Algorithms for Route Planning

KIT (SS 2016)

Lecture: Time Dependent Route Planning - II

Christos Zaroliagis

zaro@ceid.upatras.gr

Dept. of Computer Engineering & Informatics University of Patras, Greece

Computer Technology Institute & Press "Diophantus"

Time Dependent Shortest Paths – II

a more realistic and more involved problem

C. Zaroliagis

KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths –

Poly-time Approximation Algorithms

$(1 + \varepsilon)$ -approximation of D[o, d]: Preliminaries

- Why focus on shortest-travel-time (delays) functions, and not on earliest-arrival-time functions ?
- Arc/Path Delay Reversal: Easy task

• $t_o = \overleftarrow{\operatorname{Arr}}[o, v](t_v) = t_v - \overleftarrow{D}[o, v](t_v)$: Latest-departure-time from *o* to *v*, as a function of the arrival time t_v at *v*

Approximating *D*[*o*, *d*] : Quality

 Maximum Absolute Error: A crucial quantity for the time and space complexity of the algorithm

Approximating *D*[*o*, *d*] : Quality

 Maximum Absolute Error: A crucial quantity for the time and space complexity of the algorithm

LEMMA: Maximum Absolute Error [Kontogianis-Zaroliagis (2014)] $MAE(c, d) = (\Lambda^+(c) - \Lambda^-(d)) \cdot \frac{(m-c) \cdot (d-m)}{d-c} \le \frac{(d-c) \cdot (\Lambda^+(c) - \Lambda^-(d))}{4}$

• Approximations of D[o, d]: For given $\varepsilon > 0$, and $\forall t \in [0, T)$,

 $\underline{D}[o,d](t) \leq \underline{D}[o,d](t) \leq \overline{\underline{D}}[o,d](t) \leq (1+\varepsilon) \cdot \underline{D}[o,d](t)$

• Approximations of D[o, d]: For given $\varepsilon > 0$, and $\forall t \in [0, T)$,

 $\underline{D}[o,d](t) \le \underline{D}[o,d](t) \le \overline{D}[o,d](t) \le (1+\varepsilon) \cdot \underline{D}[o,d](t)$

FACT: if D[o, d] was a priori known then a linear scan gives a space-optimal (1 + ε)-upper-approximation (i.e., with the MIN #BPs)

• Approximations of D[o, d]: For given $\varepsilon > 0$, and $\forall t \in [0, T)$,

 $\underline{D}[o,d](t) \leq \underline{D}[o,d](t) \leq \overline{\underline{D}}[o,d](t) \leq (1+\varepsilon) \cdot \underline{D}[o,d](t)$

- FACT: if D[o, d] was a priori known then a linear scan gives a space-optimal $(1 + \varepsilon)$ -upper-approximation (i.e., with the MIN #BPs)
- PROBLEM: Prohibitively expensive to compute/store D[o, d] before approximating it. We must be based only on a few samples of D[o, d]

• Approximations of D[o, d]: For given $\varepsilon > 0$, and $\forall t \in [0, T)$,

 $\underline{D}[o,d](t) \leq \underline{D}[o,d](t) \leq \overline{\underline{D}}[o,d](t) \leq (1+\varepsilon) \cdot \underline{D}[o,d](t)$

- FACT: if D[o, d] was a priori known then a linear scan gives a space-optimal (1 + ε)-upper-approximation (i.e., with the MIN #BPs)
- PROBLEM: Prohibitively expensive to compute/store D[o, d] before approximating it. We must be based only on a few samples of D[o, d]
- FOCUS: Linear arc-delays. Later extend to pwl arc-delays

• Approximations of D[o, d]: For given $\varepsilon > 0$, and $\forall t \in [0, T)$,

 $\underline{D}[o,d](t) \le \underline{D}[o,d](t) \le \overline{D}[o,d](t) \le (1+\varepsilon) \cdot \underline{D}[o,d](t)$

- FACT: if D[o, d] was a priori known then a linear scan gives a space-optimal (1 + ε)-upper-approximation (i.e., with the MIN #BPs)
- PROBLEM: Prohibitively expensive to compute/store D[o, d] before approximating it. We must be based only on a few samples of D[o, d]
- FOCUS: Linear arc-delays. Later extend to pwl arc-delays
- *D*[*o*, *d*] lies entirely in a **bounding box** that we can easily determine, with only 3 TD-Djikstra probes

• Make the sampling so that $\forall t \in [0, T], \overline{D}[o, d](t) \le (1 + \varepsilon) \cdot \underline{D}[o, d](t)$

Keep sampling always the fastest-growing axis wrt to D[o, d]

[Foschini-Hershberger-Suri (2011)]

while slope of $D[o, d] \ge 1$ do

[Foschini-Hershberger-Suri (2011)]

```
while slope of D[o, d] \ge 1 do
```

Bad Case for [Foschini-Hersberger-Suri (2011)] :

[Foschini-Hershberger-Suri (2011)]

while slope of $D[o, d] \ge 1$ do

[Kontogiannis-Zaroliagis (2014)] :

[Foschini-Hershberger-Suri (2011)]

```
Slope of D[o, d] \leq 1:
```

repeat

Apply **BISECTION** to the remaining time-interval(s)

until desired approximation guarantee (wrt Max Absolute Error) is achieved

[Kontogiannis-Zaroliagis (2014)]

ASSUMPTION 1: Concavity of arc-delays.

