
Drawing Planar
GitHub Network Graphs

Bachelor Thesis of

Rashad Asgarbayli

At the Department of Informatics
Institute of Theoretical Computer Science

Reviewers: Prof. Dr. Dorothea Wagner
Prof. Dr. Peter Sanders

Advisors: Guido Brückner, M.Sc.
Marcel Radermacher, M.Sc.

Time Period: 01st January 2017 – 30th April 2017

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 27th April 2017

iii

Abstract

There is much work done on planar level graph drawing. In this thesis, an approach
that involves the well known PQ-trees [BL76] is implemented to solve the problem
for the single-source k-level graphs. To achieve this goal “Simple Level-Planarity
Algorithm” represented by Brückner and Rutter [BR17] is implemented for testing a
given single-source proper k-level graph for planarity in linear running time. Then, a
“DrawPlanar Algorithm” is implemented, which generates one of the planar drawings
of the given single-source k-level graph in linear running time, if the result of
the testing with “Simple Level-Planarity Algorithm” confirms the planarity. After
generating a planar drawing, an heuristic is used to improve the quality of the planar
drawing, which is also implemented in this thesis.

Deutsche Zusammenfassung

Es wurde viel Arbeit für planares Zeichnen des Level-Graphen getan. In dieser
Arbeit wird das Verfahren implementiert, das die bekannten PQ-Bäume [BL76]
involviert, um das Problem für die Single-Source k-Level-Graphen zu lösen. Um
dieses Ziel zu erreichen, wird “Simple Level-Planarity Algorithm”, der von Brückner
und Rutter vorgestellt ist [BR17], implementiert, um einen gegebenen Single-Source
k-Level-Graphen für die Planarität in der linearen Laufzeit zu testen. Dann wird
einen “DrawPlanar Algorithm” implementiert, der eine der planaren Zeichnungen
des gegebenen Single-Source k-Level-Graphen in linearer Laufzeit generiert, wenn
das Ergebnis des Testens durch “Simple Level-Planarity Algorithm” die Planarität
bestätigt. Nach der Erstellung einer planaren Zeichnung wird eine Heuristik zur
Verbesserung der Qualität der planaren Zeichnung verwendet, die auch in dieser
Arbeit implementiert ist.

v

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Outline . 3

2. Preliminaries 5
2.1. k-Level Graphs and Level Planarity . 5
2.2. GitHub Network Graphs as k-Level Graphs 6
2.3. PQ-Trees . 7

3. Drawing Planar k-Level Graphs 11
3.1. Simple Level-Planarity Algorithm . 11
3.2. Generating Possible Planar Drawings Through Intersecting PQ-Trees . . . 12

4. Implementation for Single-Source GitHub Network Graphs 19
4.1. Creating a Proper k-Level GitHub Network Graph 20
4.2. Simple Level-Planarity-Testing-Algorithm 20
4.3. DrawPlanar Algorithm . 22
4.4. A Heuristic for Aligning Nodes . 22

5. Conclusion 27

Bibliography 29

Appendix 31
A. Example GitHub Network Graphs That Used as Test Sets and Resulting

Drawings From the Implementation in This Thesis 31

vii

1. Introduction

Git is a well known distributed version control system and responsible for keeping track of
changes to content in repositories. It provides mechanisms for sharing that content with
others, called collaborators. Saving new changes by collaborators leads to the creation of
new versions in the repository. Each new version, which is created this way, is called commit.
The representation of the history of the commits in the repository can be considered as a
graph, if these commits are considered as vertices and connections between each commit
and its predecessor as edges. But such histories are not always linear. Often, there are
ramifications in these graphs as a results of parallel development, e.g. different commits
pushed to the same predecessor. In such cases, usually a new branch per ramification is
created, which is represented as a new path in the graph. Afterwards, these branches can
be merged into one through merge-commits [PS12] (e.g. Figure 1.1).

initial commit

branch

commit

initial commit

merge

last commit

Figure 1.1.: An example graph representing the history of a repository.

GitHub Inc. is a company that provides Git repository hosting service, but it adds many of
its own features like a web-based graphical user interface (GUI), access control etc. In its
web-based GUI, GitHub also provides different types of the visualisations of the structure
and states of repositories.

GitHub Network Graph section of the web-based GUI of GitHub is responsible for displaying
of the commit and branch structure of the GitHub repositories. In these graphs, the vertices

1

1. Introduction

vi are the commits to a certain branch (x-coordinate) in certain time point (y-coordinate
or time-axis) and the edges are the connections between two vertices – v1 and v2. The
edges represent either two successive commits of the same branch or the branch of v2 is
branched from the branch of v1 starting from the commit v2 or the branch of v1 is merged
to the branch of v2 at the commit v2.
The problem is, the current way of drawing of these graphs is not necessarily a planar
drawing on the official web application of GitHub, even though they could be drawn planar
(e.g. Figure 1.2).

master

23.11.2016 ⇨ level 1

25.11.2016 ⇨ level 2

01.12.2016 ⇨ level 3

07.12.2016 ⇨ level 4

10.12.2016 ⇨ level 5

11.12.2016 ⇨ level 6

12.12.2016 ⇨ level 7

branch 1branch 2branch 3

Figure 1.2.: Example GitHub Network Graph drawn on the GitHub’s web-based GUI

According to the study made by Helen Purchase, minimising the number of crossings in the
drawing of a non-planar graph, significantly improves the readability of the layout [Pur97,
p. 248–261]. Following the latter study, drawing planar GitHub Network Graphs does not
only make it easy to track pathways of the branches in repositories, but also improves the
readability of current development state of and contributions to the repository.
The task is to find a possibly planar drawing of a given GitHub Network Graph, which is
similar to the current drawing style. Commits (vertices) should be plotted according to
the vertical time axis and all commits of a same branch should have the same horizontal
order on x-axis (e.g. Figure 1.3).
GitHub Network Graphs can be considered, tested for planarity and drawn planar or with
as possible less crossing edges as (k-)level graphs (Definition is in the Section 2.1), if the
condition for single-source k-level graphs is met (see Section 2.2).
The motivation is to generate a possible planar drawing of the given GitHub Network
Graph in a linear running time. This approach depends on the planarity test result, which
is done through “Simple Level-Planarity Algorithm” (Section 3.1), and also involves the
well known PQ-trees (Definition is in the Section 2.3).

1.1. Related Work
There is much work done on testing the level graphs for planarity and on planar graph
drawing of level graphs. With the introduction of the famous Sugiyama framework[STT81],

2

1.2. Outline

master

23.11.2016 ⇨ level 1

25.11.2016 ⇨ level 2

01.12.2016 ⇨ level 3

07.12.2016 ⇨ level 4

10.12.2016 ⇨ level 5

11.12.2016 ⇨ level 6

12.12.2016 ⇨ level 7

branch 1branch 2branch 3

master

23.11.2016 ⇨ level 1

25.11.2016 ⇨ level 2

01.12.2016 ⇨ level 3

07.12.2016 ⇨ level 4

10.12.2016 ⇨ level 5

11.12.2016 ⇨ level 6

12.12.2016 ⇨ level 7

branch 1branch 3branch 2

Figure 1.3.: Example GitHub Network Graph drawn on the GitHub’s web-based GUI (left)
and a possible planar drawing for it (right)

level drawings were among the first drawing styles that were studied and developed
systematically. Afterwards, Di Battista and Nardelli [BN88] gave the first efficient algorithm
for testing the subclass of single-source level graphs that recognises whether the graph is
level planar. The general case for testing level graphs was solved by Jünger et al. through
a quite complicated but linear-time algorithm [JLM98, p.224-237]. There is already a much
simpler algorithm with running time O(n2) given by Randerath et al.[RSB+01]. Another
simpler algorithm – “Simple Level-Planarity Algorithm” for single-source k-level graphs
was represented by Brückner and Rutter [BR17].

