Satz von Levin

Existenz eines distNP-vollständigen Problems

Diese Ausarbeitung basiert auf Kapitel 18 von Computational Complexity: A Modern Approach Sanjeev Arora und Boaz Barak (2009)

1 Definition: Verteiltes Problem

Ein verteiltes Problem ist ein Tupel $\langle L, \mathcal{D} \rangle$ mit einer Sprache $L \subseteq \{0, 1\}^*$ und einer Familie von Wahrscheinlichkeitsverteilungen $\mathcal{D} = \mathcal{D}_n$, wobei \mathcal{D}_n eine Verteilung über $\{0, 1\}^n$ ist.

2 Definition: P-berechenbare Verteilung

Eine Verteilung \mathcal{D}_n heißt **P**-berechenbar (polynomiell berechenbar), wenn es eine deterministische Turingmaschine gibt, welche zu einer Eingabe $x \in \{0,1\}^n$ die kumulierte Wahrscheinlichkeit $\mu_{\mathcal{D}_n}(x)$ von x bzgl. \mathcal{D}_n berechnet:

$$\mu_{\mathcal{D}_n}(x) = \sum_{y \in \{0,1\}^n : y \le x} \mathbb{P}_{\mathcal{D}_n}(y)$$

 $y \leq x$ bedeutet hierbei, dass y in der lexikographischen Ordnung vor x steht (bzw. identisch mit x ist). $\mathbb{P}_{\mathcal{D}_n}$ bezeichne hier, wie auch im folgenden, das Wahrscheinlichkeitsmaß bezüglich \mathcal{D}_n .

3 Definition: Die Komplexitätsklasse distNP

 \mathtt{distNP} ist die Klasse aller verteilten Probleme $\langle L, \mathcal{D} \rangle$, für die $L \in \mathbf{NP}$ und deren Verteilung \mathcal{D} **P**-berechenbar ist.

4 Definition: Average-Case-Reduktion

Eine Average-Case-Reduktion von einem verteilten Problem $\langle L, \mathcal{D} \rangle$ auf ein weiteres verteiltes Problem $\langle L', \mathcal{D}' \rangle$ ist eine polynomiell berechenbare Funktion $f : \{0, 1\}^n \to \{0, 1\}^n$, welche für zwei Polynome p, q die folgenden Eigenschaften erfüllt:

- 1. Korrektheit: $\forall x \in \{0,1\}^* : x \in L \Leftrightarrow f(x) \in L'$
- 2. Längentreue: $\forall x \in \{0,1\}^n : |f(x)| = p(n) \quad (n = |x|)$
- 3. Dominanz: $\forall n \in \mathbb{N} \quad x \in \{0,1\}^n : \mathbb{P}_{f \circ \mathcal{D}_n}(f(x)) \leq q(n) \mathbb{P}_{\mathcal{D}'_{n(n)}}(f(x))$

Gibt es eine Average-Case-Reduktion von $\langle L, \mathcal{D} \rangle$ auf $\langle L', \mathcal{D}' \rangle$, so heißt $\langle L, \mathcal{D} \rangle$ average-case-reduzierbar auf $\langle L', \mathcal{D}' \rangle$, schreibe $\langle L, \mathcal{D} \rangle \leq_{avg} \langle L', \mathcal{D}' \rangle$.

5 Definition: distNP-Vollständigkeit

Ein verteiltes Problem $\langle L', \mathcal{D}' \rangle$ ist dist**NP**-vollständig, wenn $\langle L', \mathcal{D}' \rangle$ in dist**NP** ist und $\langle L, \mathcal{D} \rangle \leq_{avg} \langle L', \mathcal{D}' \rangle$ für jedes $\langle L, \mathcal{D} \rangle \in \text{dist}$ **NP** gilt.

6 Satz von Levin

Es sei U die Sprache aller Tupel $\langle M, x, 1^t \rangle$, wobei M eine nichtdeterministischen Turingmaschine ist, welche die Eingabe x nach höchstens t Schritten akzeptiert.