/* to be removed later */

Implies concavity of the unknown function D[o, d]

[Kontogiannis-Zaroliagis (2014)]

ASSUMPTION 1: Concavity of arc-delays.

/* to be removed later */

Implies concavity of the unknown function D[o, d]

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of the (pwl) arc-delay functions

- ► Verified by TD-traffic data for road network of Berlin [TomTom (February 2013)] that all arc-delay slopes are in [-0.5, 0.5].
- Slopes of shortest-travel-time function D[o, d] from [−Λ_{min}, Λ_{max}], for some constants Λ_{max} > 0, Λ_{min} ∈ [0, 1).

[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously all distance values from *o*, at mid-points of time intervals, until required approximation guarantee is achieved for each destination node

[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously all distance values from *o*, at mid-points of time intervals, until required approximation guarantee is achieved for each destination node

[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously all distance values from *o*, at mid-points of time intervals, until required approximation guarantee is achieved for each destination node

C. Zaroliagis

[11 / 40]

[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously all distance values from *o*, at mid-points of time intervals, until required approximation guarantee is achieved for each destination node

C. Zaroliagis

[11 / 40]

[Kontogiannis-Zaroliagis (2014)]

Only under ASSUMPTION 2: For continuous, pwl arc-delays

- Call Reverse TD-Dijkstra to project each concavity-spoiling PB to a PI of the origin o
- For each pair of consecutive Pls at o, run Bisection for the corresponding departure-times interval

Return the concatenation of approximate distance summaries

THEOREM: Space/Time Complexity [Kontogianis-Zaroliagis (2014)]

K^{*}: total number of concavity-spoiling BPs among all arc-delay functions Approximating $\overline{D}[o, \star] = (\overline{D}[o, d])_{d \in V}$ (for *given* $o \in V$ and *all* $d \in V$)

Space Complexity:

② In each interval of *consecutive* PIs, |UBP[o, d]| ≤ 4 · (minimum #BPs for any (1 + ε)−approximation)

Time Complexity: number of shortest-path probes $\in O\left(\log\left(\frac{T}{\varepsilon \cdot D_{\min}[o,d]}\right) \cdot \frac{K^*}{\varepsilon} \log\left(\frac{D_{\max}[o,\star](0,T)}{D_{\min}[o,\star](0,T)}\right)\right)$

Implementation Issues wrt One-To-All Bisection

One-To-All Bisection of [Kontogiannis-Zaroliagis (2014)] is a label-setting approximation method that provably works optimally wrt concave continuous pwl arc-delay functions

Implementation Issues wrt One-To-All Bisection

- One-To-All Bisection of [Kontogiannis-Zaroliagis (2014)] is a label-setting approximation method that provably works optimally wrt concave continuous pwl arc-delay functions
- Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)] and One-To-All Bisection of [Kontogiannis-Zaroliagis (2014)] suffer from linear dependence on K* (degree of disconcavity)

Implementation Issues wrt One-To-All Bisection

- One-To-All Bisection of [Kontogiannis-Zaroliagis (2014)] is a label-setting approximation method that provably works optimally wrt concave continuous pwl arc-delay functions
- Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)] and One-To-All Bisection of [Kontogiannis-Zaroliagis (2014)] suffer from linear dependence on K* (degree of disconcavity)
- A novel **one-to-all** (again **label-setting**) approximation technique, called the Trapezoidal method ([Kontogiannis-Wagner-Zaroliagis (2016)]), avoids entirely the dependence on K^*

The Trapezoidal One-To-All Approximation Method

- Sample travel-times to all destinations, from coarser to finer departure-times from the (common) origin
- Between consecutive samples of the same resolution, the unknown function is bounded within a given trapezoidal
- "Freeze" destinations within intervals with satisfactory approximation guarantee

The Trapezoidal One-To-All Approximation Method

- Sample travel-times to all destinations, from coarser to finer departure-times from the (common) origin
- Between consecutive samples of the same resolution, the unknown function is bounded within a given trapezoidal
- "Freeze" destinations within intervals with satisfactory approximation guarantee

Avoids dependence on concavity-spoiling BPs of the metric

The Trapezoidal One-To-All Approximation Method

- Sample travel-times to all destinations, from coarser to finer departure-times from the (common) origin
- Between consecutive samples of the same resolution, the unknown function is bounded within a given trapezoidal
- "Freeze" destinations within intervals with satisfactory approximation guarantee

- Avoids dependence on concavity-spoiling BPs of the metric
- Cannot provide good approximations for "nearby" destinations around the origin

Time-Dependent Oracles

- Extremely successful theme in static graphs
 - In theory:
 - * P-Space: Subquadratic (sometimes quasi-linear)
 - * Q-Time: Constant
 - * Stretch: Small (sometimes PTAS)
 - In practice:
 - ★ P-Space: A few GBs (sometimes less than 1 GB)
 - * Q-Time: Miliseconds (sometimes microseconds)
 - * Stretch: Exact distances (in most cases)