1.2. Outline
The thesis consists from two parts: a theoretical approach to the problem of drawing planar
(k-)level graphs, which involves “Simple Level-Planarity Algorithm” for testing, and the
implementation of this approach.

Section 3 contains the detailed information about the use of Simple Level-Planarity
Algorithm on a single-source proper k-level graph for testing it for planarity. Generating
a possible planar drawing of the graph through intersecting PQ-trees that represent the
ordering of nodes of the consecutive levels in the graph.

Section 4 describes the details of the implementation of the algorithms from Section 3. It
consists from the implementation details of the interaction with GitHub Developer API for
downloading GitHub Network Graph data, the Simple Level-Planarity-Testing-Algorithm
and the new “DrawPlanar Algorithm” for generation of a planar drawing for a k-level
graph. In addition, a heuristic is applied for better aligning of the nodes in each level to
achieve the wished “same ordering for nodes of the same path” in the generated planar
drawing of the graph.

3

2. Preliminaries

In this Section, some basic notions and definitions are covered, which are used throughout
this thesis. A graph G = (V, E) is a tuple of a set of vertices V and a set of edges E ⊆ V ×V .
A planar graph is a graph that can be drawn in the plane without crossing edges.

2.1. k-Level Graphs and Level Planarity
A k-level graph is a directed graph G = (V, E), where V can be partitioned into k subsets
S1, . . . , Sk such that for every edge (u, v) in E the following condition holds: u is an element
of Sa, v is an element of Sb for a, b ∈ [k] and a < b (see Figure 2.1). In addition, there is
a level function l(v), which returns the set number i of Si, to which vertex v belongs. A
k-level graph is called proper, if every edge in E connects the vertices u and v that belong
to the consecutive subsets Si and Si+1 [STT81, p. 111]. Every non-proper k-level graph
can be transformed into a proper k-level graph by replacing the edges of nonconsecutive
subsets with a sequence of vertices and edges connecting consecutive sets between the
nonconsecutive sets [BN88, p. 1036]. Figure 2.1 is an example of a k-level graph. Figure 2.2
is a proper k-level graph, which was transformed from Figure 2.1.

S1

S2

S3

a b c

d e

f g h

Figure 2.1.: k-level graph with three sub-
sets [BN88, p. 1035]

S1

S2

S3

a b c

i d e j

f g h

Figure 2.2.: Proper k-level graph form of the
Figure 2.1 [BN88, p. 1036]

A single-source k-level graph is a special kind of k-level graph, where the first set S1 contains
only one vertex, called root of the graph (e.g. Figure 2.3) [BN88].

A level drawing of a proper k-level graph G = (V, E) can be described by the linear
orderings ≺i of the vertices in Si along the horizontal line li with y-coordinate i. A level
drawing by a single linear ordering ≺ of V can be described by defining u ≺ v if l(u) ≤ l(v)
and u ≺i v, where V lists the vertices in S1, . . . , Sk in their left-to-right orders [BR17].

5

2. Preliminaries

S1

S2

S3

S4

r

a b c

i d e j

f g h

Figure 2.3.: A proper k-level form for Figure 2.2 [BN88]

Lemma 2.1 ([BR17, Lemma 1]). Let G = (V, E) be a proper k-level graph and Γ be
a drawing of G. Then, Γ is planar if and only if for distinct vertices u, w ∈ Si and
v, x ∈ Si+1, i ∈ [k] with (u, v), (w, x) ∈ E it is u ≺ w if and only if v ≺ x.

1

2

3

4

r

ab c

i d e j

fg h

Figure 2.4.: A planar embedding for Figure 2.3 [BN88].

2.2. GitHub Network Graphs as k-Level Graphs
GitHub Network Graphs visualise the commit and branch structure of the GitHub reposito-
ries, where the history of pushed changes is considered as a graph and then drawn. GitHub
Network Graph is a graph, where each vertex represents a unique commit to a certain
branch, in certain time point (time-axis or y-coordinate). All vertices of the same branch
have the same horizontal ordering (x-coordinate). The edges are the connections between
two vertices v1 and v2 that satisfy one of the following conditions (e.g. Figure 2.5):

1. Both v1 and v2 represent the successive commits to the same branch (e.g. black edges
in Figure 2.5).

2. v2 represents the first commit of a different branch, which is branched from the
branch of v1 starting from the commit v2 (e.g. blue edges in Figure 2.5).

3. v2 represents a merge commit, where the branch of v1 is merged to the branch of v2
at the commit v2 (e.g. red edges in Figure 2.5).

In this thesis, only a special subset of GitHub Network Graphs is considered. This subset
consists of single-source GitHub Network Graphs, which have only one root vertex. If time
stamps of the commits (time-axis or y-coordinate) are considered as levels of the vertices,
then GitHub Network Graphs are k-level graphs, but are not necessarily in proper form.

6

2.3. PQ-Trees

Figure 2.5.: A GitHub Network Graph as a k-level graph.

Each single-source GitHub Network Graph can be transformed into a proper k-level graph
through the procedure described in Section 4.1.

2.3. PQ-Trees
A PQ-tree is a data structure that represents a family of permutations on a set of elements
X and based on a tree structure T = (V, E). They were introduced by K.S. Booth and
G.S. Lueker in 1976 [BL76]. A PQ-tree is rooted and labelled. Each element x of the
given set X is represented by one of the leaf node l ∈ V in the tree. Non-leaf nodes are
labelled P or Q. A P node has at least two children and allows reordering them in any
way. A Q node has at least three children and they may be put only in reverse order, any
other reordering of children is forbidden. PQ-tree itself represents its permutations via
permissible reordering of its nodes. Nested parenthesised lists are used to note PQ-trees,
where a pair of square parentheses contains the children of a Q-node and a pair of rounded
parentheses contains the children of a P -node, e.g. [e, (g, i), m, (h, l, f)] represents the
following 24 permutations on the set X = {e, f, g, h, i, m, l}:

egimhlf , eigmhlf , egimhfl, egimlhf , egimlfh, egimflh, egimfhl, eigmhfl, eigmlhf ,
eigmlfh, eigmflh, eigmfhl hlfmgie, hlfmige, hflmgie, lhfmgie, lfhmgie, flhmgie,
fhlmgie, hflmige, lhfmige, lfhmige, flhmige, fhlmige

Figure 2.6 is the graphical representation of the same notation.

Q-node

P -node

e g i m h l f

leaf

Figure 2.6.: A PQ-tree example [BR17, Fig. 2]

A yield of a certain node n ∈ V from PQ-tree T = (V, E) (noted yield(n)) is the set of all
leaves of the given node n and all its sub-trees. If node n is a leaf of the PQ-tree T , then
yield(n) = {n}. In Figure 2.6, the yield of the root Q-node is the set containing all leaves

7

2. Preliminaries

in the tree, the yield of direct parent of f is the set {h, l, f} and the yield of leaf f is the
set {f}.

