
Praxis der Software-Entwicklung

Development of a Framework for Graph Games

SS 2012

Institute of Theoretical Informatics
Prof. Dr. Dorothea Wagner

April 24, 2012

1 Important Preliminary Remark

This is your project. This document is not a checklist of exercises that should be processed
point by point to obtain the credit. It is just a list of suggestions and hints of what you can do
and what we expect you to do. It is your decision how your software will look like.

2 Task

The general task of this project is the design and implementation of a graph game framework,
a system for implementation of various games based on operations in graphs. To prove the
functionality of your framework, you should use it to implement several graph games. It should
have an attractive user interface and provide a possibility to play either alone or in small groups.

In the following we introduce some common notation concerning graphs, followed by a list of
graph games. It is not necessary to restrict yourself to these specific games. You are free to
choose your own favorite games. After the description of the games we present objectives of the
project.

2.1 Definitions

A graph is an abstract mathematical structure that models a set of objects and a pairwise
relations between them. The objects are called nodes or vertices and the pairwise relations are
called edges of the graph. A graph is usually denoted by G = (V,E), where V denotes the set of
vertices and E is the set of edges. To model ordered pairwise relations between objects, directed
graph have been introduced. In a directed graph one of the two ends of an edge is represented
by an arrow. Such an edge is called directed edge or arc. The end of a directed edge without
arrow is called source and the end with arrow it called sink. Two nodes of a graph are called
adjacent if they are connected by an edge. An edge (u, v) is said to be incident to vertices u
and v. The number of edges incident to a vertex u is called degree of vertex u, and is denoted
by degree(u). A vertex of a graph is called isolated if it has degree zero.

A drawing Γ of a graph G is a mapping p of every vertex v of G to a distinct point p(v) on the
plane and each edge e = (u, v) of G to a simple open curve joining p(u) with p(v). A drawing is
called planar if any pair of distinct edges do not intersect except at their common end-vertices.
A graph is called planar if it has a planar drawing; see Figure 1 for an example. A drawing is
called straight-line if straight line segments are used to draw the edges. Given a planar drawing
Γ of a planar graph G, the set of points of the plane that can be connected by a curve that does

1



f1

f0
f2

f3

f5

f4

f1

f0

f2 f3

f5f4

Figure 1: A non-planar graph on the left, a planar graph in the middle, and its dual on the
right.

not intersect any vertex or edge of the drawing are said to belong to the same face of the drawn
graph (the faces of the graph are denoted by f0, . . . , f5 in the middle Figure 1). Each face of a
drawing can be indicated by the sequence of edges that surround it. An embedding of a planar
graph G is the equivalence class of planar drawings of G that define the same set of faces or,
equivalently, of face boundaries.

Let G be a planar graph. The dual graph of G (see Figure 1) is the planar graph denoted by
G? such that: (i) G? has a vertex for each face of G; (ii) for each edge in G incident to the faces
f and g the dual G? contains an edge (f, g).

The subdivision of some edge e = (u, v) yields a graph containing one new vertex w, and with
an edge set replacing e by two new edges, (u,w) and (w, v).

A path in a graph is a sequence of vertices and edges v1, e1, v2, . . . , vk such that edge ei, 1 <
i < k − 1, is incident to the vertices vi and vi+1. A cycle in a graph is a sequence of vertices
and edges v1, e1, v2, . . . , vk, ek such that edge ei, 1 < i < k− 1, is incident to the vertices vi and
vi+1 and ek is incident to vertices vk and v1. A cycle is called simple if it does not pass twice
through the same vertex. A Hamiltonian cycle is a simple cycle that contains all vertices of the
graph. A graph is called connected if there exists a path between each pair of its vertices.

A cut of a graph is a partition of its vertices into two disjoint subsets. The cut-set of the cut is
the set of edges whose end points are in different subsets of the partition.

2.2 Some Possible Graph Games

The following list of games is just a suggestion. You may think of (or search the web for) other
games related to graphs as well. On the other hand, your framework does not need to be able
to represent all the graph games listed here.

TwixT, Bridj-It. The two-player games TwixT (http://en.wikipedia.org/wiki/TwixT)
and Bridj-It (http://www.sites4all.co.uk/bridjit/bridjit2.php) can be seen as the same
game with different parameters. The players are allowed to place vertices and edges of pre-
specified lengths between their own vertices, without crossing the edges inserted by the oppo-
nent. The players play on a grid, i.e., they can only place vertices at the points of the grid.
The first player has to build a path (a wall) from the left side of the grid to the right. The
second player has to build a path from the top to the bottom. Possible parameters of the game
are: (1) the lengths of the edges, (2) whether one first needs to place both endvertices (tower
between two wall-segments) before inserting an edge connecting them.