- Extremely successful theme in static graphs
 - In theory:
 - * P-Space: Subquadratic (sometimes quasi-linear)
 - * Q-Time: Constant
 - * Stretch: Small (sometimes PTAS)
 - In practice:
 - * P-Space: A few GBs (sometimes less than 1 GB)
 - * Q-Time: Miliseconds (sometimes microseconds)
 - * Stretch: Exact distances (in most cases)
- Some practical algorithms extend to time-dependent case

- Extremely successful theme in static graphs
 - In theory:
 - * P-Space: Subquadratic (sometimes quasi-linear)
 - * Q-Time: Constant
 - * Stretch: Small (sometimes PTAS)
 - In practice:
 - ★ P-Space: A few GBs (sometimes less than 1 GB)
 - * Q-Time: Miliseconds (sometimes microseconds)
 - * Stretch: Exact distances (in most cases)
- Some practical algorithms extend to time-dependent case

FOCUS (rest of talk)

Time-dependent oracles with **provably good** preprocessing-space / query-time / stretch tradeoffs

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a *large scale* TD graph with continuous, pwl, FIFO arc-delay functions, create a data structure (**oracle**) that requires reasonable (*subquadratic*) space and allows answering **distance queries** efficiently (in *sublinear* time)

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a *large scale* TD graph with continuous, pwl, FIFO arc-delay functions, create a data structure (**oracle**) that requires reasonable (*subquadratic*) space and allows answering **distance queries** efficiently (in *sublinear* time)

Trivial solution 1: Precompute all (1 + ε)-approximate distance summaries from every origin to every destination
O(n³) size (O(n²), if all arc-delay functions concave)
O(log log(n)) query time
(1 + ε)-stretch
Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a *large scale* TD graph with continuous, pwl, FIFO arc-delay functions, create a data structure (**oracle**) that requires reasonable (*subquadratic*) space and allows answering **distance queries** efficiently (in *sublinear* time)

- Trivial solution 1: Precompute all (1 + ε)-approximate distance summaries from every origin to every destination
 □ O(n³) size (O(n²), if all arc-delay functions concave)
 □ O(log log(n)) query time
 □ (1 + ε)-stretch
- Trivial solution 2: No preprocessing, respond to queries by running TD-Dijkstra
 - \bigcirc O(n + m + K) size (K = total number of PBs of arc-delays)
 - \square O([$m + n \log(n)$] · log log(K)) query time.
 - 1-stretch

Distance Oracles

Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a *large scale* TD graph with continuous, pwl, FIFO arc-delay functions, create a data structure (**oracle**) that requires reasonable (*subquadratic*) space and allows answering **distance queries** efficiently (in *sublinear* time)

- Trivial solution 1: Precompute all (1 + ε)-approximate distance summaries from every origin to every destination
 □ O(n³) size (O(n²), if all arc-delay functions concave)
 □ O(log log(n)) query time
 □ (1 + ε)-stretch
- Trivial solution 2: No proprocessing
- Trivial solution 2: No preprocessing, respond to queries by running TD-Dijkstra
 - \bigcirc O(n + m + K) size (K = total number of PBs of arc-delays)
 - \square O([$m + n \log(n)$] · log log(K)) query time.
 - 😃 1-stretch

Is there a smooth tradeoff among space / query time / stretch?

FLAT TD-Oracle

FLAT TD-Oracle: Overall Idea

[Kontogiannis-Zaroliagis (2014)]

Choose a set L of landmarks

- In theory: Each vertex $v \in V$ is chosen *independently* w.prob. $\rho \in (0, 1)$
- In practice: Select landmarks either randomly, or as the set of *boundary* vertices of a given graph partition

FLAT TD-Oracle: Overall Idea

[Kontogiannis-Zaroliagis (2014)]

Choose a set L of landmarks

- In theory: Each vertex $v \in V$ is chosen *independently* w.prob. $\rho \in (0, 1)$
- In practice: Select landmarks either randomly, or as the set of *boundary* vertices of a given graph partition
- Preprocess $(1 + \epsilon)$ -approximate **distance summaries** (functions) $\overline{D}[\ell, v]$ from every **landmark** $\ell \in L$ towards each destination $v \in V$
 - Label-setting approach
 - ▶ One-to-all approximation, for any given landmark $\ell \in L$

FLAT TD-Oracle: Overall Idea

[Kontogiannis-Zaroliagis (2014)]

Choose a set L of landmarks

- In theory: Each vertex $v \in V$ is chosen *independently* w.prob. $\rho \in (0, 1)$
- In practice: Select landmarks either randomly, or as the set of boundary vertices of a given graph partition
- Preprocess $(1 + \epsilon)$ -approximate **distance summaries** (functions) $\overline{D}[\ell, v]$ from every **landmark** $\ell \in L$ towards each destination $v \in V$
 - Label-setting approach
 - One-to-all approximation, for any given landmark $\ell \in L$
- Provide query algorithms (FCA/RQA) that return constant / (1 + σ)-approximate distance values, for arbitrary query (o, d, t_o)

FLAT TD-Oracle selection & preprocessing of landmarks

Landmark Selection and Preprocessing (I)

