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(1 + ε)−approximation of D[o, d] : Preliminaries

Why focus on shortest-travel-time (delays) functions, and not on
earliest-arrival-time functions ?

Arc/Path Delay Reversal: Easy task
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Approximating D[o, d] : Quality

Maximum Absolute Error: A crucial quantity for the time and space
complexity of the algorithm
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Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0,T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs)

PROBLEM: Prohibitively expensive to compute/store D[o, d] before
approximating it. We must be based only on a few samples of D[o, d]

FOCUS: Linear arc-delays. Later extend to pwl arc-delays

D[o, d] lies entirely in a bounding box that we can easily determine,
with only 3 TD-Djikstra probes

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [6 / 40]



Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0,T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs)

PROBLEM: Prohibitively expensive to compute/store D[o, d] before
approximating it. We must be based only on a few samples of D[o, d]

FOCUS: Linear arc-delays. Later extend to pwl arc-delays

D[o, d] lies entirely in a bounding box that we can easily determine,
with only 3 TD-Djikstra probes

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [6 / 40]



Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0,T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs)

PROBLEM: Prohibitively expensive to compute/store D[o, d] before
approximating it. We must be based only on a few samples of D[o, d]

FOCUS: Linear arc-delays. Later extend to pwl arc-delays

D[o, d] lies entirely in a bounding box that we can easily determine,
with only 3 TD-Djikstra probes

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [6 / 40]



Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0,T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs)

PROBLEM: Prohibitively expensive to compute/store D[o, d] before
approximating it. We must be based only on a few samples of D[o, d]

FOCUS: Linear arc-delays. Later extend to pwl arc-delays

D[o, d] lies entirely in a bounding box that we can easily determine,
with only 3 TD-Djikstra probes

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [6 / 40]



Approximating D[o, d]: Basic Idea (I)

Approximations of D[o, d]: For given ε > 0, and ∀t ∈ [0,T),

D[o, d](t) ≤ D[o, d](t) ≤ D[o, d](t) ≤ (1 + ε) · D[o, d](t)

FACT: if D[o, d] was a priori known then a linear scan gives a
space-optimal (1 + ε)−upper-approximation (i.e., with the MIN #BPs)

PROBLEM: Prohibitively expensive to compute/store D[o, d] before
approximating it. We must be based only on a few samples of D[o, d]

FOCUS: Linear arc-delays. Later extend to pwl arc-delays

D[o, d] lies entirely in a bounding box that we can easily determine,
with only 3 TD-Djikstra probes

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [6 / 40]



Approximating D[o, d]: Basic Idea (II)
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Make the sampling so that ∀t ∈ [0,T ], D[o, d](t) ≤ (1 + ε) · D[o, d](t)

Keep sampling always the fastest-growing axis wrt to D[o, d]
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One-To-One Approximation: PHASE-1
[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :[Kontogiannis-Zaroliagis (2014)] :

Forward Dijkstrat0

t1

t2

t0 + D[o,d](t0)

t0 + (1+ε)1/2 D[o,d](t0) = t1 + D[o,d](t1)Backward Dijkstra

t1 + (1+ε)1/2 D[o,d](t1) = t2 + D[o,d](t2)Backward Dijkstra

o
o
o

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [8 / 40]



One-To-One Approximation: PHASE-1
[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :

[Kontogiannis-Zaroliagis (2014)] :

D

(1+ε)D

(1+ε)2D

(1+ε)3D

(1+ε)4D

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [8 / 40]



One-To-One Approximation: PHASE-1
[Foschini-Hershberger-Suri (2011)]

while slope of D[o, d] ≥ 1 do

Bad Case for [Foschini-Hersberger-Suri (2011)] :

[Kontogiannis-Zaroliagis (2014)] :

Forward Dijkstrat0

t1,1
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MAX{ tfail ,  t0 + (1+ε) D[o,d](t0) }Backward Dijkstra
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MAX{ tfail ,  t1 + (1+ε) D[o,d](t1) }Backward Dijkstrat2,1 MaxAbsError < ε D[o,d](t1)
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One-To-One Approximation: PHASE-2
[Foschini-Hershberger-Suri (2011)]