The most relevant operation to this thesis is the update(T, S) operation in PQ-trees. For a
given PQ-tree T and a subset S ⊆ yield(T) of its yield, the operation returns either a new
PQ-tree T ′, which limits the cyclic orders represented by T , where the elements in S are
consecutive in T ′, or a null tree, if the operation fails for the subset S [BR17, PQ-trees].
Figure 2.7 is the example representation of Figure 2.6 after calling the update(T, S) for
the subset S = {g, m, l}, which reduces the available number of permutations from 24 to
4. Calling the update(T, S) for the subset S = {e, g, m} or S = {i, h} would result in a
null tree, because making them consecutive in this example would be impossible.

e i g m l

h f

Figure 2.7.: T ′ after calling the update(T, {g, m, l}) on PQ-tree T from Figure 2.6

2.3.1. Intersecting PQ-Trees

To find the common ordering of leaves for two PQ-trees with the same set of leaves, they
can be intersected. In general, intersecting two PQ-trees T and T ′ (In this thesis noted
T u T ′), on the same set of leaves, is done as follows [BR16]:

• For each P -node with unordered children c1, c2, . . . , ct in T :

1. T ′ = update(T ′, yield(ci)) for 1 ≤ i ≤ t.

• For each Q-node with ordered children c1, c2, . . . , ct in T :

1. T ′ = update(T ′, yield(ci)) for 1 ≤ i ≤ t.

2. T ′ = update(T ′, yield(ci) ∪ yield(ci+1)) for 1 ≤ i < t.

Figure 2.8 visualises an example intersection of two PQ-trees T and T ′. Here, update(T ′, Si)
is called for the following sequence of subsets Si: {1, 2}, {3}, {4, 5}, {1, 2, 3}, {3, 4, 5}, {1},
{2}, {4}, {5}. The resulting T ′ is restricted so that it contains orderings satisfying T uT ′.

Intersecting PQ-trees can be done in linear time [BL76].

2.3.2. Projecting PQ-Tree

In this context, projecting a PQ-tree is equal to the reduction of a given PQ-tree so
that it has only one Q-node (P -node, if the amount of leaves is less than three) as a
root and all leaves are attached to this root. Root Q-node of a projection T ′i allows only
two possible orderings of leaves attached to it: left-to-right and reversed (right-to-left).
Therefore, the projection T ′i represents only two possible orderings of nodes in the level
i in G. The operation of reducing a given PQ-tree Ti to its projection T ′i will be called
chooseProjection() and works as follows: A new list is created with the root node of the
given PQ-tree Ti. Until there is no P - or Q-nodes left in the list, each non-leaf element is
replaced with its children recursively so that children are added between the siblings of
their parent.

8

2.3. PQ-Trees

u

T

3
1 2 4 5

T ′

1 2 3 4 5

T ′

1 2

3 4 5
. . .

T ′

1 2

3 4 5

⋂

. . . , update(T
′ , {1, 2, 3})

update(T ′, {3, 4, 5}), , update(T ′, {5})

Figure 2.8.: An example intersection of two PQ-trees.

T

f j

g h

Qroot →
T ′

f h g j

chooseP rojection()

Figure 2.9.: Example application of chooseProjection().

Figure 2.9 demonstrates an example application of chooseProjection() onto the PQ-tree
T = [f, (g, h), j]. Let assume that the notation {s, e} represents a linked list in this example,
where e is the next element to s and s is the previous element to e. First, a list {Qroot}
is created containing the root Q-node Qroot of the T . Then, Qroot is replaced through its
children. Because Qroot is a Q-node, ordering of its children is also kept (left-to-right).
The list containing all three children of Qroot looks like this – {f, P -node, j}. After that,
the remaining P -node is also replaced through its children in the same way, but without
consideration of the ordering of its children. The resulting list can look like this – {f, h, g, j}.
Finally, a new PQ-tree T ′ with a Q-node as a root is initialised using the list of leaves in
the same order. T ′ has two possible orderings: a left-to-right ordering f → h→ g → j and
a right-to-left ordering j → g → h→ f .

Projecting a PQ-tree can be done in linear time [BR16, PQ-Trees].

9

3. Drawing Planar k-Level Graphs

In the following Section, only single-source proper k-level graphs (Section 2.1) are considered.
Before generating a planar drawing for the given single-source proper k-level graph G, it
has to be ensured that a planar drawing exists. The approach works as follows: First,
G is tested for planarity with the Simple Level-Planarity Algorithm (Section 3.1). Then,
in case of positive test result, a planar drawing is generated via intersecting PQ-Trees
(Section 3.2).

3.1. Simple Level-Planarity Algorithm
Simple Level-Planarity Algorithm was represented by Brückner and Rutter[BR17]. For a
single-source proper k-level planar graph G = (V, E), let Gi be the sub-graph induced by
vertices on levels 1, . . . , i and Ei be the subset of E containing edges between vertices of
level i and level i + 1, i.e. Ei = E(Gi+1)\E(Gi). The approach in Simple Level-Planarity
Algorithm is as follows: successively visit each level i ∈ [k] and on going from level i to
level i + 1, compute how planar drawings of Gi can be extended to planar drawings of Gi+1.
The algorithm uses PQ-trees to efficiently represent all possible drawings simultaneously.
Extending of the representations of the planar drawings ≺i of Gi to the planar drawings
≺i+1 of Gi+1 is done through the computation of a PQ-tree Ti for each level i ∈ [k].
PQ-tree Ti represents the orders of level i vertices across all planar drawings of Gi. At
the beginning, the PQ-tree T1 of the level 1 consists of a single leaf, the root vertex of G.
Each subsequent tree Ti+1 is generated based on prequel tree Ti as follows:

1. For an empty prequel tree Ti its subsequent tree Ti+1 is also empty.

2. For a non-empty Ti each leaf u is considered. If u does not have child edges in Ei,
then, it is marked as an inactive leaf. Otherwise, each child edge is added as a child
to u.

3. A post-order traverse through Ti is done as next and any node is marked as inactive,
if all its children are inactive. All other nodes remain active and all inactive nodes
are removed from the tree.

4. Then, for a set Si, which contains the edge leaves with identical end points in Ti,
update(Ti, Si) is called to make them consecutive in Ti. After that, the edge leaves
are consecutive sub-trees attached to a Q-node.

5. Finally, these sub-trees are replaced by a single leaf v and the generation of subsequent
tree Ti+1 is completed.

11

3. Drawing Planar k-Level Graphs

If Tk at the end is non-empty, then G is level planar. Otherwise, it is not level planar.
Lemma 6 in “Partial and Constrained Level Planarity” proves the correctness of this
algorithm [BR17, Lemma 6]. The algorithm has linear running time.

Figure 3.1 shows an example of generation of the tree Ti+1 from a tree Ti in Simple
Level-Planarity Algorithm.

G∗3 1

2

3
e ge i m hf l m

G2
1

2

3
cb d

G3
1

2

3
ge i m f h l

T ∗3

e ge i m hf l m

T2

cb d

T3

e g i m lh f

Figure 3.1.: Simple Level-Planarity Algorithm example[BR17, Fig. 2, p. 5].

Implementation details of Simple Level-Planarity Algorithm are described in Section 4.2.
In addition to Simple Level-Planarity Algorithm, in the implementation, each PQ-tree Ti,
which is the result of the processing of level i, is cloned and added into a list during the
testing. The list contains such clones of all levels and is required to generate the planar
drawings as described in the next Section.