2

http://en.wikipedia.org/wiki/TwixT
http://www.sites4all.co.uk/bridjit/bridjit2.php


path point set point set embedding

a b c d e f g h

a

b

c

d

e

f

g

h

Figure 2: The input of this game is a path and a point set. The task is to find an upward point
set embedding as shown on the right.

Shannon Switching Game. The Shannon switching game (http://en.wikipedia.org/
wiki/Shannon_switching_game, or http://kryshen.net/games/graphg.html) starts with a
graph with two special vertices s and t. Each move of the first player is to color an edge green,
each move of the second player is to remove an uncolored edge. The first player wins if he is
able to create a green path from s to t, otherwise, the second player wins. For planar graphs
this game can be reformulated in another interesting way. Both players try to create a path,
player one in the primal graph, player two in the dual graph. With this interpretation each
move consists of choosing an edge not crossing an edge chosen by the opponent. Note that this
is quite similar to some variants of the TwixT/Bridj-It games. In fact it is a generalization of
Bridj-It.

Upward Point Set Embedding of a Path. This game is a single-player game. Each
instance consists of a path of directed edges and a set of points in the plane (see Figure 2). The
players task is to map the vertices of the path to the given points in the plane such that the
resulting straight-line drawing of the path is planar and each edge is drawn upward.

Hamiltonian Cycle. This two-player game starts with a set of isolated vertices. One move
of a player consists of picking one of the vertices and connecting it to as many other vertices as
he likes (at least one edge has to be added). The first player who creates a Hamiltonian cycle
wins the game. Note that this game is already almost impossible to play with more than seven
vertices.

Sprouts. The two-player game Sprouts (http://en.wikipedia.org/wiki/Sprouts_game)
starts with a planar drawing of a graph with maximum degree 3. Each move consists of two
parts. First, adding an edge in a planar way without exceeding the degree of 3 property. Second,
subdividing the edge inserted in the first step. The player making the last move wins. It may
also be interesting to extend this game to more than two players.

Graph-Coloring. The instance of a graph-coloring game (http://en.wikipedia.org/wiki/
Map-coloring_games) may be an arbitrary graph and a set of available colors. An allowed move
is to color an uncolored vertex in such a way that none of its neighbors has the same color. The
player making the last move wins. Apart from this classical version there are other variants.
For example, the colors available may depend on the player, the colored region may be required
to be connected or neighbored vertices must have the same color instead of different ones. For

3

http://en.wikipedia.org/wiki/Shannon_switching_game
http://en.wikipedia.org/wiki/Shannon_switching_game
http://kryshen.net/games/graphg.html
http://en.wikipedia.org/wiki/Sprouts_game
http://en.wikipedia.org/wiki/Map-coloring_games
http://en.wikipedia.org/wiki/Map-coloring_games


the case that the input graph is planar it may be interesting to color the faces instead of the
vertices.

2.3 Main Targets

Different graph games of course have differences, but they also have similarities. It is your task
to fix a set of features that, in your opinion, every graph game should have. The implemen-
tation of these common features forms your framework that should significantly simplify the
implementation of specific graph games. In the following we give a list of possible common
features, some of them are required others are optional. As this is your project we encourage
you to also think of features not listed here. Note that you do not have enough time to create
a perfect framework implementing everything one could think of. You have to decide on key
aspects and focus on them.

Game Specification. The two main quality measures of your framework are: (1) the effort
that needs to be put into the specification (or implementation) of a specific graph game, and (2)
its generality and flexibility making it possible to implement a wide range of different games in
a customizable way. As these two requirements contradict each other, you have to find a good
trade-off between them. You may for example provide a bunch of parameters making it possible
to customize each game but specify reasonable default values to simplify the game specification.

There are two possibilities how a single game may be specified. One is through the inheritance of
an abstract game class your framework provides. The second is by introducing a metalanguage
providing the possibility to formally describe a game. The latter possibility is not an easy
task. It is necessary to find a trade-off between the generality of your metalanguage and its
complexity as it should support a wide range of graph games and, on the other hand, should
not be too complicated. If you choose the option to specify a metalanguage, you should plan
your time very carefully and restrict other parts of your framework to necessary aspects.

