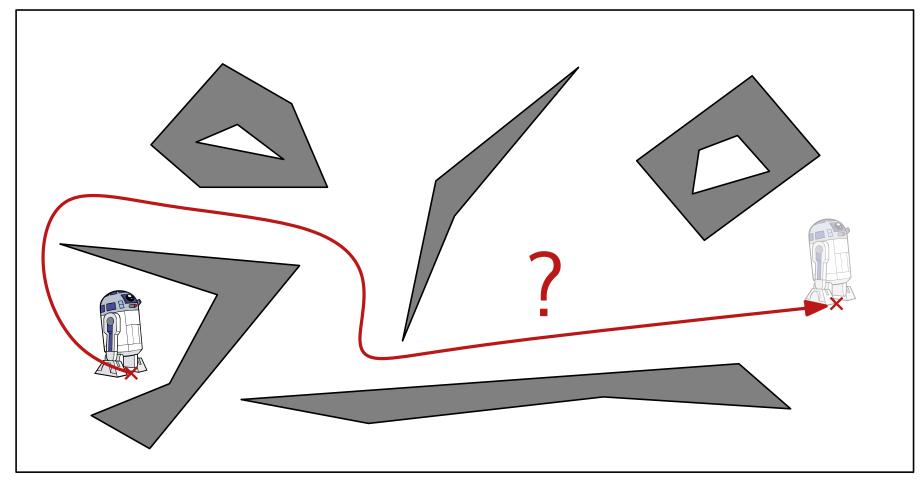


Übung Algorithmische Geometrie Sichtbarkeitsgraph

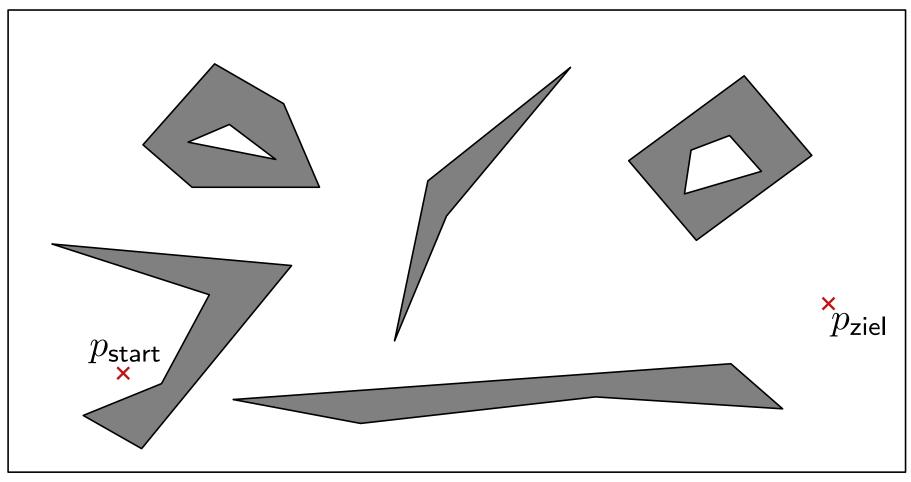
LEHRSTUHL FÜR ALGORITHMIK I · INSTITUT FÜR THEORETISCHE INFORMATIK · FAKULTÄT FÜR INFORMATIK

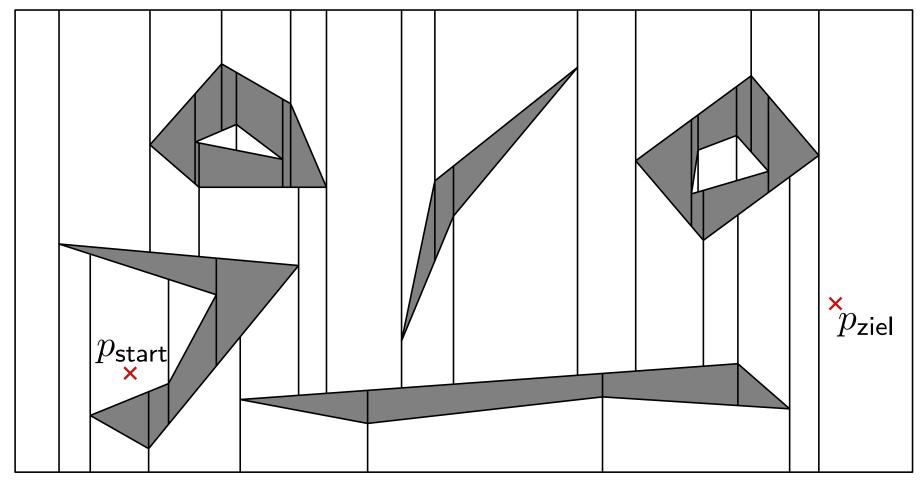
Benjamin Niedermann 16.07.2014

Bewegungsplanung für Roboter

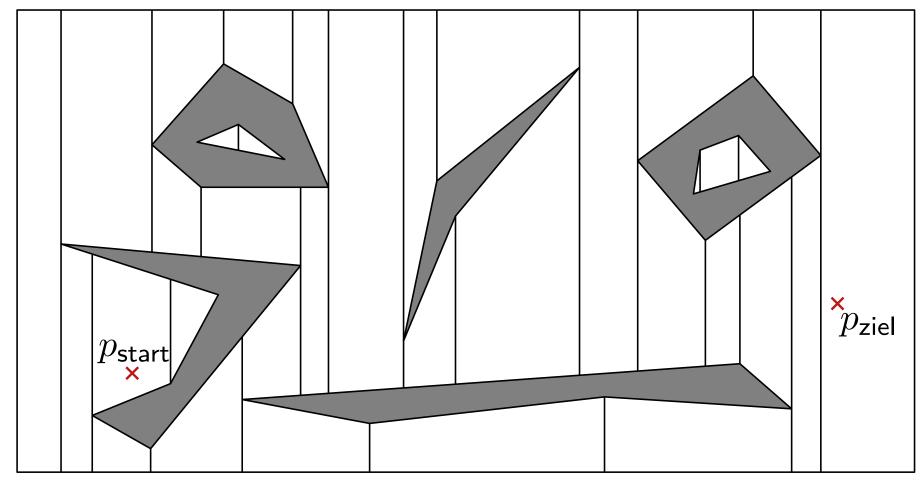


Problem: Gegeben ein (punktförmiger) Roboter an Position $p_{\rm start}$ in einem Gebiet mit polygonalen Hindernissen finde einen möglichst kurzen Weg zum Ziel $p_{\rm ziel}$ um die Hindernisse herum.

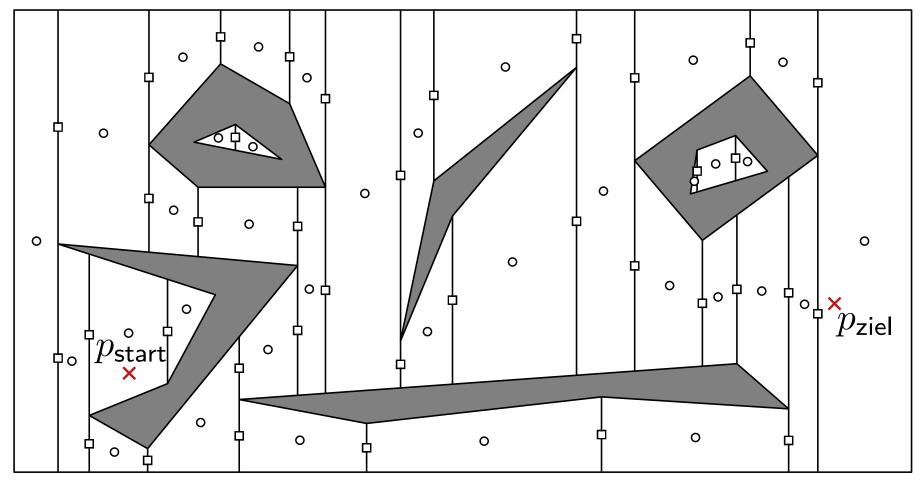




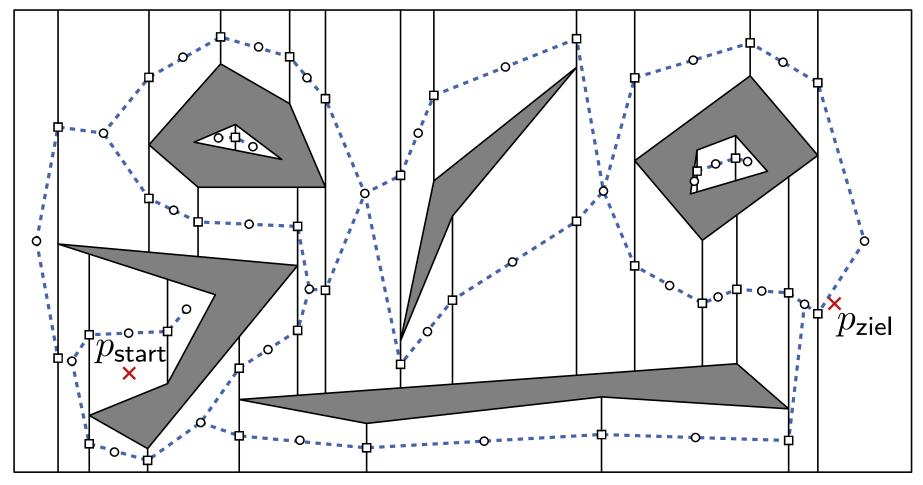
erstelle Trapezzerlegung



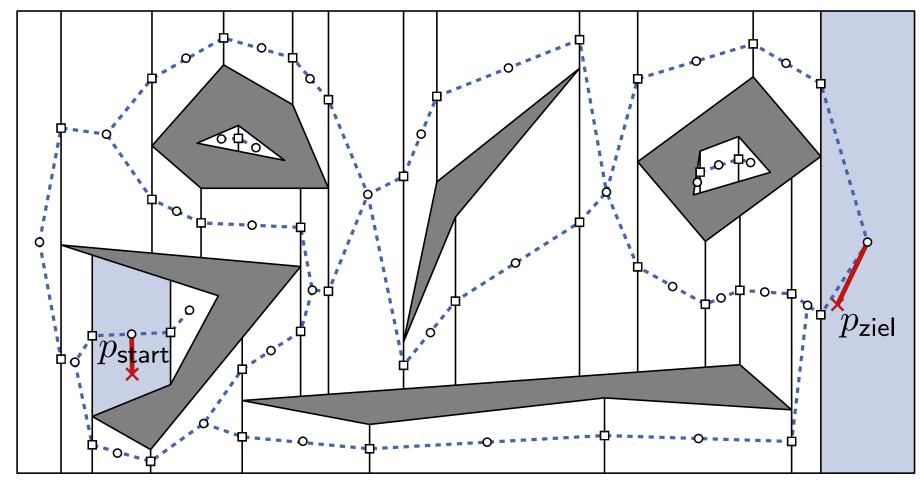
- erstelle Trapezzerlegung
- entferne Segmente in Hindernissen



- erstelle Trapezzerlegung
- entferne Segmente in Hindernissen
- Knoten in Trapezen und Vertikalen

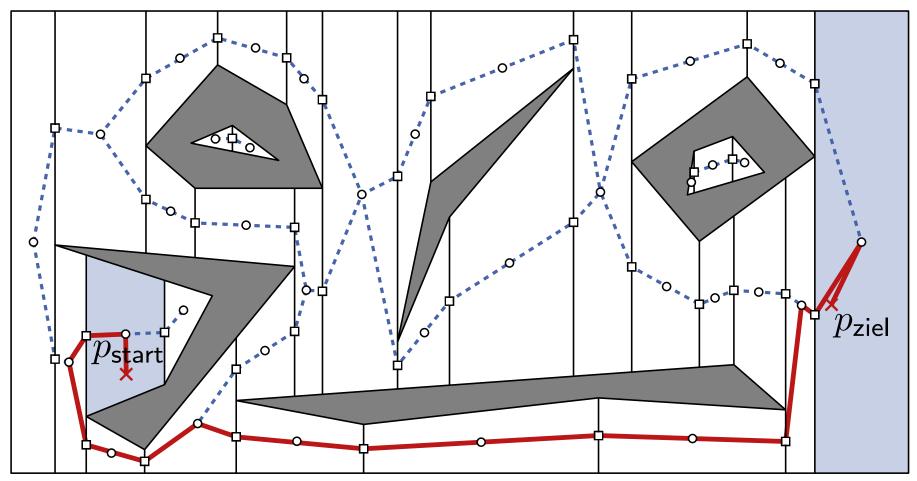


- erstelle Trapezzerlegung
- entferne Segmente in Hindernissen
- Knoten in Trapezen und Vertikalen
- ullet euklidisch gewichteter "Dualgraph" G mit Viaknoten auf Vertikalen



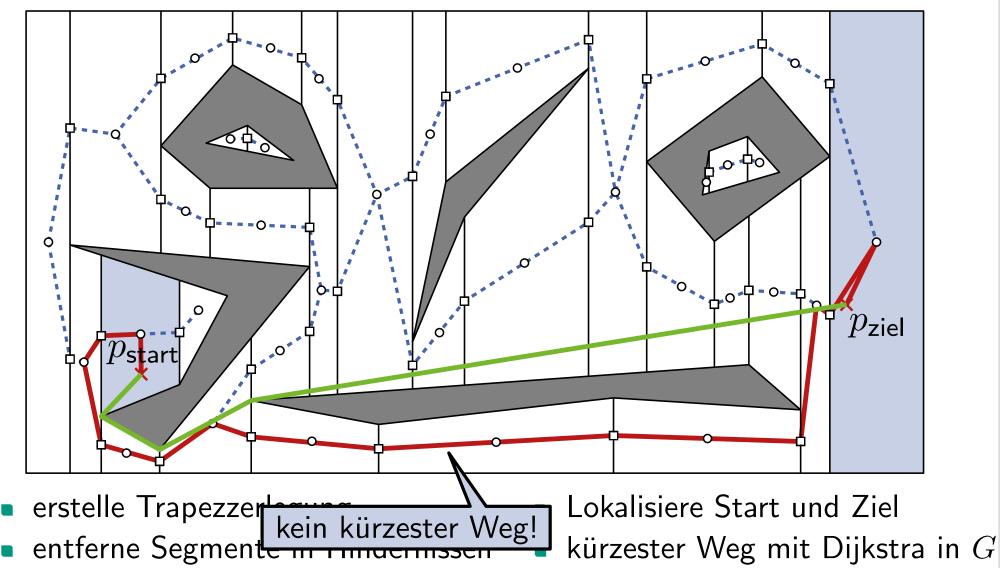
erstelle Trapezzerlegung

- Lokalisiere Start und Ziel
- entferne Segmente in Hindernissen
- Knoten in Trapezen und Vertikalen
- ullet euklidisch gewichteter "Dualgraph" G mit Viaknoten auf Vertikalen