3.2. Generating Possible Planar Drawings Through Intersect-
ing PQ-Trees

If the result of Simple Level-Planarity Algorithm (See Section 3.1) is not a null-tree for
a given graph G, then G can be drawn planar [BR17, Lemma 6]. Each subsequent tree
Ti+1 is generated based on prequel tree Ti, so that the ordering of nodes in level i already
considered in Ti+1. Intersecting two consecutive PQ-trees Ti+1 and Ti results in a new
PQ-tree T ′i , which represents a more restricted ordering of nodes in level i and this ordering
considers the ordering of the level i + 1 nodes. The generation of a possible planar drawing
of G is done through intersecting the PQ-trees in backwards order, which were created
after completing the processing of each level i ∈ [k]. This list of PQ-trees will be referred
as stacked list of trees and is arranged in descending order of level i of Ti. The correctness
of the procedure follows from the correctness of Simple Level-Planarity Algorithm [BR17,
Lemma 6].

To be able to intersect the PQ-trees of the consecutive levels, each pair of the PQ-trees,
which is to be intersected, must have the same set of leaves. This is not the case for the
PQ-trees in the stacked list of trees. Set of leaves of each PQ-tree Ti of level i is the
representation of the order of nodes of level i in G. Therefore, leaves in Ti represent the
nodes of level i, respectively leaves in Ti+1 the nodes of level i + 1. Before intersecting
each pair of PQ-trees, they have to be brought to the state, where the precondition for
intersecting two PQ-trees is met. This works as follows: First, the PQ-tree Ti+1 of level
i + 1 is projected to a new PQ-tree T ′i+1 (Section 2.3.2). Then, the set of leaves of T ′i+1 is

12

3.2. Generating Possible Planar Drawings Through Intersecting PQ-Trees

replaced with the set of leaves of PQ-tree Ti of level i and then, T ′i+1 is intersected with Ti

(Section 3.2.1). Ordering of the nodes in graph G is done directly after the projection of
Ti+1 (Section 3.2.2).

Implementation details are described in Section 4.3.

3.2.1. Synchronising the Sets of PQ-Trees Before Intersection

To be able to order the nodes in a single-source proper k-level graph G so that, the drawing
of G is planar, PQ-trees in the stacked list of trees are intersected in backwards order.
Order of leaves in PQ-trees, which are the result of an intersection, is more restricted than
before and it is used to order the nodes in G (Section 3.2.2). The intersection starts with the
last PQ-tree Tk and its predecessor Tk−1. Process continues until the PQ-tree T1 is reached
in the stacked list of trees. In each iteration i ∈ [k], the result of the previous intersection –
PQ-tree T ′i+1 is transformed to a new PQ-tree via the operation chooseProjection(). T ′i+1
consists of only a Q-node (P -node, if the amount of the leaves is less than three) as a root
and all leaves are attached to this root node. Latter tree is restricted to the two possible
orderings in Ti+1 (e.g. Figure 2.9). It is intersected with the next PQ-tree Ti in the list of
stacked trees. The set of leaves of Ti is the representation of the ordering of nodes of level i
in G that are directly connected to the nodes of the level i + 1 in G. The difference to the
general case is that here T ′i+1 and Ti have different sets of leaves that represent different
nodes from different but consecutive levels i + 1 and i (e.g. Figure 3.2, Ti and T ′i+1). This
means, before intersecting T ′i+1 with the PQ-tree Ti, they should have the same set of
leaves. If there is an edge in G between the nodes represented in the leaves from T ′i+1 and
Ti, then they are considered as corresponding leaves. In this case, the corresponding leaves
are used to synchronise the leaves of T ′i+1 with the leaves of Ti. Latter achieved through
replacing the corresponding leaves from Ti in T ′i+1. In this thesis, this operation will be
called synchronisation of PQ-trees. Depending from the edges between the nodes of level i
and i + 1 in G, there are four possible cases that have to be considered:

1. A node in level i has only one outgoing edge into level i + 1 (e.g. Figure 3.2, edge
(a, f) in G).

2. A node in level i + 1 has at least 2 incoming edges from level i (e.g. Figure 3.2, edges
(d, j) and (e, j) in G).

3. A node in level i has at least 2 outgoing edges into level i + 1 (e.g. Figure 3.2, edges
(b, g) and (b, h) in G).

4. A node in level i has no outgoing edge into level i + 1 (e.g. Figure 3.2, node c in G).
Latter node represents an ended branch in graph G.

To solve the cases, both T ′i+1 and Ti are brought to the matching form and then intersected.
If there are ended branches in level i, then another step is required to complete the
intersection. Following five steps are needed including the intersection itself:

1. The leaves in T ′i+1 are replaced with corresponding leaves from Ti via the same method
- exchangeLeafToLeaves(leaf, leaves) that used in Algorithm 4.1. The procedure
replaces chosen leaf with a new P -node, which is created with leaves as children in
T ′i+1. The edges that were removed after making them consecutive through update
operation, must also be considered and added to T ′i+1 (e.g. Figure 3.2, one of the
edges (d, j) or (e, j) in G). This solves the first two cases above (e.g. Figure 3.3).

2. All duplicate leaves are removed from T ′i+1. This solves the third case above (e.g. Fig-
ure 3.4).

13

3. Drawing Planar k-Level Graphs

G

i

i + 1

bc ad e

f g h j

Ti

d

c b a

e

Ti+1

f j

g h

T ′i+1

f g h j

P Q-tree of level i

P
Q-tree of level i +

1

chooseP rojection()

Figure 3.2.: Example PQ-trees of levels i and i + 1 from the part of an example graph G.

T ′i+1

f g h j

T ′i+1

a b b

d e

Apply step 1

Figure 3.3.: Example of application of the first step onto T ′i+1 in Figure 3.2.

3. In this step, each leaf in Ti, which has empty set of corresponding leaves in T ′i+1,
is removed and kept in a list before intersecting the trees (e.g. Figure 3.5). At the
end of this step, both PQ-trees T ′i+1 and Ti have same set of leaves and they can be
intersected as in general case.

4. The PQ-trees T ′i+1 and Ti are intersected. T ′i is the result of the intersection of T ′i+1
and Ti (e.g. Figure 3.6).

5. After the successful intersection, the removed leaves are repaired between or side
to their siblings into T ′i using the previous list of removed leaves and Reordering
procedure [KKO+16, 2.1. The Reordering Problem for General Orderings]. This
solves the fourth case (e.g. Figure 3.7).

After completion of the all five steps, T ′i+1 is disposed. T ′i , the result of the intersection,
replaces Ti in the stacked list of trees for the next round.

T ′i+1

a b b

d e

T ′i+1

a b

d e

Apply step 2

Figure 3.4.: Example of application of the second step onto T ′i+1 in Figure 3.3.

14

3.2. Generating Possible Planar Drawings Through Intersecting PQ-Trees

Ti

d

c b a

e

Ti

d e

b a
c

Apply step 3

Figure 3.5.: Example of application of the first two cases of third step onto Ti in Figure 3.2.

T ′i+1

a b

d e

u

Ti

d e

b a

=

T ′i

a b

d e

Figure 3.6.: Example intersection of T ′i+1 with Ti from Figure 3.4 and from Figure 3.5
respectively.

Synchronisation of leaves of two PQ-trees can be done in linear time without Reordering
procedure. Reordering procedure can be solved in time O(e), where e is the number of
elements in T ′i [KKO+16, Proposition 2.5]. Thereby, a total linear running time per level
i ∈ [k] is needed for synchronisation and Reordering procedures.

3.2.2. Choosing Right Ordering of Leaves in PQ-Tree for Ordering Nodes
in Graph

Each resulting PQ-tree T ′i of intersection represents the ordering of nodes in level i ∈ [k].
Such ordering of the nodes leads to the planar drawing of the edges between level i + 1 and
level i if the conditions in Lemma 3.1 are fulfilled.

