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Abstract

Main subject of this paper are destination maps and their generation using software.
A destination map resembles a hand-made sketch, which purpose is to show a person
how to easily get to a fixed destination. Such maps achieve better readability by
including just the most important streets and places which directly help the reader
navigate to the end point. Our goal is writing an application that uses various
algorithms and as little as possible input and interaction from its user to create such
maps. Handpicking which elements should be in the destination map is probably ideal,
but also requires a lot of time and effort. This is why we believe in the usefulness
of an application, capable of analyzing the surroundings for any given point and
constructing such map based on different criteria. We are not the first ones to come
up with an automated solution for this problem and this paper contains some reviews
and references to previous work done on this topic.
After defining what a good destination map is according to us, we will describe
the whole process our application follows in order to achieve this result. The paper
presents each step of our creation process and reveals the algorithms and ideas
that stand behind it. The information flow follows the order of execution in our
application, making it easier to follow why and how each step is done.
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1. Introduction

A destination map is a special kind of map that usually covers small to medium areas in
size and as its name suggests focuses around a particular destination point. Such maps are
most likely to be seen on posters, visit cards and web sites and their main purpose is to
show the reader how to get to a particular address. Traditional street maps do contain all
the information needed to allow a driver or a pedestrian to get where he wants, but reading
them requires substantial amount of time and effort. By knowing the destination’s location
the map can be significantly simplified to contain just the streets that are most likely to be
used to get there. Such maps built around a pin-pointed location are called destination
maps and often resemble a hand drawn sketch. They are not required to be exact as long
as the deviation in them does not affect the navigation process. A good destination map
can be easily read and interpreted by a person. This is why containing simply shaped
routes and less unnecessary details is considered a big plus as long as it does not cause
confusion in the map reader. Usually destination maps cover areas not bigger than couple
of kilometers in diameter. Some examples created by Bing1 can be found on Figure 1.1.

Figure 1.1: Bing Destination Maps.

1Bing Maps App: Destination Maps http://www.bing.com/maps/?FORM=Z9LH3
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1. Introduction

Often people use handmade sketches to describe how to get to a familiar place to someone
else. While almost any such drawing can be classified as a destination map, our focus here
will be on professionally made destination maps. These can be created by painters and
graphic designers, but with the advance of technology, various algorithms and computer
programs capable of constructing them have emerged. This thesis describes one possible
approach for automated creation of destination maps by presenting a chain of underlying
algorithms and analyzing the results each of them produces. We have written a computer
program that implements these algorithms and give map data can produce a destination
map. It represents a prototype for testing our ideas and we will refer to it as our application.
Later in this paper we will analyze in depth how this computer application works and what
are the steps it take to create a destination map. More information about our prototype
along with some screen shots can be found in the examples chapter at the end of the
document.
An individually created destination map allows for unique selection of the roads being
displayed as well as hand made design that ensures visual pleasure and good readability,
but requires a substantial amount of work time from the person creating the destination
map. This is why we believe in the usefulness of an application that automatically creates
such maps in a matter of seconds. So our problem is determining a series of steps that
lead to a destination map that can compete with a hand made one in both usefulness and
readability and implement this steps into a prototype application. We are not the first ones
to come up with this idea, in 2010 Johannes Kopf et al. [KAS+10] published his vision of
automated destination map creation. The process described there can be generalized in
three major steps: road selection, road simplification, drawing of the map. Our application
for destination map creation also follows these three major steps, but implements them in a
different way than Johannes Kopf did using a unique combination of underlying algorithms.
The road selection is the first one and is done with the help of shortest paths algorithms
and evaluation of each street. It determines the selection of routes being displayed in the
map and is the foundation on which the next two steps operate. The path simplification
sacrifices detail in order to make the shape of each route that leading to the destination
simpler. This is crucial, because it increases readability and helps the map reader easier
navigate and remember which streets to take by presenting them with a less complicated
curve. The last step is to visualize the resulted graph layout as a sketch. We believe that
a destination map created following this model can be worthy rival of a hand made one.
The next chapters describe the algorithmic blocks used in our application and follow its
work flow by explaining each move it makes toward the final goal - the destination map.
There is no constraint on the size of the area on which the application operates, but it
usually is not bigger than a country or a vast region. The actual destination map covers a
smaller area in this region which is usually a couple of kilometers wide (normally 3-20km,
but can go up to 100-200km and more if the user wants). Depending on this size the steps
take different amount of time to complete which rarely exceed a couple of seconds. This is
completely satisfying when you consider how long it takes to create a hand-made map.
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2. Related Work

This chapter will briefly outline previous attempts for constructing an automated desti-
nation map tool and any important work considered connected to this project. When we
started with the project, there was already a number of computer programs, mostly online
applications, capable of creating a destination map or something similar to one 1 2 3. One
of the most popular and the one that we will review here closely was created by Johannes
Kopf at al. The paper describing how they approached this problem is called Automatic
Generation of Destination Maps [KAS+10] and achieves very good results when compared
to actual hand-made destination maps. Their solution breaks down the problem into three
smaller subproblems and handles them separately:

1. Selecting the relevant subset of roads.

2. Road simplification and improvement.

3. Actual drawing of the map and using textures to improve visual comprehension.

Their first step aims to select a subnetwork of roads that are more likely to help reach the
given destination. These three steps describe the approach:

• Visibility rings: They first compute concentric rings of highways, arterials and
residential streets around each destination. These visibility rings form the hierarchy
associated with navigation to a destination.

• Traversable routes: To produce complete traversable routes, we use a shortest path
algorithm to connect the rings to the destination. We also connect all highways
entering the boundary area of interest to the destination.

• Road extension: Some selected road segments are extended to provide additional
context. For example, if two disjoint segments of the same road have been selected,
we add the segments between.

The second step, which is responsible for improving the layout of the selected subnetwork
of roads, defines an energy function to do so. This function defines the cost of a layout and
is calculated as a weighted (with coefficiets) sum of 5 terms. For a complete explanation of

1Bing treasure maps: http://blogs.bing.com/maps/2010/12/09/destination-maps-for-your-holiday-new-
years-parties/

2Scribble maps: http://www.scribblemaps.com/
3Google map maker: http://www.google.com/mapmaker
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2. Related Work

these function and its terms please refer to [KAS+10, page 6]. The first term punishes a
false intersection and increases the cost of the function if the distance between two edge
that do not intersect becomes too small. The second term forces each edge to maintain a
minimum length on the screen. The next term makes sure the length of every edge stays
relative to the surrounding edges and thus help keep the visual ration of the whole sketch.
The last two remaining terms keep the orientation of each edge in the layout by punishing
deviations and wrong angles. After having this energy function defined and a start layout
produced by the previous subnetwork selection they aim at finding a local minimum for
this function and thus providing a better view for the reader over the selected subset of
roads.
Their final step is to draw the actual map. The approach they take is to draw the subnetwork
along with some additional detail included. For example, water or street names. A variety
of different texture sets allows for differently looking drawings of the same subnetwork of
roads. This makes the generated maps aesthetically pleasing and gives variety of options
so that the map can be matched to its purpose.
The approach used by Johannes Kopf at al. can be summarized in three major steps: road
selection, road simplification and drawing. This exact model is used by most automated
tool for generating special purpose maps, but by putting different ideas and algorithms
behind each step, one can shift the focus of the map and get very different results.