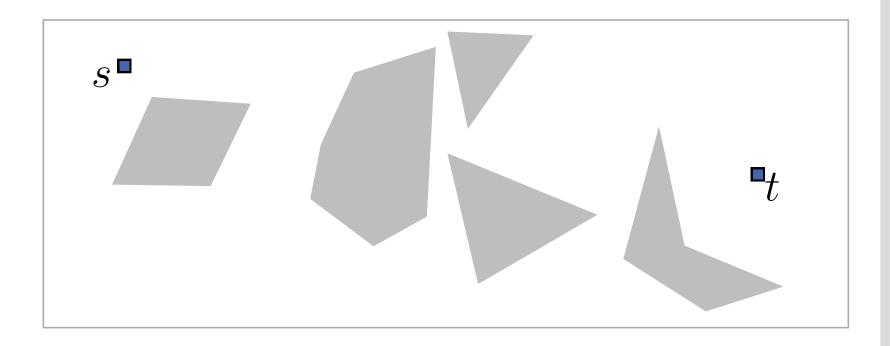
- erstelle Trapezzerlegung
- entferne Segmente in Hindernissen
- Knoten in Trapezen und Vertikalen
- ullet euklidisch gewichteter "Dualgraph" G mit Viaknoten auf Vertikalen

- Lokalisiere Start und Ziel
- kürzester Weg mit Dijkstra in G

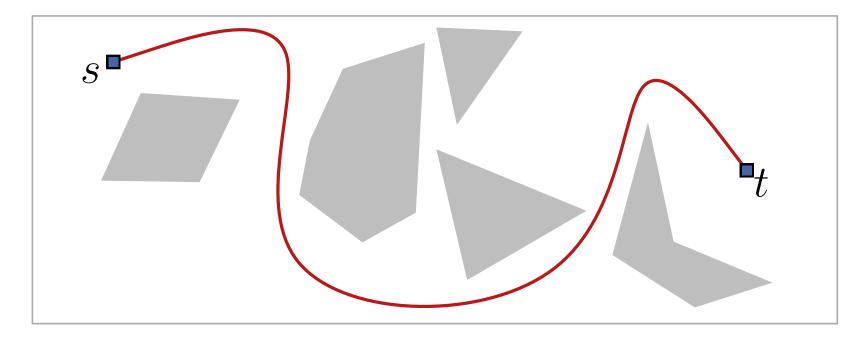


- Knoten in Trapezen und Vertikalen
- ullet euklidisch gewichteter "Dualgraph" G mit Viaknoten auf Vertikalen

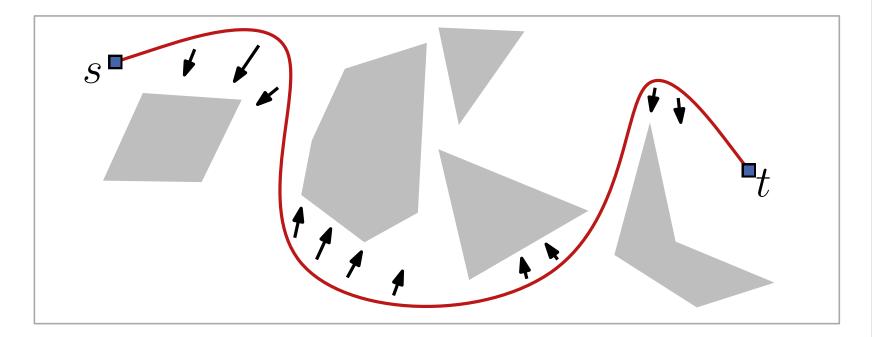
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S



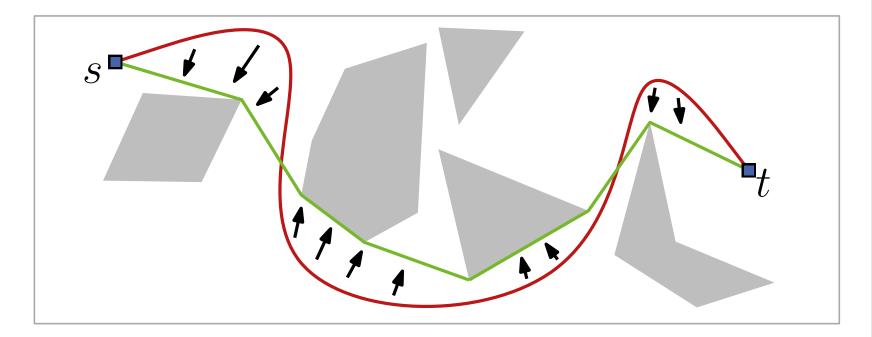
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.



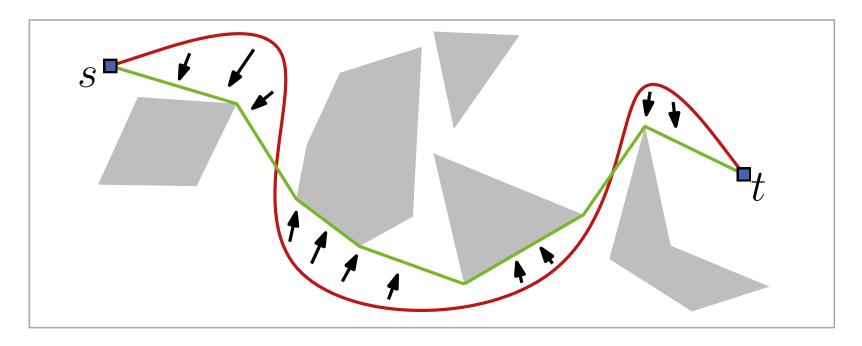
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.



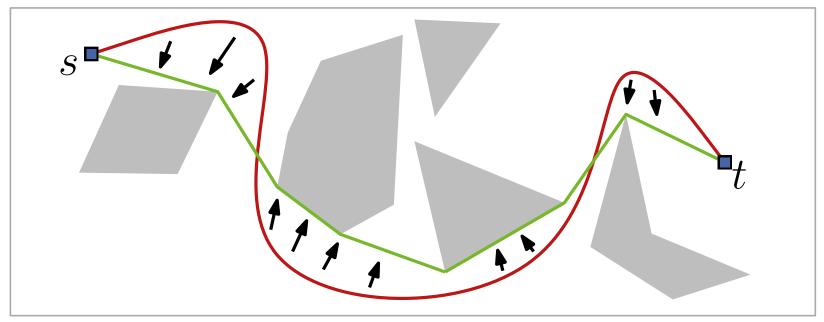
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.



Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

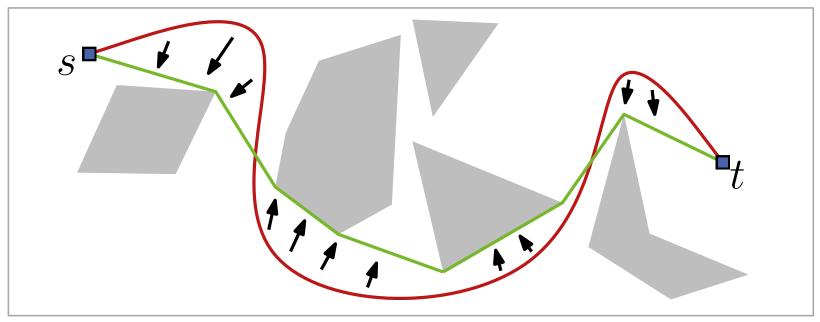


Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

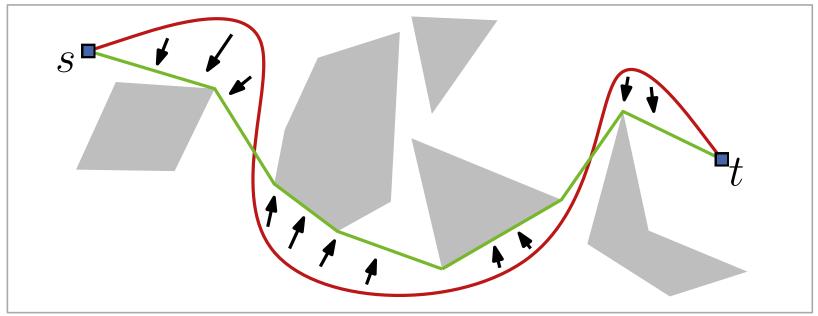




Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

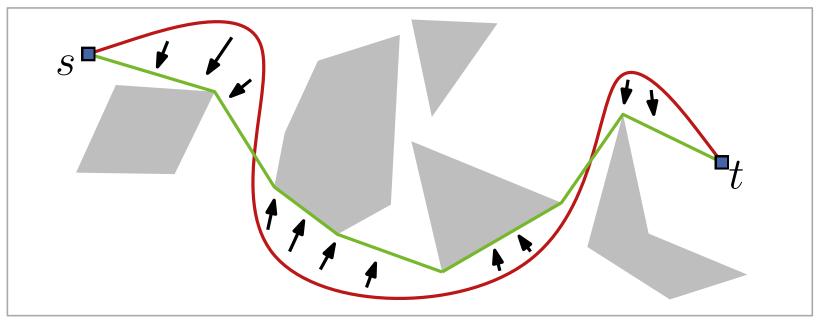


Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

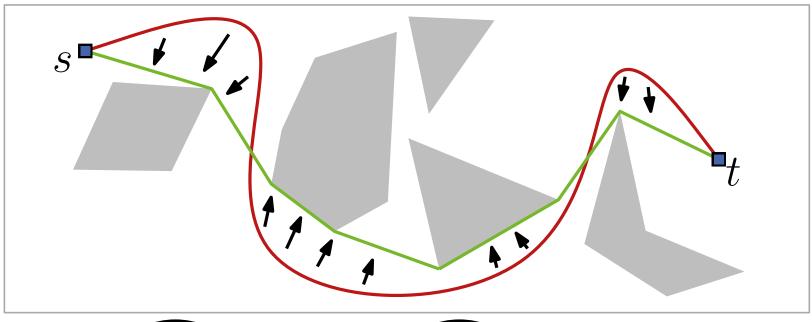


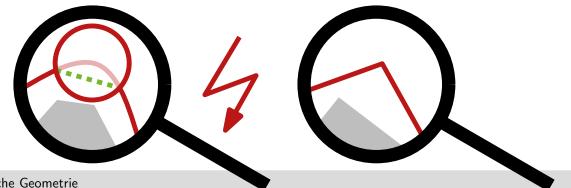


Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

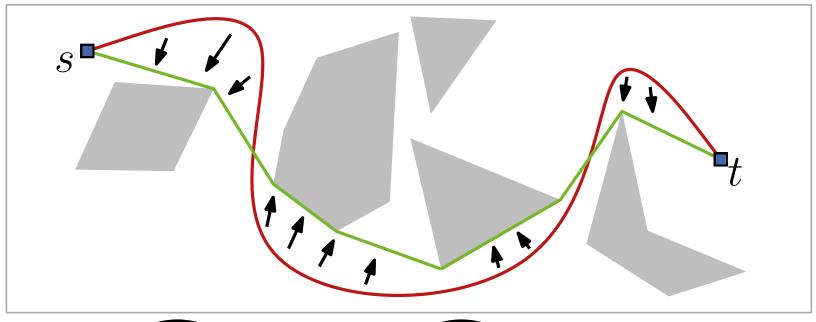


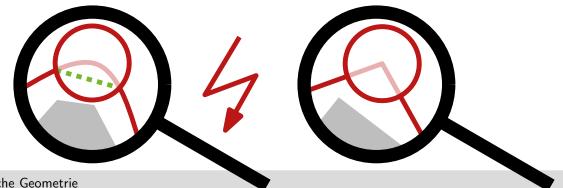
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.



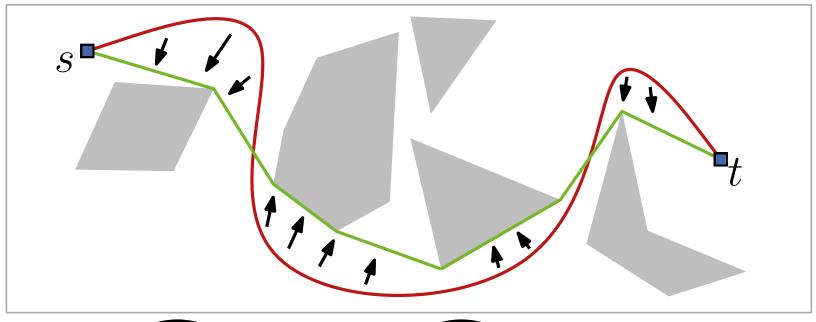


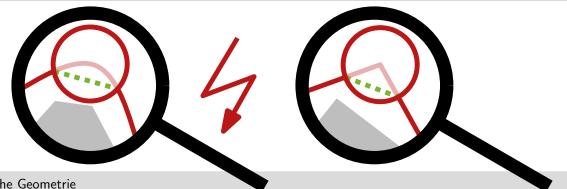
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.



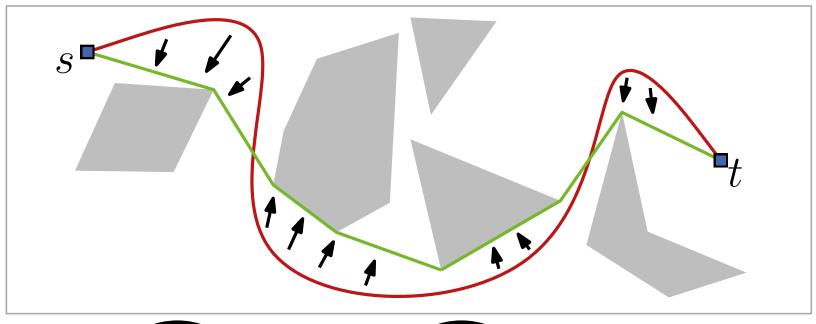


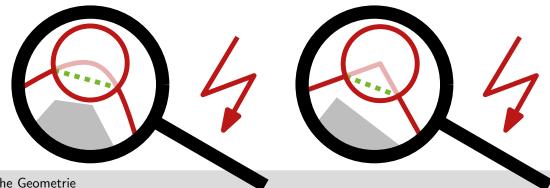
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.