Lemma 3.1. For PQ-trees Ti and Ti+1 representing the ordering of nodes in levels i and
i+1 respectively of the same single-source proper k-level graph G, if Ti+1 was obtained from
Ti through Simple Level-Planarity Algorithm (Section 3.1), then intersecting any chosen
projection of Ti+1 with Ti leads to the cross free drawing of the edges between levels i and
i + 1 in G, only and only in case of same ordering of corresponding leaves.

Proof. In following we assume that T ′i+1 is one of the chosen projections of Ti+1 (e.g. Fig-
ure 3.2, T ′i+1). Nodes of level i + 1 have already been ordered in G and the ordering can not
be changed. Let assume that the chosen ordering for T ′i+1 was from left endmost child to
right endmost child (e.g. Figure 2.9, left-to-right ordering – f → g → h→ j). Ti contains

T ′i

a b

d e

T ′i

a b c

d e

Apply step 5

Figure 3.7.: Example of application of the last case of the third step onto T ′i in Figure 3.6.

15

3. Drawing Planar k-Level Graphs

the set of leaves {li,1, li,2, . . . , li,n} with n leaves, which correspond with leaves of T ′i+1
(e.g. Figure 3.2, Ti). Synchronising T ′i+1 with Ti as described in Section 3.2.1 transforms it
so that T ′i+1 also has the same set of leaves as Ti, but with other permutation possibilities
(e.g. Figure 3.4–3.5, T ′i+1 and Ti after step 3). Intersecting transformed T ′i+1 with Ti results
to a new PQ-tree T ′i . Because Ti+1 was generated based on prequel tree Ti, so that the
ordering of nodes in level i are already considered in Ti+1 (also in T ′i+1). Intersecting T ′i+1
with Ti will lead to the consideration of the ordering of level i + 1 nodes in T ′i . After
application of step 5 in Section 3.2.1, T ′i also contains the removed leaves. Latter represents
restricted orderings in Ti and it is restricted to T ′i+1 u Ti (e.g. Figure 3.6).

T ′i+1

f g h j
(a)

Ti

d

c b a

e
(b)

T ′i

a b c

d e

(c)

Figure 3.8.: General overview of intersection of T ′i+1 (a) with Ti (b) from Figure 3.2. T ′i (c)
is the result of intersection.

Ordering of nodes for level i is done directly after projecting T ′i to a new T ′′i via choosing
one of the two possible orderings in T ′′i - either the ordering from left endmost child to right
endmost child or vice verse. This is done under consideration of the already one iteration
before chosen ordering of level i + 1 nodes. In Lemma 6 from “Partial and Constrained
Level Planarity” [BR17, Lemma 6], it is already proved that for non-null-trees Ti and Ti+1
(Ti+1 is obtained from Ti through Simple Level-Planarity Algorithm) there exists at least
one possible ordering of nodes in level i and level i + 1 so that all edges between these two
levels can be drawn planar. After applying chooseProjection() to T ′i , these possibilities are
restricted at most to two in T ′′i (e.g. Figure 3.9, T ′′i contains orderings a→ b→ c→ d→ e
and e→ d→ c→ b→ a after applying chooseProjection() procedure).

T ′i

a b c

d e

T ′′i

a b c d e

chooseP rojection()

Figure 3.9.: Applying chooseProjection() onto T ′i from Figure 3.6.

Now, it is needed to choose one of these two possible orderings for level i that matches to
the ordering of level i + 1 nodes. One of the orderings must lead to a cross free drawing of
edges, other one can, but does not have to. Choosing the matching ordering is done via
considering the order of corresponding leaves in level i + 1. Finding first two corresponding
leaves, which represent two different nodes in each level, is enough for determining the right
ordering. Under consideration of these two leaves either left-to-right or reversed ordering
is chosen that leads to a crossing-free drawing of edges between levels i and i + 1 in G
(e.g. Figure 3.10, ordering a→ b→ c→ d→ e lead to a cross free drawing of edges in G,
but e→ d→ c→ b→ a does not) and it leads to the cross free drawing of edges between
the levels i and i + 1.

16

3.2. Generating Possible Planar Drawings Through Intersecting PQ-Trees

i

i + 1

cba d e

f g h j

G

a b c d e

a b c d e

T ′′i

f g h j

f g h j

T ′i+1

i

i + 1

cde b a

f g h j

G

abcde

a b c d e

T ′′i

f g h j

f g h j

T ′i+1

Figure 3.10.: Choosing matching ordering in T ′′i from Figure 3.9.

Choosing the right ordering (Lemma 3.1) is done in a linear time per level i ∈ [k]. Thereby,
generating one of the possible planar drawings of G can also be done in linear time.

17

4. Implementation for Single-Source
GitHub Network Graphs

Implementation of the algorithms described in the thesis are done in C++ using OGDF1

as library, which provides PQ-tree data structure and includes the update2 operation. Qt
Framework was used for GUI and network connection related parts of the implementation
and QMake utility for automation of the compilation.

GitHub Developer API

GitHub Developer API 3 provides information about repositories and their owners. All API
access is done over HTTPS4, and accessed from the https://api.github.com. All data
is sent and received as JSON 5. The following information about a repository is mandatory
to be able to download the commits:

• Whether it is publicly accessible. Current implementation can download only publicly
accessible repositories.

• SHA values of last commits of each ended branch to download the commits of the
branch.

The implementation also includes caching (storing of the retrieved data locally) and re-using
the cached data without needing to download the same data again over the network.

To be able to test the level planarity of GitHub Network Graph for the given repository,
first the information is downloaded from GitHub server, which contains adjacency list of
the vertices of the graph. Information about the placement of vertices and edges is not
provided by GitHub Developer API and needs to be calculated after the downloading of the
information. But the information about commit date and time (time stamp), ID (SHA-1 6)
and an adjacency list of parents containing ID’s for each commit is provided.

1OGDF is a self-contained C++ class library for the automatic layout of diagrams. OGDF offers
sophisticated algorithms and data structures to use within your own applications or scientific projects.
The library is available under the GNU General Public License and is developed and supported by TU
Dortmund, Osnabrück University, Monash University, University of Cologne, TU Ilmenau.[CGJ+14,
Chapter 17]

2In OGDF library, it is named Reduction(S) and called over an instance of a P Q-tree for a sub-set S.
3Application Programming Interface
4Hyper Text Transfer Protocol Secure
5JavaScript Object Notation
6Secure Hash Algorithm 1 is the member of the family of cryptographic hash functions.

19

https://api.github.com

4. Implementation for Single-Source GitHub Network Graphs

Reconstruction of a New Abstract GitHub Network Graph

Reconstructing and also organising the placement of vertices and edges of a new abstract
GitHub Network Graph using received information about commits can be done as follows:
Commits are transformed into nodes and edges are constructed through the adjacency list
of parents of each received commit. Commit date and time makes it possible to determine
the place of each node on the time-axis, which will become later the level of the node in
the graph. The calculation of coordinates of each commit on the perpendicular axis to the
time-axis without consideration of the planarity is done primitively through moving them
to the next available coordinate. This behaviour is observed from the original drawings
of GitHub Network Graphs on the GitHub’s web GUI. The latter is optional, needed to
visualise and make an output – a drawing of the GitHub Network Graph similar to the
GitHub Network Graph drawn in GitHub’s web-based GUI, before the planarity testing (see
Figure 4.1), for comparing it to the drawing after planarity test and PQ-tree intersections.
All operations above is done in O(|V|+ |E|).