2.1 Force Based Graph Embedding
Our approach to improve the street layout4 on the destination map is inspired by spring
embedder techniques and force based graph drawing algorithms. These algorithms are
usually used to force a graph to spread over a certain area and thus improve its visual
representation. One of the first examples of a spring embedder is the 1984 algorithm
of Eades [Ead84]. It uses a mechanical model where vertices are replaced by steel rings
and edges are represented by stretched strings. After being placed in some initial layout
the springs forces move the rings so that the energy of the whole layout is minimized.
The spring forces are implemented by defining attractive and repulsive forces between the
vertices. The size of these forces depends on the distance at which the vertices currently
are and the size of the available place where the graph is being drawn. The idea is that
vertices that are connected with an edge and are further away should attract each other in
order to minimize the edge’s length. Vertices not connected with an edge should repel each
other. This is done by defining repulsive forces between such vertices and aims to make
the graph spread and use the available space given efficiently.
This idea is further developed by Fruchterman and Reingold in 1991 [FR91]. The attractive
(fa) and repulsive (fr) forces in their embedder are defined as follows:

fa(d) = d2/k, fr(d) = −k2/d,

where the variable d is the distance between the two vertices and k is defined as:

k =
√

available area
number of vertices

and is referred to as optimal pairwise distance. These embedders work by starting at some
initial layout that is most likely not optimal and can be significantly improved. They
achieve this by calculating the energy for the current layout as sum of the forces applied at
each vertex. By performing a number of iteration they aim to minimize the whole energy
of the layout and thus provide a aesthetically pleasing distribution of the vertices. At each

4Under street layout we understand a graph representation in a 2D euclidean plane.
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2.2. Path simplification

iteration the forces are newly calculated at each vertex, which is then displaced (moved) a
little according to the direction and the strength of these forces.
The spring embedders and force based graph layout algorithms have developed greatly as
of today. There exist many variations that involve using different forces, predefined rings,
k-centers approximation, predefined local neighborhoods. A summary of these techniques
and algorithms is provided by Stephen G. Kobourov in his Spring embedders and Force
Directed Graph Drawing Algorithms from January 2012 [Kob12].
Most of the spring embedding algorithms presented in Kobourov’s paper operate on
unweighted graphs and just aim to spread the graph efficiently by starting at some initial
layout that is randomly generated (vertices are placed at random locations and edges
are drawn as lines between them) and we cannot say much about this initial state. This
presents a difference with our line of work. Our graph layout consists of points (vertices)
and streets (weighted edges) and already finds itself in a reasonably good state, since
they are not placed randomly. We can’t apply the force embedders reviewed by Kobourov
directly, because they are not designed to work on such special case and would change the
graph layout in an unexpected way. Vertices and edges should not be moved/altered too
aggressively and the initial layout shape should be preserved. We achieve this by changing
the model a bit and defining our forces in such a way that they work for weighted graphs.
Most spring embedders just aim to place the vertices in some efficient way, but our task
demands that we keep the initial shape of the map and that vertices keep their relative
position according to adjacent vertices. This is important because, after all the destination
map is used for navigation and must not deviate from the real map up to a point where it
is no longer useful. We achieve this layout transformation by defining forces and iteratively
adjusting vertices according to these forces.

2.2 Path simplification

In order to achieve simplicity and make our map easier to read we are going to need a path
simplification algorithm that transforms an embedded path in the plane into a similar one
with less detail (less lines). As Andreas Gemsa et al. state in the paper "On d-regular
Schematization of Embedded Paths" [DGN+14] the problem of path simplification in the
field of cartography is well studied and one of the most popular solutions is presented by
Douglas and Peucker [DP73]. This algorithm, also known as the split-and-merge algorithm,
takes as input a polyline (a continuous line composed of one or more line segments with
points at the end of each segment) and returns a simplified curve that contains only a
subset of the points defining the original one. The algorithm the the divide and conquer
technique and works as follows:
The algorithm accepts all points from the polyline and automatically marks the first and
the last one to be kept. It then analyzes the points between the first and the last one and
selects the one that is furthest from the line segment defined by these two end points. If
this distance is smaller than a predefined ε then all points except the first and the last
can be discarded and the polyline can be represented just by the line between the two
endpoints. However if the distance is greater than this ε the furthest point is included in
the simplification and the same procedure is called recursively for the two sub-polylines in
which the original polyline is divided by this point. So in this case the algorithm calls itself
one time with the start point and the furthest point and another time with the furthest
point and the end point (thus marking the furthest point as kept). The naive algorithm
implementation has a worst-case complexity of O(n2)).
The Douglas-Peucker algorithm is a classic example of a polyline simplification algorithm
that provides approximation of the original line. We have chosen to use a similar algorithm
with a different criteria that say which inner points from the polyline get removed. The
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2. Related Work

idea is to measure the area difference between the actual polyline and the approximated
one. The algorithm is described in Chapter 6.
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3. Preliminaries

In this chapter we summarize the algorithmic knowledge and the terminology needed to
understand the mechanisms and solutions described in the next chapters.

3.1 Graph related knowledge

The reader is expected to have basic knowledge of graph theory. Our main focus will
be Dijkstra’s algorithm [Dij59] because later on we are going to use a slightly modified
version of it. Dijkstra’s algorithm operates on a weighted, oriented graph, which is defined
as G := (V,E, ω). In this definition V represents the set of vertices, which are also
sometimes called points. The set E represents the edges between the nodes. An edge
e = (v1, v2),where v1, v2 ∈ V is simply a pair of two nodes and denotes that there is
a connection from the first to the second one. The last component gives our graph its
’weighted’ property and is a cost function ω → R≥0 which assigns a numerical value to every
edge. Generally the cost function does not have to be non-negative, but for convenience
reasons and the fact that our graphs will all have non-negative edge costs, we will assume
that ω is not negative. This property is also required for the next algorithm to operate
correctly.

3.1.1 Dijkstra’s algorithm

Dijkstra’s algorithm [Dij59] was introduced and published in the 1950s by Edsger Dijkstra
as a solution to the single-source shortest path problem. For given graph G = (V,E, ω) and
a source vertex s ∈ V , this algorithm computes the shortest paths from this initial vertex s
to every other reachable vertex in the graph. Dijkstra’s algorithm starts its computation
at the source vertex s and maintains two functions: dist and pred. The dist: V → R≥0
function returns for every vertex the minimal length of the path from the source vertex
to this vertex found so far. If no path to a certain vertex v ∈ V is jet discovered, then
dist(v) =∞. Note that the values of the dist function change throughout the computation
as new paths are discovered or as old ones are improved. As the name itself implies, the
pred:V → V function gives for each vertex its predecessor on the shortest path from the
source vertex to it. The pred function is only used to reconstruct the found shortest paths
as sequence of nodes and edges. Consider:

s→ v1 → v2 → · · · → vk−1 → vk

7



3. Preliminaries

to be the shortest path from s to vk, then:

dist(vk) = ω(s, v1) + ω(v1, v2) + · · ·+ ω(vk−1, vk)

and
pred(v1) = s, pred(v2) = v1 . . . pred(vk) = vk−1

Algorithm 3.1: Dijkstra
Input: Graph G = (V,E, ω), source node s
Data: Priority queue Q
Output: Distances dist(v) for all v ∈ V , shortest-path tree of s given by pred(·)
// Initialization

