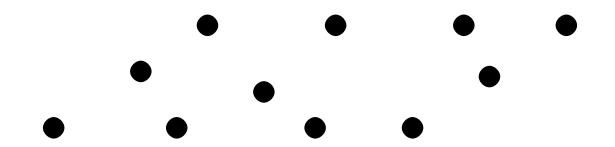
Übung Algorithmische Geometrie Delauney Triangulierung

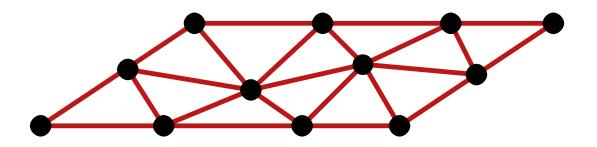
LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

Benjamin Niedermann 18.06.2014

Def.: Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine maximale planare Unterteilung mit Knotenmenge P.

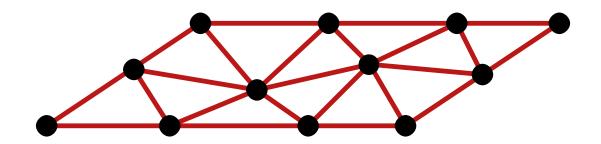


Def.: Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine maximale planare Unterteilung mit Knotenmenge P.



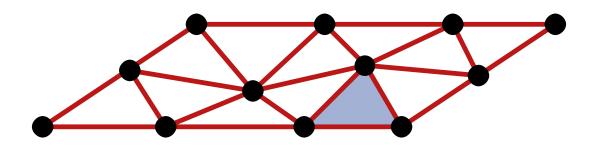
Beob.:

Def.: Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine maximale planare Unterteilung mit Knotenmenge P.



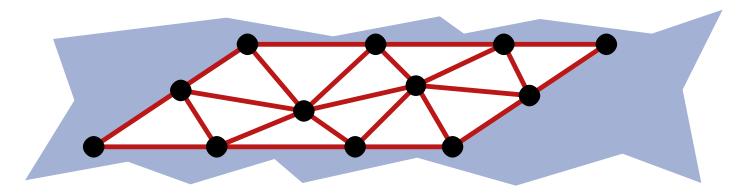
Beob.: • alle inneren Facetten sind Dreiecke

Def.: Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine maximale planare Unterteilung mit Knotenmenge P.



Beob.: • alle inneren Facetten sind Dreiecke

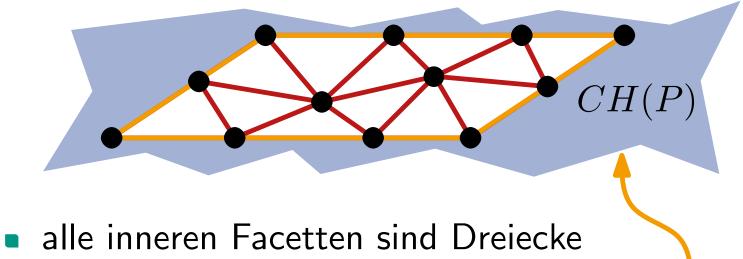
Def.: Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine maximale planare Unterteilung mit Knotenmenge P.



Beob.:

- alle inneren Facetten sind Dreiecke
- äußere Facette ist Komplement der konvexen Hülle

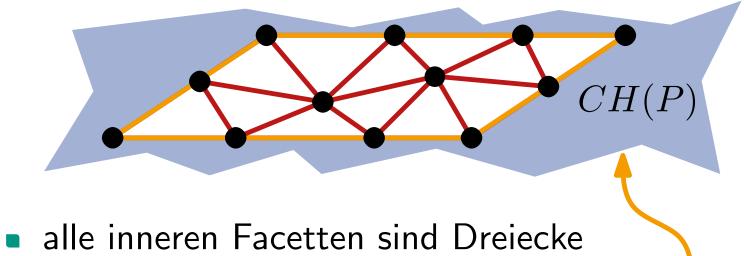
Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine Def.: maximale planare Unterteilung mit Knotenmenge P.



Beob.:

- äußere Facette ist Komplement der konvexen Hülle

Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine Def.: maximale planare Unterteilung mit Knotenmenge P.



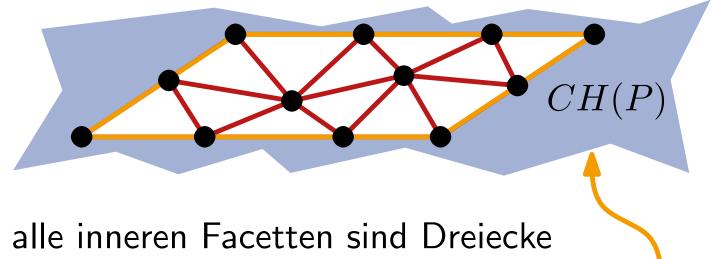
Beob.:

- äußere Facette ist Komplement der konvexen Hülle

Satz 1: Sei P eine Menge von n nicht kollinearen Punkten und h die Anzahl Punkte auf CH(P).

> Dann hat jede Triangulierung von P t(n,h) Dreiecke und e(n,h) Kanten.

Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine Def.: maximale planare Unterteilung mit Knotenmenge P.



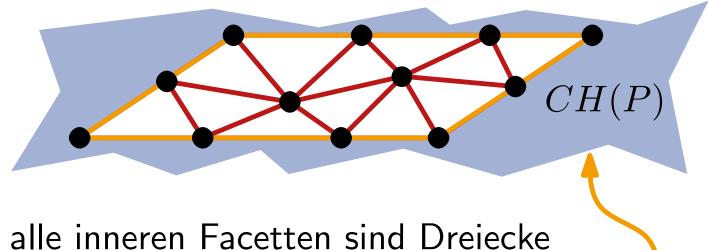
 alle inneren Facetten sind Dreiecke Beob.:

äußere Facette ist Komplement der konvexen Hülle

Satz 1: Sei P eine Menge von n nicht kollinearen Punkten und h die Anzahl Punkte auf CH(P).

> Dann hat jede Triangulierung von P t(n,h) Dreiecke und e(n,h) Kanten. Berechne *t* und *e*!

Eine **Triangulierung** einer Punktmenge $P \subset \mathbb{R}^2$ ist eine Def.: maximale planare Unterteilung mit Knotenmenge P.



 alle inneren Facetten sind Dreiecke Beob.:

äußere Facette ist Komplement der konvexen Hülle

Satz 1: Sei P eine Menge von n nicht kollinearen Punkten und h die Anzahl Punkte auf CH(P).

> Dann hat jede Triangulierung von P(2n-2-h)Dreiecke und (3n-3-h) Kanten.

Problem:

Sei $P \subset \mathbb{R}^2$ eine Menge von n Punkten.

- a) Maximale Anzahl an verschiedenen Triangulierungen für P beschränkt durch $2^{\binom{n}{2}}$.
- b) Beispielmenge P bei der für jede Triangulierung ein Knoten ex. der Grad n-1 hat?

Problem:

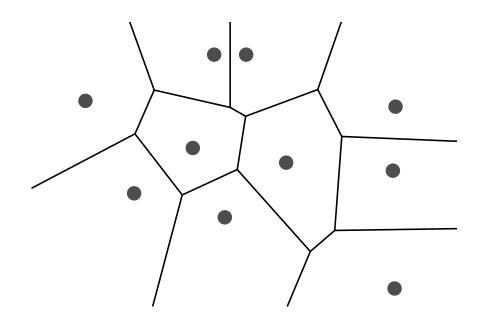
Sei $P \subset \mathbb{R}^2$ eine Menge von n Punkten.