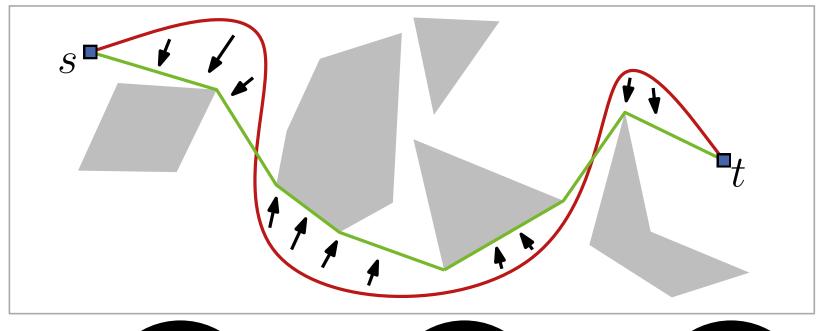


Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

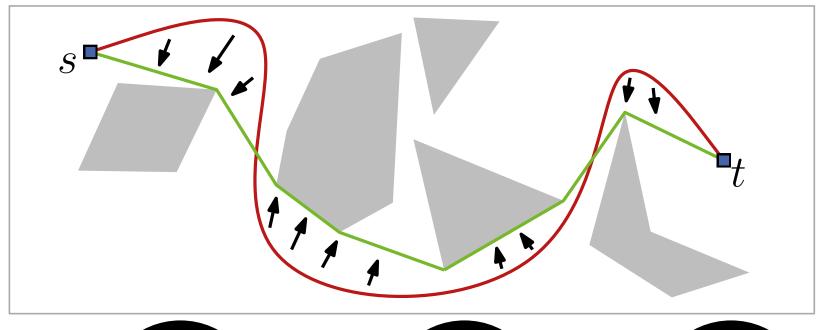




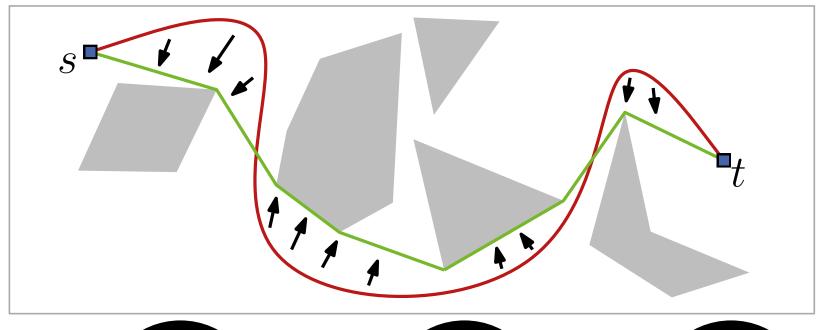
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.



Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

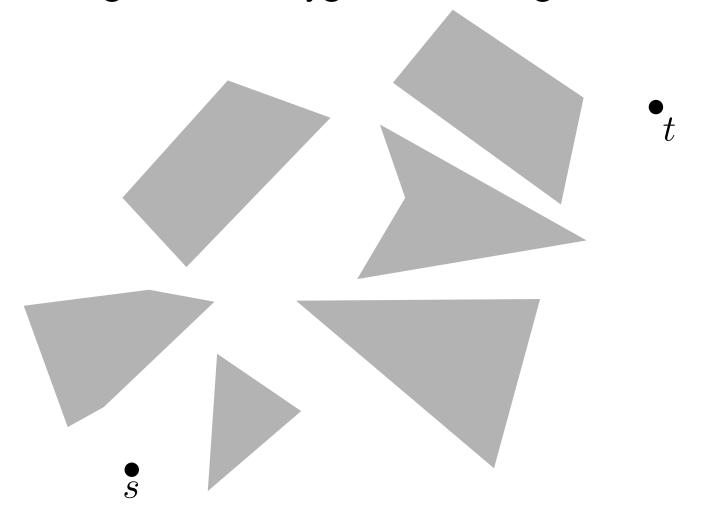


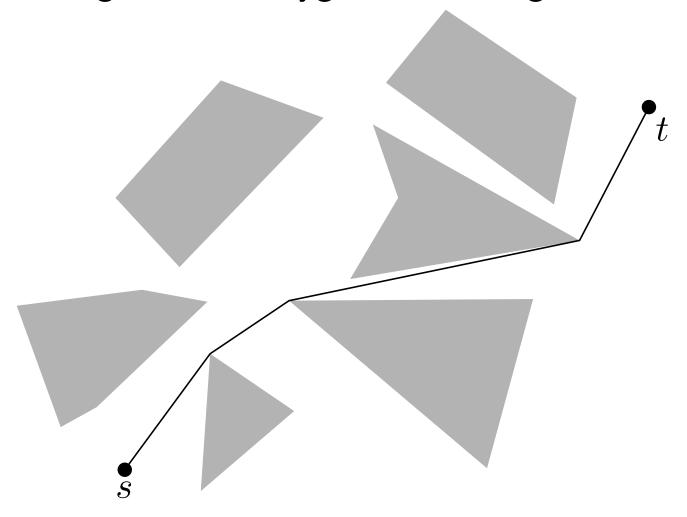
Lemma 1: Für eine Menge S von disjunkten offenen Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.

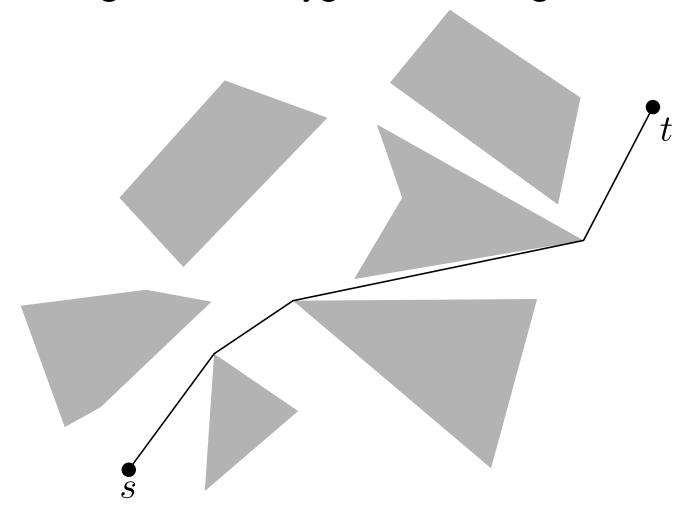






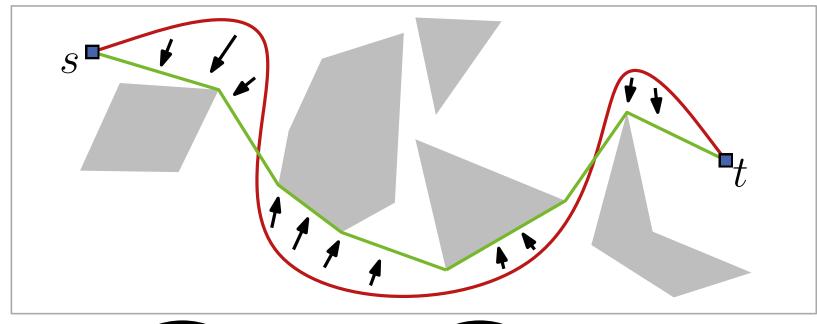


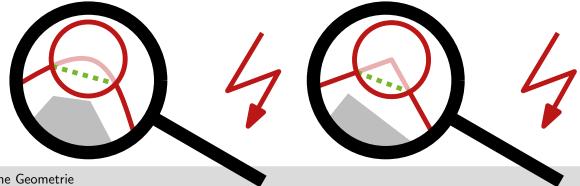


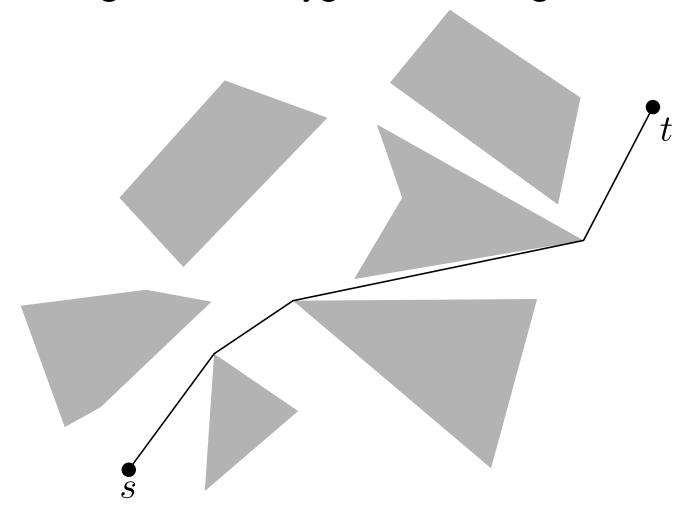


- a) Zeige, dass #Segmente eines kürzesten Wegs in O(n) ist.
- b) Beispiel für $\Theta(n)$

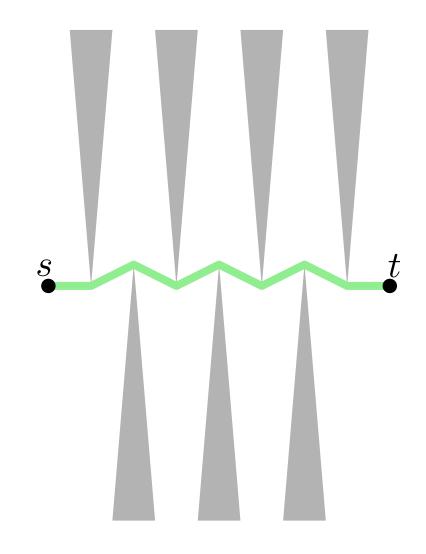
Lemma 1: Für eine Menge S von disjunkten Polygonen in \mathbb{R}^2 und zwei Punkte s und t außerhalb S ist jeder kürzeste st-Weg in $\mathbb{R}^2 \setminus \bigcup S$ ein Polygonzug dessen innere Knoten Knoten von S sind.







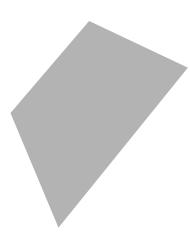
- a) Zeige, dass #Segmente eines kürzesten Wegs in O(n) ist.
- b) Beispiel für $\Theta(n)$



b) Beispiel für $\Theta(n)$

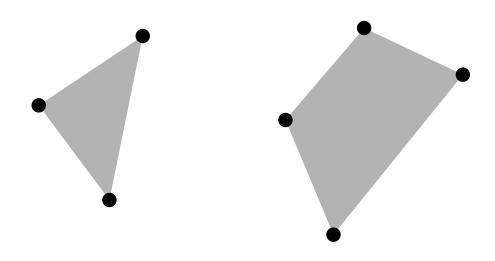
Sichtbarkeitsgraph

Gegeben sei eine Menge S disjunkter offener Polygone...



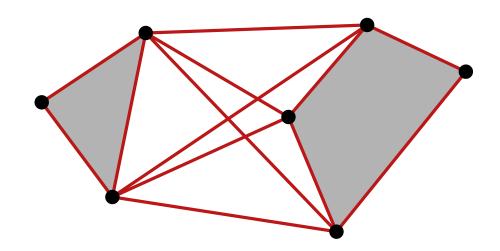
Sichtbarkeitsgraph

Gegeben sei eine Menge S disjunkter offener Polygone...



...mit Knotenmenge V(S).

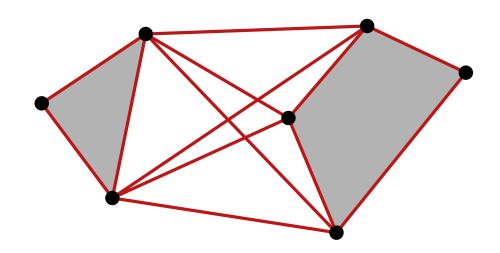
Gegeben sei eine Menge S disjunkter offener Polygone...



...mit Knotenmenge V(S).

Def.: Dann ist $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ der **Sichtbarkeitsgraph** von S mit $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\}$ und w(uv) = |uv|.

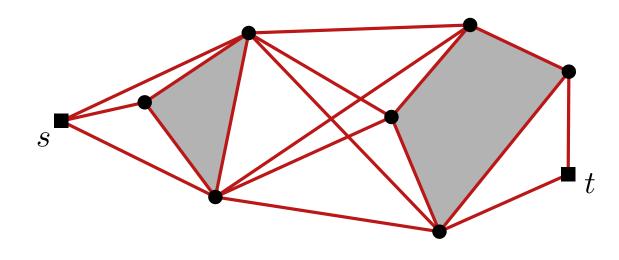
Gegeben sei eine Menge S disjunkter offener Polygone...



...mit Knotenmenge V(S).

Def.: Dann ist $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ der **Sichtbarkeitsgraph** von S mit $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\}$ und w(uv) = |uv|. Dabei gilt u **sieht** $v :\Leftrightarrow \overline{uv} \cap \bigcup S = \emptyset$

Gegeben sei eine Menge S disjunkter offener Polygone...

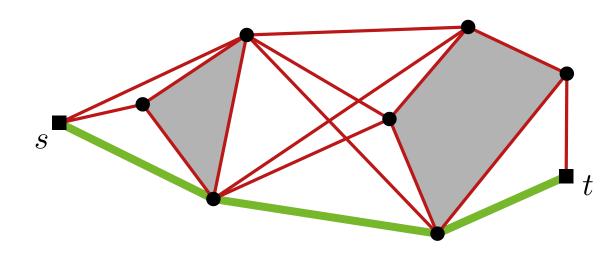


...mit Knotenmenge V(S).

Def.: Dann ist $G_{\mathsf{vis}}(S) = (V(S), E_{\mathsf{vis}}(S))$ der **Sichtbarkeitsgraph** von S mit $E_{\mathsf{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\}$ und w(uv) = |uv|. Dabei gilt u **sieht** $v :\Leftrightarrow \overline{uv} \cap \bigcup S = \emptyset$

Definiere $S^* = S \cup \{s, t\}$ und $G_{vis}(S^*)$ analog.

Gegeben sei eine Menge S disjunkter offener Polygone...



...mit Knotenmenge V(S).

Def.: Dann ist $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ der **Sichtbarkeitsgraph** von S mit $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\}$ und w(uv) = |uv|. Dabei gilt u **sieht** $v :\Leftrightarrow \overline{uv} \cap \bigcup S = \emptyset$

Definiere $S^* = S \cup \{s, t\}$ und $G_{vis}(S^*)$ analog.

 $\mathsf{Lemma}\ 1\\ \Rightarrow$

Der kürzeste st-Weg in \mathbb{R}^2 , der die Hindernisse in S vermeidet, entspricht einem kürzesten st-Weg in $G_{vis}(S^*)$.