1 forall v ∈ V do
2 dist(v)←∞
3 pred(v)← null

4 Q.insert(s, 0)
5 dist(s)← 0

// Main loop
6 while Q is not empty do
7 u← Q.deleteMin()
8 forall (u, v) ∈ E do
9 if dist(u) + ω(u, v) < dist(v) then

10 dist(v)← dist(u) + ω(u, v)
11 pred(v)← u
12 if Q.contains(v) then
13 Q.decreaseKey(v, dist(v))
14 else
15 Q.insert(v, dist(v))

Before Dijkstra’s algorithm starts its computation the initial values of the functions dist
and pred are defined as follows (lines 1-5, algorithm 3.1):

dist(s) = 0 and dist(v) =∞, for every v ∈ V, v 6= s

pred(s) = −1 and pred(v) = null, for every v ∈ V, v 6= s

At the start of each iteration the algorithm choses a node p ∈ V so that:

• p has not been chosen in any of the previous iterations

• dist(p) 6=∞

• the dist(p) value is the smallest among all vertices that fulfill the previous two
requirements

We are going to call p an update-vertex for the current iteration (line 7, algorithm 3.1).
It is easy to see that on the first iteration the update-vertex is always s, because it’s the
only one with dist 6=∞. Furthermore every vertex is chosen to be update-vertex at most
one time. After we have selected p as the update-vertex for the current iteration it is then
certain that the value of dist(p) equals the cost of the shortest path between s and p in
our graph G and cannot be improved anymore. In practice, this property is often used to
terminate execution earlier and avoid unnecessary computations.

8



3.2. Geometry and computation

The iteration is then completed by updating the values of the dist and pred functions(lines
8-15, algorithm 3.1). We do this by iterating over edges (p, q) ∈ E and updating our sets
as follows:

dist(q) = min (dist(q), dist(p) + ω(p, q))

If we have improved the value of dist(q) by using the edge (p, q), then we also set p to be
the predecessor of q:

pred(q) = p

The algorithm terminates if no update-vertex can be selected in the current iteration. As
we stated above at each iteration we choose an update-vertex and every vertex can be used
only once as update-vertex. This gives us |V | iterations at most. On each iteration we have
to select this update-vertex, which can be done in O(log(|V |)) steps by using a min-heap
to efficiently find the smallest among all elements of the dist set. The update phase which
is then executed examines every outgoing edge and therefore requires at most |E| steps.
Because of the fact that each edge is examined only once we get the amortized running
time of O(|E|+ |V | · log(|V |)). This running time is possible due to Fibonacci heaps and is
first presented by Fredman and Tarjan in 1984 [FT87].

3.2 Geometry and computation

The reader is expected to have basic knowledge of simple geometry objects (points, vectors,
angles), coordinate systems and different computations and operations connected with
them. In our course of work we will only use two dimensional coordinate systems. A point
in such a coordinate system is defined by two coordinates: (x, y). They uniquely determine
a point’s position. A vector is a geometric object that represents a direction and is defined
by a single point from our coordinate system: ~v = (x, y). It can be seen as a ray from
the origin of the coordinate system to this point. Each vector has a length, which we will
denote with |~v|. If you have two points p = (x1, y1) and q = (x2, y2), then the vector from
p to q is computed as ~pq = (x2 − x1, y2 − y1). Assuming ~a = (xa, ya) and ~b = (xb, yb) are
vectors, here are the basic operation on them:

• The length is given by |~a| =
√
x2

a + y2
a

• Scalar product (also known as dot product):

~a ·~b = xaxb + yayb

If the angle between the two vectors is donated by θ, then the following equation
holds:

~a ·~b = |~a||~b| cos(θ)

• Normalization is the process of setting a vector length to 1 by scaling its coordinates. It
is simply done by calculating the vector’s current length and dividing each coordinate
by this length.

~a
normalize−−−−−−→

(
xa

|~a|
,
ya

|~a|

)
The normalized vector of the vector ~a is expressed as â.
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3. Preliminaries

3.2.1 Latitude and Longitude, Haversine Distance

The (Latitude, Longitude) pair uniquely defines a position on the earth’s surface and allows
us to effectively distinguish between different places around the globe in the context of
coordinate systems. In our course of work this pair is mostly used to locate and display
important nodes from the traffic network in our area of interest.
Another application for the (Lat, Lon) pair is the Haversine distance formula.

dHav := 2R arcsin
(√

sin2
(
φ2 − φ1

2

)
+ cos (φ1) cos (φ2) sin2

(
λ2 − λ1

2

))

Where:

• (φ1, λ1) and (φ2, λ2) are the (lat, lon) coordinates of the two points

• R is the radius of the sphere, in our case it is the earth’s radius

The formula above gives the surface distance between two points located on the surface of a
sphere. Since the earth is not a perfect sphere this formula is not completely accurate, but
the error is almost negligible and the approximation delivered by the haversine distance
formula is better than the one given by euclidean distance.
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4. Modeling

Our main task is to show the best ways to get to a certain destination, so before actually
stepping into solving this problem we needed information on the roads around our point
of interest. This will allow us to extract and bring up the best routes leading to our
destination. In this chapter you will learn where our road information comes from, how is
it extracted and turned into a graph representation of the form G = (V,E, ω). This part
serves as an introduction and basis for the algorithms and ideas we are going to use later
on.

4.1 Data representation and internal constructs
The very first step our solution requires is importing road information about a certain
region in the world. This region can vary in size and be as small as a single city or as large
as several countries or continents. All the road information we need about this particular
area we operate on is stored in raw data files and is imported at the very start, every time
the application is run. The files mirror the internal graph representation and allow us to
quickly build up our road network.

4.1.1 The Road Network
The road network can be viewed as a graph representation of our area of interest. The
formal definition of this term is the same as the one we gave for a graph in the previous
chapter - (Road Network := (V,E, ω)). It contains all road information we have on the
region of interest. Crossroads, road twists and road turns are all represented by vertices,
while streets are modeled as edges between those vertices. In our case it is important for
the edges to be directed, because sometimes street allow movement only in one direction
and we need to be able to reflect that. Here are the building blocks and special features of
our road network:

• Vertices: they represent crossroads, junctions and help shape road twists. Our
destination point, for example, is always a valid vertex in our road network.

1. Latitude, Longitude - each vertex has a unique (lat, lon) pair, which allows it to
be displayed on the world map using the Google Map API 1. This pair is also
used later on when calculating the picture coordinates needed for drawing the
actual destination map.

1The Google Maps API is a programming interface for working with maps
https://developers.google.com/maps/?hl=de
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4. Modeling

• Edges: these represent streets from our region of interest as connections between
valid vertices. Here are the most important properties of an edge:

1. Direction - just as we mentioned earlier the edges in our graph are directed,
but they are also additionally classified as forward or backward. This means
that if the forward edge v → w exist then our road network also contains the
corresponding backward edge w ← v. This additional property of our graph
representation is needed for the modified version of the Dijkstra’s algorithm.

2. Network Level - each edge is assigned an integer value from 1 to 8 which represents
the road category (for full description of road category see Appendix??). From
now on we will call this number network level. Smaller values like 1 or 2 state
that the road is large and important (highway or motorway for example). As
the network level gets larger the roads get less important. Very small residential
or access roads have network level values of 7 or 8. This edge attribute just
represents the road classification by size in our road network. The network level
corresponds to the highway tag for streets in the Open Street Map Model 2.