- a) Maximale Anzahl an verschiedenen Triangulierungen für P beschränkt durch $2^{\binom{n}{2}}$.
- b) Beispielmenge P bei der für jede Triangulierung ein Knoten ex. der Grad n-1 hat?

Die Delaunay-Triangulierung

Sei Vor(P) das Voronoi-Diagramm einer Punktmenge P.

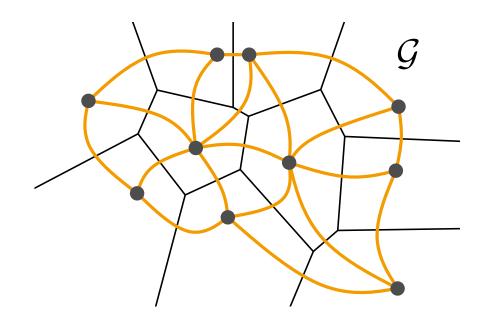
Def.: Der Graph $\mathcal{G} = (P, E)$ mit $E = \{pq \mid \mathcal{V}(p) \text{ und } \mathcal{V}(q) \text{ sind benachbart}\}$ heißt **Dualgraph** von $\operatorname{Vor}(P)$.



Die Delaunay-Triangulierung

Sei Vor(P) das Voronoi-Diagramm einer Punktmenge P.

Def.: Der Graph $\mathcal{G} = (P, E)$ mit $E = \{pq \mid \mathcal{V}(p) \text{ und } \mathcal{V}(q) \text{ sind benachbart}\}$ heißt **Dualgraph** von $\operatorname{Vor}(P)$.

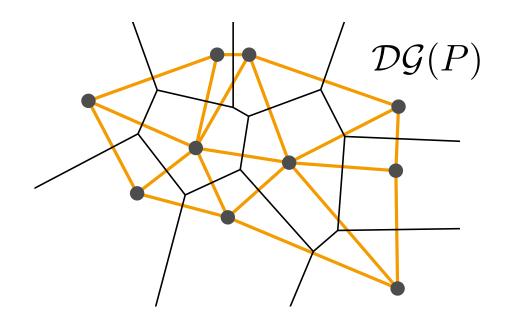


Die Delaunay-Triangulierung

Sei Vor(P) das Voronoi-Diagramm einer Punktmenge P.

Def.: Der Graph $\mathcal{G} = (P, E)$ mit $E = \{pq \mid \mathcal{V}(p) \text{ und } \mathcal{V}(q) \text{ sind benachbart}\}$ heißt **Dualgraph** von $\operatorname{Vor}(P)$.

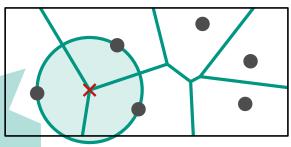
Def.: Die geradlinige Zeichnung von \mathcal{G} heißt **Delaunay-Graph** $\mathcal{DG}(P)$.

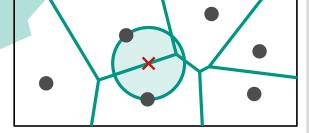


Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- der Bisektor $b(p_i, p_j)$ definiert eine Voronoi-Kante

$$\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$$

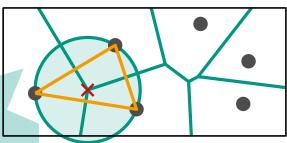




Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- ullet der Bisektor $b(p_i,p_j)$ definiert eine Voronoi-Kante

$$\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$$



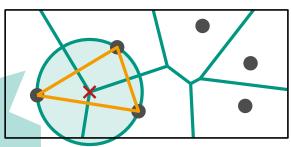
Satz 4: Sei P eine Menge von Punkten.

- Punkte p, q, r sind Knoten der gleichen Facette in $\mathcal{DG}(P) \Leftrightarrow \mathsf{Kreis} \; \mathsf{durch} \; p, q, r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q

Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- der Bisektor $b(p_i, p_j)$ definiert eine Voronoi-Kante

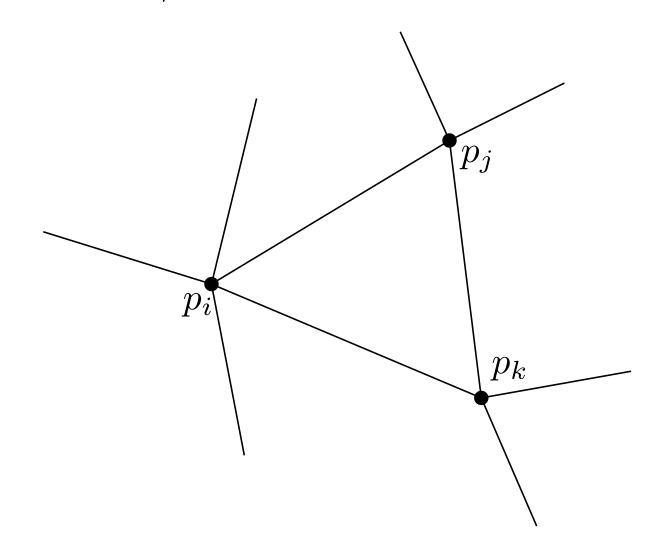
$$\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$$



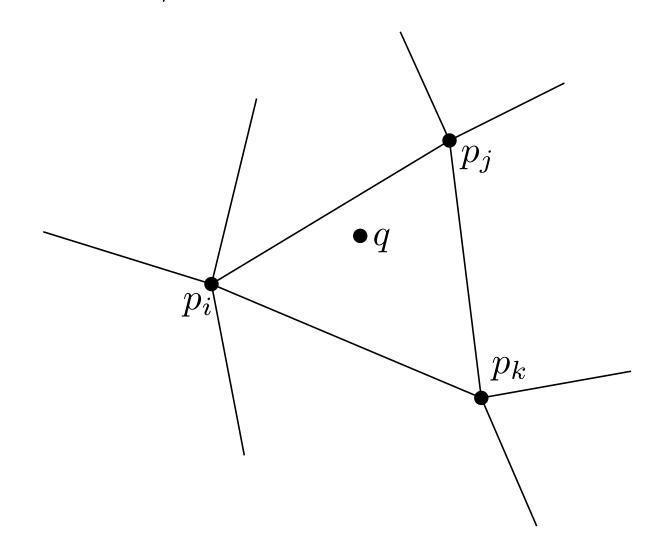
Satz 4: Sei P eine Menge von Punkten.

