
Optimizing Orthogonal Edge Routing
for Microfluidic Biochip Layouts

Bachelor Thesis of

Ruben Gehring

At the Department of Informatics
Institute of Theoretical Informatics

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Dr. Martin Nöllenburg
Dipl. Inform. Thomas Bläsius

Time Period: 1st February 2014 – 31st May 2014

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 4th June 2014

iii

Abstract

Microfluidic biochips, also called “lab-on-a-chip”, are currently rising in popularity.
This is mostly because they allow biochemical experiments to be carried out on a
single, small chip which has a number of advantages.

However, the design of these chips is still a time-consuming and expensive process,
mainly because component layouts for these chips are still done manually. This is
because there is no software tool that can provide efficient automatic component
placement and edge routing just yet.

Ideally the chip engineer should just have to select which components should be
used for the current chip design, and which ones are connected. Then the software
should take care of details such as where to place the components and how to route
the edges in an efficient manner. But no software can offer this feature without a
component placement and edge routing algorithm, the latter of which we want to
present in this thesis.

Deutsche Zusammenfassung

Mikrofluidische Biochips, auch “lab-on-a-chip” genannt, steigen momentan in ihrer
Beliebtheit. Der Hauptgrund hierfür ist, dass sie biochemische Experimente auf
einem einzigen, kleinen Chip erlauben, was einige Vorteile hat.

Allerdings ist der Entwurf dieser Chips noch immer ein zeitaufwändiger und
teurer Prozess, hauptsächlich weil das Komponentenlayout noch komplett von Hand
gemacht werden muss. Es gibt noch keine Entwicklungswerkzeuge, welche in der
Lage wären, die Komponenten und Strecken automatisch und effizient anzuordnen.

Idealerweise sollte ein Entwickler so eines Chips nur angeben müssen welche
Komponenten für den aktuellen Entwurf verwendet werden sollen und wie diese
verbunden sind. Das Entwicklungsprogramm sollte sich dann darum kümmern, wie
die Komponenten angeordnet werden sollten, und was eine effiziente Streckenführung
ist. Aber kein Programm kann so eine Funktionalität bereitstellen, ohne einen
Algorithmus für die Komponentenanordnung und die Streckenführung zu haben.
Letzteres wollen wir in dieser Abhandlung vorstellen.

v

Contents

1. Introduction 1

2. Problem Modelling 3

3. Complexity 5

4. A Graph Drawing Model for Biochip Layouts 7
4.1. Creating the Orthogonal Visibility Graph 8
4.2. Routing Edges using the OVG . 11
4.3. Transferring the routing . 13

5. Evaluation 15

6. Conclusion 19

Bibliography 21

Appendix 23
A. Example Graph Routings and Plots . 23

vii

1. Introduction

Microfluidic biochips are one kind of what is referred to as “lab-on-a-chip” or “LOC”.
The idea behind LOCs is to integrate one or several laboratory functions onto a small
chip of a few square centimetres in size. While there are also LOCs that are based
on microelectromechanics, the kind of chips that motivated this thesis are the so called
microfluidic biochips. These can be used for a variety of purposes, e.g. one can design a chip
that, given only 1 µl of blood, can test it for various diseases like HIV and syphilis without
the need of a sterile lab with big and expensive equipment [CLC+11]. Other advantages,
besides being much easier to use in the field and a low sample consumption, can be
high throughput due to massive parallelization, short response and analysis times, better
process control and the ability to mass produce those chips making them cheap [RIBT13].

Figure 1.1.: 3D CAD model of a
mixer. [WCH+13]

Essentially a microfluidic biochip consists of com-
ponents that provide the chips functionality and
a network of connections. Which components are
exactly used depends on the application, the most
universal ones being pumps, storages and mixers that
are used on almost any kind of chip. These compo-
nents are usually made by creating specific shapes in
the chip material that provide the desired function-
ality (see also Figure 1.1). Some components, like
pumps, also require correctly placed valves to work.

So far, chip designers still have to place the com-
ponents and route the edges connecting them with
minimal software support. Even with a given place-
ment for the components it is difficult to find an
efficient, meaning cheap, routing for the connections.
It also is very time consuming if done manually.

Right now there are no algorithms for the edge
routing problem that we are aware of. Developing
one is the first step towards software tools that handle these matters automatically, saving
the developers time while also increasing the efficiency of the solution. This thesis addresses
the problem of finding an efficient routing to a given initial component placement, as stated
above.

When comparing two different, fully functional, routings that both connect the same
components of the same initial placement, we assume that the routing that is cheaper to
produce is always preferable. The production cost of a routing is essentially the number of

1

1. Introduction

valves needed, therefore we want to create routings with as few crossings as possible.
The approach taken for this is similar to the approach of Wybrow et al. [WMS10].

They present an algorithm for minimizing the number of bends and the connector’s length
in an orthogonal connector drawing for diagram editors. Their intention is to clearify
and simplify network diagrams. They do this by creating an Orthogonal Visibility Graph
(OVG), use A*-search on this graph to find an ideal route and lastly nudge shared edges
apart for clarification.

Tseng et al. [TYLH13] introduce an incremental cluster expansion algorithm for com-
ponent placement on microfluidic biochips. The idea of this algorithm is to create clusters
by taking a storage and placing all components connected to this storage around it. Then
they go on to connect the storages, so that every component is connected to every other
component via its storage. However, this does not address the issue of how to route within
these clusters. It is also limited to applications where the indirect connection via storages
is not a problem because of, e.g. route length restrictions.