3. Weight - the cost to traverse an edge e is calculated by the following formula:

ω(e) = max
(

3.6
(
dH(e)
Vmax

)
, 1
)

where:

– dH(e) is the haversine distance between the two ends of the edge

– Vmax is the maximal velocity allowed to traverse this edge. This value is
given and extracted from the OSM model as maximal speed for a Way.

As you can see above, the minimal cost for traversing and edge in our road
network is 1. We have done this to In the early stages of the project we used
just the formula above. After testing and assessing the results, we realized that
sharper distinction between the different network levels could lead to simpler
and easier routes. We implemented this enhanced distinction by adjusting the
cost of an edge to depend on its network level. This is the final version of the
cost function our road network uses:

ωnetlvl(e) = ω(e)
(

1 + cnetlvl
networkLevel(e)

2

)
where:

– cnetlvl is a constant determining the magnitude of the distinction. It is given
by the user and varies from 0 to 2, where 0 means ωnetlvl(e) = ω(e)

– networkLevel(e) is a function giving the network level value for a certain
edge from the road network.

2highway tag of OpenStreetMap Way http://wiki.openstreetmap.org/wiki/Key:highway
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4.2. Open Street Map parser

4.2 Open Street Map parser
The raw data files we talked about in the previous paragraph contain all the information
needed to build our road network and are the only thing our application needs as input in
order to do its work. The only problem was they didn’t exist at the start. We basically
needed to read the road information from somewhere else and parse it to our file format.
This step is done just one single time, but it’s of great importance, because it determines
the quality of the data we work with. Comparing some proprietary transport data and the
one available at Open Street Map 3 we found out the second one was more up-to-date and
contained better street classification. We decided on using the OSM data, because road
categorization is a very important aspect when it comes to determining which routes to
our destination are good and which should be avoided.
The next step was pretty clear - we had to build a parser that reads the formats provided
by OSM (.pbf and .osm) and saves the road information we need into our file format. The
parser itself is very simple and can only be operated via a command line interface. In order
to read the files provided from OSM, we use the ReadOSM API 4. It works by reading
all elementary items composing the OSM model - Nodes, Ways, Relations and Info-tags.
Then it stores these in a database using temporary tables and allows the user to access the
stored information via specially defined functions.

3Open Street Map is an open source map of the world. http://www.openstreetmap.org
4ReadOSM is a C/C++ API for accessing Open Street Map data. https://www.gaia-

gis.it/fossil/readosm/index
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The problem we are going to solve in this chapter is the selection of the routes that are
going to be included in our destination map. Formally, this can be expressed in extracting a
much smaller sub-graph G′ = (V ′, E′) from our road netowrk G = (V, E). This new graph
G′ represents a road selection, that is focused on the destination point and shows various
ways for reaching it. We compute the sub-graph G′ by evaluating our road network carefully
and selecting just a few streets we consider important and relevant to our destination. This
selection should provide a subnetwork just big enough to contain the fastest and simplest
way to reach the destination, while avoiding unnecessary details. Having too much details
presented brings our destination map closer to an actual map can hurt its readability
and effectiveness. We compute this selection using two major steps. First we calculate
the subnetwork of optimal paths according to the edge cost function. Then we use this
subnetwork and extract a finer road selection of routes by defining additional requirements
and using filtering algorithms.
Before jumping to our actual solution we did some testing in order to help us better
understand the shape of the subnetwork G′ and help us define our requirements towards it.
The testing itself involved contraction hierarchy 1 and Dijkstra algorithms and provided us
with an idea what a good street subnetwork would look like. Having this as starting point
we move forward by defining a set of requirements towards our selection and construct an
algorithm that produces efficient subnetworks for a given destination by including just the
right amount of detail (edges and vertices).
So our subnetwork should represents a wisely selected collection of streets (edges) from
our road network (graph), which purpose is to simplify the process of finding a route to a
given destination. The first and the most obvious requirement towards this subnetwork is
having the streets follow connected paths that all lead to the final point. Having a series of
streets leading away from the destination, ending nowhere does not actually help one get
where he wants. We want our automatically generated destination map to be as efficient
as possible. This leads us to our next requirement which is expecting our subnetwork to
contain the fastest (in our case, with minimal edge cost) route possible from our standpoint
to our destination. This translates into our selection consisting of only shortest paths.
So for a certain location (vertex) in our generated map, the subnetwork displayed should
contain the fastest possible way leading from this vertex to the destination point. Having

1As stated by Robert Geisberger, Peter Sanders et. al. [GSSV12], contraction hierarchies allow for
extremely fast routing with shortest paths in large networks by doing a preprocessing that involves
adding shortcut edges and building a hierarchy among the vertices of the network.
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this requirement alone allows us to already extract a possible solution candidate - the
subnetwork of shortest paths to our destination vertex. This subgraph is too vast and dense
to allow for easy and quick readability, it is much smaller than the whole road network
and presents a good basis for determining the optimal subnetwork of streets G′. Having
just a destination vertex and a graph we now face the problem of determining the shortest
path from each vertex to this chosen destination.

5.1 Shortest path subnetwork and our Dijkstra’s algorithm
The only thing we have as a starting point is our destination vertex, which will serve as a
source vertex in our version of the Dijkstra’s algorithm. In its original form the algorithm
computes the shortest paths from a given destination towards other vertices. In our case
we have this part reverted and want to compute shortest paths from the vertices towards
our destination. In order to achieve this we will make use of the addition edge property of
forward and backward edges that our road network possesses. To compute the shortest
"incoming" paths, we allow our version of the algorithm to consider only edges marked as
backward when it updates the distance function dist. So our algorithm for determining the
subnetwork of minimal cost is simply the Dijkstra’s algorithm on the reversed edges in G.
On each iteration when an update vertex is selected, the algorithm will update the dist
and pred functions by assessing only the incoming edges at this update vertex. Following
this computational model with the destination vertex as start vertex gradually expands
the subnetwork of shortest paths with each iteration.

Algorithm 5.1: Destination Map Dijkstra
Input: The Road Network G = (V,E, ω), destination node s, maximal operational

radius maxRadius, network level coefficient cnetlvl

Data: Priority queue Q
Output: Distances dist(v) and predecessors pred(v) for all v ∈ V , with

dHav(v) < maxRadius
// Initialization

1 forall v ∈ V do
2 dist(v)←∞
3 pred(v)← null

4 Q.insert(s, 0)
5 dist(s)← 0

// Main loop
6 while Q is not empty do
7 u← Q.deleteMin()
8 forall (u, v) ∈ E, where (u, v) backward edge do

// Don’t update if u is outside of our operational radius
9 if dHav(u) > radius then

10 continue
11 if dist(u) + ω(u, v) < dist(v) then
12 dist(v)← dist(u) + ω(u, v)
13 pred(v)← u
14 networkLevel(v)← networkLevel((u,v))

// Update queue respectively

After algorithm 5.1 completes computation the dist function stores the minimal distance
from a certain vertex to our destination an the pred function allows for this path to be
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reconstructed.
Until now we have only defined the network level for an edge, but on line 14 in the pseudo
code we compute the network level of a vertex, based on the next edge we have to traverse
on our route from this vertex to the destination point. We will later use the network level
property of a vertex to further refine and improve our selection of important routes.
Because our destination map normally covers a few kilometers in diameter, we can safely
stop expanding our subnetwork of shortest paths if we exceed some given limit (lines 9-10).
We are going to call this limit maximal operational radius. It allows us to concentrate our
focus only around the destination point and avoid unnecessary computation that will not
be used in any of our next steps at all. This improves greatly the running time of our
modified version of Dijkstra’s algorithm.
An edge cost can be influenced by the parameter cnetlvl as described in 4. When this
parameter is set to 0 an edge’s cost does not depend on the road classification of the edge.
Increasing this parameter punishes edges marked as parts of smaller streets by increasing
their cost. This can be used to influence the behavior of our version of the Dijkstra’s
algorithm and make it prefer bigger, major roads. Both this parameters (the maximal
radius and the cnetlvl) can be changed by the user in our application and provide additional
flexibility. This algorithm alone offers a reduction of the road network into a subnetwork of
streets important to our destination point. But as you can see on Figures 5.1 and 5.2 the
level of detail presented and the density are too high to allow an efficient human reading on
how to get there. The Dijkstra alone cannot produce an efficient subnetwork G′, because it
simply contains too much detail which will confuse the reader when trying to navigate to a
destination.