Für jedes $n \in \mathbb{N}$ sei \mathcal{U}_n die folgende Gleichverteilung von Tupeln $\langle M, x, 1^t \rangle$ der Länge n: Die Kodierung von M wird zufällig aus allen Wörtern der Länge höchstens $\log n$ ausgewählt. t ist eine zufällig gewählte Zahl aus $\{0, \ldots, n-|M|\}$ (unär kodiert) und x ein zufällig gewähltes Wort aus $\{0, 1\}^{n-t-|M|}$.

 $\mathcal{U} := (\mathcal{U}_n)_{n \in \mathbb{N}}$. Dann ist $\langle U, \mathcal{U} \rangle$ dist**NP**-vollständig.

7 Lemma: Spitzenwert-Eliminierung

Es sei \mathcal{D}_n eine polynomiell (**P**-)berechenbare Verteilung. Dann existiert eine polynomiell berechenbare Funktion $g: \{0,1\}^* \to \{0,1\}^*$ mit folgenden Eigenschaften:

- 1. g ist injektiv: $g(x) = g(y) \Leftrightarrow x = y$,
- 2. $\forall x \in \{0,1\}^n : |g(x)| \le n+1$,
- 3. $\forall x \in \{0,1\}^n : \mathbb{P}_{q \circ \mathcal{D}_n}(g(x)) \le 2^{-|g(x)|+1} \quad (\text{und } \forall y, g^{-1}(y) = \emptyset : \mathbb{P}_{q \circ \mathcal{D}}(y) = 0).$

8 Beweis des Lemmas

Für ein Wort $x \in \{0,1\}^*$ mit $\mathbb{P}_{\mathcal{D}}(x) > 2^{-|x|}$ sei h(x) das längste gemeinsame Präfix der Binärrepräsentationen von $\mu_{\mathcal{D}}(x)$ und $\mu_{\mathcal{D}}(x-1)$. Da $\mu_{\mathcal{D}}(x) - \mu_{\mathcal{D}}(x-1) = \mathbb{P}_{\mathcal{D}}(x) > 2^{-|x|}$, müssen sich die Binärzahlen $\mu_{\mathcal{D}}(x)$, $\mu_{\mathcal{D}}(x-1)$ in den ersten |x| Bits unterscheiden. Also ist h polynomiell berechenbar, da \mathcal{D} **P**-berechenbar ist und es gilt:

$$2^{-|x|} < \mathbb{P}_{\mathcal{D}}(x) = \underbrace{\mu_{\mathcal{D}}(x) - \mu_{\mathcal{D}}(x-1)}_{\text{(unterscheiden sich erst ab der } |h(x)|-ten \text{ Bin\"{a}rziffer)}} < 2^{-|h(x)|}.$$

Darüber hinaus ist h injektiv, denn für die Bestimmung von h(x) und h(y) mit $x \neq y$ $(x, y \in \{0, 1\}^*)$ werden mindestens drei Binärzahlen verglichen. Haben aber zwei Worte w_1, w_2 das längste gemeinsame Präfix p, so muss für ein drittes Wort $w_3 = p \dots$ mit gleichem Präfix entweder $w_3 = p \dots$ oder $w_3 = p \dots$ gelten. Dann hat w_3 entweder mit w_1 oder mit w_2 ein längeres gemeinsames Präfix.

Definiere nun $g: \{0,1\}^* \to \{0,1\}^*$ wie folgt:

$$g(x) = \begin{cases} 0x & \text{wenn } \mathbb{P}_{\mathcal{D}}(x) \le 2^{-|x|} \\ 1h(x) & \text{sonst} \end{cases}.$$

g ist offenbar polynomiell berechenbar, da h polynomiell berechenbar ist. Per Konstruktion von g und h folgt, dass g injektiv ist und für $x \in \{0,1\}^*$ gilt: $|g(x)| \leq |x| + 1$, da $|h(x)| \leq |x|$. Bleibt noch zu zeigen, dass für $y \in \{0,1\}^*$ gilt: $\mathbb{P}_{g \circ \mathcal{D}}(y) \leq 2^{-|y|+1}$.