This thesis presents an algorithm for automated creation of cheap biochip connector
routings, given an initial component placement. Together with a component placement
algorithm, a software or plug-in can be created to greatly simplify and accelerate the design
process of microfluidic biochips. Especially for more complex biochip layouts (as shown in
Figure 1.2) such an software aide would also possibly decrease the production cost of the
chip, since finding an optimized solution for such layouts would take a human chip designer
far too long.

The rest of the thesis is organized as follows: In section 2 we show how we model the
problem of finding a cheap routing for a biochip as graph drawing problem. We then go on
to analyse the complexity in the following section 3, before explaining our algorithm in
detail in section 4. Afterwards we evaluate the algorithms performance in section 5. We
then end by drawing our conclusion in the last section 6.

Figure 1.2.: Optical micrograph of a microfluidic comparator chip. [TMQ02]

2

2. Problem Modelling

While the basis and motivation of this thesis lies in microfluidic biochips, its actual content,
from a computer science and graph drawing perspective, is a heuristic for routing edges
with few crossings in an orthogonal graph layout. Because of this we first want to take
a look at how our physical biochip problem is transformed into a more abstract model,
before going on to the algorithm itself. This section contains precise problem definitions
for the biochip design problem we address as well as some closely related problems. We
will start by describing one problem in detail and then point out the differences to each of
the related problems.

Our first problem is called the port-to-port channel routing problem and it is defined as
follows: Our input consists of an input graph G = (V,E) with nodes and edges representing
components and connections, respectively. Each node v ∈ V is an abstract object that
has a corresponding rectangle Rv with a specified position and designated ports on its
boundary. A node’s ports are the designated connection points for incoming and outgoing
edges and we allow any number of edges to connect to a single port.

We are looking for a drawing of the input graph in which each node v ∈ V is represented
by it’s corresponding rectangle Rv, we call such a drawing an output layout (as shown in
Figure 2.1). Furthermore a valid output layout must respect the following hard constraints:
First of all edges are modelled as port-to-port connections, meaning that every edge
e = (v, w) ∈ E starts at a designated port of Rv and ends at a designated port of Rw.
Furthermore e must be orthogonal, which means it may consist of horizontal and vertical
segments only and no edge may pass through any rectangle. Lastly edges remain separate
and may not join other edges, only cross them or run alongside as parallel but separate
edge. There are also two soft constraints that we want to optimize: For one we want the
number of crossings in our output layout to be as small as possible, while on the other
hand we also try to minimize the accumulated edge length of all edges of the output layout.
These goals are often conflicting and how much our algorithm focuses on either can be
changed by varying the crossing cost parameter as described later on.

It should be noted, that since we allow any number of edges to connect to a single
port, we also allow drawing parallel edges on top of each other in our output layouts. It is
possible to separate such edges again using the nudging step presented by Wybrow et al.
[WMS10]. This is not content of this paper however, since it is not an integral part of our
algorithm. It would also be possible to add additional hard or soft constraints, such as
minimum and maximum edge lengths as hard constraints, or minimizing the number of
bends as soft constraint. Lastly it is important to say, that our modelling of the physical
biochip problem ignores certain qualities like for example the width of channels.

3

2. Problem Modelling

A problem that is closely related to the port-to-port channel routing problem is the
node-to-node channel routing problem. The difference between both is, that the node-to-
node version does not specify which ports are to be used for it’s connections. So where
an edge e = (v, w) of the port-to-port problem always started at a specified port of Rv

and ended at a specified port of Rw, the same edge may start at any port of Rv and end
at any port of Rw for the node-to-node channel routing problem. To reflect this we now
add a so called node-vertices v′ for each node v. The node-vertex v′ is connected to all
ports of Rv, which allows us to model edges as node-to-node connections. So a given edge
e = (v, w) ∈ E starts at the node-vertex v′ of v and ends at w′, the node-vertex of w. This
way the algorithm can freely choose which port to use when connecting v and w.

The last two problems we want to define are the port-to-port chip layout problem and
the node-to-node chip layout problem. In both cases the only difference to the corresponding
channel routing problem is, that for the port-to-port and node-to-node chip layout problem
the positions of the input graph’s nodes are not specified. Rather the nodes can be placed
freely, which changes the problem significantly. The problem we address in this paper is
the node-to-node channel routing problem.

Figure 2.1.: To the right a sample port-to-port problem input graph,
to the left a valid output layout to the given input graph.

4

3. Complexity

In this section we show, that the node-to-node and port-to-port channel routing problems
are NP-hard. It has been shown that finding the crossing number of general graphs is
NP-hard [GJ83]. Pelsmajer et al. [PSS08] extended this by showing, that even if the
graph has a fixed rotation system it is still NP-hard to find the minimum crossing number.
However, in both cases the authors assume their graphs vertices can be placed freely and
are not already fixed at specific locations. Since both of our channel routing problems
input graphs already specify where the vertices are located, we first have to show that even
with fixed vertex positions the graphs crossing number is still the same.

Lemma 3.1. For a given graph, the minimum crossing number with variable vertex
positions is the same as the minimum crossing number with fixed vertex positions.

Proof. For a given graph G, let us call the minimum crossing number with variable vertex
positions k and the minimum crossing number with fixed vertex positions kf . Our goal
is to show, that k = kf . We do this by showing that k ≤ kf and k ≥ kf . The first one is
rather simple. If kf is the crossing number with fixed vertex positions, k can be at least as
small as kf by choosing the same vertex positions as in the fixed vertex embedding of kf .
So let us concentrate on k ≥ kf . Given an embedding of G with exactly k crossings, we
can now add k new intersection-vertices, one at every crossing of this embedding. This
gives us the planar graph G′, for which we can now find a planar embedding for any given
set of fixed vertex locations, as shown by Pach and Wenger [PW01]. So we can choose a
set of fixed vertex locations, create a planar embedding of G′ with these vertex locations
and then remove the intersection-vertices to create a non-planar embedding of G with k
crossings. Since we constructed an embedding based on fixed vertex positions (as shown in
Figure 3.1), the crossing number k of this embedding must be greater or equal than kf ,
the minimum crossing number of embeddings of G with fixed vertex positions.