Slope of D[o, d] ≤ 1:

repeat

Apply BISECTION to the remaining time-interval(s)

until desired approximation guarantee (wrt Max Absolute Error) is
achieved
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One-To-All Approximaton via Bisection (I)
[Kontogiannis-Zaroliagis (2014)]

ASSUMPTION 1: Concavity of arc-delays. /∗ to be removed later ∗/

I Implies concavity of the unknown function D[o, d]

ASSUMPTION 2: Bounded Travel-Time Slopes. Small slopes of the (pwl)
arc-delay functions

I Verified by TD-traffic data for road network of Berlin [TomTom (February

2013)] that all arc-delay slopes are in [−0.5, 0.5].

I Slopes of shortest-travel-time function D[o, d] from [−Λmin,Λmax], for
some constants Λmax > 0, Λmin ∈ [0, 1).
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One-To-All Approximaton via Bisection (II)
[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously
all distance values from o, at mid-points of time intervals, until required
approximation guarantee is achieved for each destination node

Example of Bisection Execution : INPUT = UNKNOWN BLUE function

t1t0

D1

D0

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [11 / 40]



One-To-All Approximaton via Bisection (II)
[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously
all distance values from o, at mid-points of time intervals, until required
approximation guarantee is achieved for each destination node

Example of Bisection Execution : ORANGE = Upper Bound, YELLOW = Lower Bound

t1t0

D1

D0

C. Zaroliagis KIT – Algorithms for Route Planning (SS 2016): Time-Dependent Shortest Paths – II [11 / 40]



One-To-All Approximaton via Bisection (II)
[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously
all distance values from o, at mid-points of time intervals, until required
approximation guarantee is achieved for each destination node

Example of Bisection Execution : Level-1 Recursion
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One-To-All Approximaton via Bisection (II)
[Kontogiannis-Zaroliagis (2013)]

Under ASSUMPTIONS 1-2: Execute Bisection to sample simultaneously
all distance values from o, at mid-points of time intervals, until required
approximation guarantee is achieved for each destination node

Example of Bisection Execution : Level-2 Recursion
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One-To-All Approximaton via Bisection (III)
[Kontogiannis-Zaroliagis (2014)]

Only under ASSUMPTION 2: For continuous, pwl arc-delays

1 Call Reverse TD-Dijkstra
to project each
concavity-spoiling PB to a PI
of the origin o

2 For each pair of consecutive
PIs at o, run Bisection for
the corresponding
departure-times interval departure time from u = tail[uv]
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t2 t3 t4 t5 T0

3 Return the concatenation of approximate distance summaries
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Approximating D[o, ?] : Space & Time Complexity

THEOREM: Space/Time Complexity [Kontogianis-Zaroliagis (2014)]

K ∗: total number of concavity-spoiling BPs among all arc-delay functions
Approximating D[o, ?] = (D[o, d])d∈V (for given o ∈ V and all d ∈ V )

Space Complexity:
1 O

(
n K ∗

ε
log

(
Dmax[o,?](0,T)
Dmin[o,?](0,T)

))
2 In each interval of consecutive PIs,
|UBP[o, d]| ≤ 4 · (minimum #BPs for any (1 + ε)−approximation)

Time Complexity: number of shortest-path probes

∈ O
(
log

(
T

ε·Dmin[o,d]

)
· K ∗
ε log

(
Dmax[o,?](0,T)
Dmin[o,?](0,T)

))
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Implementation Issues wrt One-To-All Bisection

One-To-All Bisection of [Kontogiannis-Zaroliagis (2014)] is a
label-setting approximation method that provably works optimally wrt
concave continuous pwl arc-delay functions

Both One-To-One Approximation of [Foschini-Hershberger-Suri (2011)] and
One-To-All Bisection of [Kontogiannis-Zaroliagis (2014)] suffer from
linear dependence on K ∗ (degree of disconcavity)

A novel one-to-all (again label-setting) approximation technique,
called the Trapezoidal method ([Kontogiannis-Wagner-Zaroliagis (2016)] ),
avoids entirely the dependence on K ∗
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The Trapezoidal One-To-All Approximation Method