- Select each vertex independently and uniformly at random w.prob. $\rho \in (0, 1)$ for the landmark set $L \subseteq V$
- Preprocessing: ∀ℓ ∈ L, precompute (1 + ε)-approximate distance functions Δ[ℓ, ν] to all destinations ν ∈ V

Landmark Selection and Preprocessing (I)

- Select each vertex *independently and uniformly at random* w.prob. $\rho \in (0, 1)$ for the **landmark set** $L \subseteq V$
- Preprocessing: ∀ℓ ∈ L, precompute (1 + ε)-approximate distance functions Δ[ℓ, ν] to all destinations ν ∈ V

THEOREM: [Kontogiannis-Zaroliagis (2014)]

Using **Bisection** for computing approximate distance summaries:

• Pre-Space:

$$O\left(\frac{K^* \cdot |L| \cdot n}{\varepsilon} \cdot \max_{(\ell, v) \in L \times V} \left\{ \log\left(\frac{\overline{D}[\ell, v](0, T)}{\underline{D}[\ell, v](0, T)}\right) \right\} \right)$$

• Pre-Time (in number of TDSP-Probes):

$$O\left(\max_{(\ell,\nu)}\left\{\log\left(\frac{T\cdot(\Lambda_{\max}+1)}{\varepsilon\underline{D}[\ell,\nu](0,T)}\right)\right\}\cdot\frac{K^*\cdot|L|}{\varepsilon}\max_{(\ell,\nu)}\left\{\log\left(\frac{\overline{D}[\ell,\nu](0,T)}{\underline{D}[\ell,\nu](0,T)}\right)\right\}\right\}$$

Landmark Selection and Preprocessing (II)

A recent development: Improved preprocessing time/space

Landmark Selection and Preprocessing (II)

A recent development: Improved preprocessing time/space

THEOREM: [Kontogiannis-Wagner-Zaroliagis (2016)]

Using both **Bisection** (for *nearby* nodes) and **Trapezoidal** (for *faraway* nodes):

• Pre-Space:

$$\mathbb{E}\left[S_{\text{BIS}+\text{TRAP}}\right] \in O\left(T\left(1+\frac{1}{\varepsilon}\right)\Lambda_{\text{max}} \cdot \rho n^2 \operatorname{polylog}(n)\right)$$

• Pre-Time:

 $\mathbb{E}\left[P_{\text{BIS}+\text{TRAP}}\right] \in O\left(T\left(1+\frac{1}{\varepsilon}\right)\Lambda_{\text{max}} \cdot \rho n^2 \operatorname{polylog}(n) \log \log(K_{\text{max}})\right)$

FLAT TD-Oracle FCA: constant-approximation query

FCA: A constant-approximation query algorithm (I)

Forward Constant Approximation: $FCA(o, d, t_o, (\Delta[\ell, v])_{(\ell, v) \in L \times V})$

- 1. Exploration: Grow a TD-Dijkstra forward ball $B(o, t_o)$ until the closest landmark ℓ_o is settled
- 2. return $sol_o = D[o, \ell_o](t_o) + \Delta[\ell_o, d](t_o + D[o, \ell_o](t_o))$

FCA: A constant-approximation query algorithm (II)

• ASSUMPTION 3: Bounded Opposite Trips. $\exists \zeta \ge 1 : \forall (o, d) \in V \times V, \forall t \in [0, T], D[o, d](t) \le \zeta \cdot D[d, o](t_o)$

FCA: A constant-approximation query algorithm (II)

• ASSUMPTION 3: Bounded Opposite Trips. $\exists \zeta \ge 1 : \forall (o, d) \in V \times V, \forall t \in [0, T], D[o, d](t) \le \zeta \cdot D[d, o](t_o)$

THEOREM: FCA Performance

For any route planning request (o, d, t_o) , FCA achieves

• Approximation guarantee:

$$\begin{split} D[o,d](t_o) &\leq R_o + \Delta[\ell_o,d](t_o + R_o) \leq (1+\varepsilon)D[o,d](t_o) + \psi R_o \\ &\leq \left(1 + \varepsilon + \psi \cdot \frac{R_o}{D[o,d](t_o)}\right) \cdot D[o,d](t_o) \\ \end{split}$$
 where $\psi = 1 + \Lambda_{\max}(1+\varepsilon)(1+2\zeta + \Lambda_{\max}\zeta) + (1+\varepsilon)\zeta$

FCA: A constant-approximation query algorithm (II)

• ASSUMPTION 3: Bounded Opposite Trips. $\exists \zeta \ge 1 : \forall (o, d) \in V \times V, \forall t \in [0, T], D[o, d](t) \le \zeta \cdot D[d, o](t_o)$

THEOREM: FCA Performance

For any route planning request (o, d, t_o) , FCA achieves

• Approximation guarantee:

$$\begin{split} D[o,d](t_o) &\leq R_o + \Delta[\ell_o,d](t_o + R_o) \leq (1+\varepsilon)D[o,d](t_o) + \psi R_o \\ &\leq \left(1 + \varepsilon + \psi \cdot \frac{R_o}{D[o,d](t_o)}\right) \cdot D[o,d](t_o) \\ \end{split}$$
 where $\psi = 1 + \Lambda_{\max}(1+\varepsilon)(1+2\zeta + \Lambda_{\max}\zeta) + (1+\varepsilon)\zeta$