- Punkte p, q, r sind Knoten der gleichen Facette in $\mathcal{DG}(P) \Leftrightarrow \mathsf{Kreis} \; \mathsf{durch} \; p, q, r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- **Satz 5:** Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

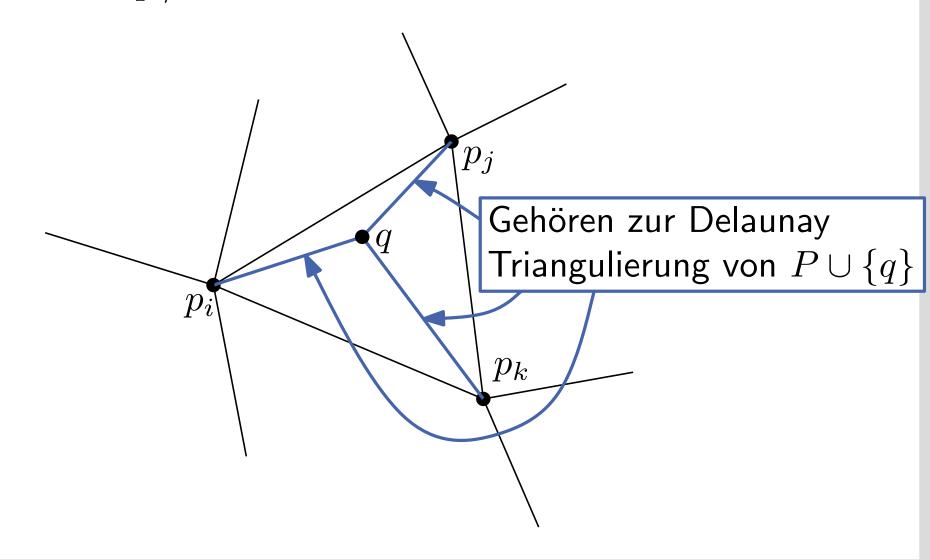
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



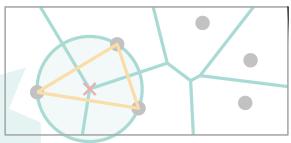
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- lacktriangle der Bisektor $b(p_i,p_j)$ definiert eine Voronoi-Kante

$$\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$$

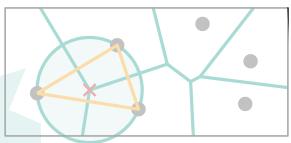


- Punkte p,q,r sind Knoten der gleichen Facette in $\mathcal{DG}(P)\Leftrightarrow \mathsf{Kreis}$ durch p,q,r ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- Satz 5: Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- lacktriangle der Bisektor $b(p_i,p_j)$ definiert eine Voronoi-Kante

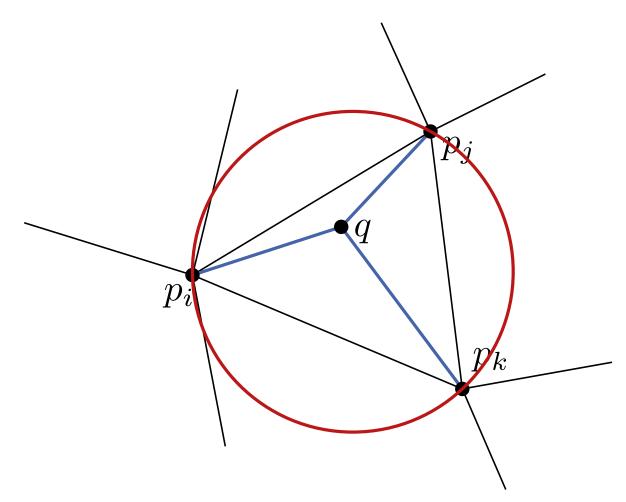
$$\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$$



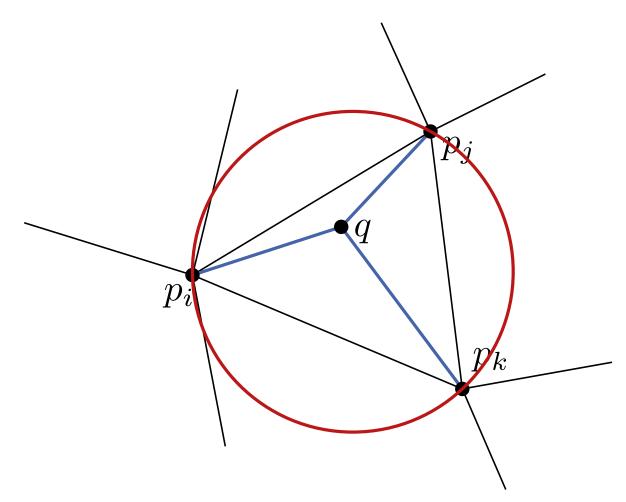
Satz 4: Sei *P* eine Menge von Punkten.

- Punkte p,q,r sind Knoten der gleichen Facette in $\mathcal{DG}(P)\Leftrightarrow \text{Kreis durch }p,q,r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- Satz 5: Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

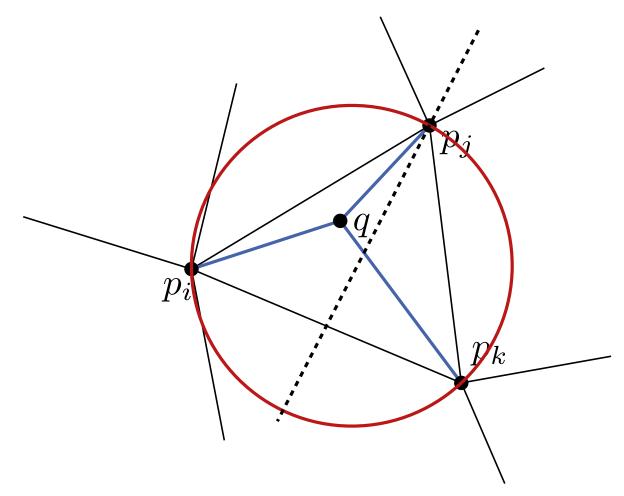
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



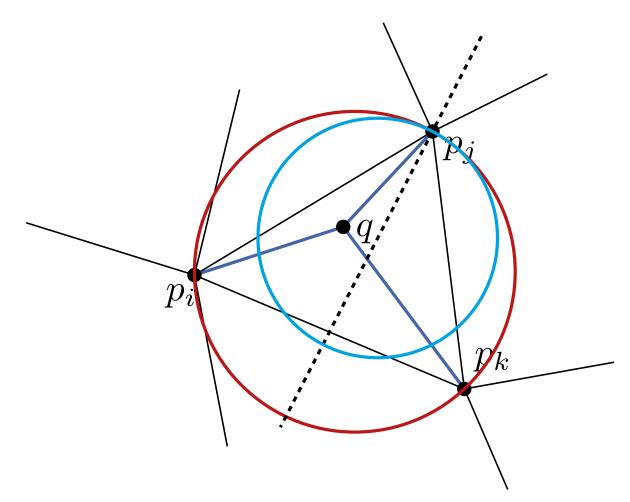
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



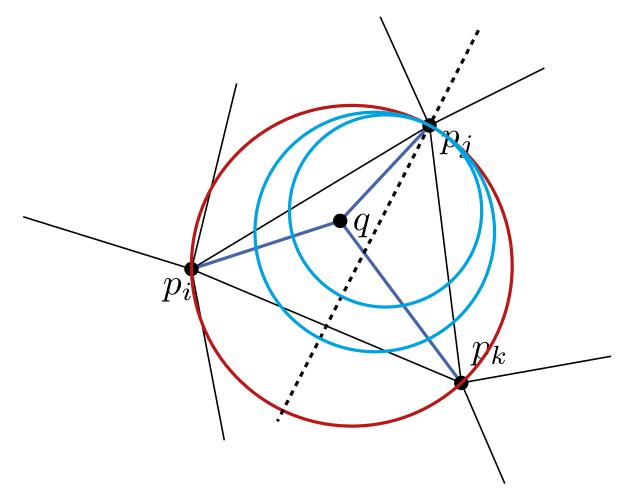
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