Sample travel-times to all
destinations, from coarser to finer
departure-times from the (common)
origin

Between consecutive samples of the
same resolution, the unknown function
is bounded within a given trapezoidal

“Freeze” destinations within intervals
with satisfactory approximation
guarantee Trapezoidal Approximation
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Avoids dependence on concavity-spoiling BPs of the metric

Cannot provide good approximations for “nearby” destinations around
the origin
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Time-Dependent OraclesTime-Dependent Oracles

S. Kontogiannis: TD Oracles [16 / 40]



Distance Oracles

Extremely successful theme in static graphs

I In theory:

F P-Space: Subquadratic (sometimes quasi-linear)

F Q-Time: Constant

F Stretch: Small (sometimes PTAS)

I In practice:

F P-Space: A few GBs (sometimes less than 1 GB)

F Q-Time: Miliseconds (sometimes microseconds)

F Stretch: Exact distances (in most cases)

Some practical algorithms extend to time-dependent case

FOCUS (rest of talk)
Time-dependent oracles with provably good preprocessing-space /
query-time / stretch tradeoffs
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Distance Oracles
Is it a Success Story in Time-Dependent Graphs?

CHALLENGE: Given a large scale TD graph with continuous, pwl, FIFO
arc-delay functions, create a data structure (oracle) that requires
reasonable (subquadratic) space and allows answering distance
queries efficiently (in sublinear time)

Trivial solution 1: Precompute all (1 + ε)−approximate distance
summaries from every origin to every destination

O
(
n3

)
size (O

(
n2

)
, if all arc-delay functions concave)

O(log log(n)) query time
(1 + ε)−stretch

Trivial solution 2: No preprocessing, respond to queries by running
TD-Dijkstra

O(n + m + K) size (K = total number of PBs of arc-delays)
O([m + n log(n)] · log log(K)) query time.
1−stretch

Is there a smooth tradeoff among space / query time / stretch?
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Is there a smooth tradeoff among space / query time / stretch?
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FLAT TD-Oracle: Overall Idea
[Kontogiannis-Zaroliagis (2014)]

1 Choose a set L of landmarks

I In theory: Each vertex v ∈ V is chosen independently w.prob. ρ ∈ (0, 1)

I In practice: Select landmarks either randomly, or as the set of boundary
vertices of a given graph partition

2 Preprocess (1 + ε)-approximate distance summaries (functions)
D[`, v] from every landmark ` ∈ L towards each destination v ∈ V

I Label-setting approach

I One-to-all approximation, for any given landmark ` ∈ L

3 Provide query algorithms (FCA/RQA) that return constant /
(1 + σ)-approximate distance values, for arbitrary query (o, d, to)
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FLAT TD-OracleFLAT TD-Oracle
selection & preprocessing of landmarksselection & preprocessing of landmarks
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Landmark Selection and Preprocessing (I)

Select each vertex independently and uniformly at random w.prob.
ρ ∈ (0, 1) for the landmark set L ⊆ V

Preprocessing: ∀` ∈ L , precompute (1 + ε)−approximate distance
functions ∆[`, v] to all destinations v ∈ V

THEOREM: [Kontogiannis-Zaroliagis (2014)]

Using Bisection for computing approximate distance summaries:

Pre-Space:

O
(

K ∗·|L |·n
ε ·max(`,v)∈L×V

{
log

(
D[`,v](0,T)
D[`,v](0,T)

)})
Pre-Time (in number of TDSP-Probes):

O
(
max(`,v)

{
log

(
T ·(Λmax+1)
εD[`,v](0,T)

)}
·

K ∗·|L |
ε max(`,v)

{
log

(
D[`,v](0,T)
D[`,v](0,T)

)})
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Landmark Selection and Preprocessing (II)

A recent development: Improved preprocessing time/space

THEOREM: [Kontogiannis-Wagner-Zaroliagis (2016)]

Using both Bisection (for nearby nodes) and Trapezoidal (for faraway
nodes):

Pre-Space:

E [SBIS+TRAP] ∈ O
(
T

(
1 + 1

ε

)
Λmax · ρn2 polylog(n)