- Query-time complexity:
 - $\mathbb{E}[Q_{FCA}] \in O(\frac{1}{\rho} \cdot \ln(\frac{1}{\rho}))$
 - $\mathbb{P}\left[Q_{FCA} \in \Omega\left(\frac{1}{\rho} \cdot \ln^2\left(\frac{1}{\rho}\right)\right)\right] \in \mathcal{O}(\rho)$

FLAT TD-Oracle

RQA: boosting approximation guarantee

S. Kontogiannis: TD Oracles [27 / 40]

- 1. while recursion budget *R* not exhausted do
- 2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until closest landmark ℓ_i is settled
- 3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$
- 4. Recursion: Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget R 1
- 5. endwhile
- 6. return best possible solution found

- 1. while recursion budget *R* not exhausted do
- 2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until closest landmark ℓ_i is settled
- 3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$
- 4. Recursion: Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget R 1
- 5. endwhile
- 6. return best possible solution found

- 1. while recursion budget *R* not exhausted do
- 2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until closest landmark ℓ_i is settled
- 3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$
- 4. Recursion: Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget R 1
- 5. endwhile
- 6. return best possible solution found

- 1. while recursion budget *R* not exhausted do
- 2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until closest landmark ℓ_i is settled
- 3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$
- 4. Recursion: Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget R 1
- 5. endwhile
- 6. return best possible solution found

- Growing level-0 ball...
- Growing level-1 balls...

- 1. while recursion budget *R* not exhausted do
- 2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until closest landmark ℓ_i is settled
- 3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$
- 4. Recursion: Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget R 1
- 5. endwhile
- 6. return best possible solution found

- Growing level-0 ball...
- Growing level-1 balls...

- 1. while recursion budget *R* not exhausted do
- 2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until closest landmark ℓ_i is settled
- 3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$
- 4. Recursion: Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget R 1
- 5. endwhile
- 6. return best possible solution found

- Growing level-0 ball...
- Growing level-1 balls...

- 1. while recursion budget *R* not exhausted do
- 2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until closest landmark ℓ_i is settled
- 3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$
- 4. Recursion: Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget R 1
- 5. endwhile
- 6. return best possible solution found

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...

- 1. while recursion budget *R* not exhausted do
- 2. **Exploration:** Grow a TD-Dijkstra forward-ball $B(w_i, t_i)$ until closest landmark ℓ_i is settled
- 3. $sol_i = D[o, w_i](t_o) + D[w_i, \ell_i](t_i) + \Delta[\ell_i, d](t_i + D[w_i, \ell_i](t_i))$
- 4. Recursion: Execute RQA centered at *each boundary node* of $B(w_i, t_i)$ with recursion budget R 1
- 5. endwhile
- 6. return best possible solution found

- Growing level-0 ball...
- Growing level-1 balls...
- Growing level-2 balls...

One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path

- One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path
- Optimal prefix subpaths improve approximation guarantee:

 $\forall \beta > 1, \ \forall \lambda \in (0,1), \ \lambda \cdot OPT + (1-\lambda) \cdot \beta \cdot OPT < \beta \cdot OPT$

- One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path
- Optimal prefix subpaths improve approximation guarantee:

 $\forall \beta > 1, \ \forall \lambda \in (0, 1), \ \lambda \cdot OPT + (1 - \lambda) \cdot \beta \cdot OPT < \beta \cdot OPT$

Quality of approximation guarantee of FCA (per ball) for remaining suffix subpath to the destination depends on ball radius (distance from the closest landmark to the ball center)

- One of the discovered approximate od-paths has all its ball centers at nodes of the (unknown) shortest od-path
- Optimal prefix subpaths improve approximation guarantee:

 $\forall \beta > 1, \ \forall \lambda \in (0, 1), \ \lambda \cdot OPT + (1 - \lambda) \cdot \beta \cdot OPT < \beta \cdot OPT$

- Quality of approximation guarantee of FCA (per ball) for remaining suffix subpath to the destination depends on *ball radius* (distance from the closest landmark to the ball center)
- A constant number of recursion depth R suffices to assure guarantee close to $1 + \varepsilon$ S. Kontogiannis: TD Oracles [29/40]

THEOREM: Complexity of RQA

The complexity of RQA with recursion budget *R* for obtaining $(1 + \sigma)$ -approximate distances (for any constant $\sigma > \varepsilon$) to arbitrary (o, d, t_o) queries, is

•
$$\mathbb{E}[Q_{RQA}] \in O\left(\left(\frac{1}{\rho}\right)^{R+1} \cdot \ln\left(\frac{1}{\rho}\right)\right)$$

• $\mathbb{P}\left[Q_{RQA} \in O\left(\left(\frac{\ln(n)}{\rho}\right)^{R+1} \cdot \left[\ln\ln(n) + \ln\left(\frac{1}{\rho}\right)\right]\right)\right] \in 1 - O\left(\frac{1}{n}\right)$

