directions with a weight of two instead of one. We
have also added a small star graph with a center node and six leaves to the test instances.

From the DIMACS Implementation Challenge we decided to use graphs of the category
"Clustering Instances" as these graphs have a size the cut-clustering algorithm can handle
and are popular benchmarks for clustering algorithms. We have also added the three
smallest Delaunay graphs listed in the challenge.

The KIT provides a dataset containing anonymized email communication data between the
email accounts of the Department of Informatics. For generating a graph from that data
one needs to de�ne which period of time should be covered by the graph. We have decided
to print a snapshot every 2000 steps that contains the emails of the last 72 hours. This
limit of 72 hours has also been used in previous works dealing with that data [GHW09]. We
have also deleted singletons in these graphs. The graphs are named emailgraph550K X,
where X is the number of the snapshot.
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In all graphs we have ignored loop edges. For the dokuwiki.org data as well as for the
email communication network we implemented our own tools to construct the graphs from
the data. The protein interaction network, which is named "bo", almost �t into the used
graph format, so we adapted it using simple regular expressions.

4.2 Running Time

Even though our main focus is not on the performance of the algorithm we still want to
give an idea how fast the hierarchical cut-clustering algorithm is. All runs have only been
done once so it can not be excluded that non-reproducible cache e�ects, larger delays in
�le access etc. have in
uenced the results, so all the listed running times should not be
taken as exact numbers.

We have measured the CPU time of the execution of the hierarchical cut-clustering al-
gorithm including IO but without the generation of GraphML output or statistics. All
executions have been done on an AMD OpteronTMProcessor 252 with 2.6 GHz with 16 GB
RAM.

In Table 4.1 we have summarized the running time of a few small graphs and all large
graphs sorted by the running time of the second approach based on intersection points.
We have excluded most of the smaller graphs as we assume the running time is dominated
by IO for small graphs and from the email graphs we have also just selected two examples
as we wanted to keep the table clear.

For the largest graphs we have omitted the binary search calculation with contractions as
we did not have enough time for it. The missing values have been marked with a "*".

The running times show that using contractions is in most cases an advantage, however
the advantage is sometimes very small. This can be explained by the fact that for some
graphs many clusterings contain a large number of small clusters and even singletons, and
thus, the e�ect of the contraction is very small. For the graph rgg n 2 15, the running time
with contractions was even a lot higher than without contractions. This can be explained
by the large amount of singletons in all hierarchy levels, even in the highest non-trivial
level there are 31414 singletons out of 32768 nodes. In the graph cond-mat-2003 that
has a similar size, only 16749 nodes were singletons in the highest non-trivial level and at
maximum 21352 nodes were singletons in the lowest non-trivial level, and for this graph the
contractions are an advantage again. This shows that the e�ciency of the implementation
of contractions is essential, especially for clusterings that contain mostly singletons.

However, for all instances the running time of the second approach based on intersection
points is a lot better than the running time of the �rst approach with and without contrac-
tions. For some graphs the running times di�er by even a factor of more than 20. Using
contractions could also improve the running time of the second approach but we expect
that the impact is not higher than for the �rst approach, especially as, depending on the
implementation, less clusterings will be calculated using the same contraction.

The measured values also indicate that the main part of the running time is the time of
the executions of the cut-clustering algorithm. The running time seems to be in
uenced
by the number of levels in the hierarchy, see the column denoted by "h". The factor of 10
or 20 between the �rst and the second approach can be explained by the scaling factor
which is between 210 and 230 and thus leads to around 10 to 30 times more executions of
the cut-clustering algorithm. The running time of the �rst approach using contractions
shows that linear factors should not be neglected and can provide a possibility to improve
the running time for larger graphs that yield clusterings that contain mostly singletons.
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Name of the graph n m h Bin. search w. contract. Inters.

