Exercises 2 - Triangulation of Polygons & Linear Programming

Discussion: Wednesday, May 23rd, 2018

Lecture 3 – 02.05.2018

Exercise 1 – Monotone Polygons. In the lecture we have seen the algorithm MAKEMONOTONE, which partitions a given polygon P into y-monotone polygons.

1. Prove the correctness of the sub-routine HANDLEMERGEVERTTEX; see slides of lecture.
2. Assume that the polygon has $O(1)$ turn vertices. Modify MAKEMONOTONE such that it partitions P into y-monotone polygons using $O(n)$ running time – instead of $O(n \log n)$ running time.
3. The sub-routines of MAKEMONOTONE add edges to a doubly-connected edge list. In the lecture it has been claimed that each insertion takes $O(1)$ running time. Prove that this claim holds. Further, argue that the insertion of an edge into a doubly-connected edge list in general may need more than $O(1)$ time.

Exercise 2 – Art-Gallery. Prove or falsify the following statement.
Let P be a simple polygon and consider a set of cameras that together observe the complete border of P, then they also observe the complete interior of P.

Exercise 3 – Polygon-Splitting. Let P be a simple polygon with n vertices. Describe an algorithm that splits P into two simple polygons such that each of them has $\lfloor 2n/3 \rfloor + 2$ vertices.

Hint: Triangulate the polygon and consider the dual graph of that triangulation.

Lecture 4 – 09.05.2018

Exercise 4 – Correctness. In the lecture we have seen the algorithm RANDOMPERMUTATION(A).

1. Prove the correctness of RANDOMPERMUTATION by showing that all permutations of A have the same probability.
2. Show, that the permutations of A do not have the same probability, when the expression $r \leftarrow \text{Random}(k)$ is replaced by $r \leftarrow \text{Random}(n)$.
Exercise 5 – Trains. We are given n trains that run on parallel tracks. Each train z_i ($i = 1, \ldots, n$) has constant speed v_i and starts at position k_i on its track at time $t = 0$. Describe an algorithm that computes in $O(n \log n)$ time which trains are at least once in leading position until a given time $t_{\text{stop}} > 0$.