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the *N* closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or *d*) are settled
- 2. return $\min_{i \in \{0,1,\dots,N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the *N* closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or *d*) are settled
- 2. return $\min_{i \in \{0,1,\dots,N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the *N* closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or *d*) are settled
- 2. return min_{i \in \{0,1,...,N-1\}} { sol_i = D[o, ℓ_i](t_o) + Δ [ℓ_i , d](t_i + D[o, ℓ_i](t_o)) }

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the *N* closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or *d*) are settled
- 2. return $\min_{i \in \{0,1,\dots,N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

Extended Forward Constant Approximation FCA+(N)

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the *N* closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or *d*) are settled
- 2. return $\min_{i \in \{0,1,\dots,N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

Performance of FCA+(N) for random landmarks

In theory: Analogous to that of FCA
FCA+: A natural extension of FCA

Extended Forward Constant Approximation FCA+(N)

- 1. Grow TD-Dijkstra ball $B(o, t_o)$ until the *N* closest landmarks $\ell_o, \ldots, \ell_{N-1}$ (or *d*) are settled
- 2. return $\min_{i \in \{0,1,\dots,N-1\}} \{ sol_i = D[o, \ell_i](t_o) + \Delta[\ell_i, d](t_i + D[o, \ell_i](t_o)) \}$

Performance of FCA+(N) for random landmarks

- In theory: Analogous to that of FCA
- In practice: Remarkable performance, analogous to that of RQA

HQA: The Query Algorithm of HORN

Main Goal: Achieve query time **sublinear** in actual Dijkstra Rank (DR) Constraint: Keep preprocessing space **subquadratic**

HQA: The Query Algorithm of HORN

Main Goal: Achieve query time **sublinear** in actual Dijkstra Rank (DR) Constraint: Keep preprocessing space **subquadratic**

Hierarchical Query Algorithm (HQA)

- 1. Grow a unique TD-ball from (o, t_o) , until the first **informed land**mark ℓ_o discovered at the right distance (not too close, not too far) from o
- 2. Execute an appropriate variant of RQA, using only landmarks of level at least as high as that of ℓ_o
- 3. Return the best approximate solution, among all discovered informed landmarks

HQA: The Query Algorithm of HORN

Main Goal: Achieve query time **sublinear** in actual Dijkstra Rank (DR) Constraint: Keep preprocessing space **subquadratic**

Hierarchical Query Algorithm (HQA)

- 1. Grow a unique TD-ball from (o, t_o) , until the first **informed land**mark ℓ_o discovered at the right distance (not too close, not too far) from o
- 2. Execute an appropriate variant of RQA, using only landmarks of level at least as high as that of ℓ_o
- 3. Return the best approximate solution, among all discovered informed landmarks

Performance of HQA for random landmarks

With high probability the query-complexity of HQA is $o(N_i)$, where $i \in [k + 1]$ is such that $N_{i-1} < DR[o, d](t_o) \le N_i$

TD Distance Oracles: Recap

what is preprocessed	space : $\mathbb{E}\left[\mathcal{S} ight]$	preprocessing : $\mathbb{E}\left[\mathcal{P} ight]$	query : $\mathbb{E}[Q_{RQA}]$
All-To-All	$O((K^*+1)n^2U)$	$O\left(\begin{array}{c}n^{2}\log(n)\\ \cdot\log\log(K_{\max})\\ \cdot(K^{*}+1)TDP\end{array}\right)$	$O(\log \log(K^*))$
Nothing	O(n+m+K)	O(1)	$O\left(\begin{array}{c} n\log(n) \\ \log\log(K_{\max}) \end{array}\right)$
	BIS-only Pr	eprocessing	
Landmarks-To-All	$O(\rho n^2(K^*+1)U)$	$O\left(\begin{array}{c}\rho n^2 \log(n)\\ \cdot \log \log(K_{\max})\\ \cdot (K^* + 1)TDP\end{array}\right)$	$O\!\!\left(\begin{array}{c} \left(\frac{1}{\rho}\right)^{R+1} \cdot \log\left(\frac{1}{\rho}\right) \\ \cdot \log\log(\mathcal{K}_{\max}) \end{array}\right)$
$K_{\max} \in O(1)$ $\rho = n^{-a}$ $U, TDP \in O(1)$ $K^* \in O(polylog(()n))$	$\tilde{O}(n^{2-a})$	$\tilde{O}(n^{2-a})$	$\tilde{O}(n^{(R+1)\cdot a})$
	BIS+TRAP P	reprocessing	
FLAT	$\tilde{o}(n^2)$	$\tilde{o}(n^2)$	õ(<i>n</i>)
HORN	$\tilde{o}(n^2)$	$\tilde{o}(n^2)$	õ(DijkstraRank(0,d))

[Kontogiannis et al (ALENEX 2016)]

Identities of Instances

PARAMETER \ INSTANCE	Berlin (TomTom)	Germany (PTV AG)
#Nodes	473,253	4,692,091
#Edges	1,126,468	11,183,060
Time Period	24h (Tue)	24h (Tue-Wed-Thu)
λ_{max}	0.017	0.130
$-\lambda_{\sf min}$	-0.013	-0.130
#Arcs with constant traversal- times	924,254	10,310,234
#Arcs with non-constant traversal- times	20,2214	872,826
Min #Breakpoints	4	5
Avg #Breakpoints	10.4	16.3
Max #Breakpoints	125	52
Total #Breakpoints	3,234,213	25,424,506