jazz 198 2742 3 0.48s 0.47s 0.06s
celegans metabolic 453 2025 8 2.51s 2.28s 0.30s
celegansneural 297 2148 17 4.02s 3.51s 0.40s
delaunay n10 1024 3056 2 4.22s 4.19s 0.47s
emailgraph550K 19 491 853 33 10.68s 9.14s 0.77s
email 1133 5451 4 9.77s 9.44s 1.11s
emailgraph550K 26 527 1046 38 14.71s 12.84s 1.23s
delaunay n11 2048 6127 2 15.93s 16.58s 1.79s
netscience 1589 2742 38 51.51s 17.37s 4.31s
bo 2114 2277 19 55.74s 26.16s 4.35s
polblogs 1490 16715 7 54.35s 51.93s 4.49s
delaunay n12 4096 12264 2 1m11.31s 1m18.86s 7.22s
data 2851 15093 4 1m50.68s 1m32.29s 11.50s
dokuwiki org 4416 12914 18 10m19.97s 8m14.65s 39.81s
power 4941 6594 66 22m29.64s 12m32.16s 1m25.73s
hep-th 8361 15751 56 117m02.37s 47m27.67s 6m26.21s
PGPgiantcompo 10680 24316 94 249m15.52s 86m43.51s 13m25.12s
as-22july06 22963 48436 33 821m26.75s 495m36.43s 39m54.49s
cond-mat 16726 47594 80 1213m 660m08.44s 44m15.31s
astro-ph 16706 121251 60 2443m 2150m 98m25.79s
rgg n 2 15 32768 160240 46 5539m 8037m 245m25.64s
cond-mat-2003 31163 120029 74 5615m 4910m 268m14.60s
G n pin pout 100000 501198 4 7380m * 369m29.03s
cond-mat-2005 40421 175691 82 13994m * 652m32.16s

Table 4.1: Running times of the larger graphs in our data set.
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We have not tried to optimize the speed of the implementation by handling special cases
separately, for example by skipping the unnecessary calculation of contractions for the
singleton clusterings. Thus most probably all these running times can be further improved
by optimizing the implementation.

4.3 Theoretical Guarantee vs Practical Results

In this section we have a look at the values the algorithm gives a guarantee for: the
intra-cluster expansion and the inter-cluster expansion*. We will �rst have a look at these
guarantees in the di�erent hierarchy levels, then we will give an overview of these values
in all graphs.

4.3.1 Analysis of Individual Cluster Hierarchies

In this section we examine the hierarchies of four graphs that are typical for the graphs
in our set of graphs. We will have a look at the intra-cluster expansion and inter-cluster
expansion* but also the modularity of the di�erent levels in the hierarchy.

In practice, the hierarchies of both hierarchical cut-clustering approaches calculate for our
set of graphs the exactly same clustering hierarchies, i.e., not a single hierarchy level is
missed by the binary search algorithm. The boundaries of the parameter intervals the
binary search algorithm calculates, however, are not exact in most cases. In the following
we will always use the results of the second approach based on intersection points.

Figure 4.1 and 4.2 show on the horizontal axis the parameter value with the maximum
edge weight scaled to one, on the left vertical axis the modularity value and on the right
vertical axis the expansion values of the di�erent levels of the clustering hierarchies of the
four selected graphs. The diagonal denotes the guarantee the parameter value gives in
terms of expansion, the crosses on it denote the boundaries of the di�erent levels in the
clustering hierarchy. Below the diagonal the inter-cluster expansion* is shown, most of
the time it is almost on the horizontal axis. Above the diagonal the trivial upper bound
of the intra-cluster expansion can be seen. For some values it touches the diagonal which
means that for these values the guarantee the cut-clustering algorithm gives is already the
exact intra-cluster expansion. In the �rst two graphs below, in the second two graphs also
sometimes above the diagonal there is the trivial lower intra-cluster expansion bound.

For all of the four selected graphs the trivial lower and upper intra-cluster expansion bound
do not exceed one. This is not for all our test instances the case, there are also graphs for
which these values exceed one also with the maximum edge weight scaled to one.

The inter-cluster expansion* is for all four graphs much lower than the guarantee the
cut-clustering algorithm gives, this means that the guarantee concerning the inter-cluster
expansion* is for these graphs not meaningful.