VISIBILITYGRAPH(S)

Input: Menge disjunkter Polygone S

Output: Sichtbarkeitsgraph $G_{vis}(S)$

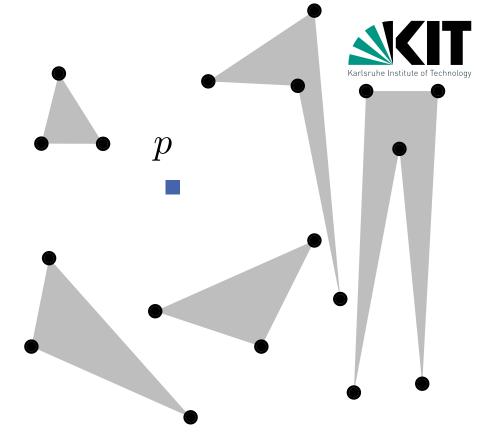
1
$$E \leftarrow \emptyset$$

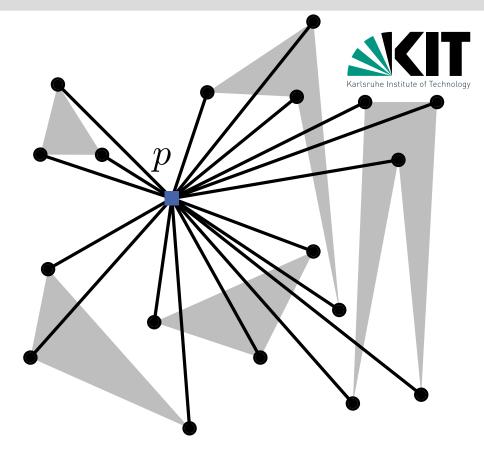
2 foreach $v \in V(S)$ do

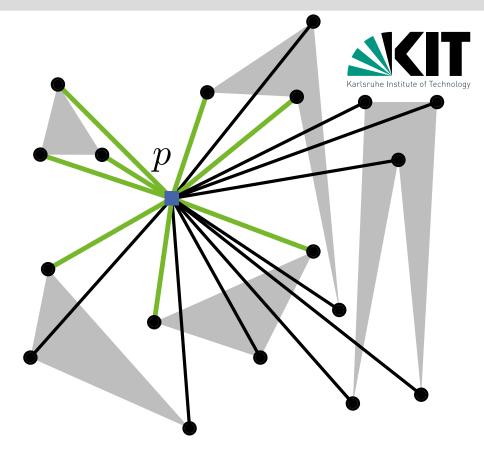
$$W \leftarrow VISIBLEVERTICES(v, S)$$

$$\mathbf{4} \quad \mid \quad E \leftarrow E \cup \{vw \mid w \in W\}$$

 ${f 5}$ return E

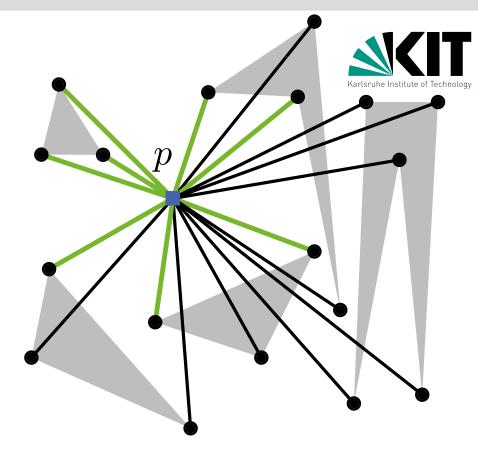




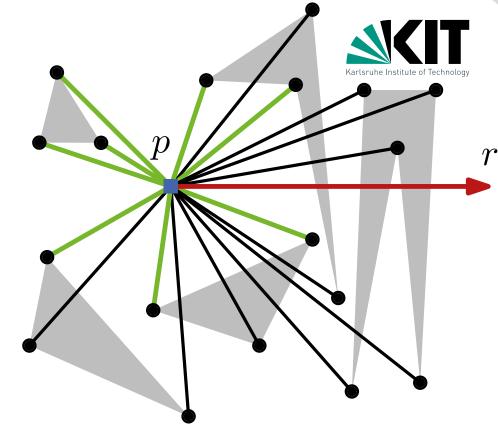


VisibleVertices(p, S)

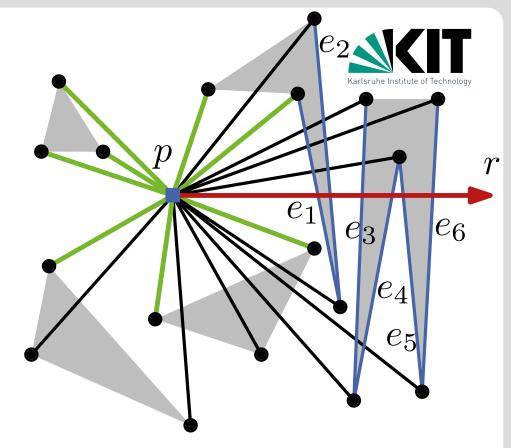
Aufgabe: Gegeben p und S finde in $O(n \log n)$ Zeit alle von p aus sichtbaren Knoten in V(S)!



$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$



$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$
$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

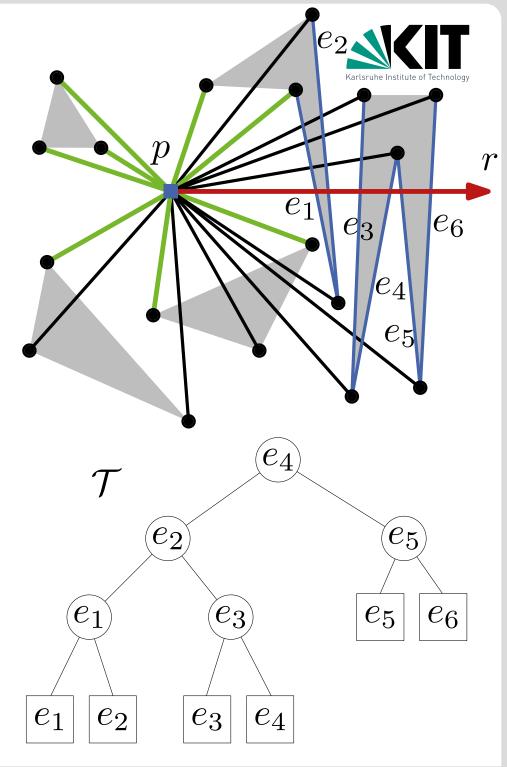


VisibleVertices(p, S)

$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$



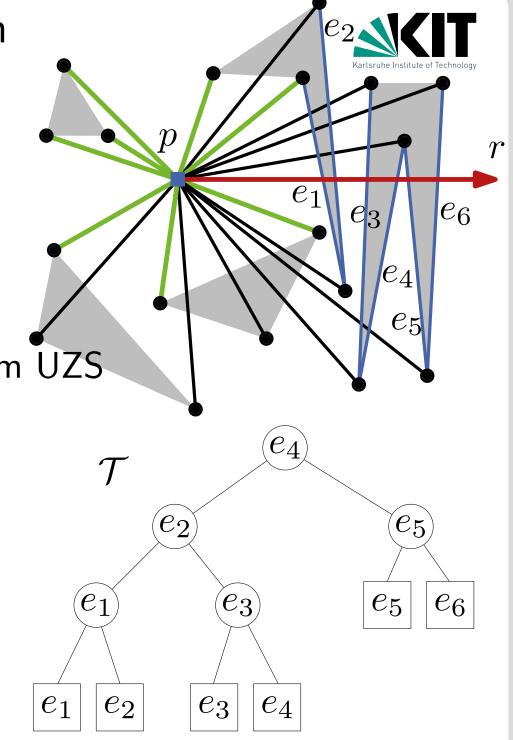
VisibleVertices(p, S)

$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sortiere } V(S) \text{ im UZS}$



VisibleVertices(p, S)

$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$

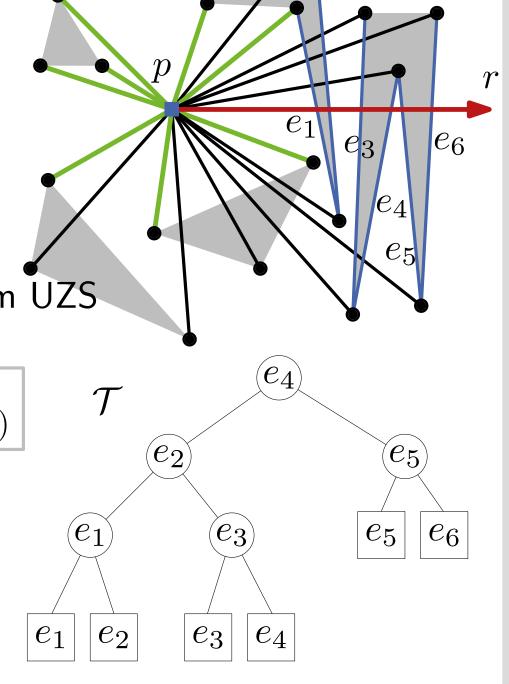
$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sortiere } V(S) \text{ im UZS}$

$$v \prec v' :\Leftrightarrow$$

$$\angle v < \angle v'$$
 or $(\angle v = \angle v' \text{ and } |pv| < |pv'|)$



VisibleVertices(p, S)

$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$

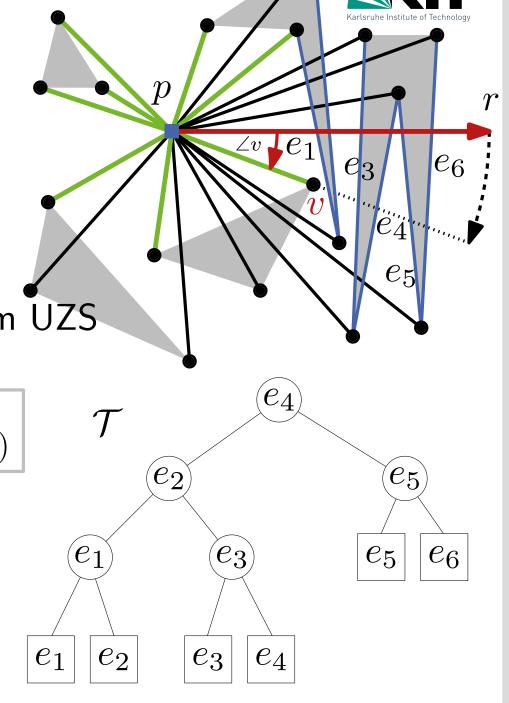
$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sortiere } V(S) \text{ im UZS}$

$$v \prec v' :\Leftrightarrow$$

$$\angle v < \angle v'$$
 or $(\angle v = \angle v' \text{ and } |pv| < |pv'|)$



VisibleVertices(p, S)

$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

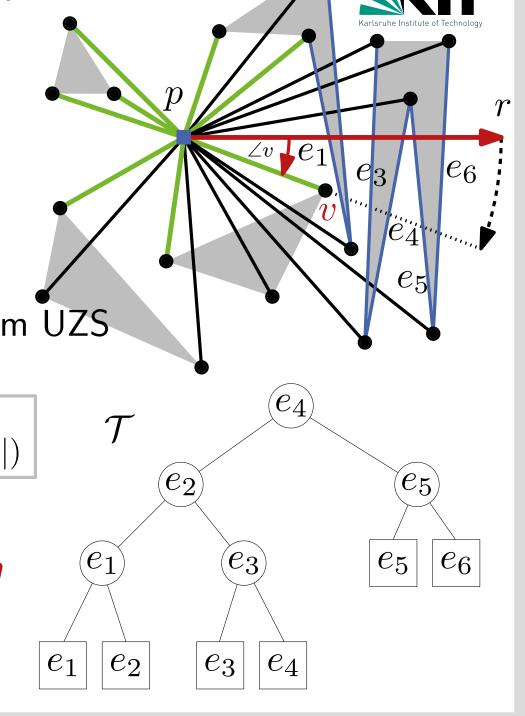
 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sortiere } V(S) \text{ im UZS}$

$$v \prec v' :\Leftrightarrow$$

$$\angle v < \angle v'$$
 or $(\angle v = \angle v' \text{ and } |pv| < |pv'|)$

Sweep-Verfahren mit Rotation



VISIBILITYGRAPH(S)

Input: Menge disjunkter Polygone S

Output: Sichtbarkeitsgraph $G_{vis}(S)$

1
$$E \leftarrow \emptyset$$

2 foreach $v \in V(S)$ do

$$W \leftarrow VISIBLEVERTICES(v, S)$$

$$\mathbf{4} \quad \mid \quad E \leftarrow E \cup \{vw \mid w \in W\}$$

 ${f 5}$ return E

VISIBILITYGRAPH(S)

Input: Menge disjunkter Polygone S

Output: Sichtbarkeitsgraph $G_{vis}(S)$

1
$$E \leftarrow \emptyset$$

2 foreach $v \in V(S)$ do

3
$$W \leftarrow \text{VISIBLEVERTICES}(v, S)$$

$$\mathbf{4} \quad \mid \quad E \leftarrow E \cup \{vw \mid w \in W\}$$

 ${f 5}$ return E

Beobachtung: VISIBLEVERTICES wird n mal aufgerufen

VISIBILITYGRAPH(S)

Input: Menge disjunkter Polygone S

Output: Sichtbarkeitsgraph $G_{vis}(S)$

- 1 $E \leftarrow \emptyset$
- 2 foreach $v \in V(S)$ do
- 3 $W \leftarrow \text{VISIBLEVERTICES}(v, S)$
- $\mathbf{4} \quad \mid \quad E \leftarrow E \cup \{vw \mid w \in W\}$
- ${f 5}$ return E

Beobachtung: VISIBLEVERTICES wird n mal aufgerufen VISIBLEVERTICES in $O(n \log n)$

VISIBILITYGRAPH(S)

Input: Menge disjunkter Polygone S

Output: Sichtbarkeitsgraph $G_{vis}(S)$

- 1 $E \leftarrow \emptyset$
- 2 foreach $v \in V(S)$ do
- 3 | $W \leftarrow \text{VisibleVertices}(v, S)$
- $\mathbf{4} \quad \mid \quad E \leftarrow E \cup \{vw \mid w \in W\}$
- ${f 5}$ return E

Beobachtung: VISIBLEVERTICES wird n mal aufgerufen VISIBLEVERTICES in $O(n \log n)$

Gesamtlaufzeit: $O(n^2 \log n)$

VISIBILITYGRAPH(S)

Input: Menge disjunkter Polygone S

Output: Sichtbarkeitsgraph $G_{vis}(S)$

- 1 $E \leftarrow \emptyset$
- 2 foreach $v \in V(S)$ do
- 3 | $W \leftarrow \text{VisibleVertices}(v, S)$
- $\mathbf{4} \quad \mid \quad E \leftarrow E \cup \{vw \mid w \in W\}$
- ${f 5}$ return E

Beobachtung: VISIBLEVERTICES wird n mal aufgerufen

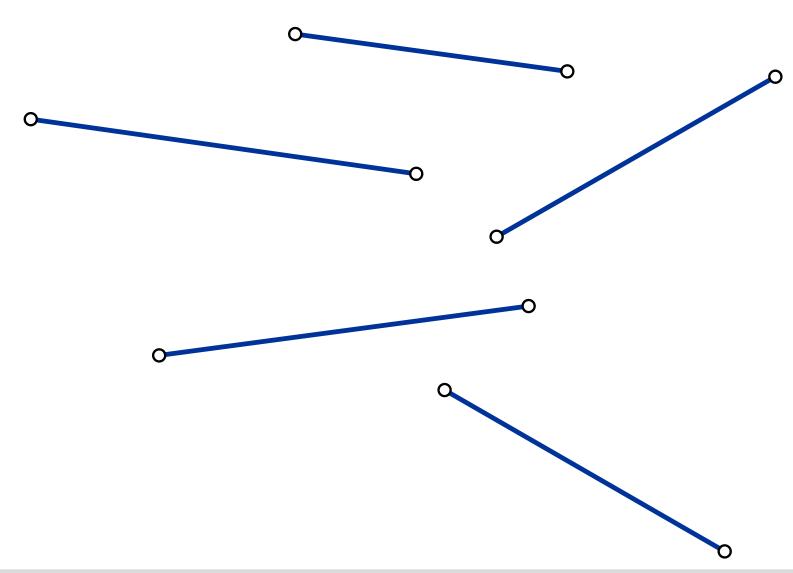
VISIBLE VERTICES in $O(n \log n)$

Gesamtlaufzeit: $O(n^2 \log n)$

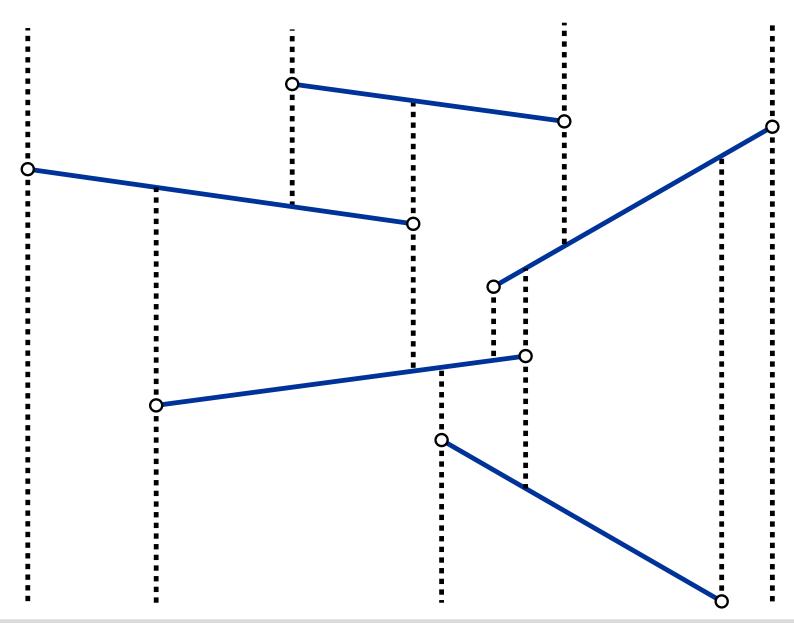
Q: Wie VisibiltyGraph in $O(n^2)$?