)
Pre-Time:

E [PBIS+TRAP] ∈ O
(
T

(
1 + 1

ε

)
Λmax · ρn2 polylog(n) log log(Kmax)

)
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FLAT TD-OracleFLAT TD-Oracle
FCA: constant-approximation queryFCA: constant-approximation query
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FCA: A constant-approximation query algorithm (I)

td = to + D[o,d](to)

Ro

x

lo

w od
P  SP[o,d](to)

to

Q  SP[o,lo](to)

Π  ASP[lo,d](to+Ro)

Forward Constant Approximation: FCA
(
o, d, to , (∆[`, v])(`,v)∈L×V

)
1. Exploration: Grow a TD-Dijkstra forward ball B(o, to) until the

closest landmark `o is settled

2. return solo = D[o, `o](to) + ∆[`o , d](to + D[o, `o](to))
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FCA: A constant-approximation query algorithm (II)

ASSUMPTION 3: Bounded Opposite Trips.
∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T ], D[o, d](t) ≤ ζ · D[d, o](to)

THEOREM: FCA Performance
For any route planning request (o, d, to), FCA achieves

Approximation guarantee:
D[o, d](to) ≤ Ro + ∆[`o , d](to + Ro) ≤ (1 + ε)D[o, d](to) + ψRo

≤

(
1 + ε + ψ · Ro

D[o,d](to)

)
· D[o, d](to)

where ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

Query-time complexity:

I E [QFCA ] ∈ O
(

1
ρ
· ln

(
1
ρ

))
I P

[
QFCA ∈ Ω

(
1
ρ
· ln2

(
1
ρ

))]
∈ O(ρ)

S. Kontogiannis: TD Oracles [26 / 40]



FCA: A constant-approximation query algorithm (II)

ASSUMPTION 3: Bounded Opposite Trips.
∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T ], D[o, d](t) ≤ ζ · D[d, o](to)

THEOREM: FCA Performance
For any route planning request (o, d, to), FCA achieves

Approximation guarantee:
D[o, d](to) ≤ Ro + ∆[`o , d](to + Ro) ≤ (1 + ε)D[o, d](to) + ψRo

≤

(
1 + ε + ψ · Ro

D[o,d](to)

)
· D[o, d](to)

where ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

Query-time complexity:

I E [QFCA ] ∈ O
(

1
ρ
· ln

(
1
ρ

))
I P

[
QFCA ∈ Ω

(
1
ρ
· ln2

(
1
ρ

))]
∈ O(ρ)

S. Kontogiannis: TD Oracles [26 / 40]



FCA: A constant-approximation query algorithm (II)

ASSUMPTION 3: Bounded Opposite Trips.
∃ζ ≥ 1 : ∀(o, d) ∈ V × V , ∀t ∈ [0,T ], D[o, d](t) ≤ ζ · D[d, o](to)

THEOREM: FCA Performance
For any route planning request (o, d, to), FCA achieves

Approximation guarantee:
D[o, d](to) ≤ Ro + ∆[`o , d](to + Ro) ≤ (1 + ε)D[o, d](to) + ψRo

≤

(
1 + ε + ψ · Ro

D[o,d](to)

)
· D[o, d](to)

where ψ = 1 + Λmax(1 + ε)(1 + 2ζ + Λmaxζ) + (1 + ε)ζ

Query-time complexity:

I E [QFCA ] ∈ O
(

1
ρ
· ln

(
1
ρ

))
I P

[
QFCA ∈ Ω

(
1
ρ
· ln2

(
1
ρ

))]
∈ O(ρ)

S. Kontogiannis: TD Oracles [26 / 40]



FLAT TD-OracleFLAT TD-Oracle
RQA: boosting approximation guaranteeRQA: boosting approximation guarantee
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RQA: Overview

Recursive Query Approximation: RQA
(
o, d, to , (∆[`, v])(`,v)∈L×V ,R

)
1. while recursion budget R not exhausted do
2. Exploration: Grow a TD-Dijkstra forward-ball B(wi , ti) until

closest landmark `i is settled
3. soli = D[o,wi](to) + D[wi , `i](ti) + ∆[`i , d](ti + D[wi , `i](ti))

4. Recursion: Execute RQA centered at each boundary node of
B(wi , ti) with recursion budget R − 1

5. endwhile
6. return best possible solution found

Growing level-0 ball...