[Kontogiannis et al (ALENEX 2016)]

Preprocessing and Live-Traffic Updates

• Preprocessing of FLAT @ BERLIN:

	BE	RLIN	GER	MANY
Parallelism	1 thread	6 threads	1 thread	6 threads
Time per landmark	69.5sec 11.5sec		481 sec	80.2sec
Space per landmark	13.8MB		25.	7MB

Responsiveness to live-traffic reporting: Averaging 1,000 random disruptions of 15-min duration

	BE	RLIN	GEF	RMANY
	#Affected Update Tim		#Affected	Update Time
	Landmarks	Landmarks (sec)		(sec)
SR_{2000}	32	21.4	3	37.2
SK ₂₀₀₀	36	28.8	4	39.1

Query-Time Performance: Speedup > 1, 146 for Berlin and > 902 for Germany Berlin: n = 473, 253 vertices, m = 1, 126, 468 arcs Germany: n = 4, 692, 091 vertices, m = 11, 183, 060 arcs

• BERLIN: 2.64sec resolution and 10,000 random queries

	TDD		FCA		FCA ⁺ (6)		RQA	
	Time (msec)	Rel.Error %	Time (msec)	Rel.Error %	Time (msec)	Rel.Error %	Time (msec)	Rel.Error %
R ₂₀₀₀	02.006	0	0.100	0.969	0.527	0.405	0.519	0.679
K ₂₀₀₀	92.900	0	0.115	1.089	0.321	0.405	0.376	0.523
H ₂₀₀₀			0.102	0.886	0.523	0.332	0.445	0.602
IR ₂₀₀₀			0.086	0.923	0.489	0.379	0.473	0.604
SR ₂₀₀₀				0.771	0.586	0.317	0.443	0.611
SK ₂₀₀₀			0.083	0.781	0.616	0.227	0.397	0.464
R ₅₄₁			0.326	1.854	1.887	0.693	1.904	1.610
SR ₅₄₁			0.451	1.638	3.252	0.614	2.856	1.531
R ₂₇₀			0.639	2.583	3.707	0.881	3.842	2.482
SR ₂₇₀			0.730	2.198	4.491	0.745	4.271	2.336

• GERMANY: 17.64sec resolution and 10,000 random queries

	TDD		TDD FCA		$FCA^+(6)$		RQA		
	Time (msec)	Rel.Error %	Time (msec)	Rel.Error %	Time (msec)	Rel.Error %	Time (msec)	Rel.Error %	
R ₂₀₀₀	1 145 060	0	1.532	1.567	8.529	0.742	9.219	1.502	
K ₂₀₀₀	1, 145.000	0	10.455	2.515	15.209	1.708	30.577	2.343	
SR ₂₀₀₀			1.275	1.444	9.952	0.662	9.011	1.412	
SK ₂₀₀₀			1.269	1.534	9.689	0.676	7.653	1.475	
	S. Kontogrannis: TD Oracies (38 / 4								

Dijkstra-Rank Performance: Speedup > 1,570 for Berlin and > 1,531 for Germany Berlin: n = 473,253 vertices, m = 1,126,468 arcs Germany: n = 4,692,091 vertices, m = 11,183,060 arcs

• BERLIN: 2.64sec resolution and 10,000 random queries

	TDD			FCA		A ⁺ (6)	RQA	
	Rank	Speedup	Rank	Speedup	Rank	Speedup	Rank	Speedup
R ₂₀₀₀	146 022	4	150	973.480	877	166.502	925	157.862
K ₂₀₀₀	140,022	'	190	768.537	866	168.616	670	217.943
H ₂₀₀₀			154	948.195	851	171.589	777	187.931
IR ₂₀₀₀			135	1,081.644	823	177.426	839	174.043
SR ₂₀₀₀			119	1,227.075	952	153.384	776	188.173
SK ₂₀₀₀			93	1,570.129	755	193.406	501	291.461
R ₅₄₁			545	267.930	3, 178	45.947	3,406	42.872
SR ₅₄₁			638	228.874	3,684	39.637	3,950	36.967
R ₂₇₀			1,075	135.834	6, 198	23.559	6,702	21.788
SR ₂₇₀			1,195	122.194	7,362	19.835	7,398	19.738

• GERMANY: 17.64sec resolution and 10,000 random queries

	TL	TDD		FCA		FCA ⁺ (6)		RQA	
	Rank	Speedup	Rank	Speedup	Rank	Speedup	Rank	Speedup	
R ₂₀₀₀	1 717 793	1	1,659	1,035.439	10, 159	169.091	11,045	155.527	
K ₂₀₀₀	1,717,735	1	9,302	184.669	15,373	111.741	30, 137	56.999	
SR ₂₀₀₀			1,277	1,345.178	9,943	172.764	9, 182	187.082	
SK ₂₀₀₀					9,000	190.866	7,975	215.397	