4.1. Creating a Proper k-Level GitHub Network Graph
After downloading information about GitHub Network Graph from GitHub and recon-
structing it in a such way as it is done on the web-based GUI of GitHub (see Section 4), it
can be seen clearly (e.g. Figure 4.1) that GitHub Network Graphs are k-level graphs, but
they are not necessarily proper. To be able to test the level planarity of a GitHub Network
Graph, it has to be transformed into a proper k-level graph. The transformation is done as
follows:

1. The vertices are sorted ascending by their time-stamps.

2. Then, going through the sorted list from the beginning to the end, levels are assigned
to each vertex: if time-stamps of current and previous vertices are equal, then the
current vertex receives the same level as the previous vertex. Otherwise, the next
level is assigned to the current vertex.

3. Finally, the difference of levels between source and target vertices of each edge in
the graph is considered. The edges that connect vertices of nonconsecutive levels are
replaced through the sequence of edges connecting vertices of consecutive levels via
adding Dummy-vertices (e.g. Grey vertices in Figure 4.2) between source and target
vertices [BN88, p. 1035–1036].

Figure 4.2 is an example, which shows the proper k-level transformation of Figure 4.1. The
grey filled vertices are the “dummy”-vertices that were added during the transformation.

4.2. Simple Level-Planarity-Testing-Algorithm
After successfully transformation of the GitHub Network Graph to its proper k-level form
as described in Section 4.1, the Simple Level-Planarity Algorithm (see Section 3.1) can be
applied to it, to test whether it is planar or non-planar. Simple Level-Planarity-Testing-
Algorithm is the implementation of Simple Level-Planarity Algorithm that contributes the
first main practical part of the thesis. The implementation allows not only to test explicitly
GitHub Network Graphs, but also any single-source proper k-level graph implementing the
offered interface. See Algorithm 4.1 for the pseudo-code of Simple Level-Planarity-Testing-
Algorithm.

In lines 1–3, the set of edges is partitioned to the list of subsets containing the edges in the
same levels. In line 4, the initialisation of PQ-tree is done with all outgoing edges from the
root of G and an additional dummy-edge edummy. Dummy-edge edummy is not considered in

20

4.2. Simple Level-Planarity-Testing-Algorithm

Figure 4.1.: A GitHub Network Graph Figure 4.2.: A proper k-level form of Fig. 4.1

Algorithm 4.1: Simple Level-Planarity-Testing-Algorithm
Input: Single-source proper k-level graph G = (V, E)
Data: Extended PQ-tree T
Output: true if G can be drawn planar, else false

1 E := generateEdgeSetsFrom(E)
2 assume E = {{E i}}, where E i = {(u, v)|u ∈ Vi ∧ v ∈ Vi+1}
3 assume E =

⋃|E|
i=1 E i and for all E i, Ej : E i ∩ Ej = ∅, i ∈ [|E|], j ∈ [|E|], i 6= j

// Initialisation of PQ-tree with outgoing edges from root and an
additional dummy-edge

4 T.Initialize(E1 ∪ {edummy})
// Main loop

5 forall E2, E3 to Ek do
// Add next leaves to the PQ-tree

6 leaves := T.getLeavesFromPQTree()
7 assume leaves 6= ∅ ∧ ∀leaf ∈ leaves: leaf ∈ E i−1
8 forall leaf ∈ leaves do
9 successors := retrieveLeavesFromEdgeSetForCurrentLeaf(leaf, E i)

10 T.exchangeLeafToLeaves(leaf, successors)

// Check for merges in the level
11 listsOfMergedLeaves := T.leavesWithIdenticalEndpoints()
12 if listsOfMergedLeaves 6= ∅ then
13 forall mergeList ∈ listsOfMergedLeaves do
14 assume |mergeList| ≥ 2
15 assume ∀l1, l2 ∈ mergeList:target(l1) = target(l2) ∧ source(l1) 6=

source(l2)
// update operation for merged leaves

16 if T.updateOperation(mergeList) = null tree then
17 return false

18 copyTreeIntoStack(T)
19 return true

21

4. Implementation for Single-Source GitHub Network Graphs

the whole running time, but helps to avoid forbidden configuration in a PQ-tree. A P -node
has to have at least two and a Q-node has to have at least three leaves (see Section 2,
PQ-Trees). But in GitHub Network Graphs, there are often linear parts so that there is
only one branch in certain time period. This causes an error in run-time, if PQ-tree does
not have at least two leaves. Adding the additional dummy-leaf at the start helps to avoid
such situations during the run-time. After that, the main loop of the algorithm starts,
which processes the remaining levels of edges (Line 5). For being able to add new leaves of
the next level to the PQ-tree, all active leaves are retrieved from it (Line 6). Then, new
leaves are added to the corresponding active leaves in the PQ-tree and leaves without any
child in the new level are considered inactive and removed from the tree through post-order
traverse as described in Section 3.1 (Lines 8–10). After that, a list containing the lists
of the leaves with identical end points is generated (Line 11) and if there are such leaves
representing a merge in G, then they are made consecutive via update-operation (Line 16).
Otherwise, algorithm continues with the next level of edges. The update-operation is called
for every merge separately in the same level. After processing the subset of edges for the
current level in the main loop, a copy of the PQ-tree Ti is made and added into the list of
stacked trees (Line 18). This list of PQ-trees will be used to generate the possible planar
drawings of G and is described in the next Section (see Section 3.2). If the algorithm runs
until to the line 19, then the result is true, means G can be drawn planar. Otherwise, if it
fails before reaching that line, then the result is false and this means, G can not be drawn
planar.

4.3. DrawPlanar Algorithm
DrawPlanar Algorithm is the implementation of Section 3.2 that contributes the second
main practical part of the thesis. See Algorithm 4.2 for the pseudo-code of DrawPlanar
Algorithm.

The ExtendedPQTree extends PQTree class provided by OGDF with additional methods.
Stack is the reference to the list of stacked trees (Section 3.2). In line 1, it is ensured
that the result of Simple Level-Planarity-Testing-Algorithm was true. Otherwise, the
graph can not be drawn planar. A new pointer for tracking the last ordering is initialised
with null in line 2 and it is ignored first time in orderNodesInGraph(Ti+1, lastOrdering).
Lines 3–18 contain the main loop for ordering nodes in graph via applying steps described
in Section 3.2 and it repeats until there is only one PQ-tree is left in the stacked list of
trees. In case, there are at least two PQ-trees in the stack (stacked list of trees), it is
entered into the main loop and in lines 4–5 two consecutive trees are popped from the stack.
Then, an ordering is chosen from Ti+1 as described in Section 3.2.2 in line 6. In line 7 the
nodes are ordered in graph for the level i + 1 under consideration of Lemma 3.1. Lines 8–17
contain the steps defined in Section 3.2.1. After that, Ti+1 is not needed anymore and
dismissed. Ti is also processed and ready for the next round and is pushed back into the
stack again in line 18. After the main loop ends, there is only one PQ-tree is left in the
stack, T1 that contains the root vertex of graph G. The last PQ-tree T1 is processed at
the end, in lines 19–20.

4.4. A Heuristic for Aligning Nodes
Ordering of the nodes in a GitHub Network Graph as described in Section 3.2 results in
a planar drawing of it. But this drawing is not perfect as described in Section 1.2. In
most cases, the x-coordinates of the nodes are not the same for the same branch (path)
in GitHub Network Graph, which was drawn with DrawPlanar Algorithm. In example
Figure 4.3, GitHub Network Graph at the left is a result drawing, which is generated this
way. There are non-perfect ordered nodes in the result.