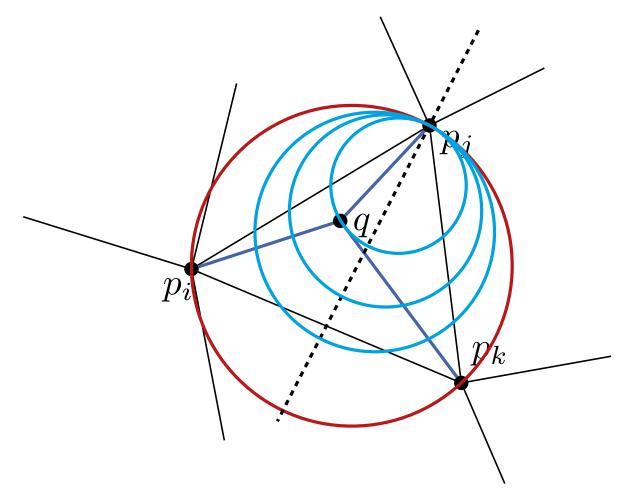
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



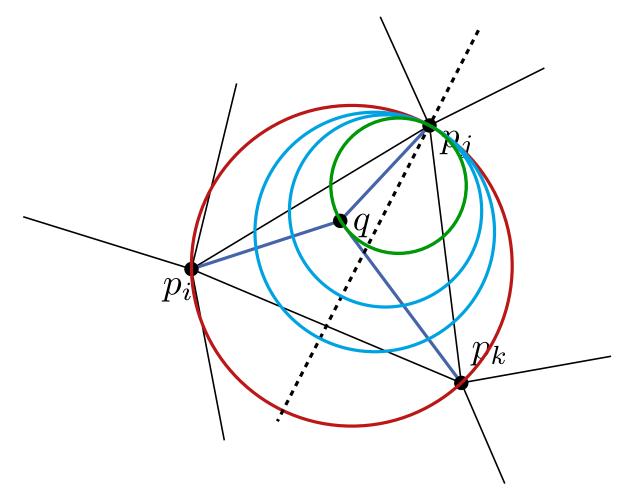
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.



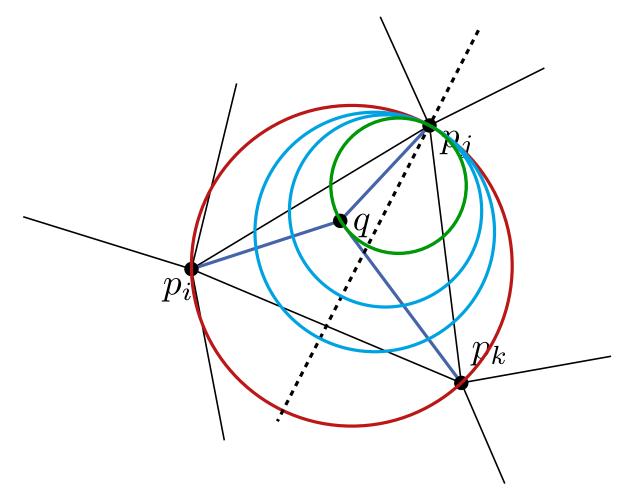
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.

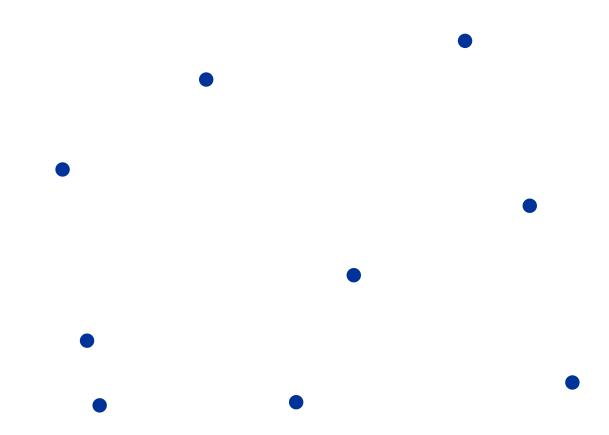


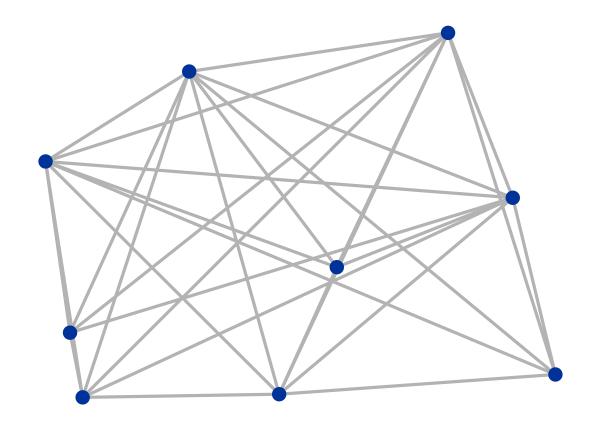
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.

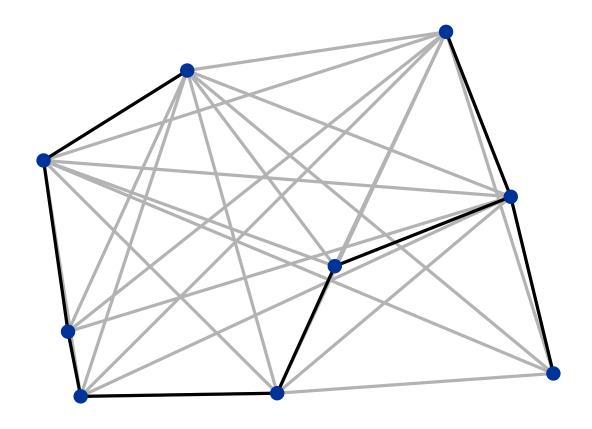


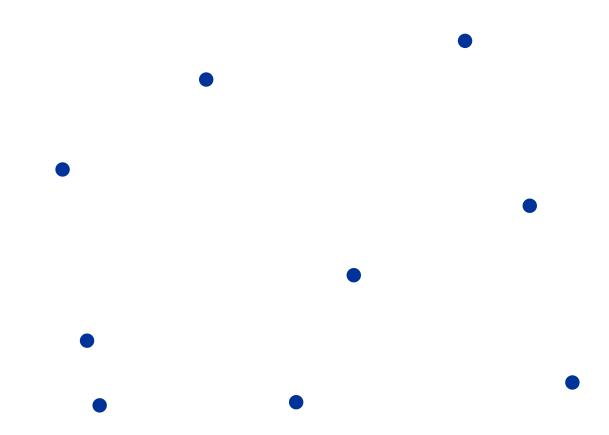
- Punktmenge $P \subset \mathbb{R}^2$, alle Punkte in allgemeiner Lage.
- Außerdem $q \notin P$ aber in der konvexen Hülle von P.