In the �rst two graphs one can see that the guarantee the cut-clustering algorithm gives
in terms of intra-cluster expansion can be a lot better than the trivial lower intra-cluster
expansion bound, in the second two graphs one can see that the trivial intra-cluster ex-
pansion bound is sometimes also better than the guarantee the cut-clustering algorithm
gives. These di�erences can also be found in the other graphs in our test set.

In the upper graph in Figure 4.2 one can see that the lowest parameter value for which
the trivial clustering is returned does not need to be one but can also be a lot lower even if
the edge weights are scaled to one. This is, the lower bound of the intra-cluster expansion
the cut-clustering algorithm guarantees at maximum for a non-trivial clustering can also
be lower than one.
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4.4. Comparison with Modularity-Based Clusterings 23

For lower parameter values also the trivial upper intra-cluster expansion bound is relatively
low in most cases which means less uncertainty but also a de�nitely lower intra-cluster
expansion.

For most graphs the level with the best modularity is a level that is pretty close to the
upper trivial level that contains the connected components. For higher parameter values,
the modularity decreases in general, in some graphs there is also more than one local
maxima.

We decided to pick the non-trivial clustering with the best modularity value from each
clustering hierarchy in order to further compare them.

4.3.2 Comparative Analysis of all Graphs

In Figure 4.3 we plotted the lower and upper trivial intra-cluster expansion bounds as
well as the inter-cluster expansion* and the lower and upper boundary of the parameter
interval of the hierarchy level we have selected based on modularity for all graphs in our
test set. On the horizontal axis the graphs are listed, each value represents one graph.
In order to be able to visually compare the results we have scaled the values such that
the upper boundary of the parameter interval is always 100. The expansion values on the
vertical axis are all relative to the upper boundary of the parameter interval. We have
sorted the graphs by the trivial lower bound of the intra-cluster expansion. Even though
the values are discrete points we have plotted lines as we found that lines make it easier
to get a visual impression of the relations between the di�erent values.

One can see that in most cases the parameter value (the horizontal line at 100) is a better
lower bound than the trivial lower bound. In a few cases, the trivial upper intra-cluster
expansion bound (the line above the horizontal line) even equals the parameter value, thus
in these cases we know that we have found the true intra-cluster expansion.

For now we can already conclude that for the graphs we have examined the theoretical
guarantee of the cut-clustering algorithm gives us in most cases a better lower intra-cluster
expansion bound than the trivial one.

Regarding the inter-cluster expansion* one can see that in most cases the inter-cluster
expansion* is better (i.e. lower) than the bound the cut-clustering algorithm gives us.

4.4 Comparison with Modularity-Based Clusterings

As modularity is a widely used measure for clusterings we want to compare the results of
the cut-clustering algorithm with a clustering that is optimized for modularity in order to
see how well the cut-clustering algorithm performs in terms of modularity. David Lisowski
implemented an algorithm that optimizes modularity of a clustering greedily as part of his
diploma thesis and provided the implementation of the algorithm. The algorithm and the
implementation are described in detail in his diploma thesis [Lis11]. We will describe the
algorithm in short here.

The general problem with optimizing modularity is that �nding the modularity-optimal
clustering is NP-hard. However it is possible to optimize modularity locally and in general
the results of such algorithms is relatively good in terms of modularity.

Here we will describe a multi-level local-greedy algorithm. The algorithm begins with a
trivial clustering in which each node forms its own cluster and then moves nodes between
clusters whenever it increases the modularity. As soon as no increase in modularity is
found anymore, the nodes in each cluster are contracted and the procedure continues on
the next level. At the end, the di�erent contractions are expanded again top-down and
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Figure 4.1: Cluster hierarchy statistics of power and netscience.
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Figure 4.2: Cluster hierarchy statistics of emailgraph550K 109 and rgg n 2 15 s0.
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Figure 4.3: Overview of the expansion values in comparison with the parameter value.

after each expansion, the algorithm tries again to optimize modularity by moving single
nodes.

We will refer to this algorithm as modularity algorithm. We will refer to the clustering
calculated by the modularity algorithm as modularity clustering in contrast to the cut
clustering calculated by the cut-clustering algorithm which will always refer to the non-
trivial level in the hierarchy tree with the highest modularity value.