Hinweis: Nutze Dualität

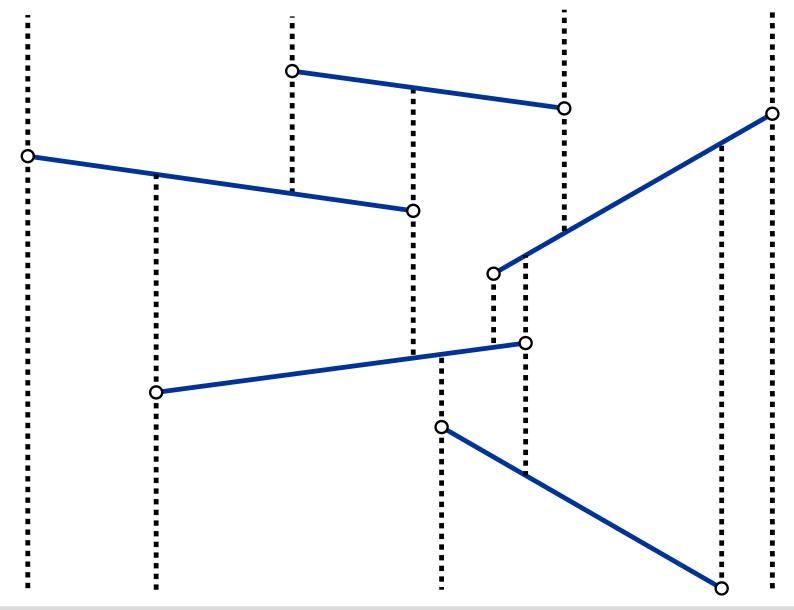
Trapezzerlegung

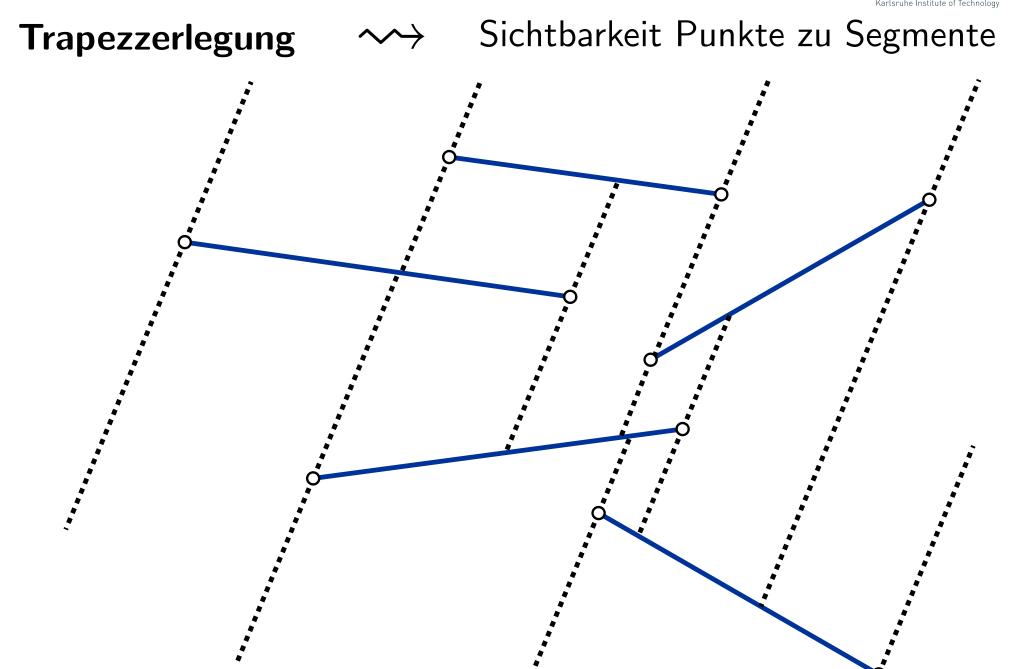


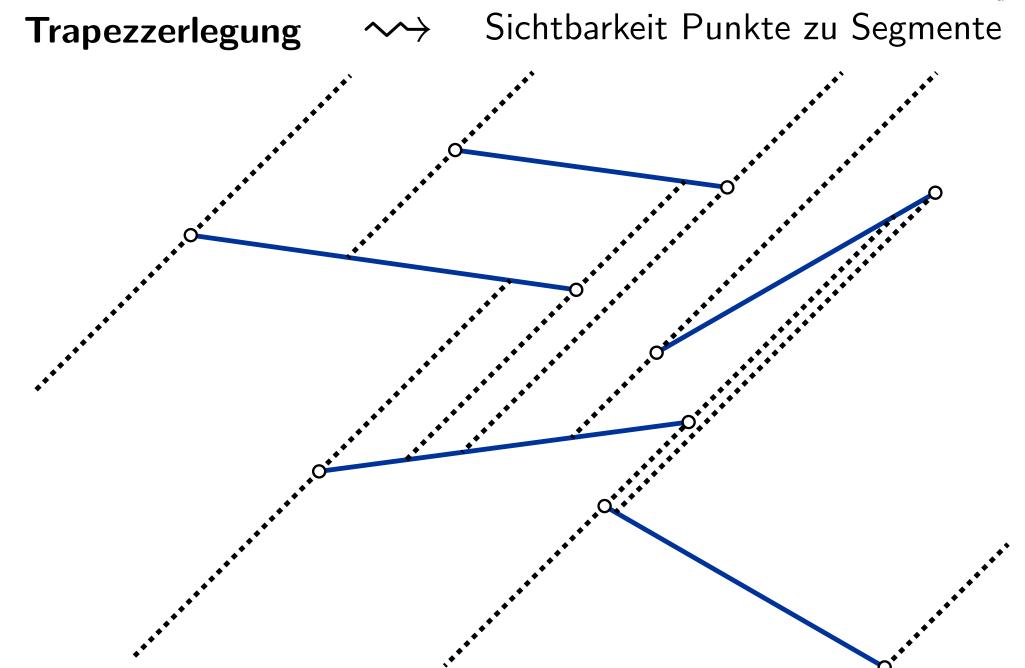
Trapezzerlegung

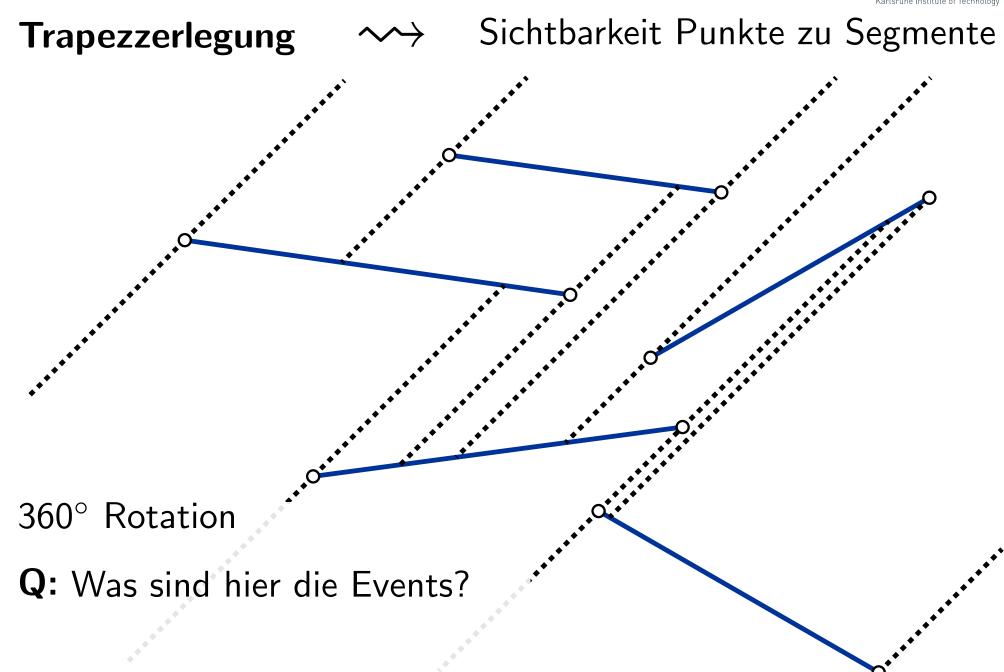


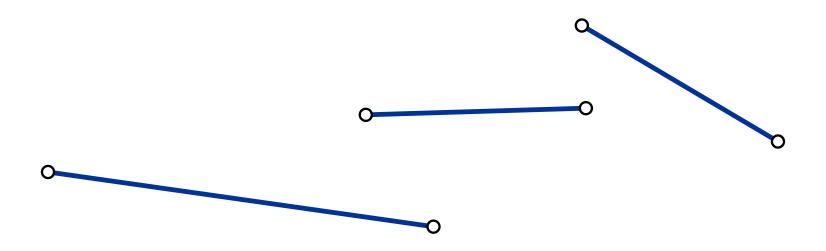
Trapezzerlegung \leadsto Sichtbarkeit Punkte zu Segmente



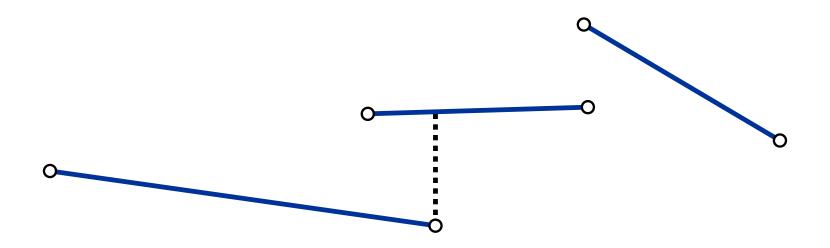




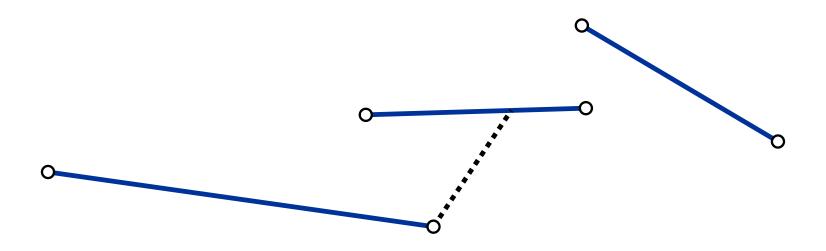




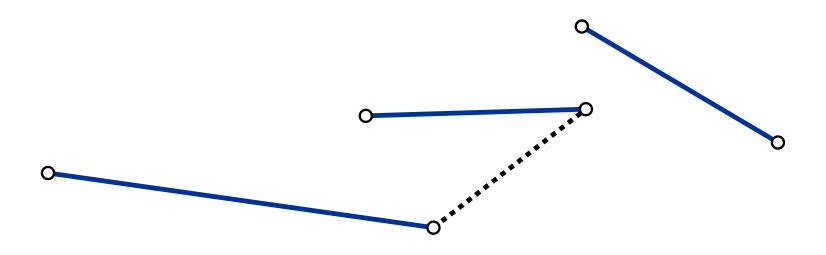
360° Rotation



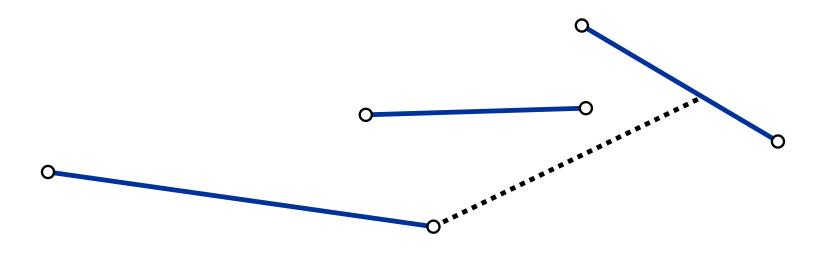
360° Rotation



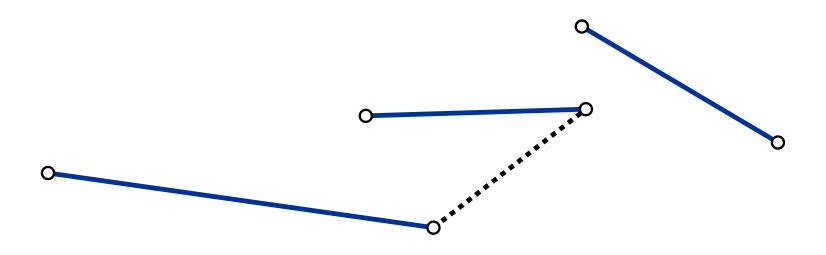
360° Rotation



360° Rotation

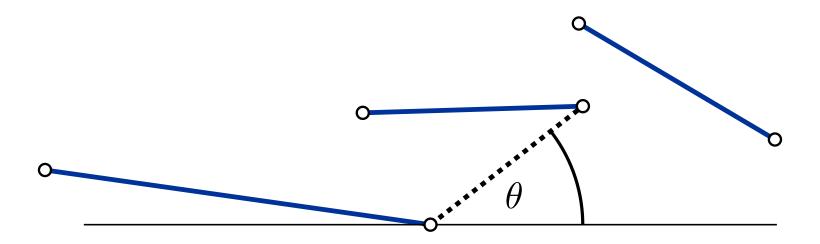


360° Rotation



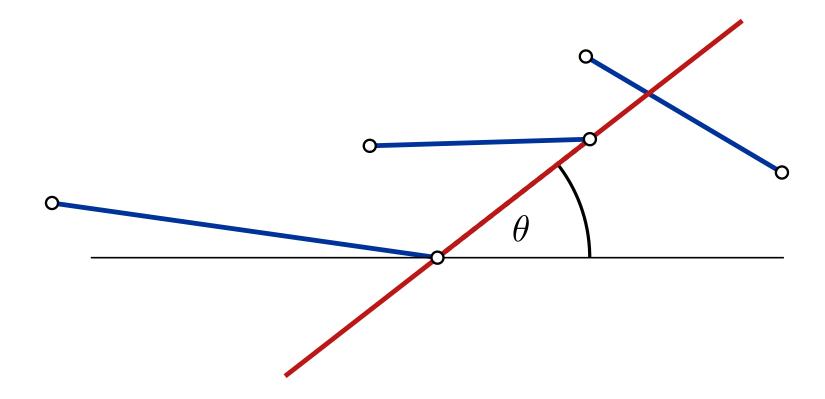
360° Rotation

Q: Was sind hier die Events?