Performance of HORN in BERLIN

Landmark hierarchies for HORN, with HR and HSR landmark sets

Level	Size of Levels		Area of coverage	Excluded Ball	Size (for HSR)
	<i>L</i> = 10,256 <i>L</i> = 20,513			L = 10,256	L = 20,513
L ₁	7,685	15,370	1,274	35	15
L ₂	1,604	3,208	29, 243	150	80
L ₃	697	1,394	154, 847	350	180
L ₄	270	541	292, 356	800	400

HQA at 2.64sec resolution and 10,000 random queries

		T		HQA				
	Time (msec)	Rel.Error %	Rank	Speedup	Time (msec)	Rel.Error %	Rank	Speedup
HR ₁₀₂₅₆	92 906	0	1/16 022	1	0.354	1.499	636	229.594
HSR10256	32.300	0	140,022		0.436	1.409	721	202.527
HR ₂₀₅₁₃					0.217	1.051	324	450.685
HSR ₂₀₅₁₃					0.314	0.919	378	386.302

• HQA vs. FLAT/FCA in Berlin

Query Times (%) Worst-case Relative Error (%) Dijkstra Ranks (%) Space (times) R270 vs HR10256 44.60 41.96 40.83 6.089 SR270 vs HSR10256 40.27 35.89 39.66 6.407 R541 vs HS20513 33.43 43.31 40.55 6.195 SR641 vs HS20512 30.37 43.89 40.75 6.438				Deterioration in	
R270 vs HR10256 44.60 41.96 40.83 6.089 SR270 vs HSR10256 40.27 35.89 39.66 6.407 R541 vs HSR0513 33.43 43.31 40.55 6.195 SBe41 vs HSR0512 30.07 43.89 40.75 6.438		Query Times (%)	Worst-case Relative Error (%)	Dijkstra Ranks (%)	Space (times)
SR ₂₇₀ vs HSR ₁₀₂₅₆ 40.27 35.89 39.66 6.407 R ₅₄₁ vs H ₂₀₅₁₃ 33.43 43.31 40.55 6.195 SR ₆₄₁ vs H ₂₀₅₁₃ 30.37 43.89 40.75 6.438	R ₂₇₀ vs HR ₁₀₂₅₆	44.60	41.96	40.83	6.089
R541 vs HR20513 33.43 43.31 40.55 6.195 SB641 vs HSR0512 30.37 43.89 40.75 6.438	SR ₂₇₀ vs HSR ₁₀₂₅₆	40.27	35.89	39.66	6.407
SB541 VS HSB20512 30.37 43.89 40.75 6.438	R ₅₄₁ vs HR ₂₀₅₁₃	33.43	43.31	40.55	6.195
	SR ₅₄₁ vs HSR ₂₀₅₁₃	30.37	43.89	40.75	6.438

Recap and Open Issues

Recap

- Experimented extensively on landmark-based oracles for TD-nets
- Observed remarkable speedups with reasonable space requirements, both for urban and for national road networks
- Experimented on digesting live-traffic reporting within a few seconds
- Observed full scalability in trade-offs between space and query-responses
- Can achieve query-response times 0.73msec, relative error 2.198%, for the Berlin instance, consuming space 3.72GB

Future Work

- Explore new landmark sets that will achieve even better speedups and/or approximation guarantees
- Explore further improvements in the compression schemes to reduce required space
- Exploit algorithmic parallelism to further reduce preprocessing time and responsiveness to live-traffic reports

Related Literature

- [Dreyfus (1969)] S. E. Dreyfus. An appraisal of some shortest-path algorithms. Operations Research, 17(3):395–412, 1969.
- [Orda-Rom (2000)] A. Orda, R. Rom. Shortest-path and minimum delay algorithms in networks with time-dependent edge-length. J. ACM, 37(3):607–625, 1990.
- [Dean (2004)] B. C. Dean. Shortest paths in FIFO time-dependent networks: Theory and algorithms. Technical report. MIT, 2004.
- [Dehne-Omran-Sack (2010)] F. Dehne, O. T. Masoud, J. R. Sack. Shortest paths in time-dependent FIFO networks. ALGORITHMICA, 62(1-2):416–435, 2012.
- [Foschini-Hershberger-Suri (2011)] L. Foschini, J. Hershberger, S. Suri. On the complexity of time-dependent shortest paths. ALGORITHMICA, 68(4), pp. 1075–1097, 2014.
- [6] [Kontogiannis-Zaroliagis (2014)] S. Kontogiannis, C. Zaroliagis. Distance oracles for time dependent networks. ALGORITHMICA, 74(4), pp. 1404–1434, 2016.
- [Kontogiannis et al. (2015)] S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C. Zaroliagis. Analysis and Experimental Evaluation of Time-Dependent Distance Oracles. Algorithm Engineering and Experiments (ALENEX 2015), SIAM, 2015.
- [Kontogiannis et al. (2016)] S. Kontogiannis, G. Michalopoulos, G. Papastavrou, A. Paraskevopoulos, D. Wagner, C. Zaroliagis. Engineering Oracles for Time-Dependent Road Networks. Algorithm Engineering and Experiments (ALENEX 2016), SIAM, 2016.
- [Sontogiannis, Wagner, Zaroliagis (2016)] S. Kontogiannis, D. Wagner, C. Zaroliagis. Hierarchical Oracles for Time-Dependent Road Networks. arXiv:1502.05222 (2015).