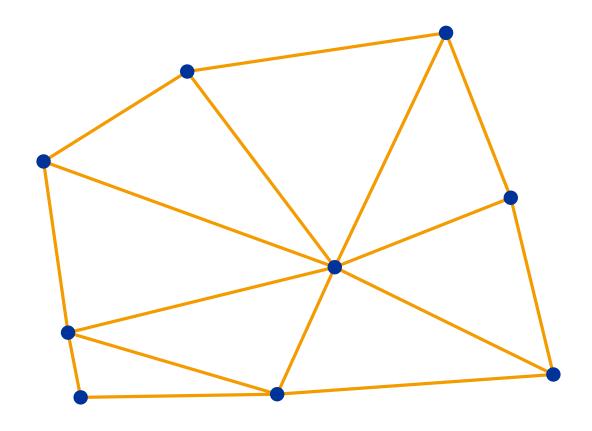




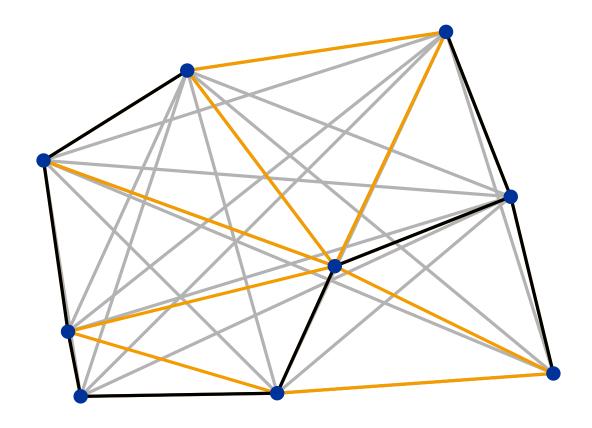




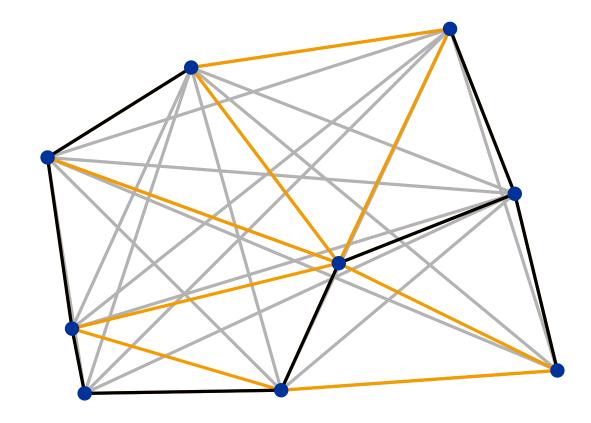




Euklidischer Minimaler Spannbaum



Euklidischer Minimaler Spannbaum



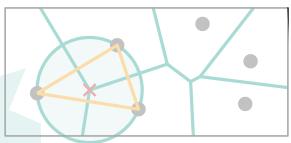
Zeige, dass Kanten aus EMST Teilmenge der Kanten aus Delaunay-Graph

Charakterisierung

Satz über Voronoi-Diagramme:

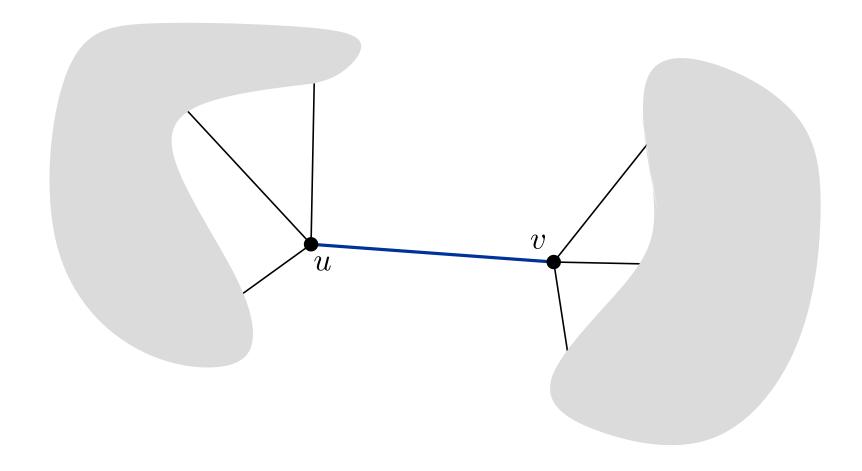
- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- lacktriangle der Bisektor $b(p_i,p_j)$ definiert eine Voronoi-Kante

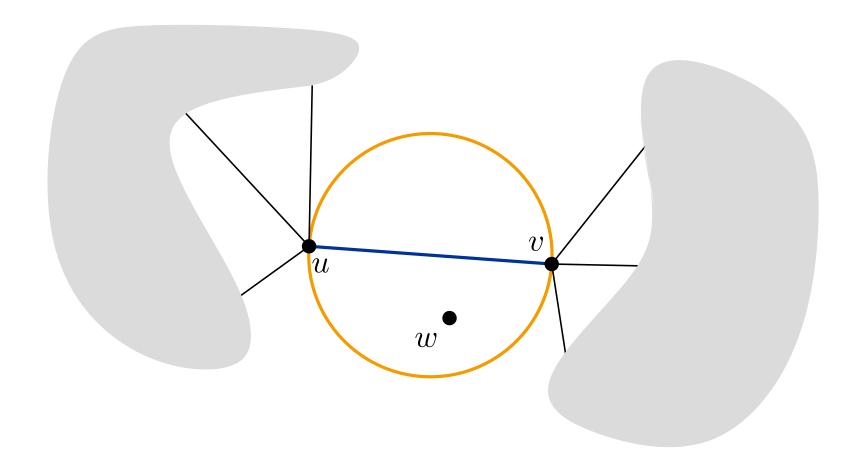
$$\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$$

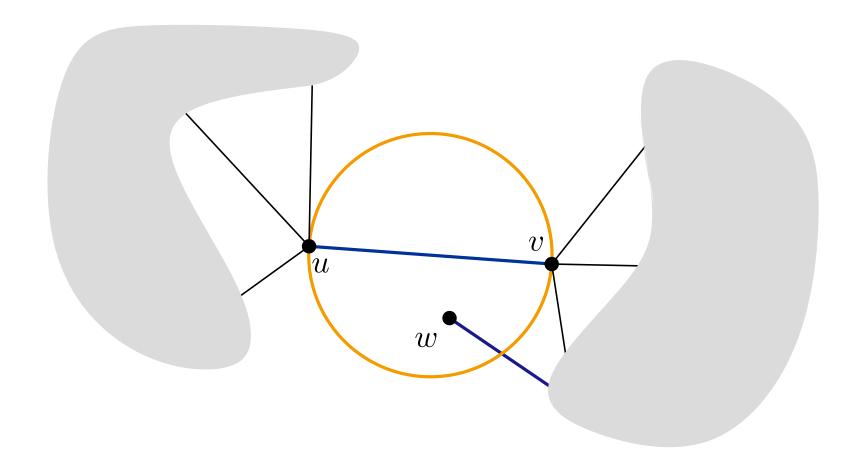


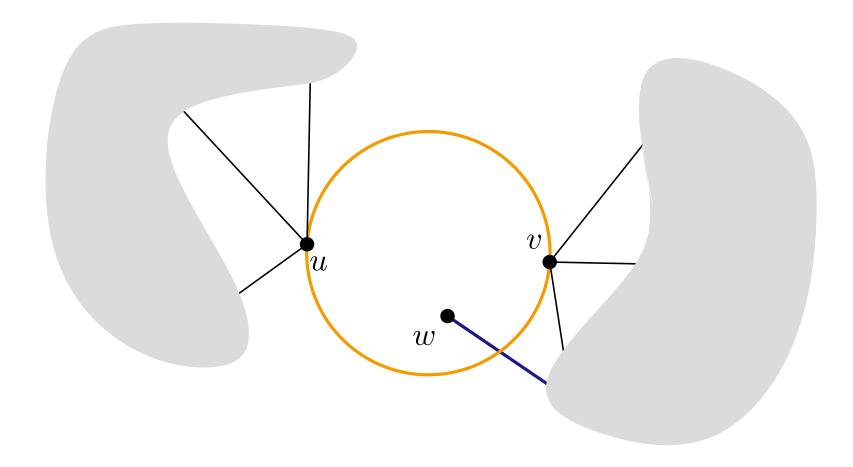
Satz 4: Sei *P* eine Menge von Punkten.