Based on this lemma and the papers referenced above we can now show that both microflu-
idic channel routing problems are NP-hard.

Theorem 3.2. The node-to-node channel routing problem is NP-hard.

Proof. The general crossing number problem is known to be NP-hard. Given an instance I,
with the input graph GI = (VI , EI), of the general crossing number problem, an instance
In, with the input graph Gn = (Vn, En), of the node-to-node channel routing problem can

5

3. Complexity

Figure 3.1.: Illustration of finding embedding with fixed position and k = 1 crossings.

be created in polynomial time. We do this by identifying each vertex v ∈ VI with a node
vn ∈ Vn and each edge e = {v, w} ∈ EI with an edge en = {vn, wn} ∈ En. The size of the
rectangles Rn can be scaled as needed, and we assume there are always enough ports at
each side of the rectangle. Also, since the node-to-node channel routing problem requires
it’s nodes to be placed already, we need to place the nodes in Vn, for example randomly.
A deterministic algorithm A that solves the node-to-node channel routing problem in
polynomial time creates an output graph with the minimum crossing number for fixed
vertex positions kf of Gn, from which kf can be extracted easily. As shown in Lemma
??, kf is the same as the minimum crossing number k of Gn, which is the same as the
minimum crossing number of GI by construction. Therefore the deterministic algorithm
A also solves the general crossing number problem in polynomial time, which makes the
node-to-node channel routing problem NP-hard.

Theorem 3.3. The port-to-port channel routing problem is NP-hard.

Proof. An instance I, with the input graph GI = (VI , EI), of the NP-hard problem crossing
number for fixed rotation systems can be transformed to an instance Ip, with the input graph
Gp = (Vp, Ep), of the port-to-port channel routing problem, similar to the transformation
shown in Theorem 3.2. The difference is, that the edges of E are not represented as
connections between nodes of Vn but rather between ports of the corresponding nodes.
This determines the order of the edges around the node, so the ports used are chosen
according to the rotation system of I. The node positions can again be chosen randomly.
This way a deterministic algorithm A that solves the port-to-port channel routing problem
in polynomial time also solves the crossing number for fixed rotation systems problem in
polynomial time, as shown in Theorem 3.2. Therefore the port-to-port channel routing
problem is NP-hard, also.

6

4. A Graph Drawing Model for Biochip
Layouts

In this section we describe our algorithm for the microfluidic node-to-node channel routing
problem. As reminder, for an input graph G = (V,E), V is the set of nodes of G. Each
node v ∈ V has a corresponding rectangle Rv with designates ports on its boundary, as
described in section 2. We define X and Y as the sets of x- and y-coordinates of all
rectangle corners and ports of the input graphs nodes. We can create a graph by placing a
vertex at each point in X×Y and then connecting every vertex with its closest neighbour
directly to the north, south, east and west. We call this graph the complete grid graph
and the graph that we use for our algorithm (the Orthogonal Visibility Graph, or OVG)
is a subgraph of the complete grid that we construct as the first step of our algorithm.
Both, the complete grid graph and the OVG, are surrounded by a bounding box that
represents the outer boundary of the graph. We then go through the input graph’s edges
e one by one and identify each of them with a route Re that uses exclusively edges of
the OVG, using Dijkstra’s Shortest Path algorithm with a metric that depends solely on
the accumulated edge length of Re and the number of crossings with routes of previous
edges. Lastly, we create the output layout that corresponds to the routing we found. In
the following sections we will describe each of these steps in detail. Algorithm 4.1 shows
the corresponding pseudocode for our node-to-node channel routing problem heuristic.

Algorithm 4.1: Node-to-Node Algorithm
Input: inputGraph
Data: OVG, routing
Output: outputGraph

1 OVG = createOVG(inputGraph)
2 forall edge e ∈ inputGraph do
3 route r = computeOptimalRoute(OVG, e)
4 OVG = split(OVG, r)
5 routing.add(r)
6 outputGraph = transferRouting(inputGraph, routing)

7

4. A Graph Drawing Model for Biochip Layouts

4.1. Creating the Orthogonal Visibility Graph
A fundamental concept we use in our algorithm is the Orthogonal Visibility Graph, first
introduced by Wybrow et al. [WMS10]. As noted above it is a subgraph of the complete
grid graph that still contains all relevant routes, which means that for every route not
in the OVG there is a route in the OVG that is not longer and does not lead to more
crossings. We are using the OVG mainly because it limits the number of vertices to consider
considerably. Formally the OVG can be defined as follows. To a given an input graph
G = (V,E) (see Chapter 2), we define the corresponding Orthogonal Visibility Graph as
OVG(G) = (Vo, Eo) where Vo = VR ∪ Vp ∪ VIP with VR being the set of rectangle corners
for every rectangle Rv of a node v ∈ V , Vp being the set of all ports and VIP the set of
all interesting points of G. A point p = (xp, yp) is an interesting point of G if it there are
two vertices v1, v2 ∈ VR ∪ Vp, with v1 = (xp, y) and v2 = (x, yp), with v1, v2 belonging to
different nodes and there is no rectangle between p and v1, nor between p and v2. Two
vertices v, w ∈ Vo are connected by an edge e if and only if v is the closest neighbour of w
to either the north, south, east or west and there is no rectangle Rn between v and w.