Figure 5.1: Subnetwork of shortest paths, radius 10 km

5.2 Vertex filtering and route reconstruction
We have already narrowed down our selection G′ to the subnetwork of the minimal routes
leading to the destination point. He we will refine this selection even more and narrow is
down to just a few edges and vertices that can be processed by a human being efficiently.
Our goal is to achieve just the right level of detail in our generated map. By displaying just
enough routes leading to our destination we guarantee usefulness, independent of where
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Figure 5.2: Same subnetwork, only edges displayed

the reader is and allow for a quick read and navigation at the same time. We are going
to transform the subnetwork produced by algorithm 5.1 into a human-readable map by
applying filters and defining additional constraints.
The main purpose of a destination map is to help navigating to a particular location as
you draw near it. Taking this property into consideration already gives us the idea that
the level of detail presented on the map should increase as we close on our destination
point. This means that the outer regions of the sketch should contain only major roads
that lead to the area around our destination. As we approach this destination the network
level of the streets should become more diverse and allow for smaller roads to participate
in the navigation. To better illustrate this imagine a destination located in a neighborhood
of a city. A driver is most likely to enter the city or area using a major road and does
not need the unnecessary distraction of dealing with smaller roads when still away from
the destination. As he enter the city interior however he will be forced to use smaller
and smaller roads until he finally arrives at the destination point. We want this exact
navigational approach to be resembled on our sketch by presenting just the right level of
detail according to how close to the end point we are. Our idea is to select start vertices
based on their haversine distance to the destination point and the network level they posses.
Each of this start vertices will serve as a something similar to a sample point and will
help determine important routes leading to the destination from different directions. After
marking a vertex as a start vertex we add the route from this vertex to the destination to G′.
We use a model involving circular filter that cover different areas around our destination.
Using these filters we are able to choose just a few vertices that are very likely to be start
points for a person willing to get to the destination point. The circular filters are defined
as follows:

• No-filter radius (Nradius) - this defines a small circle area around our destination
where no filter will be applied and all vertices will be selected.

• Medium filter radius (Mradius) - this defines the distance after which we select a
certain vertex if its network level is smaller than a given constant. We will name this
constant Mnetlvl.

18



5.2. Vertex filtering and route reconstruction

Algorithm 5.2: Subnetwork fine selection
Input: The Road Network G = (V,E, ω), destination vertex s, maximal

operational radius maxRadius, filter parameters Nradius, Mradius, Mnetlvl,
Bradius, Bnetlvl, the functions dist, pred and networkLevel computed by the
Dijkstra’s algorithm 5.1

Data: Set of edges Eadded

Data: Set of vertices Vadded

Output: Lists of vertices Vdisplayed and list of edges Edisplayed going to be part of
the destination map.

// Main loop
1 forall v ∈ V do
2 if dist(v) <∞ then

// Apply filters
3 if dHav(s, v) > Nradius then
4 if dHav(s, v) < Mradius then
5 continue
6 if dHav(s, v) >= Mradius and dHav(s, v) < Bradius and

networkLevel(v) > Mnetlvl then
7 continue
8 if dHav(s, v) >= Bradius and netlvlv > Bnetlvl then
9 continue

// Here the vertex v is marked as selected
// We add the route from v to s

10 currentVertex ← v

11 while pred(currentVertex) 6= −1 do
12 if Eadded.contains((currentVertex, pred(currentVertex))) then
13 break
14 Eadded.insert((currentVertex, pred(currentVertex)))
15 Vadded.insert(currentVertex)
16 currentVertex← pred(currentVertex)

// Calculate some interesting vertex information
17 info ← calculateVertexData(Vadded)

// Now we fill the Vdisplayed and Edisplayed lists accordingly
18 forall u ∈ Vadded do
19 if in degree of shown edges of u 6= 1 then
20 Vdisplayed.addList(u, shown = true, info(u))
21 else
22 Vdisplayed.addList(u, shown = false, info(u))

23 forall e ∈ Eadded do
24 Edisplayed.addList(e)

• Big filter radius (Bradius) - this defines a distance even bigger than the previous
medium radius and also comes with a network level constraint constant Bnetlvl that
is even stronger (smaller) than the previous Mnetlvl.
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Figure 5.3: Circular filters

Maximal operation
radius

Big filter radius

Medium filter radius

The destination
No filter radius

All nodes in this area will be selected

No nodes in this area will be selected

Nodes that have network level smaller than medium filter radius will be 
selected  

Nodes that have network level smaller than big filter radius 
will be selected

Having this constants defined we end up with donut-like areas around our destination from
which we select vertices based on the values of the network level constraints Mnetlvl and
Bnetlvl. Figure 5.3 on page 20 illustrates in detail how this model works. The circular filter
and the start vertex selection are implemented in lines 3-9 in algorithm 5.2.
The application user can change the parameters used in the model above and adjust
the subnetwork G′. A change in this parameters does not require running the Dijkstra’s
algorithm again and presents a cheap and efficient way to shape and refine the output. This
feature is important, because the landscapes and the road networks differ greatly in size,
structure and density. For example if you find the extracted subnetwork too overcrowded
and hard to read, you can set stricter values for the two constants Mnetlvl and Bnetlvl and
reduce the number of selected vertices. Another good example would be if we need more
detail close to the destination. By default the no-filter radius Nradius is always zero and by
increasing it a little we are able to add this additional information just around our goal.
At this point we have done two things:

1. We have executed Dijkstra’s algorithm on our road network and computed the shortest
routes to our destination for every vertex in a given radius.

20



5.2. Vertex filtering and route reconstruction

2. We have selected a few vertices in this given radius using the three circular filters
described above.

Our next and final step towards selecting what should be on the map is constructing the
actual routes that lead to the endpoint. We do this by including the shortest path from
each of the selected vertices to our destination. This is a very simple task, since we have
already computed the values of the pred function. We just have to follow the chain of
vertices and edges provided by it and add each vertex and edge to our final result (lines
10-16 in algorithm 5.2). Many of these paths overlap or completely contain other paths in
them. If we reach such point we don’t actually need to follow and add a path that has
already been processed (lines 12-13). This is possible because of the shortest path property
that says that sub-paths of shortest paths are also shortest paths.
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At this moment we have the selection of important roads that will be displayed on our
destination map. The vertices are represented as latitude-longitude pair and the streets as
edges between two vertices. The current task is to translate this extracted information into
a routing sketch. We do this in three major steps: coordinates calculation, simplification
and layout improvement. Since we have to draw the destination map somewhere we need
something like a virtual sheet of paper. We will call it drawing surface and it just represents
a rectangular shaped window where the destination maps will be shown. Our first step
toward drawing the sketch is to transform the lat-lon coordinate pairs of each vertex into
picture coordinates for our drawing surface. Then we move forward by simplifying the
shape of the roads by applying an area-based algorithm to each polyline on our drawing
surface. The final step is to adjust the position of each vertex, so that the destination
map is easier to read. This is done by defining forces between the vertices and running an
iterative spring embedder that changes the layout of the drawn graph.