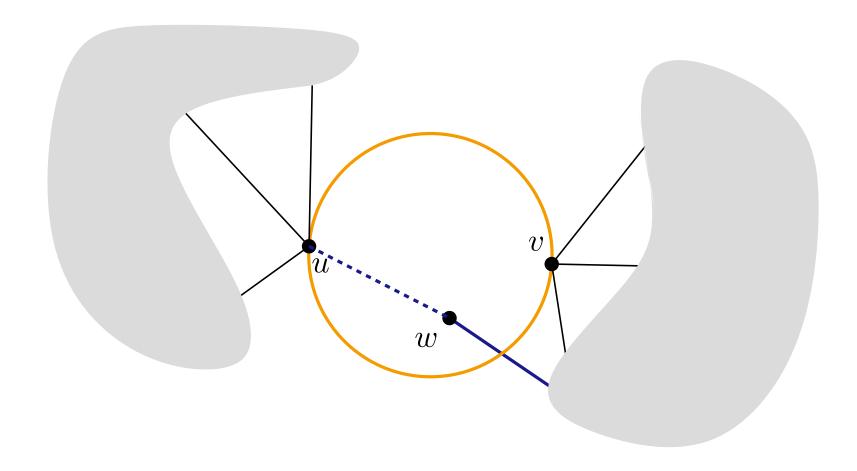
- Punkte p,q,r sind Knoten der gleichen Facette in $\mathcal{DG}(P)\Leftrightarrow \text{Kreis durch }p,q,r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- Satz 5: Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

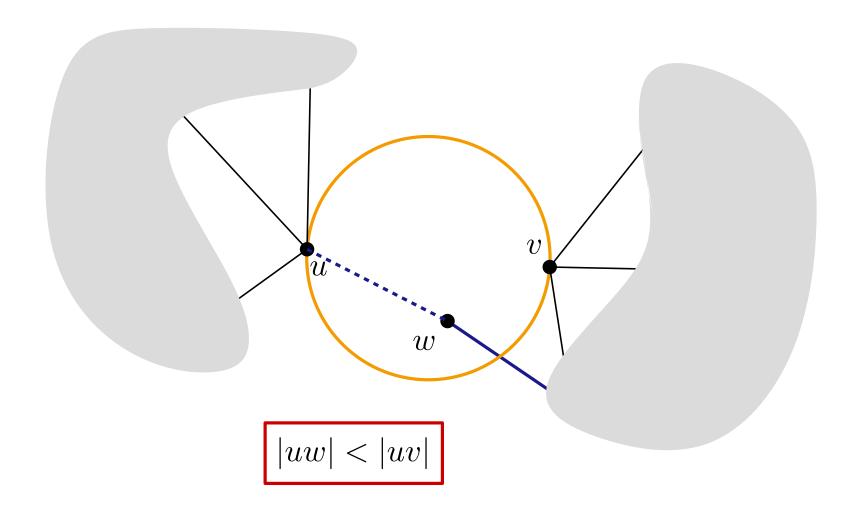


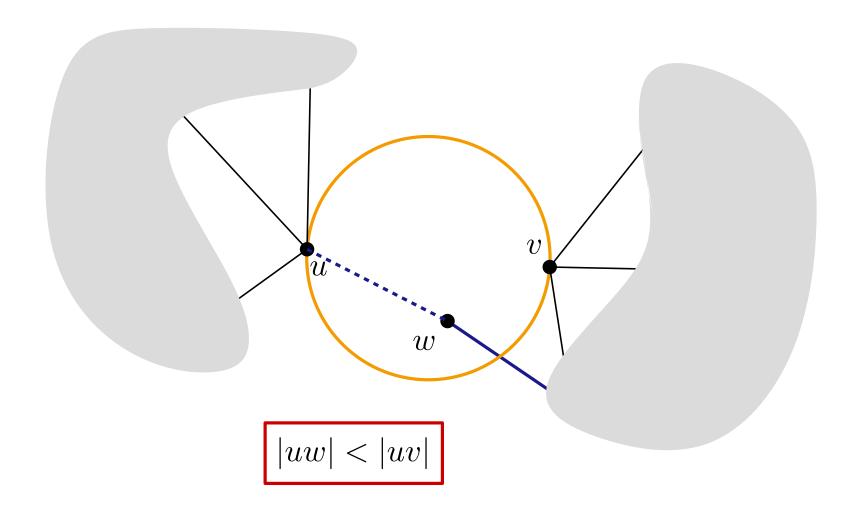




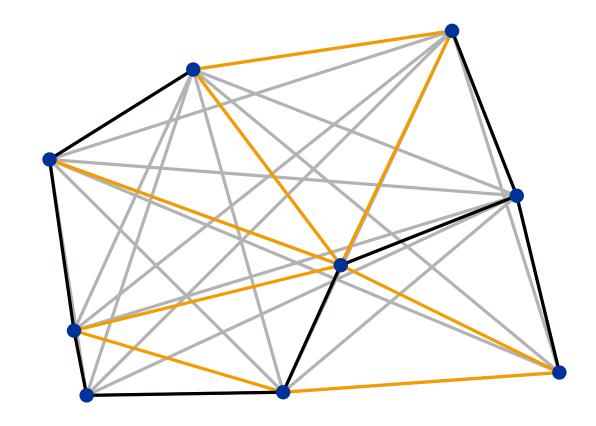




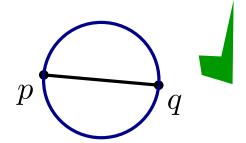


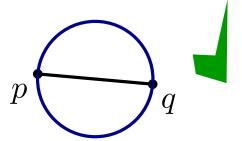


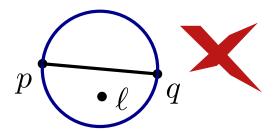
Euklidischer Minimaler Spannbaum

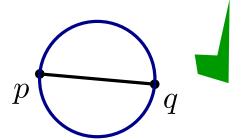


Berechnung von EMST in $O(n \log n)$?

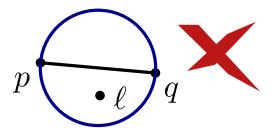


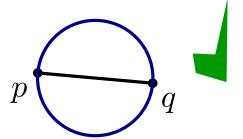






• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ mit Durchmesser |pq| leer ist.





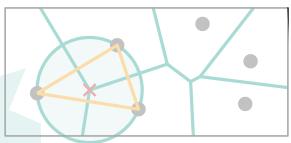
a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.

Charakterisierung

Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- lacktriangle der Bisektor $b(p_i,p_j)$ definiert eine Voronoi-Kante

$$\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$$



Satz 4: Sei *P* eine Menge von Punkten.

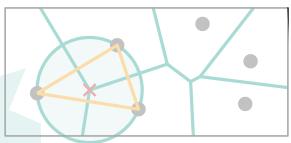
- Punkte p,q,r sind Knoten der gleichen Facette in $\mathcal{DG}(P)\Leftrightarrow \text{Kreis durch }p,q,r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- **Satz 5:** Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

Charakterisierung

Satz über Voronoi-Diagramme:

- Ein Punkt q ist ein Voronoi-Knoten $\Leftrightarrow |C_P(q) \cap P| \ge 3$,
- lacktriangle der Bisektor $b(p_i,p_j)$ definiert eine Voronoi-Kante

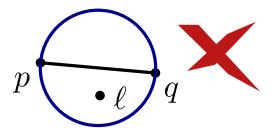
$$\Leftrightarrow \exists q \in b(p_i, p_j) \text{ mit } C_P(q) \cap P = \{p_i, p_j\}.$$

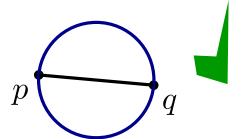


Satz 4: Sei *P* eine Menge von Punkten.