22

4.4. A Heuristic for Aligning Nodes

Algorithm 4.2: DrawPlanar
1 assume result of Simple Level-Planarity-Testing-Algorithm was true

2 List lastOrdering := null

3 while Stack.size > 1 do
// Take two consecutive trees from stack

4 ExtendedPQTree ti+1 := Stack.pop
5 ExtendedPQTree ti := Stack.pop

// Choose the first ordering of successor tree Ti+1
6 ti+1 := ti+1.chooseProjection

// Order nodes of level i + 1 in G
7 lastOrdering := orderNodesInGraph(ti+1, lastOrdering)

// Step 1: replace all leaves in Ti+1 with leaves from Ti

8 List leaves_Ti := ti.getAllLeaves
9 ti.replaceLeavesWithNewLeaves(leaves_Ti, EStack.size+1

// Step 2: Eliminate duplicates
10 ti+1.eliminateDuplicates

// Step 3.a+b: Consider ended branches in Ti, remove them before
intersection

11 List leaves_Ti+1 := ti+1.getAllLeaves
12 List ended_branches := ti.endedBranches(leaves_Ti+1)
13 if endedBranches.isNotEmpty then
14 ti.eliminateEndedBranches(ended_branches)

// Intersect the processed tree Ti+1 with Ti without ended
branches

15 ti.intersectWith(ti+1)
// Step 3.c: Consider ended branches in Ti, restore them

16 if endedBranches.isNotEmpty then
17 ti.restoreEndedBranches(ended_branches)

// Add intersection result into stack for the next round
18 Stack.push (ti)

// Proceed the last level manually
19 ExtendedPQTree t1 := Stack.pop.chooseProjection
20 lastOrderingorderNodesInGraph(t1, lastOrdering)

An optimised reordering of nodes in linear time without lost of planarity is needed. To
achieve this goal, an optimisation heuristic is used. It is as follows: First, from first level
to the last level (forwards optimisation) sort all edges e = (s, t) in each level i descending
by x-coordinate of t. Then, set x-coordinate of t to the minimum x-coordinate of s and t,
if that coordinate is not already taken by another node. After that, from last level to the
first level (backwards optimisation) sort all edges e = (s, t) in each level i descending by
x-coordinate of s and set x-coordinate of s to the minimum x-coordinate of s and t, if that
coordinate is not already taken by another node. The procedure is repeated until there is
no more changes in the ordering of the nodes.

In all test results with real GitHub Network Graphs, the optimisation ran only one time
– forwards and backwards. The implementation is generic, which means, for other type
of single-source k-level graphs it can need to run more than one time, but limited to the
maximum number of nodes at level i. Where level i is the most wide part of the graph

23

4. Implementation for Single-Source GitHub Network Graphs

containing the most number of nodes in a single level. There is an example drawing in
Figure 4.3, which shows the resulting drawing (right) after optimisation heuristic.

non-perfect orderings
non-perfect orderings

after optimisation heuristic

Figure 4.3.: Planar, but non-perfect drawing generated by the implementation (left). Planar
and optimised drawing of the same Graph (right).

There are also cases, where the optimisation heuristic does not help. Examples are included
in Appendix A (e.g. Figure A.6).

4.4.1. Run-Time for Different Test Sets

Following hardware configuration was used to measure on Ubuntu Gnome 16.04 (LTS)
distribution of Linux:

• Dual core Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz

• 8GB DDR3L Memory @ 1600MHz

• Intel HD Graphics 520 (Skylake GT2)

Table 4.1 contains the results of measures.

4.4.2. The Quality of Heuristic

A downhill is an edge (s, t), where x-coordinate of the target node t is smaller than the
x-coordinate of the source node s in drawing of G. An uphill is an edge (s, t), where
x-coordinate of the source node s is smaller than the x-coordinate of the target node t in
drawing of G. The wished drawing contains at most one downhill and one uphill per path
in G. All additional up- and downhills in a path are called unwanted up- or downhills. For
measuring the quality of the heuristic, the number of unwanted up- and downhills in the
drawing are counted before and after application of the optimisation heuristic. The quality
improvement is calculated as follows:

QI = P −O

P

where QI is the quality improvement, P is the number of unwanted up- and downhills
in the drawing before application of the heuristic, O is the number of unwanted up- and

24

4.4. A Heuristic for Aligning Nodes

Table 4.1.: Run-time of planarity test and drawing for different size repositories
Repository Nodes Levels Planarity test

(microseconds)
Drawing
(microseconds)

rashad2985/include.js 2 2 9 196
rashad2985/ba_timestamp 7 5 38 273
rashad2985/NoSymbols 8 8 32 329
rashad2985/ba_nonplanar 22 10 149 not planar
supergagle/ProjektWS2014 30 28 272 1096
rashad2985/ba_planar_no_branch 79 41 392 2964
code4lib/antiharassment-policy 261 142 1417 8912
thecodejunkie/github.expandinizr 270 128 1317 8607
18F/open-source-policy 404 169 1748 13966
usds/playbook 706 253 1143 not planar
buunguyen/octotree 783 474 4172 25548
lego04/robot 1136 340 400 not planar
Binary tree with 15 nodes (Figure A.1) 15 5 106 891
Binary tree with 17 nodes (Figure A.2) 17 5 113 680
Tree with 9 nodes (Figure A.3) 9 4 62 542
Tree with 18 nodes (Figure A.4) 18 6 144 942
Tree with 27 nodes (Figure A.5) 27 6 261 1295

downhills in the drawing after application of the heuristic. Table 4.2 contains the results of
the measures for the example graphs in Section 4.4.1. The drawings without unwanted
up-/downhills are excluded. According to the results of the measurements (e.g. Table 4.2),

Table 4.2.: Quality improvement after application of the optimisation heuristic on the test
sets.

GitHub Repository or custom graph P O QI

Yatser/prettypullrequests 11 0 100.00%
rashad2985/ba_planar_no_branch 1 0 100.00%
code4lib/antiharassment-policy 1 0 100.00%
thecodejunkie/github.expandinizr 9 2 77.78%
18F/open-source-policy 30 3 90.00%
buunguyen/octotree 32 2 93.75%

heuristic is very effective for GitHub Network Graphs, but is not effective for single-source
k-level graphs that does not have merge of paths, e.g. binary trees in Appendix A. In
the implementation, the high efficiency of the heuristic was especially wished for GitHub
Network Graphs.

25

5. Conclusion

In this thesis, a theoretical approach to draw planar GitHub Network Graphs (in case, if it
is possible), was studied and implemented.

In Section 3, a problem to draw planar level graphs was approached theoretically and
resolved for the single-source proper k-level graphs that pass the test for planarity. First,
the given single-source k-level graph is tested with Simple Level-Planarity Algorithm for
planarity as described in Section 3.1. In case the test passes, the approach for drawing
planar level graphs, which involves intersection of PQ-trees, is used to generate a planar
drawing of given single-source k-level graph (Section 3.2).

Then, in Section 4, the implementation of the whole theoretical approach was described.
For single-source GitHub Network Graphs, in Section 4.1 was described, how they can
be brought to a proper k-level graph form, to be able to apply Simple Level-Planarity
Algorithm for testing them. The implementations of both testing and drawing algorithms
(Sections 4.2–4.3) were done generic so that they can be applied not only to the GitHub
Network Graphs, but also to any single-source proper k-level graph. Both of them have
linear running time. In addition, a heuristic was implemented, which effectively improves
the quality of a planar drawn GitHub Network Graph and also has linear running time.