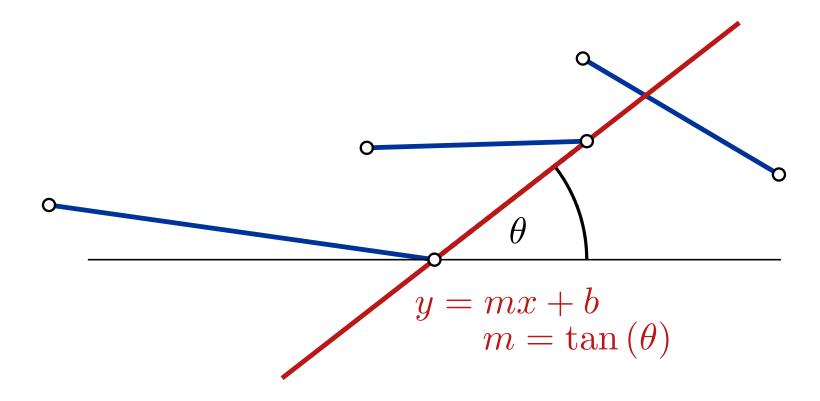
360° Rotation

Q: Was sind hier die Events?



360° Rotation

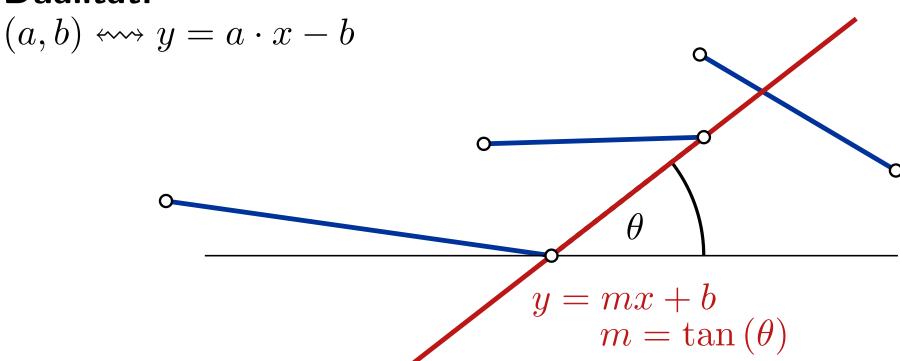
Q: Was sind hier die Events?



360° Rotation

Q: Was sind hier die Events?

Dualität:



360° Rotation

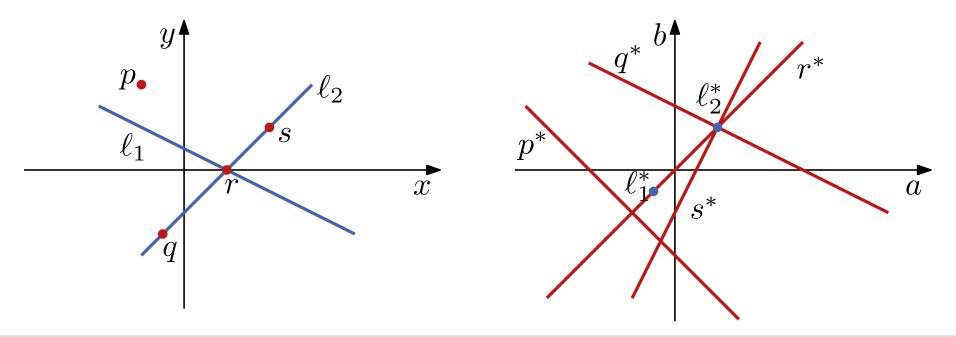
Q: Was sind hier die Events?

A: Strahl trifft Knoten

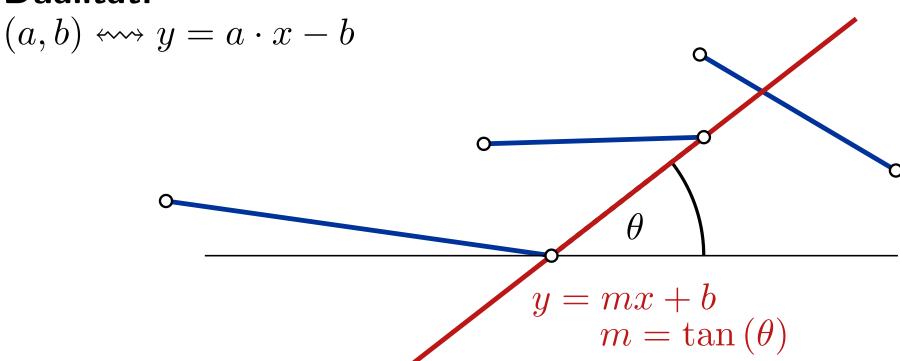
Eigenschaften

Lemma 1: Es gelten die folgenden Eigenschaften

- $(p^*)^* = p \text{ und } (\ell^*)^* = \ell$
- p liegt unter/auf/über $\ell \Leftrightarrow p^*$ läuft über/auf/unter ℓ^*
- ℓ_1 und ℓ_2 schneiden sich in r $\Leftrightarrow r^*$ geht durch ℓ_1^* und ℓ_2^*
- q, r, s kollinear $\Leftrightarrow q^*, r^*, s^*$ schneiden sich in gemeinsamem Punkt



Dualität:



360° Rotation

Q: Was sind hier die Events?

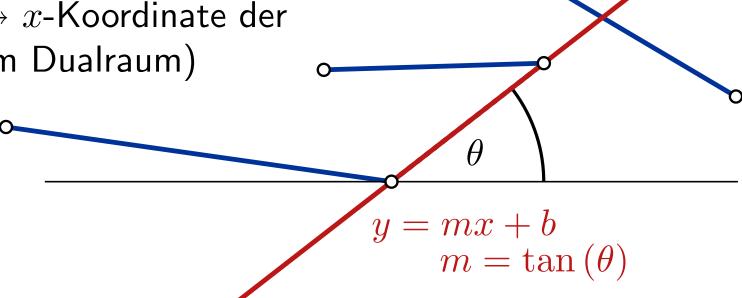
A: Strahl trifft Knoten

Dualität:

$$(a,b) \iff y = a \cdot x - b$$

Events $\iff x$ -Koordinate der

Punkte (im Dualraum)



360° Rotation

Q: Was sind hier die Events?

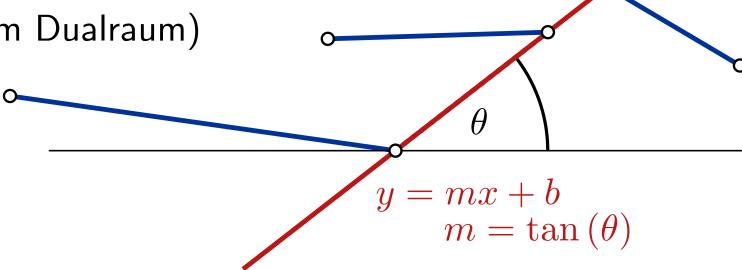
A: Strahl trifft Knoten

Dualität:

$$(a,b) \iff y = a \cdot x - b$$

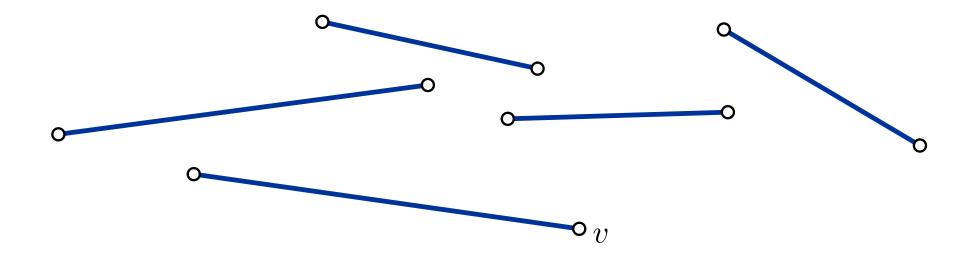
Events \iff x-Koordinate der

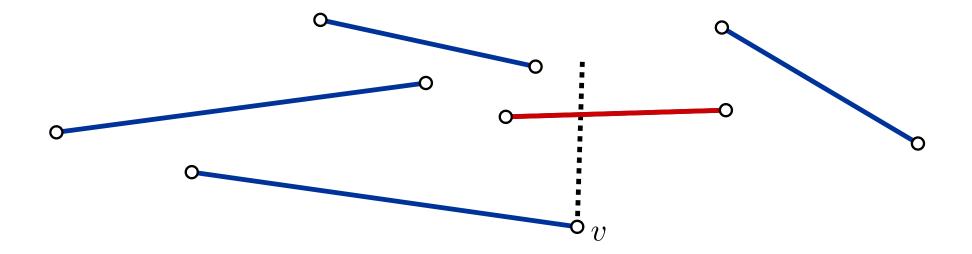
Punkte (im Dualraum)



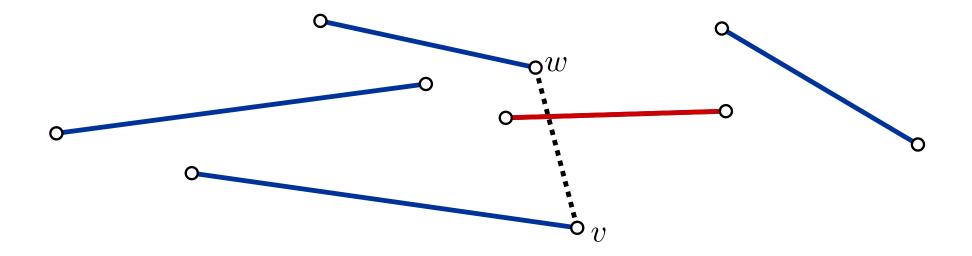
Vorgehen:

- Wandle alle Knoten der Polygone in Geraden um (Dualität)
- Sweepe von links nach rechts durch das Geradenarrangement
- Beim Sweep merke die Schnittpunkte der Geraden
- Sweep liefert Events sortiert nach Winkel in $O(n^2)$





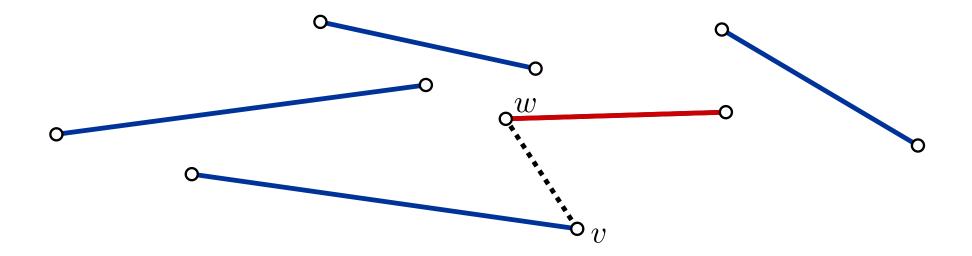
ullet Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.



• Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

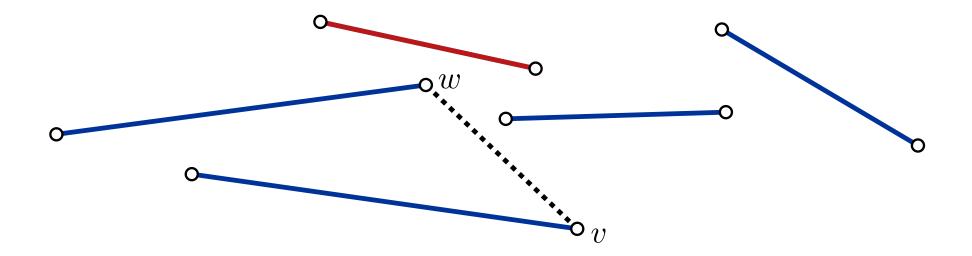
Fälle:

Unsichtbar



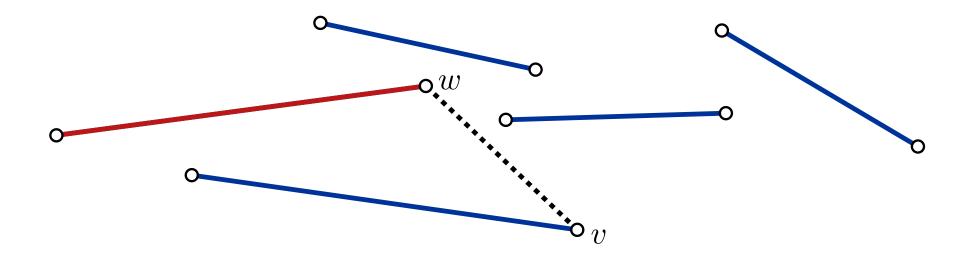
 \bullet Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

- Unsichtbar
- Verlassen eines Segments



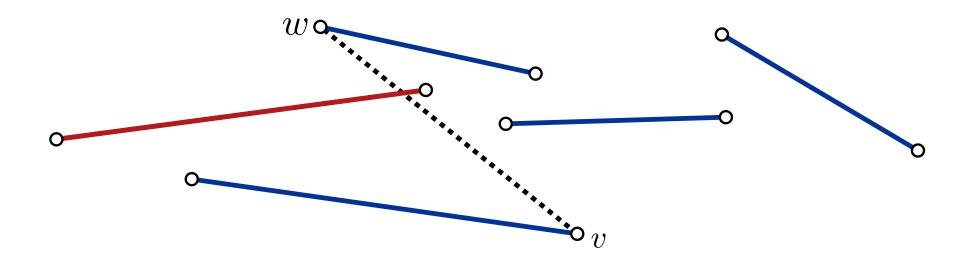
• Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