Data Structures and Graph Algorithms. As all games are based on graphs, you can
store the current state in the game in a graph data structure. Depending on the game, the data
structure needs to be enhanced by additional information such as vertex positions, colors, etc.
You should develop a general data structure that can be used for all your games.

You will probably need some basic graph algorithms such as testing connectivity for the “Shan-
non Switching Game”, or planarity for “Sprouts” and “Upward Point Set Embedding of a Path”.
You may use an existing graph library (for example JUNG1) or develop the algorithms yourself.

Graphics. A data structure storing the current state is worth nothing if it is not presented to
the user. Thus, you have to create a graphical representation showing it to the user. Following
the model view controller principle it should be decoupled from the internal data structure.
When implementing a specific game you should not need to deal with the graphical represen-
tation, but you may want to have easy accessible options to customize the appearance of each
game. For example in the game TwixT you may want the framework to draw a small image
showing a tower for each vertex.

1http://jung.sourceforge.net/

4

http://jung.sourceforge.net/


Input Model. Of course the user needs the possibility to interact with the system. When
implementing a specific game you do not want to deal with user interactions such as “player A
clicks at position (287, 17)” but with higher level inputs such as “player A deleted edge e”. The
framework should provide such a higher level communication between the system and the user.

Artificial Intelligence. As an optional feature you may implement an adversary controlled
by an artificial intelligence. As you should create a framework, the classical minimax algorithm2,
perhaps enhanced by an alpha-beta pruning3, is well suited. Once this general algorithm is
implemented, it “only” remains to define a position evaluation function for each game, assigning
a value to every possible situation, specifying how “good” the current state is.

Network. A game is not a game if it cannot be played with a friend. Thus, you may think
of connecting two players over a network. Then you have to specify a protocol describing each
move with a short string that has to be sent from one computer to another. If you do not want
to care about building a network connection between different computers, you may instead show
this string to the player, who then sends it using an external messenger such as Skype or ICQ
(although it is less comfortable than a build in network connection). If your framework supports
playing over network without any external tools, you may also think of a simple chat allowing
to manipulate the opponent.

Note that your System should be sufficiently modular that it does not make such a big difference
whether the next move comes from a player clicking somewhere, from an AI or from the network.

Tutorial. Your system should be self-explaining, that is a user should be able to play without
knowing the rules of the games in advance. You may for example simply provide a PDF-file
containing the manual with your system. A more sophisticated possibility is to develop a tutorial
mode teaching a new player interactively. If you decide to make a tutorial mode, the additional
effort that has to be put into the implementation of a specific game to contain a tutorial should
be as small as possible.

3 Working Process

3.1 Operating Principles

In this course you should use software design and quality assurance methods in practice, use
and improve implementation skills, and collaborate in a team distributing the work among
its members. Accordingly, the organization of this course is guided by software engineering
principals, as you can also see in the schedule in Section 3.4.

It is not the aim to somehow implement a system that somehow works, but to go step by step
through the phases of software engineering as prescribed by the schedule. You do not only have
to hand in a working system at the end but all documents corresponding to each phase:

• Functional specifications document (dt. Pflichtenheft; about 20 pages)

• Software design (dt. Entwurf; about 40 pages)

2http://en.wikipedia.org/wiki/Minimax#Combinatorial_game_theory
3http://en.wikipedia.org/wiki/Alpha-beta_pruning

5

http://en.wikipedia.org/wiki/Minimax#Combinatorial_game_theory
http://en.wikipedia.org/wiki/Alpha-beta_pruning


• Implementation report (about 20 pages)

• Test report (about 20 pages)

At the end of the course you have to present your finished and working system. Moreover, a
colloquium takes place at the end of each phase. The particular appointments will be arranged
during the semester.

The schedule in Section 3.4 is not just a suggestion to help you developing your system, we expect
you to follow it. To this end, in each phase a team leader is determined who is responsible for
a correct execution of this phase and for submitting the documents in time.

3.2 Documentation

Creating a documentation is a major part of your project. Without a complete and extensive
documentation of your work it is not possible to successfully pass this course.

We expect you to document your planning and the execution of your plans precisely, completely,
and consistently. Concerning the content and the form of the documents we explicitly refer to
the software engineering lecture.