In Appendix A there are example drawings, which are the results of the application of the
implementation from this thesis.

Outlook

A problem for drawing planar GitHub Network Graphs were solved theoretically and also
implemented practically (including the drawing of the planar graph in case of positive test
result) for a particular subset of the GitHub Network Graphs, where the given graph is a
re-presenter of single-source k-level graphs.

It might be interesting, to draw GitHub Network Graphs with possible fewer crossing-edges,
if the planarity test described in Section 3.1 was not successful. In this case, the problem
is in NP-Hard [MD83].

27

5. Conclusion

For above mentioned possibility and also for testing for planarity and in case of positive test
result, drawing a planar GitHub Network Graph problem stays open for forking1 feature
in GitHub.

1A fork is a copy of a repository allowing to make changes without affecting the original project. It has its
own remote repository for uploading. But these changes are also can be merged to the original project
via submitting a pull request to the project owner. Latter leads to the more complicated drawings of
GitHub Network Graphs.

28

Bibliography

[BL76] Kellogg S. Booth and George S. Lueker. Testing for the Consecutive Ones
Property, Interval Graphs, and Graph Planarity using PQ-Tree Algorithms.
Journal of Computer and System Sciences, 13(3):335–379, 1976.

[BN88] Giuseppe Di Battista and Enrico Nardelli. Hierarchies and Planarity The-
ory. IEEE Transactions on Systems, Man, and Cybernetics, 18:1035–1046,
November/December 1988.

[BR16] Thomas Bläsius and Ignaz Rutter. Simultaneous PQ-Ordering with Applica-
tions to Constrained Embedding Problems. ACM Transactions on Algorithms
(TALG), 12, February 2016.

[BR17] Guido Brückner and Ignaz Rutter. Partial and Constrained Level Planarity. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 2000–2011. Symposium on Discrete Algorithms (SODA) ’17,
January 2017.

[CGJ+14] Markus Chimani, Carsten Gutwenger, Michael Jünger, Gunnar W. Klau,
Karsten Klein, and Petra Mutzel. The Open Graph Drawing Framework
(OGDF). CRC Press, 2014.

[JLM98] Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level Planarity Testing
in Linear Time. Proceedings of the 6th International Symposium on Graph
Drawing (GD’98). Springer, 1998.

[KKO+16] Pavel Klavík, Jan Kratochvíl, Yota Otachi, Toshiki Saitoh, and Tomáš Vyskočil.
Extending Partial Representations of Interval Graphs. In Algorithmica, pages
1–23. Springer, 2016.

[MD83] Garey M.R. and Johnson D.S. Crossing number is NP-complete. SIAM Journal
on Algebraic and Discrete Methods, 4:312–316, 1983.

[PS12] René Preißel and Bjørn Stachmann. GIT. Dezentrale Versionsverwaltung im
Team – Grundlagen und Workflows. dpunkt.verlag GmbH, 1st edition, 2012.

[Pur97] Helen Purchase. Which aesthetic has the greatest effect on human understand-
ing? Proceedings of the 5th International Symposium on Graph Drawing
(GD’97). Springer, 1997.

[RSB+01] Bert Randerath, Ewald Speckenmeyer, Endre Boros, Peter Hammer, Alex
Kogan, Kazuhisa Makino, Bruno Simeone, and Ondrej Cepek. A Satisfiability
Formulation of Problems on Level Graphs. Technical report, Electronic Notes
in Discrete Mathematics, 2001.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for Visual
Understanding of Hierarchical System Structures. IEEE Transactions on
Systems, Man, and Cybernetics, 11:109–125, February 1981.

29

Appendix

A. Example GitHub Network Graphs That Used as Test Sets
and Resulting Drawings From the Implementation in This
Thesis

Figure A.1.: Drawing of the binary-tree with 15 nodes: planar drawing for it generated
through the implementation (left), optimised version of the planar drawing
(right).

Figure A.2.: Drawing of the binary-tree with 17 nodes: planar drawing for it generated
through the implementation (left), optimised version of the planar drawing
(right).

31

5. Appendix

Figure A.3.: Drawing of the tree with 9 nodes: planar drawing for it generated through
the implementation (left), optimised version of the planar drawing (right).

Figure A.4.: Drawing of the tree with 18 nodes: planar drawing for it generated through
the implementation (left), optimised version of the planar drawing (right).

Figure A.5.: Drawing of the tree with 18 nodes: planar drawing for it generated through
the implementation (left), optimised version of the planar drawing (right).

32

A. Example GitHub Network Graphs That Used as Test Sets and Resulting Drawings
From the Implementation in This Thesis

Figure A.6.: Part of the GitHub Network Graph of the repository “18F / open-source-
policy”: Similar drawing to the GitHub’s web-based GUI (left), planar drawing
for it generated through the implementation (middle), optimised version of
the planar drawing (right).

33

https://github.com/18F/open-source-policy/network
https://github.com/18F/open-source-policy/network

5. Appendix

~

~

~

~

~

~

Figure A.7.: Part 1 of the GitHub Network Graph of the repository “buunguyen / octotree”:
Similar drawing to the GitHub’s web-based GUI (left), planar drawing for
it generated through the implementation (middle), optimised version of the
planar drawing (right).

34

https://github.com/buunguyen/octotree/network

A. Example GitHub Network Graphs That Used as Test Sets and Resulting Drawings
From the Implementation in This Thesis

~

~

~ ~

~

~ ~

~

~

Figure A.8.: Part 2 of the GitHub Network Graph of the repository “buunguyen / octotree”:
Similar drawing to the GitHub’s web-based GUI (left), planar drawing for
it generated through the implementation (middle), optimised version of the
planar drawing (right).

35

https://github.com/buunguyen/octotree/network

5. Appendix

~

~ ~

~ ~

~

Figure A.9.: Part 3 of the GitHub Network Graph of the repository “buunguyen / octotree”:
Similar drawing to the GitHub’s web-based GUI (left), planar drawing for
it generated through the implementation (middle), optimised version of the
planar drawing (right).

36

https://github.com/buunguyen/octotree/network

A. Example GitHub Network Graphs That Used as Test Sets and Resulting Drawings
From the Implementation in This Thesis

~ ~ ~

Figure A.10.: Part of the GitHub Network Graph of the repository “thecodejunkie /
github.expandinizr”: Similar drawing to the GitHub’s web-based GUI (left),
planar drawing for it generated through the implementation (middle), opti-
mised version of the planar drawing (right).

37

https://github.com/thecodejunkie/github.expandinizr/network
https://github.com/thecodejunkie/github.expandinizr/network

	Contents
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 Preliminaries
	2.1 k-Level Graphs and Level Planarity
	2.2 GitHub Network Graphs as k-Level Graphs
	2.3 PQ-Trees

	3 Drawing Planar k-Level Graphs
	3.1 Simple Level-Planarity Algorithm
	3.2 Generating Possible Planar Drawings Through Intersecting PQ-Trees

	4 Implementation for Single-Source GitHub Network Graphs
	4.1 Creating a Proper k-Level GitHub Network Graph
	4.2 Simple Level-Planarity-Testing-Algorithm
	4.3 DrawPlanar Algorithm
	4.4 A Heuristic for Aligning Nodes

	5 Conclusion
	Bibliography
	Appendix
	A Example GitHub Network Graphs That Used as Test Sets and Resulting Drawings From the Implementation in This Thesis