- Punkte p,q,r sind Knoten der gleichen Facette in $\mathcal{DG}(P)\Leftrightarrow \text{Kreis durch }p,q,r$ ist leer
- Kante pq ist in $\mathcal{DG}(P)$ \Leftrightarrow es gibt einen leeren Kreis $C_{p,q}$ durch p und q
- Satz 5: Sei P Punktmenge und \mathcal{T} eine Triangulierung von P. \mathcal{T} ist Delaunay-Triangulierung \Leftrightarrow Umkreis jedes Dreiecks ist im Inneren leer.

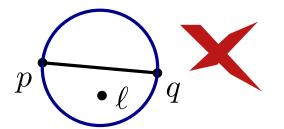
• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ mit Durchmesser |pq| leer ist.

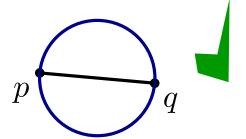




a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.

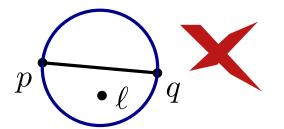
• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ mit Durchmesser |pq| leer ist.

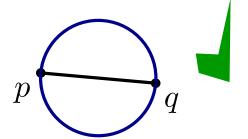




- a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.
- b) Zeige, dass p und q genau dann im Gabriel-Graph von P adjazent sind, wenn die Delaunay Kante zwischen p und q die zu ihr duale Voronoi-Kante schneidet.

• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ mit Durchmesser |pq| leer ist.



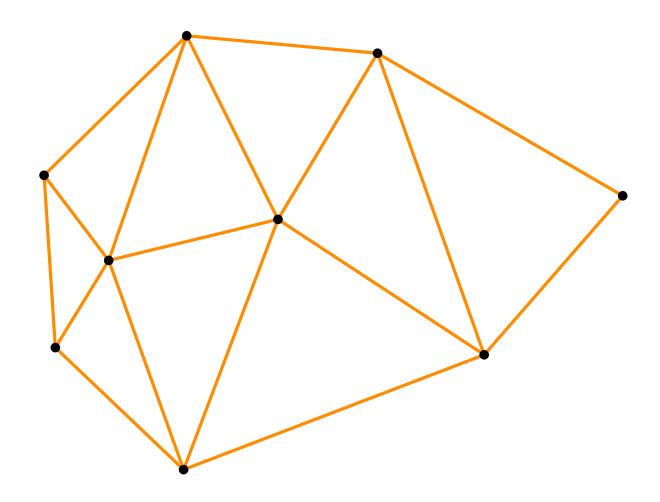


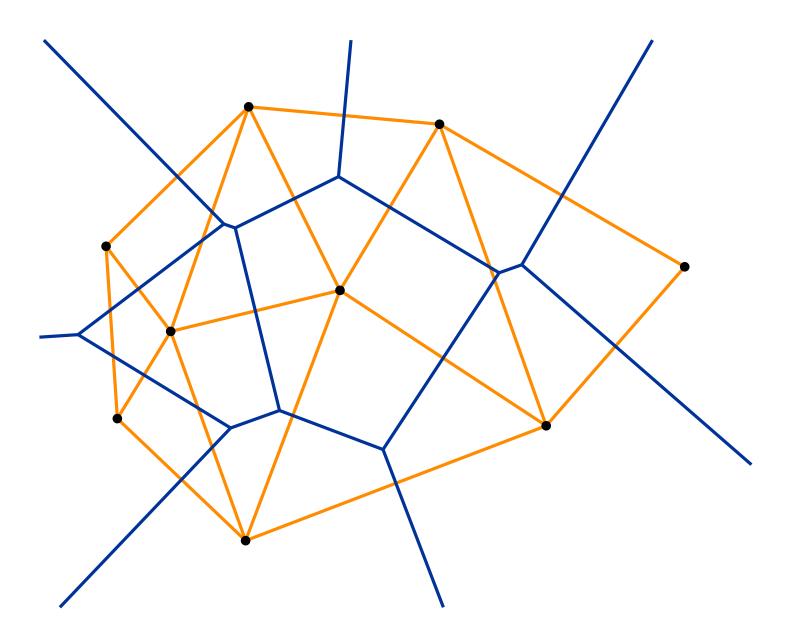
- a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.
- b) Zeige, dass p und q genau dann im Gabriel-Graph von P adjazent sind, wenn die Delaunay Kante zwischen p und q die zu ihr duale Voronoi-Kante schneidet.

•

•

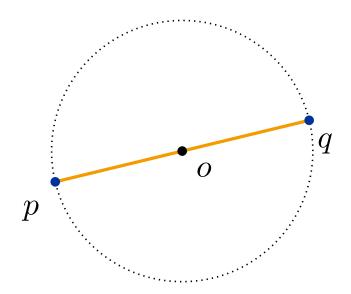
•



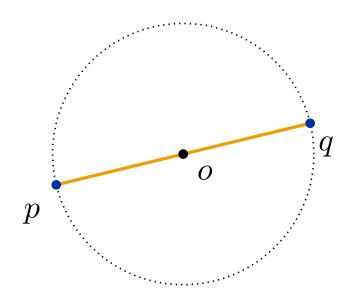


ullet pq im Gabriel Graph

pq im Gabriel Graph

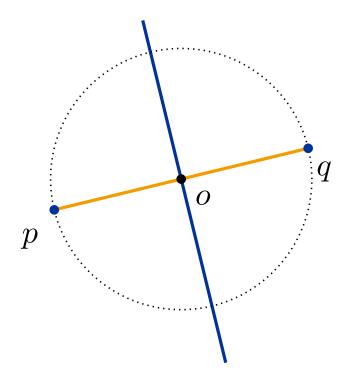


pq im Gabriel Graph

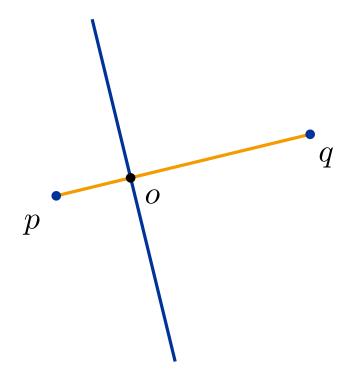


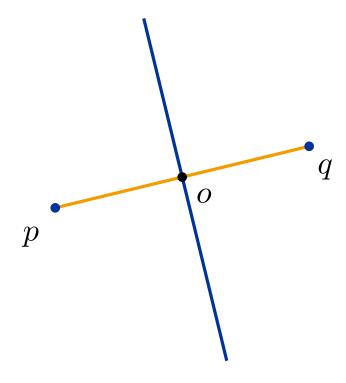
ullet o näher zu p, q als zu den anderen Punkten aus P