Growing level-1 balls...

Growing level-2 balls...

...
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RQA: Why Does Recursion Boost Approximation?

to

lk

d

P0,k  SP[o , wk](to)

≥ R0 + R1 + … + Rk-1

OOO

Qk  SP[wk , lk](tk)

Πk  ASP[lk , d](tk+Rk)

t1 tk

w1o wk

≥ Rk

wx

1 One of the discovered approximate od−paths has all its ball centers
at nodes of the (unknown) shortest od-path

2 Optimal prefix subpaths improve approximation guarantee:

∀β > 1, ∀λ ∈ (0, 1), λ · OPT + (1 − λ) · β · OPT < β · OPT

3 Quality of approximation guarantee of FCA (per ball) for remaining
suffix subpath to the destination depends on ball radius (distance
from the closest landmark to the ball center)

4 A constant number of recursion depth R suffices to assure guarantee
close to 1 + ε
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RQA: Performance

THEOREM: Complexity of RQA
The complexity of RQA with recursion budget R for obtaining
(1 + σ)−approximate distances (for any constant σ > ε) to arbitrary
(o, d, to) queries, is

E [QRQA ] ∈ O
((

1
ρ

)R+1
· ln

(
1
ρ

))
P

[
QRQA ∈ O

((
ln(n)
ρ

)R+1
·
[
ln ln(n) + ln

(
1
ρ

)])]
∈ 1 − O

(
1
n

)
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FCA+: A natural extension of FCA

Extended Forward Constant Approximation FCA+(N)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks
`o , . . . , `N−1 (or d) are settled

2. return mini∈{0,1,...,N−1}
{

soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))
}

Performance of FCA+(N) for random landmarks

In theory: Analogous to that of FCA

In practice: Remarkable performance, analogous to that of RQA

S. Kontogiannis: TD Oracles [31 / 40]



FCA+: A natural extension of FCA

Extended Forward Constant Approximation FCA+(N)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks
`o , . . . , `N−1 (or d) are settled

2. return mini∈{0,1,...,N−1}
{

soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))
}

do
to

Performance of FCA+(N) for random landmarks

In theory: Analogous to that of FCA

In practice: Remarkable performance, analogous to that of RQA

S. Kontogiannis: TD Oracles [31 / 40]



FCA+: A natural extension of FCA

Extended Forward Constant Approximation FCA+(N)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks
`o , . . . , `N−1 (or d) are settled

2. return mini∈{0,1,...,N−1}
{

soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))
}

lo
d

to

R0
o

Performance of FCA+(N) for random landmarks

In theory: Analogous to that of FCA

In practice: Remarkable performance, analogous to that of RQA

S. Kontogiannis: TD Oracles [31 / 40]



FCA+: A natural extension of FCA

Extended Forward Constant Approximation FCA+(N)

1. Grow TD-Dijkstra ball B(o, to) until the N closest landmarks
`o , . . . , `N−1 (or d) are settled

2. return mini∈{0,1,...,N−1}
{

soli = D[o, `i](to) + ∆[`i , d](ti + D[o, `i](to))
}

lo

l1

d

l3

l2

l4

to

R0

R1R2

R3

R4

o

Performance of FCA+(N) for random landmarks

In theory: Analogous to that of FCA

In practice: Remarkable performance, analogous to that of RQA

S. Kontogiannis: TD Oracles [31 / 40]
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HQA: The Query Algorithm of HORN

Main Goal: Achieve query time sublinear in actual Dijkstra Rank (DR)
Constraint: Keep preprocessing space subquadratic

Hierarchical Query Algorithm (HQA)

1. Grow a unique TD-ball from (o, to), until the first informed land-
mark `o discovered at the right distance (not too close, not too far)
from o