We have converted all graphs in the test set into the format of the modularity algorithm
and we converted the output back into our own clustering format such that we could use
the same analysis tools we have already used for the cut-clustering algorithm.

Unfortunately, the algorithm as described above does not guarantee that the resulting
clusters are connected and for our collection of graphs the algorithm actually calculated
some unconnected clusters. This can happen if the algorithm gets stuck at a local max-
imum. As this makes the analysis of intra-cluster expansion impossible, we decided to
post-process the clusterings and split unconnected clusters in their connected components.
In doing so, the resulting modularity values can only become better. In the following we
will always use these post-processed clusterings.

For visualizing clusterings we generated plots of the adjacency matrices of graphs where
the node IDs are sorted by the clusters, i.e., nodes inside a cluster have consecutive IDs.
Each non-zero entry in the matrix is denoted by a point in the plot. As we did not vary the
size of the dots by the edge weight, these plots are only meaningful for unweighted graphs.
In order to clearly indicate the clusters we also added a point for each representative on
the diagonal, for the modularity clusterings, which do not have special representatives, we
selected arbitrary representatives. This means that each cluster is the rectangle de�ned
by two points on the diagonal that is also the diagonal of this rectangle. We sorted the
clusters by size, the largest clusters have the highest node IDs, this is, the largest cluster is
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4.4. Comparison with Modularity-Based Clusterings 27

in the top-right corner. All points outside these rectangles are, even if they look sometimes
as if they had a structure or were even clusters, inter-cluster edges that show a structure
that is de�ned by the order in the input �les.

In Table 4.2 we combine di�erent indices of the cut-clustering algorithm and the modularity
algorithm. Most of the results presented in the following sections are based on these values.

In the leftmost column are the names of the graphs and below each name some general
properties like the number of nodes (n), the number of edges (m) and the number of
connected components (k). For each graph there are two rows. The upper row contains
indices concerning the cut clustering, referred to as C, and the lower row lists results
concerning the modularity clustering, referred to as Cmod. The operator exp refers to
intra-cluster expansion and � is the upper boundary the interval of the parameter values
for the level of the cut clustering C. In the table we also mention a clustering Cm which
we will explain in the next paragraphs.

In the following we compare the modularity clusterings and the cut clusterings in a general
overview. Then we will also have a look at the intra-cluster expansion and see how they can
be compared using trivial bounds. In a last step we will select some graphs and compare
their clusterings in more detail.

4.4.1 Overview of Cut Clusterings and Modularity Clusterings

The �rst question we address to is if there are obvious similarities between cut clusterings
and modularity clusterings.

Looking at the modularity values of the cut-clustering algorithm and the modularity algo-
rithm in the third column in Table 4.2 one can already see that in all cases the modularity
value of the results of the modularity algorithm is better than the modularity of the re-
sults of the cut-clustering algorithm, in most cases slightly better, in some cases even
signi�cantly better.

Looking by hand at the results of the algorithms for a couple of graphs gives the impression
that the result of the cut-clustering algorithm with the best modularity value is in general
more �ne-grained than the result of the modularity algorithm. Furthermore, in many
graphs there are nodes for which the cut-clustering algorithm does not decide to which
cluster they belong as they are connected equally well to more than one cluster. Instead
the cut-clustering algorithm creates a singleton cluster. Based on these observations we
decided to consider a further clustering type which results from merging all clusters in
the cut clustering for which the representatives are in the same cluster in the modularity
clustering. We refer to this clustering as merged clustering Cm.

In Figure 4.4 we have plotted the modularity of the cut clustering, the modularity clus-
tering and the merged clustering. The horizontal axis is again the list of graphs, sorted by
the modularity of the modularity clustering.

Merging these clusters improves the modularity value of the clustering in almost all cases,
only for some graphs there is a decrease in modularity as one can see in the �gure. The
graphs for which the modularity both of the cut clustering and the merged clustering
are low are trivial clusterings that contain only the connected components, thus merging
clusters has no e�ect.