6.1 Preprocessing - coordinates transformation
The first step we take is to calculate the coordinates for our drawing surface. It represents
a rectangle with width and height, which we denote with Fwidth and Fheight. Our task
now is to find a projection (function) that, for each vertex, takes its lat-lon pair and
calculates new coordinate for this drawing surface. We are going to call the newly
calculated coordinates original picture coordinates and the projection calculating them will
be represented as a function π : (lat, lon)→ (x, y) with 0 ≥ x < Fwidthand0 ≥ y < Fheight.
In order to describe how the coordinate transformation works we will need the values of
the maximal and minimal latitude and longitude among our vertices. We name this values
latmin, latmax, lonmin, lonmax and together they define a bounding box, which contains all
vertices. The work of our projection function is described by:

π(lat, lon) = ((lon, lat) + ~t)r

where: the vector ~t = (−lonmin,−latmax) defines a translation and r is a rescale ratio
calculated as:

r = min
{

Fwidth

lonmax − lonmin
,

Fheight

latmax − latmin

}
The vector ~t sets the bottom-left corner of our bounding box to (0, 0). After that we multiply
the translated coordinates with the parameter r, which simply rescales the bounding box
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(and therefore the vertex coordinates) to fit in the rectangular drawing surface.
This method of transforming lat-lon coordinate pairs to a standard Cartesian coordinate
system comes with a small visual error because the shape of the earth resembles a sphere
and the coordinate system is just a rectangle. For our purposes however and given the fact
that our bounding box does not cover vast areas (normally just few kilometers in diameter)
this method is sufficient enough and does not harm the visual outcome.
In the previous chapter we worked on a road network represented by a weighted, directed
graph. After calculating the picture coordinates and projecting this graph onto the drawing
surface, we start to look at it as a geometrical structure, rather than a road network. In
this chapter the vertices are simply represented by point on the drawing surface and an
edge is a just a line between two points and possesses no direction.

6.2 Path simplification
The roads represented on the drawing surface are ofter complex and require a substantial
amount if vertices that describe them. Having too many vertices slows down the force
based embedding presented later in this Chapter. Such detailed representation of the road
is usually not needed for the map to be useful and could be replaced by interpolation of
the road curve. We even consider simplifying the street shapes helpful, as long as it does
not harm navigation too much. This leads us to the problem of simplifying the routes
displayed on the drawing surface. This step is optional in our application and the user
can skip it and move directly to drawing the map. In addition to the polyline itself, the
simplification algorithm requires one more parameter: tarea. This parameter represents an
area threshold upon which we decide whether a vertex is kept or not. The algorithm itself
processes just polylines and therefore requires us to split our collection of edges (routes)
into polyline segments and feed them to it one by one.

Algorithm 6.1: Path Simplification
Input: List of vertices P that represents the polyline, the parameter tarea

Output: List of vertices result that remain after the simplification
// Initialization

1 result.addVertex(P[0])
2 current← 1
3 prev← 0;

// Main loop
4 while current smaller than P.size- 1 do
5 area← calculateArea(P[prev],P[current],P[current + 1])
6 if area < tarea then
7 current← current + 1
8 else
9 result.addVertex(P[current])

10 current← current + 1
11 prev← prev + 1

12 result.addVertex(P[P.size− 1])
13 return result

The algorithm simplifies each polyline as follows:

1. The first and the last vertex of the polyline are always marked as included.

2. We iterate over the rest intermediate vertices, starting from the first and moving to
the last. For each inner vertex we evaluate the area of the triangle formed by this
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vertex and its left and right neighbors (they always exist, because its an inner vertex
in our polyline; line 5, algorithm 6.1). If this area is bigger than tarea (lines 8-11) we
keep the inner vertex and mark it as included. If not (lines 6-7), we simply delete the
vertex. Already deleted vertexes do not count as neighbors when we move forward
and calculate the next iterations.

After successful execution the list result contains the vertices that remain and therefore
defines the new simplified polyline. The algorithm has linear runtime and needs to be
applied to every polyline in our graph. This means we need a total of O(|E|) time units in
order to simplify the whole graph with the parameter tarea.

6.3 Force based drawing
We have reached the last part in our destination map creation process: layout improvments.
Our goal is to achieve something similar to a lens effect around the destination, where
we change the graph layout and aim to bring forward the roads near the destination. We
rescaling the length of the roads (edges) depending on their distance to the destination
point. This rescaling is done using a spring embedder. We implement this embedder by
constructing an algorithm that step by step changes the position of the vertices and thus
allows for better visual representation. On each step each vertex in our graph is evaluated
and moved according to the forces applied to it. We also maintain picture coordinates for
each vertex, which at the start are the same as the original picture coordinates calculated
in section 6.1, but change during the course of the layout improvement algorithm. After
applying a given number steps the forces move the vertices and we end up with a slightly
changed layout, which is shown as an end result.

6.3.1 The idea and some useful constants
The most important aspect of making this spring embedder work is defining the forces that
guide it. In order to do so we set our mind toward what the destination map represents
and thus define what a better graph layout.

1. Firstly, it is very important that our layout improvement does not harm the usefulness
and the functionality of our map. This mean that we can’t allow ourselves to change
the map to such an extend that it no longer resembles the original routes. The reader
needs to be able to make the connection between what is presented on the map and
reality. We achieve this by defining forces that help the vertices position themselves
in such a way that the original angles between the edges are kept. This force also
strives to keep the angle between each edge and the x-axis (the bottom of our drawing
surface). This prevents the whole layout from rotating itself too much and still being
classified as improved.

2. Secondly, since the main focus is on our destination we want the layout to resemble
this by being more detailed in the area around the destination point and compact
in the outer regions. So our idea is to have something like a lens effect around the
destination. This should emphasize the routes near the destination and attract the
attention towards them and at the same time make streets located further away
smaller up to a state where they are still visible and can be used for navigation, but
take less space. This effect is achieved by defining an ideal edge length function
Ilength : E → R>0 which determines how long would be the ideal length for each
edge according to its location. Kamada and Kawai [KK89] do something similar in
their "An algorithm for drawing general undirected graphs", where they use a spring
embedder that tries to maintain predefined distances between vertices. We achieve
this change in the length of each edge by reorganizing the vertices’s location using a
force of attraction between those of them connected by an edge.

25



6. Drawing and refinement

3. We also define a repulsion force. This force keeps vertices from coming too close to
one another. This is important because it prevents clustering and allows the vertices
to use the space of the drawing surface.

The attraction and repulsion force are classical parts of a force based drawing model and
are present in many spring embedders [Ead84] [FR91] [KK89] and as Kobourov [Kob12]
says "in these methods, there are repulsive forces between all nodes, but also attractive
forces between nodes which are adjacent."