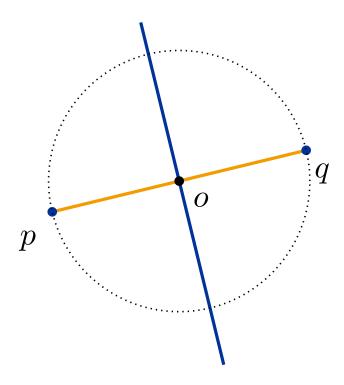
pq im Gabriel Graph



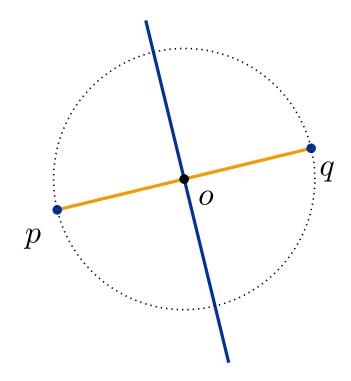
• o näher zu p, q als zu den anderen Punkten aus P $\Rightarrow o$ liegt auf Voronoi-Kante welche Voronoi-Zellen von q und p begrenzt





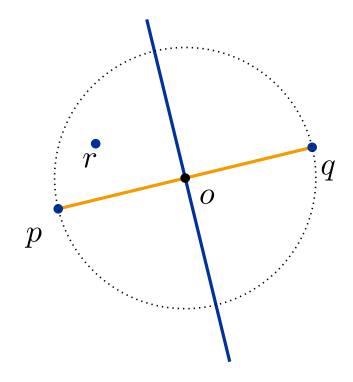


ullet pq schneidet duale Voronoi-Kante

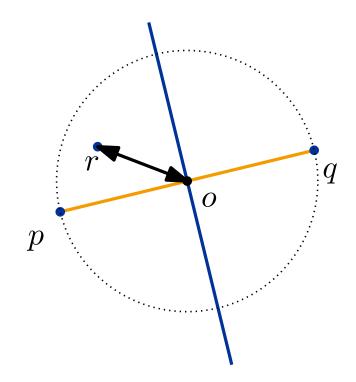


• Angenommen Punkt r in C.

ullet pq schneidet duale Voronoi-Kante

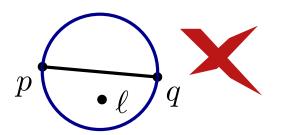


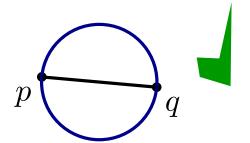
• Angenommen Punkt r in C.



- Angenommen Punkt r in C.
 - \Rightarrow Distanz zw. o und r kleiner als |op| (|oq|)
 - ⇒ Widerspruch zur Annahme, dass o auf Voronoi-Kante

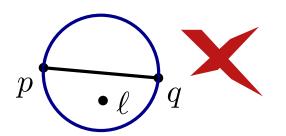
• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

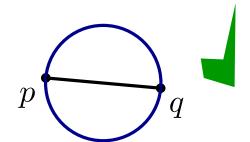




- a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.
- b) Zeige, dass p und q genau dann im Gabriel-Graph von P adjazent sind, wenn die Delaunay Kante zwischen p und q die zu ihr duale Voronoi-Kante schneidet.

• Gabriel Graph: p,q mit Kante verbunden, wenn Kreis $C_{p,q}$ leer ist.

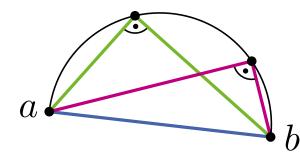




- a) Zeige, dass Delaunay Triangulierung von P den Gabriel Graph von P enthält.
- b) Zeige, dass p und q genau dann im Gabriel-Graph von P adjazent sind, wenn die Delaunay Kante zwischen p und q die zu ihr duale Voronoi-Kante schneidet.
- c) $\mathcal{O}(n \log n)$ Algorithmus der Gabriel-Graph berechnet?

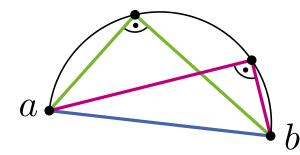
Der Satz von Thales

Satz 2: Alle Dreiecke aus den Endpunkten des Kreisdurchmessers und eines Halbkreispunktes sind rechtwinklig.

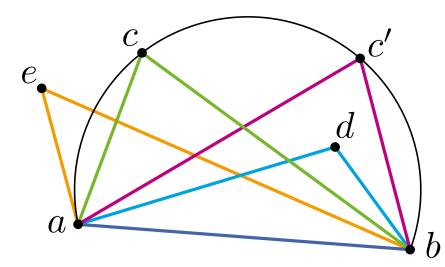


Der Satz von Thales

Satz 2: Alle Dreiecke aus den Endpunkten des Kreisdurchmessers und eines Halbkreispunktes sind rechtwinklig.



Satz 2': Alle Dreiecke aus den Endpunkten einer Sekante $\ell = \overline{ab}$ und eines Kreispunktes c auf der gleichen Seite von ℓ haben den gleichen Winkel an c. Für Dreiecke Δabd mit d innerhalb des Kreises gilt $\angle adb > \angle acd$, für e außerhalb des Kreises gilt $\angle aeb < \angle acd$.



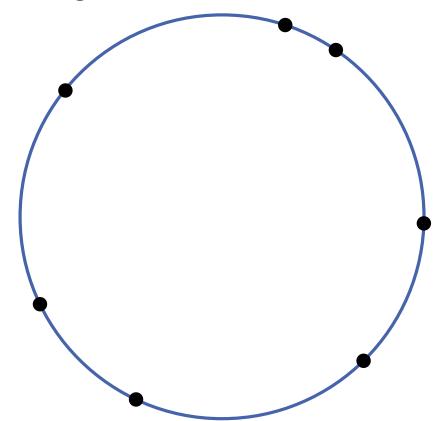
 $\angle aeb < \angle acb = \angle ac'b < \angle adb$

Problem:

- ullet P konvexex Polygon dessen Knoten auf einem Kreis liegen.
- ullet ${\mathcal T}$ eine beliebige Triangulierung von P

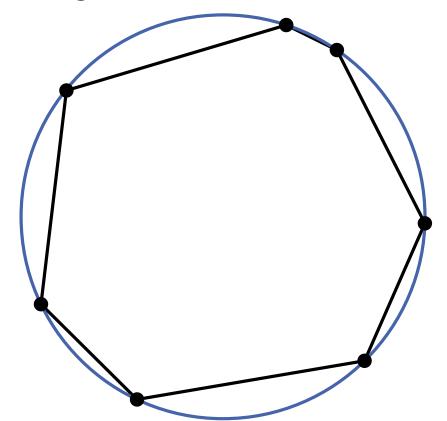
Problem:

- ullet P konvexex Polygon dessen Knoten auf einem Kreis liegen.
- ullet ${\mathcal T}$ eine beliebige Triangulierung von P



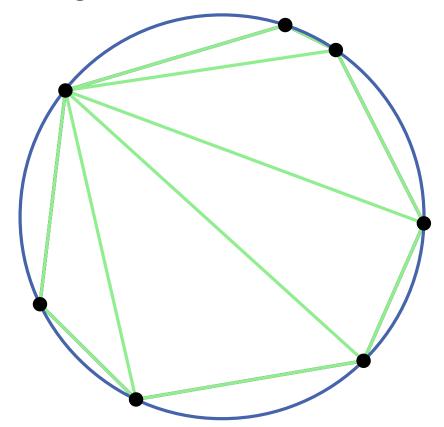
Problem:

- ullet P konvexex Polygon dessen Knoten auf einem Kreis liegen.
- ullet T eine beliebige Triangulierung von P



Problem:

- ullet P konvexex Polygon dessen Knoten auf einem Kreis liegen.
- ullet ${\mathcal T}$ eine beliebige Triangulierung von P



Problem:

- ullet P konvexex Polygon dessen Knoten auf einem Kreis liegen.
- ullet ${\mathcal T}$ eine beliebige Triangulierung von P