The number of vertices of the OVG |Vo| ∈ O(n2) with n being the number of nodes
of the input graph G, as shown in Lemma 4.1. Furthermore Lemma 4.2 also shows, that
there is a family of OVGs with |Vo| ∈ Θ(n2). Additionally, the number of edges |Eo| is no
higher than 4 · |Vo| because a vertex may only have up to four neighbours and therefore
|Eo| ∈ O(n2) as well.
Based on this definition, the OVG can be created using the following steps:

1. Creating vertices of VR and Vp.

2. Calculating interesting points and creating vertices of VIP .

3. Creating edges of the OVG.

Lemma 4.1. Let G = (V,E) be a given input graph with |V | = n nodes and OVG(G) =
(Vo, Eo) the corresponding OVG. Then the number of vertices of the OVG |Vo| ∈ O(n2).

Proof. Since the OVG is a subgraph of the complete grid graph it is sufficient to show,
that the number of vertices of the complete grid graph |Vg| ∈ O(n2). Because the complete
grid graph is constructed by creating a vertex at every point in X×Y , X and Y defined
as above, the number of its vertices |Vg| = |X| · |Y |. Therefore it is also sufficient to show
that |X|, |Y | ∈ O(n).
Let pmax be the maximum number of ports of any node v ∈ V . Then k = pmax + 2 is
an upper boundary for the number of different x-coordinates of any vertex v, which we
define as the number of different x-coordinates of the ports and rectangle corners of the
corresponding rectangle Rv of v. This leads to k · n ≥ |X| and therefore |X| ∈ O(n).
Showing that |Y | ∈ O(n) can be done in exactly the same manner, since k is an upper
boundary for the number of different y-coordinates of any vertex v also. Because the OVG
is a subgraph of the complete grid graph |Vo| ≤ |Vg| = |X| · |Y |, and with |X|, |Y | ∈ O(n)
it is shown that |Vo| ∈ O(n2).

Lemma 4.2. Let G = (V,E) be an input graph for which no two node’s rectangles share a
x- or y-coordinate. Then the corresponding OVG = (Vo, Eo) has |Vo| ∈ Θ(n2) vertices.

Proof. Since Lemma 4.1 shows that |Vo| ∈ O(n2) it is sufficient to show that |Vo| ∈ Ω(n2).
We will do so by showing, that the number of interesting points |VIP | ≥ n2 for all n. For
every node v ∈ V the corresponding rectangle Rv has four different corner vertices in VR

that share two different x-coordinates and two different y-coordinates, which makes 2 · n
different x- and y-coordinates in total. For every two rectangles Rv and Rw we can find at

8

4.1. Creating the Orthogonal Visibility Graph

least two different interesting points p1 = (xv, yw) and p2 = (xw, yv), for cv = (xv, yv) and
cw = (xw, yw) being a random corner point of Rv and Rw, respectively. Since p1 and p2
share a x- and y-coordinate with rectangle corners of different rectangles, p1 and p2 are
interesting points by definition, unless there is a rectangle between either p1 and cv, p1
and cw, p2 and cv or p2 and cw. But since no two rectangles of nodes v ∈ V share a x- or
y-coordinate, there can be no rectangle positioned between either or these points. This way
we can find at least one different interesting point for each combination of rectangles (also
see Figure 4.1), of which there are n2 different combinations. So we can conclude, that for
an input graph G like this there are at least n2 interesting points, which leads to at least
n2 vertices for OVG(G), from which |Vo| ∈ Ω(n2) and |Vo| ∈ Θ(n2) follow directly.

Figure 4.1.: All rectangles and interesting points of a simple sample graph.
Rectangle corners in grey, interesting points in yellow

Creating Vertices of VR and Vp

Transferring the nodes and ports of the input graph into vertices of the OVG is fairly
simple. For each node in the input graph we take the coordinates of its corners and add
four vertices with these coordinates to the OVG. The ports are just transferred directly by
creating a vertex in the OVG with the same coordinates for every port.

Calculating Interesting Points and Creating Vertices of VIP

The remaining vertices are to be created at every point which is an interesting point of the
OVG’s input graph G. We create them by casting a ray into each of the four orthogonal
directions for every vertex in VR ∪ Vp. These rays go on until they either hit a rectangle,
another vertex or the bounding box of the graph. A vertex may also have less than four rays,
which happens when the vertex is situated directly on the border of one of the obstacles
mentioned above. For example, a port situated at the side of a node’s rectangle may only
have up to three rays, since no ray may pass through the rectangle. Lastly, for our set of
rays L, we then go through every element (r1, r2) ∈ L×L with r1 6= r2 and intersect r1 and
r2 if possible. Should both rays intersect we identified an interesting point of G and create
a vertex at this position, which we then add to VIP . After identifying all interesting points
of G and adding a new vertex to VIP for each of them we add VIP to the OVG.

9

4. A Graph Drawing Model for Biochip Layouts

Creating Edges of the OVG

After we added the vertices of the OVG = (Vo, Eo) we proceed by adding the edges. We
create a planar graph by connecting each vertex to its closest neighbour in every orthogonal
direction. The only exception to this rule are neighbours on opposite sides of nodes. Since
there may be no edges that go through nodes, these vertices remain unconnected. The way
we do this is by going through all rays r ∈ L and then checking for each vertex v ∈ Vo if it
is on the ray. If v is on the current ray r we add it to a list ` of vertices on the current ray.
After we found all vertices on r we sort ` by x- or y-coordinate, for r being a horizontal or
vertical ray respectively. We then go on to create edges connecting each vertex v` ∈ ` with
the previous and the next vertex of ` and add these edges to Eo. All edges are created
with costs equal to their length.