6.3.2 Scaling factor

We move forward by presenting our idea of the lens effect and explaining how exactly the
function Ilength is calculated. In order to do this we define and make use of the following
parameters (all calculations are done in picture coordinates):

• We will refer to the destination vertex as s.

• A function Deuclid : (V × V )→ R≥0 that computes the euclidean distance between
two vertices. This function is also used for calculating and edge’s length since an
edge is simply a pair of vertices.

• A parameter Dmax = max {Deuclid(v, s)} where v ∈ V

• A parameter cmin ∈ (0, 1] that represents the minimal reduction factor for an edge.

• A parameter cmax ∈ [1, ∞) that represents the maximal magnification factor for an
edge.

• A parameter r1 that determines where exactly the edges will remain unscaled. The
distance at which this happens defines a circle around the destination and is calculated
as D1 = Dmaxr1.

Now we will use this parameters to develop a model that calculates the function Ilength

and thus determine the length we would want each edge to have. We do this by defining a
scaling factor Fscale : V → [cmin, cmax] for each vertex. This function is calculated for each
v ∈ V as:

Fscale(v) =


cmax + Deuclid(v, s)

D1
(cmax − 1) if Deuclid(v, s) ≤ D1

1 + Deuclid(v, s)−D1
Dmax−D1

(1− cmin) if Deuclid(v, s) > D1

This function calculates a scaling factor for each vertex depending on the distance of a
vertex v to the destination. We use this scaling factor values for a vertex to define a scaling
factor of an edge, which determines the edge’s ideal length related to its length. So for every
edge we define the function Fscale : E → [cmin, cmax] which for {u, v} ∈ E is calculated
as: Fscale((v, u)) = 1/2(Fscale(v) + 1/2(Fscale(u)). Having this scale factor defined for an
edge, we can simply define the function calculating the ideal length of an edge (v, u) as
Ilength((v, u)) = Fscale((v, u))Deuclid(v, u).

6.3.3 Attraction Force

With the information from the previous section we are now ready to define our first force.
The idea for this force came from the spring embedder of Fruchterman and Reingold
developed in 1991 [FR91]. Their attractive force is defined as fa(d) = d2/k, where d is the
distance between two adjacent vertices and k is defined as k =

√
area/number of vertices.

They apply this force fa by multiplying it with the vector defined by the two adjacent
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vertices. Fruchterman and Reingold aim to minimize the force between every adjacent pair
of vertices by making them spread and use the space provided. So their force is allowed
to move a vertex along the line defined by this vertex and an adjacent one and aims to
spread the layout in such a way that the available space is better utilized. The approach
Fruchterman and Reingold used is applicable only for unweighted graphs that are expected
to have equal edge length. This is why we expand this idea similarly to Kamada and Kawai
[KK89] and change it to work for weighted graphs and mimic our lens effect. We achieve
this by defining a force fa, which moves a vertex along the line defined by an outgoing
edge with the goal of getting the edge to expand (or shrink) to its ideal length. So for
every adjacent pair of vertices v and u we define the force of attraction as follows:

fa(v, u) = catt log
(
Deuclid(v, u)
Ilength((v, u))

)

The parameter catt is non-negative and determines how big of an influence this force has.
This parameter has a start and end value and gradually changes with each iteration. This
allows for additional flexibility and allows the map creator to change the influence of this
force throughout the whole process of changing the graph layout. The log function allows
this force to be negative. A negative value means that the edge between v and u should
shrink, while a positive value means it should be magnified. This force can be seen as
attraction from the vertex u to the vertex v and its impact is expressed as a direction
vector fa(v, u)k̂, where ~k is the vector from v to u. So the attraction force that is applied
to a certain vertex v, can be expressed as sum of vectors:

fa(v) =
∑

u neighbor of v

fa((v, u))k̂

6.3.4 Repulsion Force
In our model the repulsion force is defined between vertex pairs that are not connected
with an edge and it prevents vertices from getting too close to each other. There is no
need to calculate a repulsion force between connected vertices, because the attraction force
already makes the two vertices repulse each other if the attraction force fa is positive. The
repulsive force between two vertices v and u, that are not adjacent is defined as:

fr(v, u) = crep

Deuclid(v, u)2

We again apply this force with vector multiplication, but this time we multiply it with the
vector ~t from u to v. Analogously to the attraction force sum, we define

fr(v) =
∑

u not neighbor of v

fr((v, u))t̂

At this point we have calculated the magnitude and direction for both the attraction and
the repulsion forces in the form of two vectors. We denote the sum of this vectors as a
translation for the vertex v and calculate it as follows: ~mv = fa(v) + fr(v). Here we change
the position of the vertex v. We move it very little in the direction ~mv by by updating its
picture coordinates accordingly. Again the parameter crep has a start and end value that
gradually changes with each iteration.
Applying just these two forces will change the relative position of the vertices drastically
and will most likely change the angles between the edges to such extend that the newly
computed layout completely differs from the original one. In order to prevent this we use
an additional angle correction force, which is calculated and applied every time after a
vertex is moved.
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6.3.5 Angle Correction Force

This force keeps the angle between adjacent edges unchanged. Every time we move a vertex
v using the attraction and repulsion forces we will adjust the vertices adjacent to v in order
to keep their relative positions and the angles between the outgoing from v edges. This
force assumes that the vertex v is where it should be and will not attempt to change its
position. Having this as a starting point we fix the angles between for each edge {v, u} by
change the position of the vertex u if needed. Knowing the current position of v and the
original position of u, we can calculate where u should be, relative to v. We calculate the
translation of v since the start in the form of a vector ~tv = v.picCoord−v.originalPicCoord.
We apply this translation vector to u and determine the vector on which the vertex u
should lie, so that the initial angle for this edge with the coordinate axes is kept. We name
this vector

−→
vu′ and it is calculated as unew = ~tv + u.originalPicCoord − v.picCoord. We

must also respect the edge length between v and u. This is why we calculate the position
of u′ by changing the length of the vector

−→
vu′ to be exactly |−→vu|. This is done in two steps.

First we normalize the vector
−→
vu′ and then we multiply it by |−→vu|. Now having the position

of u′, we examine the vector
−→
uu′ If the length if this vector is less than 0.2, we don’t take

any action and leave u where it is. If this is not the case, we move the vertex u towards
the position u′ by a tiny bit and make a step towards restoring the correct position for the
edge (v, u). Similarly to the previous two force, here we also have a non-negative constant
that controls this force’s influence: cang. It again has start and end value, which determine
its change during the iteration process.
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7. Examples and Experiments

In this chapter we will show the functionality and will demonstrate some of the capabilities
of our application. We have included some data about the running time of our algorithms
and will show how the whole process of creating a destination map looks like. The prototype
application is mainly written in C++ and uses technologies like HTML, CSS, JavaScript
and Ajax. For the test data and examples below we compiled with -O3 optimization and
-std=c++11 flag for the new C++ standard from 2011.

7.1 Time and complexity

As described in the previous chapters, our solution to drawing a destination map consists of
several major steps: Dijkstra, selection, simplification and drawing. Here we have measured
the time needed for each of these steps in different situations. The application makes
use of just one core and the test were made on a machine running Ubuntu 14.04 with
AMD FX 8150 processor, clocked at 4.0 Ghz. The results have been obtained by random
sampling (200 samples) throughout the territory of Netherlands and represent an average
approximation.

Table 7.1: Time needed for computing the subnetwork of shortest paths and selecting
relevant routes.