We have also added the quotient between the modularity values to the table in column
�ve, upper row. In the lower row in the same column we have noted the quotient of
the modularity of the merged clusters and the clustering of the modularity algorithm.
One can also see in the table that in many cases the modularity of the merged clusters
is close to or even better (for example emailgraph550K 273) than the modularity of the
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Figure 4.4: Overview of the modularity values of the di�erent clustering algorithms.

modularity clustering. As we have already seen in the �gure there are a few cases where the
cut-clustering algorithm returned a trivial clustering or less clusters than the modularity
algorithm, this is for example for the graph celegans metabolic and the delaunay graphs
the case. In these cases the modularity is not similar to the modularity of the modularity
clustering, i.e., it does not improve at all or only very slightly. We will now have a look at
these two examples in more detail.
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Figure 4.5: Graph "celegans metabolic" - the cut clustering on the left side, the modularity
clustering on the right side.

In Figure 4.5 we have plotted the cut clustering and the modularity clustering of cele-
gans metabolic. The large upper area in the left plot of the cut clustering is just one
cluster while the modularity clustering contains almost equally sized clusters that seem to
have relatively strong connections between them. With only six instead of ten clusters the
modularity of the cut clustering is with 0.037 very low, but also the modularity algorithm
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reaches only a modularity value of 0.439.

A whole family of graphs for which the cut-clustering algorithm has not found any structure
are the delaunay graphs, for all three delaunay graphs we have tested only trivial clusterings
with a modularity value of zero were returned while the modularity algorithm produced
clusterings with a high modularity value (0:8 and higher). One could wonder if these graphs
do not have enough structure, but looking at the result of the modularity algorithm in
Figure 4.6 (right side) the modularity clustering seems to be a good clustering even though
there are some edges between the clusters. The unclustered result of the cut-clustering
algorithm looks interesting, too, but this is not the result of the cut-clustering algorithm
but rather of the order of the nodes in the input �le.
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Figure 4.6: Graph "delaunay n10" - the cut clustering on the left side, the modularity
clustering on the right side.

The similarity of modularity values and the similar number of clusters in the merged
clusterings and in the modularity clusterings give the impression that in many cases the
merged clustering is similar to the modularity clustering but has sometimes better bound-
aries of the clusters, for example the merged clustering of emailgraph550K 273 has the
same number of clusters as the modularity clustering, but a better modularity is achieved.

4.4.2 Intra-Cluster Expansion of Modularity Clusterings

In the previous section we have seen that regarding modularity cut clusterings are for our
test set worse than the modularity clusterings, so in this section we want to consider intra-
cluster expansion where the guarantee that the cut-clustering algorithm gives is at least
in theory an advantage over the modularity algorithm. We want to see if this guarantee
is an advantage in practice, too. We will compare the trivial bound of the intra-cluster
expansion of the modularity clusterings with the bounds we have already seen for the cut
clustering.

In addition to the selected results in Table 4.2 we have plotted an overview of all graphs
in Figure 4.7. As in Figure 4.3 we have plotted the lower and upper bound of the intra-
cluster expansion in the cut clusterings and also the upper boundary of the interval of the
parameter values of the cut clusterings, as in Figure 4.3 scaled to 100. The graphs are
again sorted by the trivial lower bound of the intra-cluster expansion of the cut clustering.
In addition to that we have added the trivial lower and upper bound of the intra-cluster
expansion of the modularity clusterings.

The �gure shows that for most graphs the trivial lower bound of the intra-cluster expansion
is similar in both clusterings and the trivial lower bound of the intra-cluster expansion of
the modularity clustering is below the guarantee the cut clustering algorithm gives. For
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32 graphs the upper bound of the intra-cluster expansion of the modularity clustering is
lower than the parameter value or the trivial lower bound of the intra-cluster expansion for
the cut clustering which means that these 32 modularity clusterings are de�nitely worse
in terms of intra-cluster expansion than the corresponding cut clustering.