Fall 1: $y \neq g(x)$ für alle $x \in \{0,1\}^*$. Dann ist $\mathbb{P}_{g \circ \mathcal{D}}(y) = 0$.

Fall 2: y = g(x) = 0x für ein $x \in \{0,1\}^*$. Dann gilt nach Konstruktion, dass $\mathbb{P}_{\mathcal{D}}(x) \leq 2^{-|x|}$, also:

$$\mathbb{P}_{g \circ \mathcal{D}}(y) = \mathbb{P}_{g \circ \mathcal{D}}(0x) = \mathbb{P}_{\mathcal{D}}(x) \le 2^{-|x|} = \le 2^{-|y|+1}.$$

Fall 3: y = g(x) = 1h(x) für ein $x \in \{0,1\}^*$. Dann gilt, wie oben gezeigt, dass $\mathbb{P}_{\mathcal{D}}(x) \leq 2^{-|h(x)|}$, also:

$$\mathbb{P}_{g \circ \mathcal{D}}(y) = \mathbb{P}_{g \circ \mathcal{D}}(1h(x)) \stackrel{(*)}{=} \mathbb{P}_{\mathcal{D}}(x) \le 2^{-|h(x)|} = 2^{-|y|+1}.$$

Die Gleichheit bei (*) gilt, weil g
 injektiv ist. Damit erfüllt g alle geforderten Eigenschaften.

9 Beweis des Satzes

Offenbar ist $U \in \mathbf{NP}$, denn ein Orakelmodul einer weiteren NDTM kann die nichtdeterministischen Zustandsübergänge von M raten und dann M mit diesen Übergängen für eine Dauer von t Schritten simulieren. Hält M binnen dieser Zeit, so ist die Ausgabe identisch mit der Ausgabe von M; anderenfalls wird das Tupel nicht akzeptiert.

Ferner ist $\mu_{\mathcal{U}_n}(x) = \sum_{y \in \{0,1\}^n: y \leq x} \mathbb{P}_{\mathcal{U}_n}(y) = \sum_{y \in \{0,1\}^n: y \leq x} 2^{-n} = (x+1)2^{-n}$ offenbar **P**-berechenbar (x hier interpretiert als natürliche Zahl). Damit ist $\langle U, \mathcal{U} \rangle \in \mathtt{dist}\mathbf{NP}$.

Es sei nun $\langle L, \mathcal{D} \rangle$ mit $\mathcal{D} = (\mathcal{D}_n)_{n \in \mathbb{N}}$ ein Verteilungsproblem aus **distNP** und M eine nichtdeterministische Turingmaschine, die L in polynomieller Zeit entscheidet.

Wir konstruieren eine neue NDTM M' wie folgt: Bei Eingabe y rät und überprüft M' das eindeutig bestimmte Wort x, sodass y=g(x), wobei g die im Lemma konstruierte injektive Funktion ist. Danach wird die NDTM M auf der Eingabe x simuliert und deren Ergebnis ausgegeben. Da gemäß Lemma g in polynomieller Zeit berechnet werden kann, hat M' eine polynomielle Laufzeit, die durch ein Polynom t nach oben beschränkt ist. Für die Average-Case-Reduktion f von $\langle L, \mathcal{D} \rangle$ nach $\langle U, \mathcal{U} \rangle$ wird dann die Eingabe x (n:=|x|) auf das Tupel $\langle M',g(x),1^k\rangle$ abgebildet. Hierbei wird k=t(n)+n+1-|g(x)| gewählt. Offenbar gilt die zweite Bedingung einer Average-Case-Reduktion, denn $|f(x)|=|\langle M',g(x),1^k\rangle|=|M'|+|g(x)|+k=t(n)+n+1+|M'|=:p(n)$ ist ein Polynom, weil die Länge der Kodierung von M als konstant angenommen wird.