Theorem 4.3. To a given input graph G = (V,E) with |V | = n we can construct the
OVG(G) = (Vo, Eo) in O(n3) time.

Proof. The first step we take in constructing the OVG is to create the vertices in VR and
Vp. For pmax being the maximum number of ports of any node v ∈ V and 4 the number
of corner vertices for every rectangle Rv, we need to create 4 + pmax vertices at most per
node in V . Therefore creating the vertices in VR and Vp can be done in O(n) time.

The next part of our algorithm is to find all interesting points of G and then adding a
vertex for each of them to the OVG. We do this by creating no more than 4 rays per vertex
in VR ∪ Vp, therefore the number of rays |L| ∈ O(n). Because of this, intersecting each pair
of different rays to find all interesting points of G is possible O(n2). Creating the vertex to
each interesting point and adding it to the OVG can then be done in constant time. So in
total the time needed to find the interesting points of G, create vertices at their positions
and add these vertices to the OVG is in O(n2).

Our last step is to create the edges connecting the vertices of the OVG. For this we
first go through the rays found in the last step and then search the vertices of the OVG
for all vertices that are positioned on each ray. As shown above there are O(n) rays and
we know the number of vertices in the OVG is in O(n2) (see Lemma 4.1), which means
the time needed to go through all vertices once for every ray is in O(n3). Since every ray
can intersect each other ray once at most, the number of vertices on a ray is in O(n), so
the time needed for sorting the vertices on each ray once is no longer than O(n3). Lastly,
creating the edges for every ray is in O(n2), since it is done once per ray, creating an edge
can be done in constant time and it is done less than twice per vertex on the ray.

This leads to a total running time of (O(n) + O(n2) + O(n3)) ∈ O(n3), if adding up
the time needed for the first, second and third step.

Adding and Connecting Node-Vertices

The OVG in its original form is now complete. However, to simplify node-to-node connection
routing, we extend the OVG concept by adding another set of vertices, which we call node-
vertices. There is one node-vertex per rectangle and it is connected to all of the rectangle’s
ports. This simplifies node-to-node connection routing, since it allows us to represent the
input graph’s edges as connections between node-vertices instead of connections between
ports. This way connections using all ports of the node are considered when choosing the
cheapest routes in the OVG to identify the input graph’s edges with. Strictly speaking this
modified graph is not an Orthogonal Visibility Graph anymore, but we will still reference
it as such for convenience.

10

4.2. Routing Edges using the OVG

Figure 4.2.:
To the right a simple input graph’s rectangles and ports,

to the left the corresponding OVG. Node-vertices in red, ports in blue,
rectangle corners in green and interesting points in grey.

4.2. Routing Edges using the OVG
Based on the OVG constructed as described above we can now start to incrementally
compute a channel routing. We do this by modelling the crossing minimization problem
as shortest path problem and then use Dijkstra’s shortest path algorithm to solve it.
Given an edge e = (v1, v2) of the input graph, we first identify the node-vertices s and
t as corresponding source and target vertices of the OVG, with s being the node-vertex
representing the node v1 and t being the same for v2. We then use Dijkstra’s algorithm to
find the cheapest route Re connecting s and t in the OVG with a metric that depends on
the accumulated length of Re and the number of crossings with routes of previous edges.
There can be no crossings with previous routes for the first edge’s route, but after we
identified at least one edge with a route in the OVG, we will need to modify the OVG so
it retains the quality that the cheapest route causes the minimum number of crossings.
So after picking a route, every other route that crosses it should be more expensive. We
achieve that by locally rebuilding our graph around the chosen route in a way that makes
crossing it expensive, whilst all other costs remain unchanged. For simplicity we will
continue to reference the changed graph as OVG.

We call our local rebuilding process route splitting, and the resulting graph has the
following quality: For every route R there is a set of edges CR, so that any later route R′
uses an edge of CR if and only if R′ crosses R. We call the edges of CR tunnel-crossing
edges for every route R. This allows us to easily regulate the cost of crossing another route
by assigning our desired crossing costs to these tunnel-crossing edges. For this we modify
our graph every time we choose a new route.

Splitting the route works as follows (also shown in Figure 4.3): For a given input graph
edge e = (v1, v2), the corresponding node-vertices s for v1 and t for v2 and the route Re

we define VR = (s, w1, w2, . . . , wk, t), the vertices on the route in the order they are passed
through. Similarly, we define ER = (e1, e2, . . . , ek+1) the edges of the route in the order
they are passed through, so e1 = (s, w1), e2 = (w1, w2), . . . , ek+1 = (wk, t). We then mirror
Re twice by creating R′ and R′′ with V ′R = (s, w′1, . . . , w′k, t) and V ′′R = (s, w′′1 , . . . , w′′k , t)
with corresponding edge lists E′R and E′′R. For this we create the new vertices w′i and w′′i
to every vertex wi ∈ VR and also the edges e′i and e′′i to every edge ei ∈ ER. This gives us
three different paths from s to t, namely Re, R′ and R′′.