2. Execute an appropriate variant of RQA, using only landmarks of level
at least as high as that of `o

3. Return the best approximate solution, among all discovered in-
formed landmarks

Performance of HQA for random landmarks
With high probability the query-complexity of HQA is o(Ni), where
i ∈ [k + 1] is such that Ni−1 < DR[o, d](to) ≤ Ni
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TD Distance Oracles: Recap

what is preprocessed space : E [S] preprocessing : E [P] query : E [QRQA ]

All-To-All O
(
(K ∗ + 1)n2U

)
O

 n2 log(n)
· log log(Kmax)
·(K ∗ + 1)TDP

 O(log log(K ∗))

Nothing O(n + m + K) O(1) O
(

n log(n)·
log log(Kmax)

)
BIS-only Preprocessing

Landmarks-To-All O
(
ρn2(K ∗ + 1)U

)
O

 ρn2 log(n)
· log log(Kmax)
·(K ∗ + 1)TDP

 O

 (
1
ρ

)R+1
· log

(
1
ρ

)
· log log(Kmax)


Kmax ∈ O(1)
ρ = n−a

U,TDP ∈ O(1)
K ∗ ∈ O(polylog(()n))

Õ
(
n2−a

)
Õ
(
n2−a

)
Õ
(
n(R+1)·a

)
BIS+TRAP Preprocessing

FLAT õ
(
n2

)
õ
(
n2

)
õ(n)

HORN õ
(
n2

)
õ
(
n2

)
õ(DijkstraRank(0, d))
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Experimental Evaluation [Kontogiannis et al (ALENEX 2016)]

Identities of Instances

PARAMETER \ INSTANCE Berlin (TomTom) Germany (PTV AG)
#Nodes 473,253 4,692,091
#Edges 1,126,468 11,183,060
Time Period 24h (Tue) 24h (Tue-Wed-Thu)
λmax 0.017 0.130
−λmin -0.013 -0.130
#Arcs with constant traversal-
times

924,254 10,310,234

#Arcs with non-constant traversal-
times

20,2214 872,826

Min #Breakpoints 4 5
Avg #Breakpoints 10.4 16.3
Max #Breakpoints 125 52
Total #Breakpoints 3,234,213 25,424,506
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Experimental Evaluation [Kontogiannis et al (ALENEX 2016)]

Preprocessing and Live-Traffic Updates

Preprocessing of FLAT@ BERLIN:

BERLIN GERMANY
Parallelism 1 thread 6 threads 1 thread 6 threads

Time per landmark 69.5sec 11.5sec 481sec 80.2sec
Space per landmark 13.8MB 25.7MB

Responsiveness to live-traffic reporting: Averaging 1, 000 random
disruptions of 15-min duration

BERLIN GERMANY
#Affected Update Time #Affected Update Time

Landmarks (sec) Landmarks (sec)
SR2000 32 21.4 3 37.2
SK2000 36 28.8 4 39.1
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Experimental Evaluation [Kontogiannis et al (ALENEX 2016)]

Query-Time Performance: Speedup > 1, 146 for Berlin and > 902 for Germany
Berlin: n = 473, 253 vertices, m = 1, 126, 468 arcs
Germany: n = 4, 692, 091 vertices, m = 11, 183, 060 arcs

BERLIN: 2.64sec resolution and 10, 000 random queries
TDD FCA FCA+(6) RQA

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

R2000 92.906 0 0.100 0.969 0.527 0.405 0.519 0.679
K2000 0.115 1.089 0.321 0.405 0.376 0.523
H2000 0.102 0.886 0.523 0.332 0.445 0.602

IR2000 0.086 0.923 0.489 0.379 0.473 0.604
SR2000 0.081 0.771 0.586 0.317 0.443 0.611
SK2000 0.083 0.781 0.616 0.227 0.397 0.464

R541 0.326 1.854 1.887 0.693 1.904 1.610
SR541 0.451 1.638 3.252 0.614 2.856 1.531

R270 0.639 2.583 3.707 0.881 3.842 2.482
SR270 0.730 2.198 4.491 0.745 4.271 2.336

GERMANY: 17.64sec resolution and 10,000 random queries
TDD FCA FCA+(6) RQA

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

Time
(msec)