Nach dem Lemma gilt $|g(x)| \leq |x| + 1 = n + 1$. Daher ist $k \geq t(n)$. Dies bedeutet, dass das Tupel $\langle M', g(x), 1^k \rangle$ genau dann in U liegt, wenn M' die Eingabe g(x) akzeptiert (denn binnen t(n) Schritten hält M' in jedem Fall). Da g injektiv ist, ist dies ferner genau dann der Fall, wenn x von M akzeptiert wird, also x ein Wort aus L ist. Deshalb gilt $x \in L \Leftrightarrow f(x) \in U$, die erste Bedingung einer Average-Case-Reduktion.

Um schließlich die Dominanz-Bedingung zu zeigen, muss nur $\mathbb{P}_{f \circ \mathcal{D}_n}(f(x)) \leq q(n) \mathbb{P}_{\mathcal{U}_{p(n)}}(f(x))$, also $\mathbb{P}_{f \circ \mathcal{D}_n}(\langle M', y, 1^k \rangle) \leq q(n) \mathbb{P}_{\mathcal{U}_{p(n)}}(\langle M', y, 1^k \rangle)$ gezeigt werden, denn falls es zu einem z kein x gibt, sodass f(x) = z, so ist $\mathbb{P}_{f \circ \mathcal{D}_n}(z) = 0$ und die Ungleichung trivialerweise erfüllt.

Wir schätzen dafür zunächst die linke Seite nach oben ab. Nach Konstruktion und wegen der Injektivität von g hängt $\mathbb{P}_{f \circ \mathcal{D}_n}(\langle M', y, 1^k \rangle)$ nur von y = g(x) ab und für dieses liefert das Lemma die Ungleichung

$$\mathbb{P}_{f \circ \mathcal{D}_n}(f(x)) = \mathbb{P}_{f \circ \mathcal{D}_n}(\langle M', g(x), 1^k \rangle) = \mathbb{P}_{g \circ \mathcal{D}_n}(g(x)) \le 2^{-|g(x)|+1} = 2^{-|y|+1}.$$

Um die rechte Seite nach unten abzuschätzen, sei m := p(n) die Länge des Tupels $\langle M', y, 1^k \rangle$. Für große n (und damit für große m) ist $|M'| \leq \log m$, da wieder die Kodierung von M' als konstant angenommen wird. \mathcal{U}_n ist damit so definiert, dass das Wort M' mindestens mit der Wahrscheinlichkeit $2^{-\log m}$ auftritt. Die Wahrscheinlichkeit für k Einsen ist mindestens 1/m und für das Wort y genau $2^{-|y|}$. Dies gilt alles, weil \mathcal{U} gleichverteilt ist. Also ergibt sich:

$$\mathbb{P}_{\mathcal{U}_{p(n)}}(f(x)) = \mathbb{P}_{\mathcal{U}_m}(\langle M', y, 1^k \rangle) \ge \frac{1}{2^{\log m}} \cdot \frac{1}{2^{|y|}} \cdot \frac{1}{m} = \frac{1}{m^2} \cdot \frac{1}{2^{|y|}}.$$

Jetzt sei q ein Polynom, sodass

$$2^{-|y|+1} = \frac{2}{2^{|y|}} \leq q(n) \cdot \frac{1}{m^2} \cdot \frac{1}{2^{|y|}} \quad \Leftrightarrow \quad 2 \leq q(n) \frac{1}{m^2} \quad \Leftrightarrow \quad 2m^2 \leq q(n).$$

Dieses existiert, da m=p(n) wiederum ein Polynom ist. Für ein solches q gilt dann insbesondere die gewünschte Ungleichung

$$\mathbb{P}_{f \circ \mathcal{D}_n}(f(x)) = \mathbb{P}_{f \circ \mathcal{D}_n}(\langle M', y, 1^k \rangle) \leq q(n) \mathbb{P}_{\mathcal{U}_{p(n)}}(\langle M', y, 1^k \rangle) = q(n) \mathbb{P}_{\mathcal{U}_{p(n)}}(f(x)),$$
was den Beweis vervollständigt.