The next step is to go through all wi ∈ VR one by one and copy their edges that are not
part of Re. We know that a given vertex wi ∈ VR is part of two edges ei and ei+1 ∈ ER.
So when going around wi in clockwise order, we call the edges between ei and ei+1 the

11

4. A Graph Drawing Model for Biochip Layouts

top edges of wi and the edges between ei+1 and ei the bottom edges of wi. For each edge
et = (wi, wt) in the set of top edges of wi we then create a new edge e′t = (w′i, wt) and
for each edge eb = (wi, wb) of the bottom edges we create a new edge e′′b = (w′′i , wb). All
newly created edge up to this point retain the costs of their original edges. Afterwards
we create the tunnel-crossing edges for Re by connecting w′i of R′ and w′′i of R′′ for every
i ∈ {1, . . . , k} with completely new edges that are assigned the desired crossing costs. For
example the crossing costs can be chosen, so that the cheapest path from s to t is also a
crossing-minimal (as shown in Theorem 4.4). Lastly we delete Re from the OVG, since it
has been replaced by R′ and R′′.

Figure 4.3.: Example of the route splitting step.

Theorem 4.4. The cheapest path from a given source s to a given target t in the OVG =
(Vo, Eo) is crossing-minimal regarding the current drawing of the OVG, if the crossing costs
are set to m · `max where m = |Eo| is the number of edges of the OVG and `max the length
of the longest edge in Eo.

12

4.3. Transferring the routing

Proof. For a given OVG constructed as described above let the costs of all tunnel-crossing
edges be equal to m · `max, with m being the current number of edges in the OVG and `max

the longest edge in the graph. Lemma ?? shows that a route R crosses a previous route
R′ if and only if R uses a tunnel crossing edge of R′ as added during the route splitting
step as described above. Let us also assume we have already chosen at least one route. We
can do this because as long as there are no previous routes chosen every route has the
minimum number of crossings. Now, whenever we want to connect two new vertices s and
t, Dijkstra’s algorithm attempts to find a cheapest route in the graph that connects the
current source s to the current target t.

Since any route that contains an edge twice must contain a cycle it cannot be a cheapest
path between s and t. This is true, because all edges cost at least 1, which makes the same
route just without the cycle cheaper. Also, because no shortest route contains any edge
twice, no shortest route contains more edges than the graph.

This means, that the highest cost a shortest 0-crossing route may have is (m− 1) · `max.
To elaborate on that, every non-crossing edge costs `max at most and are m edges in the
graph, but at least one of them is a tunnel-crossing edge because we have already chosen
at least one route and rebuilt the graph around it. Which leaves m − 1 edges at most
that are not tunnel-crossing edges. Now, since every 1-crossing route contains at least one
tunnel-crossing edge, its cost are at least m · `max. Which makes even the most expensive
0-crossing route cheaper than the cheapest 1-crossing route.

This also makes the most expensive n-crossing route cheaper than the cheapest route
with n + 1 crossings. Because given a partial route with n crossings, taking every non-
tunnel-crossing edge left in the graph always costs less than m · `max, the cost of adding
an additional crossing edge. Therefore, if there is a way to finish a partial route with n
crossings without adding another tunnel-crossing edge, it is always cheaper than to increase
the crossing count.

Lemma 4.5. For a given OVG, let R be a route of edges of the OVG and C be the set of
tunnel-crossing edges of a previous route Rp. Then R′, the route representing R before the
OVG was rebuilt around Rp, crosses Rp if and only if R contains an edge of C.

Proof. Let Gp be the OVG containing Rp and G the same OVG after executing the route
splitting step around the route Rp. Further let C be the set of tunnel-crossing edges of
Rp in G and R′ a route that crosses Rp in Gp. We also define V ′R = (s, v′1, v′2, . . . , v′k, t),
the vertices of R′, and E′R = (e′1, e′2, . . . , e′k+2), the edges of the R′, both in the order they
are passed through from the source vertex s of R′ to it’s target vertex t. Lastly let v′c,
c ∈ {1, . . . , k}, be the vertex that Rp and R′ share. Then R, the route that represents R′
in G, can be found by substituting v′c of V ′R with vc′ and vc′′ , the vertices that replace v′c
in G. Since vc′ and vc′′ are connected by the tunnel-crossing edge c ∈ C the route R is
contiguous when the sequence e′c = (v′c−1, v

′
c), e′c+1 = (v′c, v′c+1) in E′R is substituted by the

sequence ec′ = (v′c−1, vc′), c, ec+1 = (vc′′ , v′c+1). Which proves, that if R′ crossed Rp before
the route splitting step was executed, then R contains a tunnel-crossing edge c ∈ C.

For the following part let us assume that R′ does not cross Rp in G′. Then all vertices
and edges of R′ still exist in G so R = R′ and since R′ does not contain a tunnel-crossing
edge, neither does R.

4.3. Transferring the routing
The final step of this algorithm is to transfer the routing on the OVG, found as described
above, to a valid output layout as defined in the modelling section 2. This can be done
easily for a given input graph G = (V,E) by identifying each edge e ∈ E with its route Re.
Since Re exactly specifies the horizontal and vertical segments of e, the drawing of G that
is the output layout can be obtained by drawing each edge according to its route.

13

5. Evaluation

In this section we want to take a look at how our algorithm performs on some realistic test
data, kindly provided for us by Prof. Tsung-Yi Ho from National Cheng Kung University,
Taiwan. This test data consists of 11 different input graphs, G1 to G11, which all share the
same set of 110 nodes (10 storages and 10 mixers for each of the storages) but differ in
their connections and especially the degree of interconnection between mixers that belong
to different storages. To be more precise every mixer is connected to its storage in each of
the input graphs, while the number of connections between mixers ranges from 3 in G1 to
90 in G11. A picture of how an output layout may look like for each graph can be found in
Appendix A.