For the graph PGPgiantcompo we have the situation that the lower intra-cluster expansion
bounds for the cut clustering are better than the trivial lower intra-cluster expansion bound
for the modularity clustering, but the trivial upper intra-cluster expansion bound for the
modularity clustering is eight times higher than the lower intra-cluster expansion bound
of the cut clustering, so we can not make any de�nitive comparison. In Figure 4.8 we
have plotted the two clusterings. The left plot shows the cut clustering, it contains a lot
of singletons while the right plot shows that the modularity clustering contains larger,
more similar sized clusters. Looking at the inter-cluster edges one has the impression that
certain clusters have relatively strong connections to other clusters. The cut clustering
has 2169 clusters for the 10680 nodes while the modularity clustering calculated only 107
clusters. More extreme results can be seen for other large graphs in the test set, the cut
clusterings have for some of these graphs a better intra-cluster expansion but on the other
hand the clusterings contain only very small clusters.

Altogether the cut-clustering algorithm returns for 32 graphs in our test set a cut-clustering
with a better intra-cluster expansion than the modularity algorithm and for 290 of the 304
graphs in our test set we get at least a better lower bound of the intra-cluster expansion
but for these clusterings we do not know which clustering is better in terms of intra-cluster
expansion. However, there is only one single graph (emailgraph550K 205) in the test set
for which the trivial lower intra-cluster expansion bound of the modularity clustering is
higher than the trivial upper intra-cluster expansion bound of the cut clustering.
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Figure 4.8: Graph "PGPgiantcompo" - the cut clustering on the left side, the modularity
clustering on the right side.
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5. Conclusion

In the �rst part of this work we proved that calculating a hierarchy of all di�erent cut
clusterings can be done with at most twice as many executions of the cut-clustering al-
gorithm as clustering levels in the found hierarchy. Furthermore, the boundaries of the
intervals of the parameter values that correspond to the levels in the clustering hierarchy
are exact. This means that we get a complete overview of all di�erent cut clusterings
for a certain graph and can use the boundaries of the intervals for the guarantee the
cut-clustering algorithm gives which can yield better guarantees than just using a single
parameter value.

In the second part we then had a look at the clusterings and saw that in most cases the
theoretical guarantee the algorithm gives for the intra-cluster expansion is better than the
trivial lower bound of the intra-cluster expansion. In the individual clustering hierarchies
we have seen that the modularity value is best for very low parameter values, so choosing a
higher parameter value that gives a high lower bound of the intra-cluster expansion is not
always good, one can even get the impression that intra-cluster expansion and modularity
are con
icting measures.

For the further analysis we picked the best cut clustering in terms of modularity of each
clustering hierarchy and compared it to results of an algorithm that tries to locally optimize
modularity. In that comparison we noticed that merging the clusters in the cut clustering
whose representatives are in the same cluster in the modularity clustering yields a new
clustering that is similar to the modularity clustering. In most cases this merged clustering
has a modularity value that is only slightly lower or in a few cases even higher than the
modularity value of the modularity clustering.

In the individual clusterings we have seen a large diversity, from graphs for which similar
clusterings are calculated by both algorithms to graphs that yielded completely di�erent
clusterings. In the examples we have examined in more detail we found that while the cut-
clustering algorithm calculates clusters of very di�erent sizes and does not cluster nodes if
they do not clearly belong to a cluster the modularity algorithm creates a smaller amount
of relatively equally-sized clusters.

Concluding we can say that the cut-clustering algorithm does help knowing the intra-
cluster expansion of a clustering and gives a good guarantee for it but does only create
clusters for structures that are really clear, i.e., the cut-clustering algorithm is very strict.
This can be an advantage if the focus is on �nding closely connected and possibly singleton
clusters but also a disadvantage if each node should be assigned to a non-trivial cluster.
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Open Problems

In the following we describe further approaches connected to this work that we did not
explore in this work.

We think that results of the cut-clustering algorithm could be used as basis for other
(greedy) clustering algorithms like the modularity algorithm in order to give them a solid
basis of clusters greedy algorithms possibly would not �nd otherwise.

Regarding the clustering hierarchy it could be possible that clusterings consisting of a
combination of clusters from di�erent levels have a better modularity value than the levels
themselves.

Instead of the algorithm based on intersection points the parametric maximum-
ow algo-
rithm could be used which gives in theory a much better running time. A clever use of
the algorithm, i.e., not simply executing it for every node in the graph, could also lead to
an improved running time in practice.
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