- Unsichtbar
- Verlassen eines Segments
- Betreten eines Segments



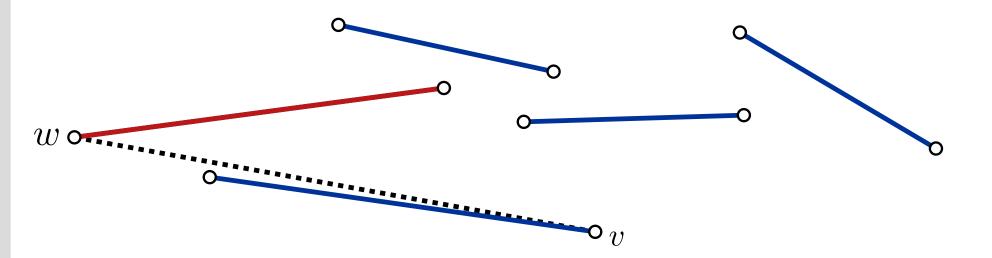
• Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

- Unsichtbar
- Verlassen eines Segments
- Betreten eines Segments



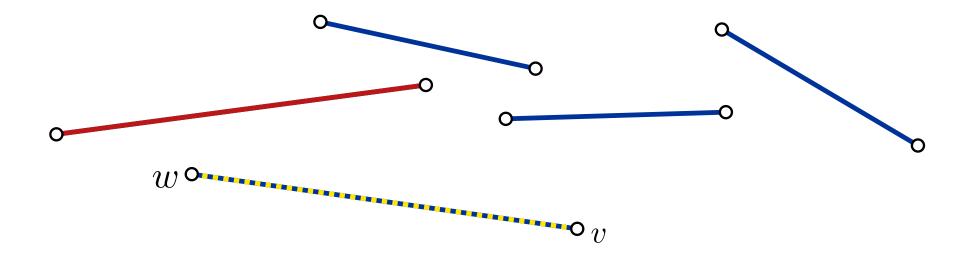
• Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

- Unsichtbar
- Verlassen eines Segments
- Betreten eines Segments



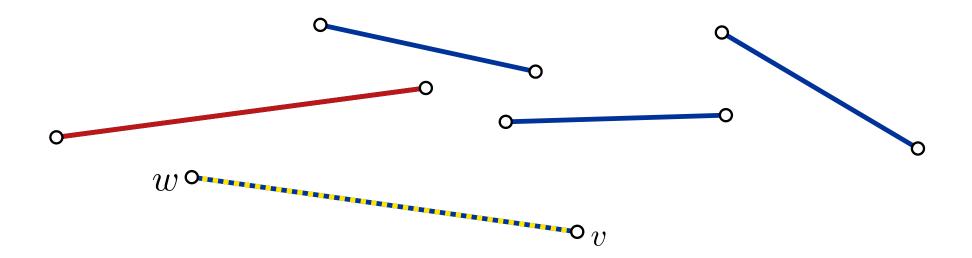
• Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

- Unsichtbar
- Verlassen eines Segments
- Betreten eines Segments



• Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

- Unsichtbar
- Verlassen eines Segments
- Betreten eines Segments
- Gleiches Segment

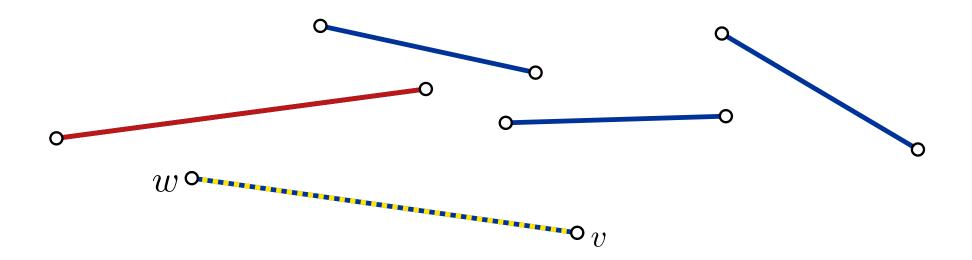


• Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

Fälle:

- Unsichtbar
- Verlassen eines Segments
- Betreten eines Segments
- Gleiches Segment

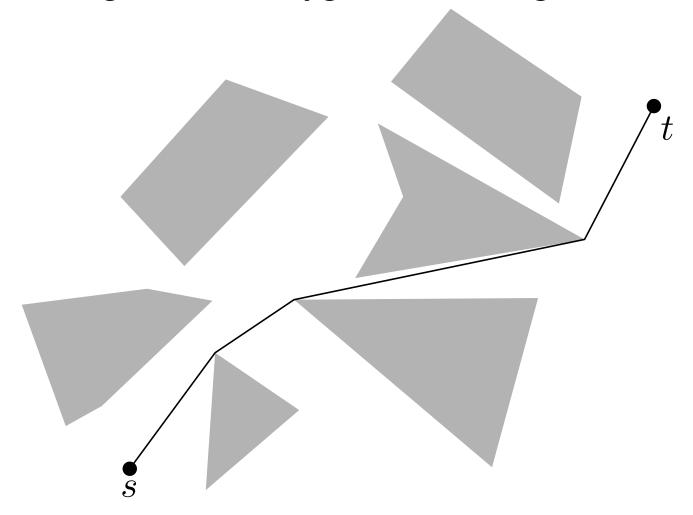
Füge Kante zum Sichtbarkeitsgraph hinzu



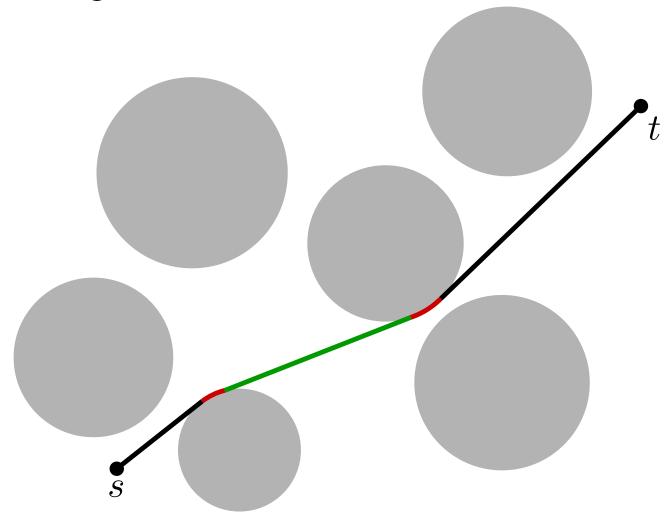
 \bullet Bestimme Segment f(v) das als erstes vom Strahl getroffen wird.

Unsichtbar	O(1)	
Verlassen eines Segments	O(1)	
Betreten eines Segments	O(1)	Füge Kante zum Sichtbarkeitsgraph hinzu
Gleiches Segment	O(1)	Sichtbarkertsgraph minzu

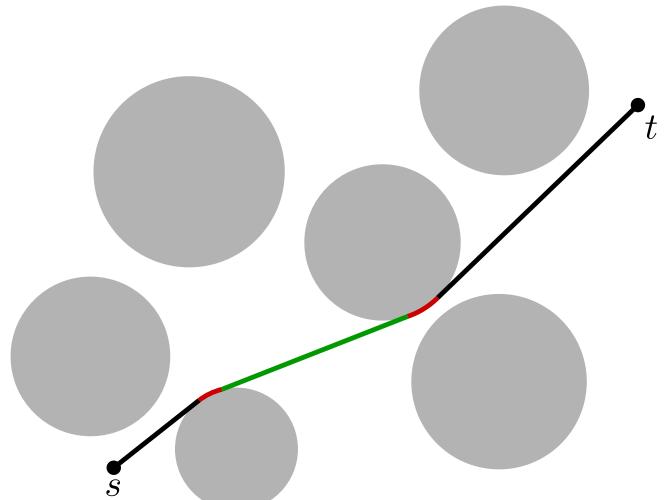
Gegeben: Menge S von Polygonen mit insgesamt n Knoten.



Gegeben: Menge S von n Scheiben

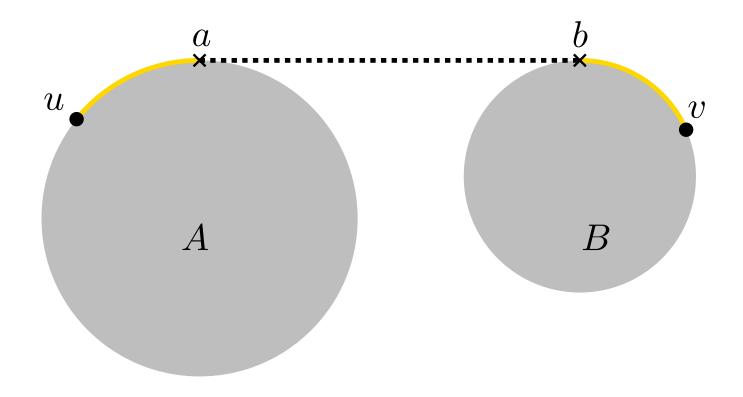


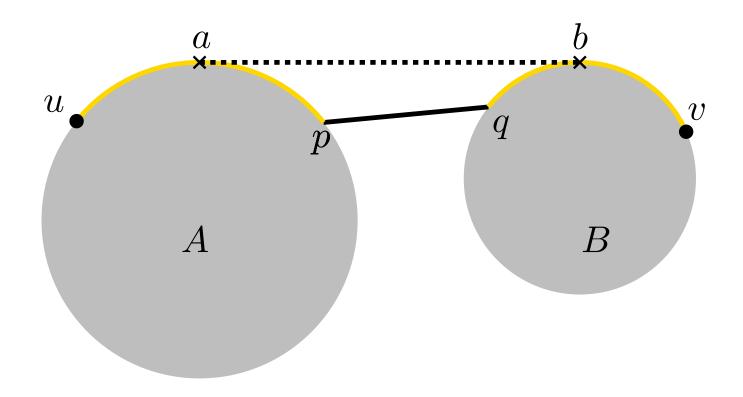
Gegeben: Menge S von n Scheiben

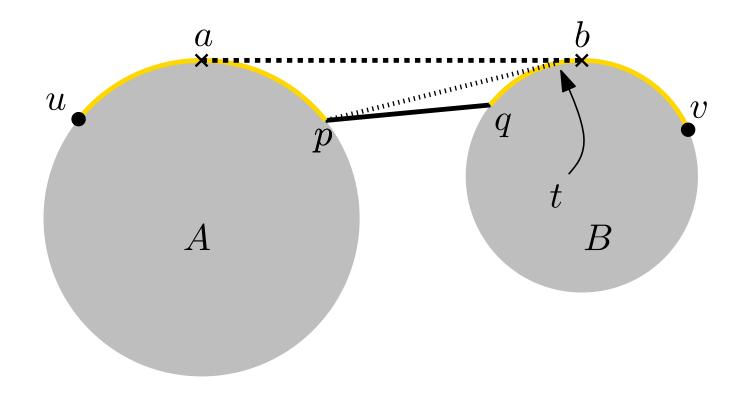


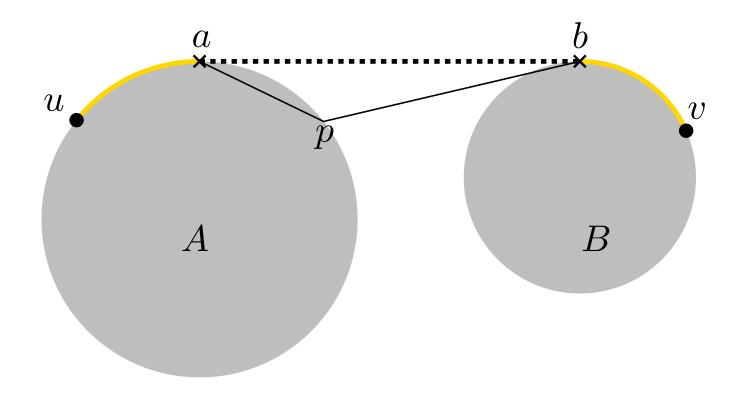
Tangente s/t – Kreis Tangente Kreis – Kreis Kreissegment

Tangente Kreis – Kreis



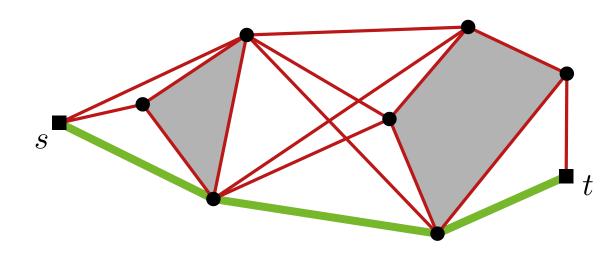






Sichtbarkeitsgraph

Gegeben sei eine Menge S disjunkter offener Polygone...



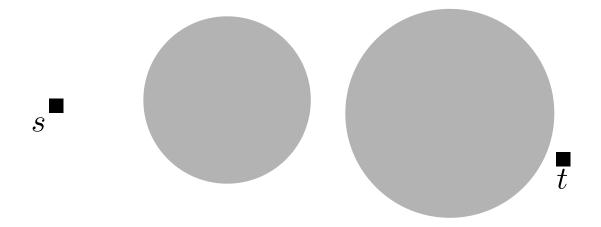
...mit Knotenmenge V(S).

Def.: Dann ist $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S))$ der **Sichtbarkeitsgraph** von S mit $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\}$ und w(uv) = |uv|. Dabei gilt u **sieht** $v :\Leftrightarrow \overline{uv} \cap \bigcup S = \{u, v\}$

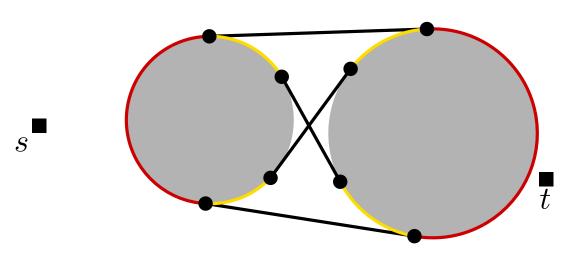
Definiere $S^* = S \cup \{s, t\}$ und $G_{vis}(S^*)$ analog.

Lemma 1 \Rightarrow Der kürzeste st-Weg, der die Hindernisse in S vermeidet, entspricht einem kürzesten Weg in $G_{vis}(S^*)$.

Gegeben sei eine Menge S disjunkter offener Scheiben.



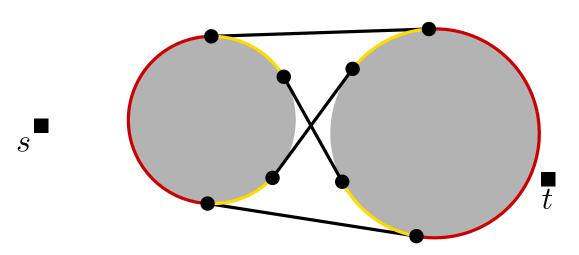
Gegeben sei eine Menge S disjunkter offener Scheiben.