We implemented our algorithm using the Java programming language and Java SE
7u55, JDK 1.7 and the Jung2 framework for working with graphs. All runs were performed
on a home computer with an Intel Core i5 CPU @3.00 GHz and 8 GB DDR3 RAM. The
operating system was Windows 8.1.

The soft constraints we are trying to optimize are the crossing number of our output
layout and the total edge length of all edges used in our routing. We also track the execution
time of our algorithm. It should be noted that using the Jung2 framework introduced
some randomness into the basically deterministic algorithm, which is why all given crossing
numbers and total edge lengths will be averages of 20 runs on the same input graph using
the same parameters.

As for parameters, we will present results of the algorithm using different crossing
costs, ranging from 1 to a value cmax that is set to what we proved to guarantee crossing
minimal routes (also see Theorem 4.4 for this input graph. We then multiply the difference
between our minimum and maximum value by a crossing cost multiplicator and add it to
our minimum value of 1. This way a multiplicator of 0 means our crossing cost are set to
1, while with a multiplicator of 1.0 our algorithm uses cmax as crossing costs. With this we
basically set the importance of crossing minimization versus edge length optimizing, as the
crossing costs basically determine how much additional route length is one more crossing
is worth. So high crossing costs focus our algorithm primarily on crossing minimization,
while lowering them shifts the focus away from crossing minimization and more towards
edge length optimizing.

Figure 5.1 shows the typical characteristica of our experimental results (for more see
the Appendix A), based on input graph G6 (also see Figures 5.2, 5.3). As can be seen, the
crossing number begins to drop significantly at first, then slows down and continues to
converge against the minimum crossing number. As expected, the graphs for total edge
length of the output layout and execution time of the algorithm look almost identical.

15

5. Evaluation

1

10

100

1000

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

C
ro

ss
in

g
N

u
m

b
er

Crossing Cost Multiplicator

Crossing Numbers of Graph G6

5000

5500

6000

6500

7000

7500

8000

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

To
ta

l E
d

ge
 L

en
gt

h

Crossing Cost Multiplicator

Edge Lengths of Graph G6

3200

3300

3400

3500

3600

3700

3800

3900

4000

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

Ex
ec

u
ti

o
n

 T
im

e
in

 m
s

Crossing Cost Multiplicator

Execution Times of Graph G6

Figure 5.1.: Experimental results for G6

Both start of about their minimum, starts rising slowly at first, gets faster and then slower
again, as they converge against the maximum edge length and maximum execution time,
respectively. The reason for both of them looking so similar is, that the most time intensive
part of our algorithm is finding optimal routes using Dijkstra’s algorithm. And when using
Dijktra a longer route usually also takes longer to find. Please note that the crossing
number is shown on a logarithmic scale, as is the crossing cost multiplicator but not the
total edge length and execution time. This means, that the curve in the crossing numbers
graph appears much more shallow than it would on a linear scale. On such a scale the
curve would be much steeper.

16

All in all it can be said, that our results are exactly as expected. A low crossing
cost modificator translates into more crossings but less total edge length. The number of
crossings drops a lot faster than the total edge length rises at every point, which makes it
worth it focusing on the crossing number for most applications of the algorithm, where
there are no strict total edge length requirements.

Figure 5.2.: Output layout for G6 with crossing cost multiplier (2/100)3 at the top and
(6/100)3 at the bottom.

17

5. Evaluation

Figure 5.3.: Output layout for G6 with crossing cost multiplier (8/100)3 at the top and 1
at the bottom.

18

6. Conclusion

Designs of microfluidic biochips are still done mostly manually. Especially the exact
component placement and efficient connector routing could be automated, making the
design of new chips cheaper and faster. In this thesis we present an heuristic algorithm
that can solve the connector routing problem within reasonable time.

For this our first step is to create the Orthogonal Visibility Graph of our input graph.
On the OVG we then calculate a routing with a small number of crossings by modelling
the problem as a shortest path problem and solve it using Dijkstra’s algorithm. Lastly the
routing we computed on the OVG is transferred to an output layout that specifies exactly
how each connection should be routed.

This algorithm is a first step to software design aides that can provide automated and
efficient component placement and connector routing functionality. It could be extended
to cover component placement and then used to improve existing software design tools, or
create new ones. Another possible extension of our algorithm would be to add additional
costs for bends or long connector routes, weighting the cost of an additional crossing against
a more simple output layout that is easier to understand.

Acknowledgements

We would like to express our gratitude to Prof. Tsung-Yi Ho and his associates from
National Cheng Kung University, Taiwan, for kindly providing us a lot of information and
explanations, including all of our testcases. We would also like to thank Dr.-Ing. Bastian
Rapp from KIT for meeting us to discuss microfluidic biochips and proding a lot of insight
into this topic. He also kindly provided us with some of the images in this thesis.

19

Bibliography

[CLC+11] Chin, Laksanasopin, Cheung, Steinmiller, Linder, Parsa, Wang, Moore, Rouse,
Umviligihozo, Karita, Mwambarangwe, Braunstein, van de Wijgert, Sahabo,
Justman, Sadr, and Sia. Microfluidic-based diagnostics of infectious diseases in
the developing world. Nature Medicine, 17:1015–1019, 2011.

[GJ83] Michael R. Garey and David S. Johnson. Crossing Number is NP-Complete.
SIAM Journal on Algebraic and Discrete Methods, 4:312–316, 1983.

[PSS08] Pelsmajer, Schaefer, and Stefankovic. Crossing Number of Graphs with Rotation
System. In Graph Drawing, volume 15 of Internatinal Symposium GD 2007,
pages 3–12, 2008.