Rel.Error
%

R2000 1, 145.060 0 1.532 1.567 8.529 0.742 9.219 1.502
K2000 10.455 2.515 15.209 1.708 30.577 2.343

SR2000 1.275 1.444 9.952 0.662 9.011 1.412
SK2000 1.269 1.534 9.689 0.676 7.653 1.475
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Experimental Evaluation [Kontogiannis et al (ALENEX 2016)]

Dijkstra-Rank Performance: Speedup > 1, 570 for Berlin and > 1, 531 for Germany
Berlin: n = 473, 253 vertices, m = 1, 126, 468 arcs
Germany: n = 4, 692, 091 vertices, m = 11, 183, 060 arcs

BERLIN: 2.64sec resolution and 10, 000 random queries
TDD FCA FCA+(6) RQA

Rank Speedup Rank Speedup Rank Speedup Rank Speedup
R2000 146, 022 1 150 973.480 877 166.502 925 157.862
K2000 190 768.537 866 168.616 670 217.943
H2000 154 948.195 851 171.589 777 187.931

IR2000 135 1, 081.644 823 177.426 839 174.043
SR2000 119 1, 227.075 952 153.384 776 188.173
SK2000 93 1, 570.129 755 193.406 501 291.461

R541 545 267.930 3, 178 45.947 3, 406 42.872
SR541 638 228.874 3, 684 39.637 3, 950 36.967

R270 1, 075 135.834 6, 198 23.559 6, 702 21.788
SR270 1, 195 122.194 7, 362 19.835 7, 398 19.738

GERMANY: 17.64sec resolution and 10, 000 random queries
TDD FCA FCA+(6) RQA

Rank Speedup Rank Speedup Rank Speedup Rank Speedup
R2000 1, 717, 793 1 1, 659 1, 035.439 10, 159 169.091 11, 045 155.527
K2000 9, 302 184.669 15, 373 111.741 30, 137 56.999

SR2000 1, 277 1, 345.178 9, 943 172.764 9, 182 187.082
SK2000 1, 122 1, 531.010 9, 000 190.866 7, 975 215.397
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Experimental Evaluation [Kontogiannis et al (ALENEX 2016)]

Performance of HORN in BERLIN

Landmark hierarchies for HORN, with HR and HSR landmark sets
Level Size of Levels Area of coverage Excluded Ball Size (for HSR)

|L | = 10, 256 |L | = 20, 513 |L | = 10, 256 |L | = 20, 513
L1 7, 685 15, 370 1, 274 35 15
L2 1, 604 3, 208 29, 243 150 80
L3 697 1, 394 154, 847 350 180
L4 270 541 292, 356 800 400

HQA at 2.64sec resolution and 10, 000 random queries
TDD HQA

Time
(msec)

Rel.Error
%

Rank Speedup Time
(msec)

Rel.Error
%

Rank Speedup

HR10256 92.906 0 146, 022 1 0.354 1.499 636 229.594
HSR10256 0.436 1.409 721 202.527

HR20513 0.217 1.051 324 450.685
HSR20513 0.314 0.919 378 386.302

HQA vs. FLAT/FCA in Berlin
Improvement in Deterioration in

Query Times (%) Worst-case Relative Error (%) Dijkstra Ranks (%) Space (times)
R270 vs HR10256 44.60 41.96 40.83 6.089

SR270 vs HSR10256 40.27 35.89 39.66 6.407
R541 vs HR20513 33.43 43.31 40.55 6.195

SR541 vs HSR20513 30.37 43.89 40.75 6.438
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Recap and Open Issues

Recap
Experimented extensively on landmark-based oracles for TD-nets
Observed remarkable speedups with reasonable space requirements,
both for urban and for national road networks
Experimented on digesting live-traffic reporting within a few seconds
Observed full scalability in trade-offs between space and
query-responses
Can achieve query-response times 0.73msec, relative error 2.198%,
for the Berlin instance, consuming space 3.72GB

Future Work

Explore new landmark sets that will achieve even better speedups
and/or approximation guarantees
Explore further improvements in the compression schemes to reduce
required space
Exploit algorithmic parallelism to further reduce preprocessing time
and responsiveness to live-traffic reports
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