Tangentenknoten: V(S)

 $E_{\text{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\} \text{ und } w(uv) = |uv|.$ $E_{\text{arc}}(S) = \{\text{Kreisbogen } uv \mid u, v \in V(S) \text{ und } u, v \text{ auf gleicher Scheibe 'hintereinander' }\}$ und $w(uv) = |uv| \cdot \alpha.$

Gegeben sei eine Menge S disjunkter offener Scheiben.



Tangentenknoten: V(S)

 $E_{\mathsf{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\} \text{ und } w(uv) = |uv|.$

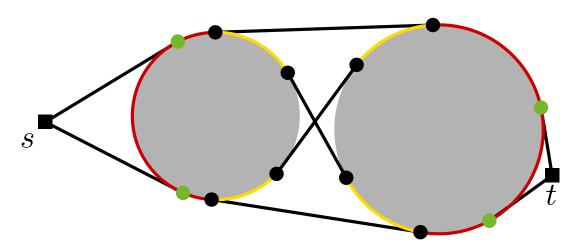
 $E_{\mathsf{arc}}(S) = \{\mathsf{Kreisbogen}\ uv \mid u,v \in$

V(S) und u, v auf gleicher Scheibe 'hintereinander' } und $w(uv) = |uv| \cdot \alpha$.

Def.: Dann ist $G_{\text{vis}}(S) = (V(S), E_{\text{vis}}(S) \cup E_{\text{arc}})$ der **Sichtbarkeitsgraph** von S.

Definiere $S^* = S \cup \{s, t\}$ und $G_{vis}(S^*)$ analog.

Gegeben sei eine Menge S disjunkter offener Scheiben.



Tangentenknoten: V(S)

 $E_{\mathsf{vis}}(S) = \{uv \mid u, v \in V(S) \text{ und } u \text{ sieht } v\} \text{ und } w(uv) = |uv|.$

 $E_{\mathsf{arc}}(S) = \{\mathsf{Kreisbogen}\ uv \mid u,v \in$

V(S) und u, v auf gleicher Scheibe 'hintereinander' } und $w(uv) = |uv| \cdot \alpha$.

Def.: Dann ist $G_{vis}(S) = (V(S), E_{vis}(S) \cup E_{arc})$ der **Sichtbarkeitsgraph** von S.

Definiere $S^* = S \cup \{s, t\}$ und $G_{vis}(S^*)$ analog.

Aufgabe 3 – Sichtbarkeitsgraph berechnen

VISIBILITYGRAPH(S)

Input: Menge disjunkter Polygone S

Output: Sichtbarkeitsgraph $G_{vis}(S)$

```
1 E \leftarrow \emptyset
```

2 foreach $v \in V(S)$ do

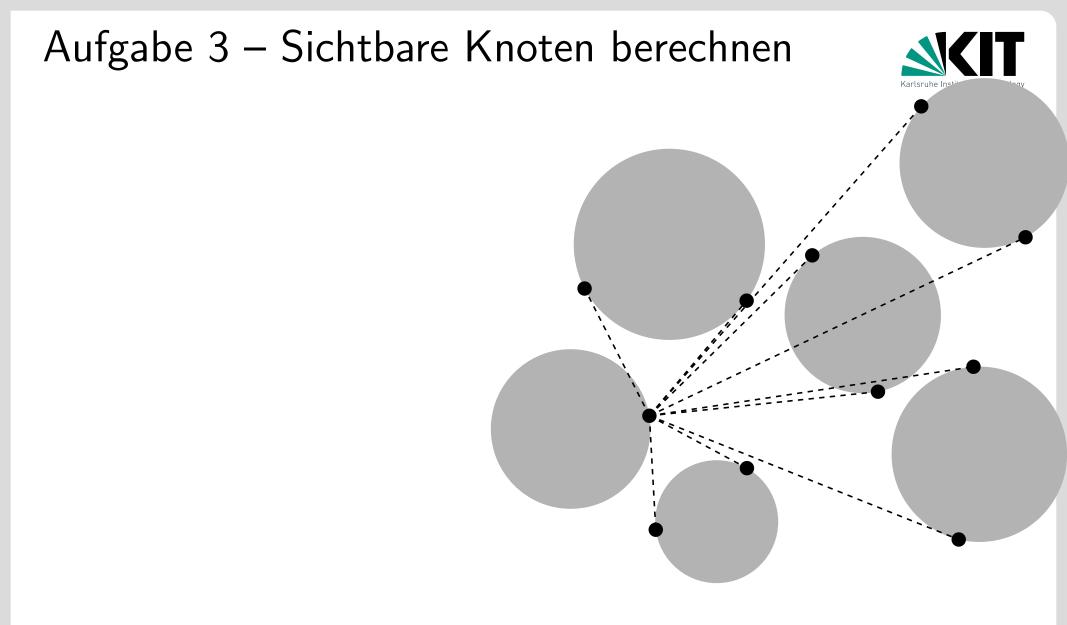
```
3 | W \leftarrow \text{VisibleVertices}(v, S)
```

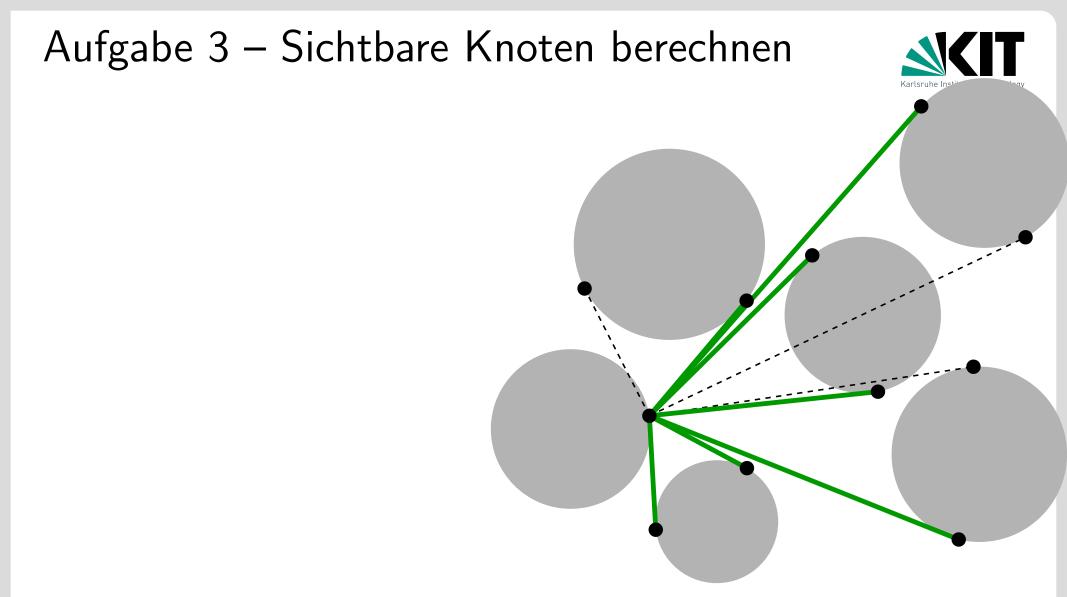
$$\mathbf{4} \quad | \quad E \leftarrow E \cup \{vw \mid w \in W\}$$

5
$$E \leftarrow E \cup \{ \text{ arc zum nächsten Nachbarn auf der Scheibe } \}$$

6 return E

Aufgabe 3 – Sichtbare Knoten berechnen





Aufgabe 3 – Sichtbare Knoten berechnen Visible Vertices(p, S)

$$r \leftarrow \{p + k \binom{1}{0} \mid k \in \mathbb{R}_0^+\}$$

$$I \leftarrow \{e \in E(S) \mid e \cap r \neq \emptyset\}$$

 $\mathcal{T} \leftarrow \mathsf{balancedBinaryTree}(I)$

 $w_1, \ldots, w_n \leftarrow \text{sortiere } V(S) \text{ im UZS}$

$$W \leftarrow \emptyset$$

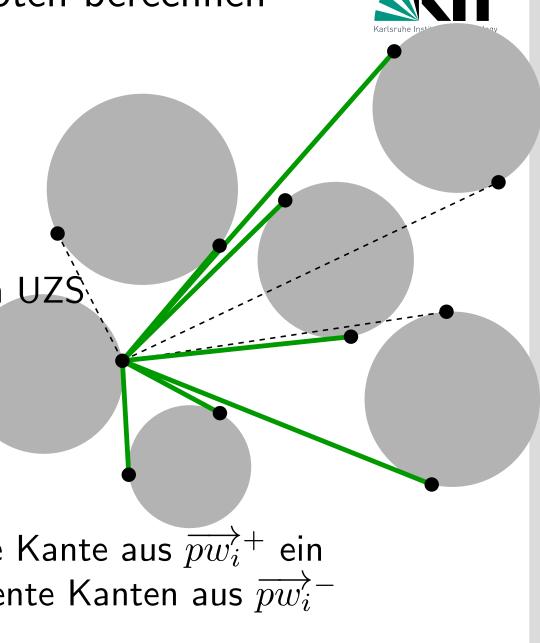
for i = 1 to n do

if $Visible(p, w_i)$ then

$$W \leftarrow W \cup \{w_i\}$$

füge in \mathcal{T} zu w_i inzidente Kante aus $\overrightarrow{pw_i}^+$ ein lösche aus \mathcal{T} zu w_i inzidente Kanten aus $\overrightarrow{pw_i}^-$

 $\operatorname{return} W$



Aufgabe 3 – Shortest Path

Laufzeit für Polygone

SHORTESTPATH(S, s, t)

3

$$n = |V(S)|, m = |E_{\mathsf{vis}}(S)|$$

Input: Hindernismenge S, Punkte $s, t \in \mathbb{R}^2 \setminus \bigcup S$

Output: kürzester kollisionsfreier st-Weg in S

1
$$G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{s, t\})$$

$$O(n^2 \log n)$$

2 foreach $uv \in E_{vis}(S)$ do $w(uv) \leftarrow |uv|$

4 return DIJKSTRA (G_{vis}, w, s, t)

$$O(n\log n + m)$$

$$O(n^2 \log n)$$

Aufgabe 3 – Shortest Path

Laufzeit für Polygone

SHORTESTPATH(S, s, t)

3

$$n = |V(S)|, m = |E_{\mathsf{vis}}(S)|$$

Input: Hindernismenge S, Punkte $s, t \in \mathbb{R}^2 \setminus \bigcup S$

 ${f Output}$: kürzester kollisionsfreier st-Weg in S

1
$$G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{s, t\})$$

$$O(n^2 \log n)$$

2 foreach $uv \in E_{vis}(S)$ do $w(uv) \leftarrow |uv|$

O(m)

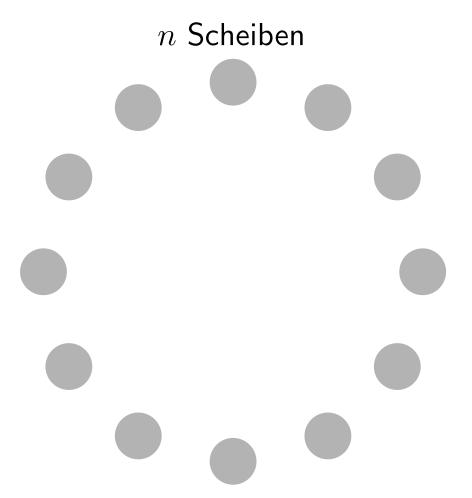
4 return DIJKSTRA (G_{vis}, w, s, t)

$$O(n\log n + m)$$

 $O(n^2 \log n)$

Wie schlimm kann es für Kreise werden?

Aufgabe 3 – Worst Case



Von jeder Scheibe mindestens eine Tangente an jede andere Scheibe $\Omega(n)$ Tangentenknoten pro Scheibe $\Rightarrow \Omega(n^2)$ Knoten insgesamt Jede Tangente ergibt maximal eine Kante $\Rightarrow \Omega(n^2)$ Kanten insgesamt

Aufgabe 3 – Shortest Path

SHORTESTPATH(S, s, t)

3

$$n^2 = |V(S)|, m = |E|$$

Input: Hindernismenge S, Punkte $s, t \in \mathbb{R}^2 \setminus \bigcup S$

Output: kürzester kollisionsfreier st-Weg in S

1
$$G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{s, t\})$$

$$O(n^4 \log n^2)$$

2 foreach $uv \in E_{vis}(S)$ do $w(uv) \leftarrow |uv|$

$$O(n^2 \log n^2 + m)$$

4 return DIJKSTRA (G_{vis}, w, s, t)

$$O(n^4 \log n^2)$$

Aufgabe 3 – Shortest Path

SHORTESTPATH(S, s, t)

3

$$n^2 = |V(S)|, m = |E|$$

Input: Hindernismenge S, Punkte $s, t \in \mathbb{R}^2 \setminus \bigcup S$

Output: kürzester kollisionsfreier st-Weg in S

1
$$G_{\text{vis}} \leftarrow \text{VisibilityGraph}(S \cup \{s, t\})$$

$$O(n^4 \log n^2)$$

2 foreach $uv \in E_{vis}(S)$ do $w(uv) \leftarrow |uv|$

$$O(n^2 \log n^2 + m)$$

4 return DIJKSTRA (G_{vis}, w, s, t)

$$O(n^4 \log n^2)$$

Informationen zur Prüfung

Prüfungstermine:

- 6. August ab 9:00 Uhr
- 8. Oktober ab 9:00 Uhr
- bei Bedarf noch weiterer Termin im WS 2014/15

Anmeldung per Mail an lilian.beckert@kit.edu

Informationen zur Prüfung

Prüfungstermine:

- 6. August ab 9:00 Uhr
- 8. Oktober ab 9:00 Uhr
- bei Bedarf noch weiterer Termin im WS 2014/15

Anmeldung per Mail an lilian.beckert@kit.edu

Projektnoten:

bitte beim Betreuer erfragen

Ausblick (WS 2014/15)

- Bei Interesse an einer Masterarbeit einfach melden. Wir haben regelmäßig spannende theoretische und praktische Themen aus unseren Forschungsbereichen.
- Vorlesung Algorithmen zur Visualisierung von Graphen
- Vorlesung Algorithmische Graphentheorie
- Seminar Algorithmentechnik
- Praktikum Routenplanung

weitere Infos demnächst unter illwww.iti.kit.edu

Ausblick (WS 2014/15)

- Bei Interesse an einer Masterarbeit einfach melden. Wir haben regelmäßig spannende theoretische und praktische Themen aus unseren Forschungsbereichen.
- Vorlesung Algorithmen zur Visualisierung von Graphen
- Vorlesung Algorithmische Graphentheorie
- Seminar Algorithmentechnik
- Praktikum Routenplanung

weitere Infos demnächst unter illwww.iti.kit.edu

Danke!

Viel Erfolg bei der Prüfung!