[PW01] Pach and Wenger. Embedding Planar Graphs at Fixed Vertex Locations.
Graphs and Combinatorics, 17(4):717–728, 2001.

[RIBT13] Ryab, Inglis, Barber, and Taylor. Manifacturing and wetting low-cost microflu-
idic cell seperation devices. Biomicrofluidics, 7(056501), 2013.

[TMQ02] Todd Thorsen, Sebstian J. Maerkl, and Stephen R. Quake. Microfluidic Large-
Scale Integration. Science, 298:580–584, October 2002.

[TYLH13] Kai-Han Tseng, Sheng-Chi You, Jhe-Yu Liou, and Tsung-Yi Ho. A Top-Down
Synthesis Methodology For Flow-Based Microfluidic Biochips Considering Valve-
Switching Minimization. In Cheng-Kok Koh, Cliff C. N. Sze (eds.) International
Symposium on Physical Design, ISPD 13, pages 123–129, Stateline, NV, USA,
March 24-27 2013.

[WCH+13] Waldbaur, Carneiro, Hettich, Wilhelm, and Rapp. Computer-aided microfluidic
(CAMF): from digital 3D-CAD models to physical structures within a day.
Microfluidics and Nanofluidics, (20975), 2013.

[WMS10] Wybrow, Marriott, and Stuckey. Orthogonal Connector Routing. In D. Epp-
stein and E.R. Gansner (eds.) GD 2009, LNCS, volume 5849, pages 219–231.
Springer, Heidelberg (2006), 2010.

21

Appendix

A. Example Graph Routings and Plots

Figure A.1.: Output Layout for Graph G1, crossing cost multiplier of 1.
Crossing number = 0, total edge length = 3.257, calculating time = 3.593ms

23

6. Appendix

Figure A.2.: Output Layout for Graph G2, crossing cost multiplier of 1.
Crossing number = 0, total edge length = 3.414, calculating time = 3.837ms

Figure A.3.: Output Layout for Graph G3, crossing cost multiplier = 1.
Crossing number = 2, total edge length = 3.534, calculating time = 3.930ms

24

A. Example Graph Routings and Plots

Figure A.4.: Output Layout for Graph G4, crossing cost multiplier = 1.
Crossing number = 3, total edge length = 4.415, calculating time = 4.371ms

Figure A.5.: Output Layout for Graph G5, crossing cost multiplier = 1.
Crossing number = 5, total edge length = 5.394, calculating time = 4.998ms

25

6. Appendix

Figure A.6.: Output Layout for Graph G6, crossing cost multiplier = 1.
Crossing number = 16, total edge length = 7.165, calculating time = 5.485ms

Figure A.7.: Output Layout for Graph G7, crossing cost multiplier = 1.
Crossing number = 18, total edge length = 8.136, calculating time = 6.891ms

26

A. Example Graph Routings and Plots

Figure A.8.: Output Layout for Graph G8, crossing cost multiplier = 1.
Crossing number = 18, total edge length = 8.775, calculating time = 6.467ms

Figure A.9.: Output Layout for Graph G9, crossing cost multiplier = 1.
Crossing number = 19, total edge length = 7.600, calculating time = 6.415ms

27

6. Appendix

Figure A.10.: Output Layout for Graph G10, crossing cost multiplier = 1.
Crossing number = 18, total edge length = 7.203, calculating time = 5.972ms

Figure A.11.: Output Layout for Graph G11, crossing cost multiplier = 1.
Crossing number = 23, total edge length = 7.663, calculating time = 6.159

28

A. Example Graph Routings and Plots

1

10

100

1000

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

C
ro

ss
in

g
N

u
m

b
er

Crossing Cost Multiplicator

Crossing Numbers of Graph G3

3300

3350

3400

3450

3500

3550

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

To
ta

l E
d

ge
 L

en
gt

h

Crossing Cost Multiplicator

Edge Lengths of Graph G3

1

10

100

1000

0.000001 0.00001 0.0001

C
ro

ss
in

g
N

u
m

b
er

Crossing Numbers of Graph G6

5000

5500

6000

6500

7000

7500

8000

To
ta

l E
d

ge
 L

en
gt

h

Edge Lengths of Graph G6

3500

3600

3700

3800

3900

4000

Ex
ec

u
ti

o
n

 T
im

e
in

 m
s

Execution Times of Graph G6

2150

2170

2190

2210

2230

2250

2270

2290

2310

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

Ex
ec

u
ti

o
n

 T
im

e
in

 m
s

Crossing Cost Multiplicator

Execution Times of Graph G3

Figure A.12.: Experimental results for G3

29

6. Appendix

1

10

100

1000

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

C
ro

ss
in

g
N

u
m

b
er

Crossing Cost Multiplicator

Crossing Numbers of Graph G11

5000

5500

6000

6500

7000

7500

8000

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

To
ta

l E
d

ge
 L

en
gt

h

Crossing Cost Multiplicator

Edge Lengths of Graph G11

3200

3400

3600

3800

4000

4200

4400

4600

4800

0.000001 0.00001 0.0001 0.001 0.01 0.1 1.

Ex
ec

u
ti

o
n

 T
im

e
in

 m
s

Crossing Cost Multiplicator

Execution Times of Graph G11

Figure A.13.: Experimental results for G11

30

	Contents
	1 Introduction
	2 Problem Modelling
	3 Complexity
	4 A Graph Drawing Model for Biochip Layouts
	4.1 Creating the Orthogonal Visibility Graph
	4.2 Routing Edges using the OVG
	4.3 Transferring the routing

	5 Evaluation
	6 Conclusion
	Bibliography
	Appendix
	A Example Graph Routings and Plots