Radius 20 km (12km, 16km) 100 km (12km, 16km)
Vertices (total) 103029 1424683
Vertices (shown) 1488 14729
Dijkstra 29 ms 64 ms
Selection 117 ms 997 ms
Total Time 142 ms 1061 ms

The data presented here shows how long it takes for our application to finish the algorithms
described in Chapter 5. The numbers in the brackets on the first line represent the medium
and the big filter radiuses used respectively. Normally destination maps don’t cover a span
greater than few kilometers. Even when operating on a large region (200 km in diameter)
the road selection takes little more than 1s time.
Similarly we evaluate the time cost for the force based draw procedure.
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7. Examples and Experiments

Table 7.2: Time required for simplifying and drawing the layout.
Vertices 1355 1355 1355 1355
Simplification no yes, area 40 no yes, area 40
Vertices left 1355 106 1355 106
Iterations 200 200 1000 1000
Forces 363 ms 1.7 ms 1678 ms 2.26 ms
Drawing (x1) 210 ms 33 ms 210 ms 33 ms
Total Time 573 ms 35 ms 1888 ms 35 ms

These results represents the time needed to draw a destination map that has a radius of 8
km using different parameters. The prototype application opens an Xorg1 windows and
uses cairo 2 to draw the graph layout in this window. Currently the drawing is called
every few steps in order to show how the forces influence the graph layout throughout the
iterations. There is also the option to export the end result in .pdf or .png format.

7.2 Examples

These examples illustrate the process of creating a destination map for a chosen location
by providing picture material in the form of screen shots from our prototype application.

7.2.1 Amsterdam, Holland

In this example we have selected a point in Amsterdam with Lat-Lon (52.312166, 4.890048).
When the user starts the application, it loads the road network data and a map of the area
can be seen on the screen. At this stage no destination point has been selected. The user
can select one by simply clicking somewhere on the map. After registering the click, the
application finds the closest vertex to the location of the mouse cursor and marks it as the
destination. A road selection according to the default parameter values is displayed and
can be seen on Figure 7.1. At this point we can tweak and change parameter values in
order to reshape this road subnetwork. After parameter change the user has to click the
"Update output" button for a new call to Dijkstra and the road selection algorithms.

Figure 7.1: The initial empty map and the generated routes after selecting destination.

The transition from Figure 7.2 to Figure 7.3 shows how routes with higher network level
(smaller streets) can be removed by using stricter values in the filters. When the user is
satisfied with the road subnetwork displayed on the map, he can move forward to drawing
it. Here we will use the drawing algorithm on Figure 7.3.

1Xorg is a open source window system. More details here: http://www.x.org/wiki/
2Cairo is a 2D drawing library: http://cairographics.org/.
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7.2. Examples

Figure 7.2: Changing the radius parameters changes the current road selection.

Figure 7.3: Changing the network level in the filters can add/remove route in our destination
map.

Smaller streets that have bigger network levels are painted yellow, while motorways have
been represented with bigger black lines. The destination point is highlighted with a green
circle.
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7. Examples and Experiments

Figure 7.4: This is without path simplification and without force based layout improvement.
Th graph is drawn directly after the picture coordinates have been calculated
with no further changes.

Figure 7.5: Still not using the path simplification algorithm, but running 800 iterations
using the forces defined in Chapter 6
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7.2. Examples

Figure 7.6: Using path simplification with an area threshold of 40. The number of iterations
has been increased to 7000.

Figure 7.7: Using path simplification with an area threshold of 50 and already losing some
important detail. The number of iterations here is again 7000.
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7. Examples and Experiments

7.2.2 Karlsruhe, Germany

In this example we have chosen the main library at Karlsruhe Institute of Technology
(KIT) as a destination point.

Figure 7.8: This is how the road selection looks like just after pin-pointing the destination.

Figure 7.9: Changing filter radiuses and forcing the Dijkstra to prefer larger roads gives us
different subnetwork of roads.

The examples presented here show that parameters have a big saying in which routes will be
included in our destination map and how these routes are displayed. The results presented
here do not require more than a few seconds to be calculated. The prototype application
also provides a real time view of the graph layout as its being changed by the forces. While
the forces can improve the graph layout, they could also change it in a negative way in
some bizarre cases or if the parameters are set too aggressively. One prevention technique
against chaotic movement of vertices could be to identify such situations and stop the forces
from moving vertices in a way that will harm the graph layout. For example crossings that
occur or disappear due to vertices movement would result in confusion and inaccuracy and
should be avoided.
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7.2. Examples

Figure 7.10: Drawing of the subnetwork of roads as it is. Zero iterations for our force based
drawing.

Figure 7.11: Using path simplification with area threshold 25. Number of iterations is 5000.
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7. Examples and Experiments

Figure 7.12: Using path simplification with area threshold 40. Number of iterations is
10000.
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8. Conclusion

Our goals here is creating an automated tool that can create destination maps that are
comparable to human made ones. The quality of such a map depends mainly on the streets
included in it and the way these streets are represented. This leads to the idea that a tool
for automated generation of destination maps should implement these two steps and be
able to select a relevant collection of routes and then present this collection in a human
friendly sketch. In this paper we have presented our idea of such tool.
In order to solve the road selection problem we considered two approaches. Before building
our solution on the subgraph produced from Dijkstra’s algorithm, we experimented using
contraction hierarchies. Our idea was to use the in order to determine important vertices that
stand higher in the hierarchy and build our destination map around them. We gave up on
the contraction hierarchies because they are too vast and often include unwanted/irrelevant
detail far away from the destination. We believe that with some modifications they can
be further developed to help determine the relevant selection of roads that is presented in
the destination map. Contraction hierarchies can be of great help if the area of interest is
large and as suggested by Peter Sanders et al. [GSSV12] can improve the running time of
Dijkstra and find shortest paths between vertices very fast utilizing precomputed shortcuts.
Shortest paths and Dijkstra’s algorithm are one possible approach when it comes to road
selection leading to a certain destination. Our solution uses this approach and also takes
into consideration the road classification in the face of a network level property of each
street. This helps narrow down the road selection to a handful of important routes and helps
eliminate unwanted detail. While in many cases this is enough, there are some examples
where extending the roads and including more detail could be beneficial. Currently our
approach does not have a build-in mechanism for determining how and which roads can
be extended to provide better visual navigation. Implementing this additional step would
bring completeness in the selected roads and allow for easier read on the generated map.
Moving forward with drawing the map our application focuses on presenting the selected
routes in a better way. It includes information about the streets and the destination in the
drawing in the form of colors and makes sure the map reader can easily distinguish between
the elements included by improving the graph layout. A good step towards improving the
map even more would be having some of the streets named on the map. This will allow
map readers to navigate much easier when knowing the exact address or street name, which
very ofter is the case with destination maps. Another helpful addition would be adding
terrain detail to the map such as water or forests. One may also consider representing
some of the bigger buildings in the area with symbols. For example, crosses for churches
and graveyards or fork and knife for restaurants.
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8. Conclusion

We think, that destination maps can be viewed in many different ways, which can lead to
many different requirements and solutions. There is no fixed set of criteria that defines
a good destination map. Our approach combines different techniques with the common
goal of creating a basic destination map tat can be used as a pocket navigational note. By
adding some of the unimplemented features such as road extensions, terrain detail and
street names this tool might become a replacement for hand-made destination maps.
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