You must set up and use a version management tool for both, the source code and the docu-
mentation. We recommend to use Subversion or GIT.

3.3 Recommended Tools

The recommended programming language for this course is Java (version 1.6). Using a different
language is only in exceptional cases and after agreement allowed.

The JUnit Testing Framework4 is the de facto standard tool for unit tests when using java. We
strongly recommend to use this tool. Basic literature on how to handle JUnit can be found on
the web or in the library. The tool CodeCover5 helps you computing your code coverage. Both
tools are integrated as plug-ins into the development environment Eclipse6 that we recommend
to use as IDE. For the software design it is recommended to use an UML-tool. Umbrello7 is
part of the KDE-project and thus free to use.

3.4 Schedule

• First group meeting: 24th of April, 2012

• Delivery of the functional specifications document: (30.04–20.05). Shortly after
this you are required to explain your document in the first colloquium (date for this
colloquium by arrangement).

• Delivery of the software design document: (21.05–17.06). Shortly after this date
you have to defend your software design in the second colloquium (date for this colloquium
by arrangement).

4http://junit.org/
5http://codecover.org/
6http://www.eclipse.org/
7http://www.umbrello.org/

6

http://junit.org/
http://codecover.org/
http://www.eclipse.org/
http://www.umbrello.org/


• Implementation: (18.06–15.07)

• Delivery of the implementation report: (18.06–15.07), shortly after this date there
will be a colloquium where you need to explain your implementation report (date for this
colloquium by arrangement).

• Break (exams): from 16th to 29th of July

• Delivery of the test report: (30.07–19.08)

• Final presentation: (10.09 – 16.09)

Please note that this schedule is preliminary only. It is possible that we change some of the
dates slightly. If this is the case we will make an announcement well enough in advance.

3.5 Contact Information

• Thomas Bläsius, Institute of Theoretical Informatics, Prof. Dr. Dorothea Wagner.
Email: thomas.blaesius@kit.edu, tel.: 0721 608-44322, office: room 316, building 50.34.

• Andreas Gemsa, Institute of Theoretical Informatics, Prof. Dr. Dorothea Wagner.
Email: gemsa@kit.edu, tel.: 0721 608-47331, office: room 322, building 50.34.

• Tamara Mchedlidze, Institute of Theoretical Informatics, Prof. Dr. Dorothea Wagner.
Email: mched@iti.uka.de, tel.: 0721 608-44245, office: room 307, building 50.34.

4 Grading

4.1 Minimum Capability Characteristics

Your framework should provide basic building blocks to simplify the implementation of games
based on graphs. Basic ingredients your system must contain are the following.

• A model that is able to represent the current state of a game and a graphical user interface
respecting the model view controller principle.

• Your framework must provide the functionality to easily formulate new games.

• You should implement at least two not too similar games to prove the generality of your
framework.

4.2 Reference System

Your software must be able to run on a Linux PC. For testing purposes there are Linux PCs
(with Suse 11.3) available in room 304. These PCs are equipped with an Intel E7200@2.66 Ghz
processor and 4GB of RAM.

7



4.3 Grading

The grade for your project depends on the following criteria:

• quality of all your delivered documents

• quality of all colloquia

• meeting all of the minimum capability characteristics (see Section 4.1)

• useful extensions to the software that surpass the minimum capability characteristics

• robustness of your software

This list has no specific order. In particular the order of this list does not reflect any weighting
of the criteria for the final grade.

The grade for the team-work in this practical course is a grade for the so called soft skills. The
most important aspects for these skills are the presentations you give, how well you work as a
team and the performance of the team leader during each phase.

For passing the practical course it is required that all documents mentioned in Section 3.1 are
delivered on time. For a schedule see Section 3.4.

Each phase of your project is graded. The grades of each phase will be combined for the final
grade of your project. See Table 1 for a detailed overview on how much the grade for each phase
influences the final grade for the project.

phase percentage

Functional specifications document (dt. Pflichtenheft) 10%
Software design (dt. Entwurf) 30%
Implementation report 30%
Test report 20%
Final presentation 10%

Table 1: weighting of the grade for each phase

8


	Important Preliminary Remark
	Task
	Definitions
	Some Possible Graph Games
	Main Targets

	Working Process
	Operating Principles
	Documentation
	Recommended Tools
	Schedule
	Contact Information

	Grading
	Minimum Capability Characteristics 
	Reference System
	Grading


