Bin packing and scheduling

Overview

- Bin packing: problem definition
- Simple 2-approximation (Next Fit)
- Better than 3/2 is not possible
- Asymptotic PTAS
- Scheduling: minimizing the makespan (repeat)
- PTAS
Bin packing: problem definition

- **Input:** n items with sizes $a_1, \ldots, a_n \in (0, 1]$

- **Goal:** pack these items into a **minimal number of bins**

- **Each bin has size 1**
Bin packing: problem definition

- Input: n items with sizes $a_1, \ldots, a_n \in (0, 1]$
- Goal: pack these items into a minimal number of bins
- Each bin has size 1
A simple (online!) algorithm is **Next Fit**

- Place items in a bin until next item *does not fit*
- Then, close the bin and start a new bin
- Approximation ratio is 2 (and competitive ratio is also 2)
A simple (online!) algorithm is **Next Fit**

- Place items in a bin until next item does not fit
- Then, close the bin and start a new bin
- Approximation ratio is 2 (and competitive ratio is also 2)
A simple (online!) algorithm is **Next Fit**

- Place items in a bin until next item does not fit
- Then, close the bin and start a new bin
- Approximation ratio is 2 (and competitive ratio is also 2)
A simple (online!) algorithm is **Next Fit**

- Place items in a bin until next item does not fit
- Then, close the bin and start a new bin
- Approximation ratio is 2 (and competitive ratio is also 2)
A general lower bound

It is possible to improve on Next Fit, for instance by using First Fit.

However...

Lemma 1. There is no algorithm with approximation ratio below \(\frac{3}{2}\), unless \(P=NP\)

Proof: reduction from **PARTITION**

PARTITION = given a set of items of total size \(B\), can you split them into two subsets of equal size?

This problem is known to be **NP-hard**
The reduction

- Input is a set of items of total size 2
- Does this input fit in two bins?
- An algorithm with approximation ratio $< \frac{3}{2}$ must give a packing in \textit{two} bins (not three) if one exists
- Thus, it must solve PARTITION, which is NP-hard
The asymptotic performance ratio

- This result deals with “small” inputs
- What about more reasonable instances?
- For a given input I, let $\text{OPT}(I)$ denote the optimal number of bins needed to pack it
- Idea: we are interested in the worst ratio for large inputs
The asymptotic performance ratio

\[
\frac{\mathcal{A}(I)}{\text{OPT}(I)}
\]
The asymptotic performance ratio

\[\sup_I \frac{\mathcal{A}(I)}{\text{OPT}(I)} \]
The asymptotic performance ratio

\[R_A = \limsup_{n \to \infty} \sup_{I} \left\{ \frac{A(I)}{OPT(I)} \middle| OPT(I) = n \right\}. \]

Note: we also use this measure to compare online algorithms.
A positive result

We can show the following theorem:

Theorem 1. *For any* \(\epsilon > 0 \), there is an algorithm \(A_\epsilon \) that runs in time polynomial in \(n \) and for which

\[
A_\epsilon(I) \leq (1 + 2\epsilon)\text{OPT}(I) + 1 \quad \forall I
\]

Meaning: you can get as close to the optimal solution as you want

The degree of the polynomial depends on \(\epsilon \): the closer you want to get to the optimum, the more time it takes
A simple case

- All items have size at least ε
 - \Rightarrow at most $M = \lceil 1/\varepsilon \rceil$ items fit in a bin

- There are only K different item sizes
 - \Rightarrow at most $R = \binom{M+K}{M}$ bin types
 - (M “items” in a bin, $K+1$ options per item)

- We know that at most n bins are needed to pack all items
 - \Rightarrow at most $\binom{n+R}{R}$ feasible packings need to be checked

- We can do this in polynomial (in n) time

Note: this is extremely impractical

Example: $n = 50$, $K = 6$, $\varepsilon = 1/3$, then $1.98 \cdot 10^{37}$ options
Generalizing the simple case (1)

Suppose there are more different item sizes (at most n).

Do the following:

- Sort items
- Make groups containing $\lfloor n\varepsilon^2 \rfloor$ items
- In each group, round sizes up to largest size in group
Generalizing the simple case (2)

So far we had a lower bound of ε on the item sizes.

How do we pack instances that also contain such small items?

- Ignore items $< \varepsilon$ (small items) at the start
- Apply algorithm on remaining items
- Fill up bins with small items
The small items

- If all small items fit in the bins used to pack L, we use no more than $\text{OPT}(L)$ bins
- Else, all bins except the last are full by at least $1 - \varepsilon$

- $\text{OPT}(I)$ is at least the total size of all the items

\[\text{OPT}(I) \geq \frac{\text{ALG}(I) - 1}{1 - \varepsilon} \rightarrow \text{ALG}(I) \leq (1 + 2\varepsilon)\text{OPT}(I) + 1 \]

This proves the theorem.
A better solution

☐ The core algorithm is very much **brute force**

☐ We can improve by using dynamic programming

☐ We no longer need a lower bound on the sizes

☐ There are \(k \) different item sizes

☐ An input is of the form \((n_1, \ldots, n_k)\)

☐ We want to calculate \(\text{OPT}(n_1, \ldots, n_k) \), the optimal number of bins to pack this input
The base case

- Consider an input \((n_1, \ldots, n_k)\) with \(n = \sum n_j\) items
- Determine set of \(k\)-tuples (subsets of the input) that can be packed into a single bin
- That is, all tuples \((q_1, \ldots, q_k)\) for which \(\text{OPT}(q_1, \ldots, q_k) = 1\) and for which \(0 \leq q_j \leq n_j\) for all \(j\)
- There are at most \(n^k\) such tuples, each tuple can be checked in linear time
- (Exercise: there are at most \((n/k)^k\) such tuples)
- Denote this set by \(Q\)
Dynamic programming

- For each k-tuple $q \in Q$, we have $\text{OPT}(q) = 1$
- Calculate remaining values by using the recurrence

\[
\text{OPT}(i_1, \ldots, i_k) = 1 + \min_{q \in Q} \text{OPT}(i_1 - q_1, \ldots, i_k - q_k)
\]

- Exercise: think about the order in which we can calculate these values
- Each value takes $O(n^k)$ time, so we can calculate all values in $O(n^{2k})$ time
- This gives us in the end the value of $\text{OPT}(n_1, \ldots, n_k)$
Advantages

☐ Much faster than simple brute force

☐ Can be used to create PTAS for load balancing!

PTAS from Algorithmentechnik:

☐ separate ℓ largest jobs

☐ assign them optimally

☐ add smallest jobs greedily

Time $O(m^\ell + n)$. For $\varepsilon = 1/3, m = 15$ we have $m^\ell = 8.5 \cdot 10^{32}$. This PTAS could only be used for very small m and large ε.
Scheduling Independent Weighted Jobs on Parallel Machines

\(x(j): \) Machine where job \(j \) is executed

\(L_i: \) \(\sum_{x(j)=i} t_j \), load of machine \(i \)

Objective: Minimize Makespan

\(L_{\text{max}} = \max_i L_i \)

Details: Identical machines, independent jobs, known processing times, offline

NP-hard
Old results

- Greedy algorithm is \((2 - \frac{1}{m})\)-approximation
- LPT is \((4/3 - \frac{1}{3m})\)-approximation

New result: **PTAS for load balancing**

Idea: find optimal makespan using **binary search**
A step in the binary search

Let current guess for the makespan be t
A step in the binary search

- Let current guess for the makespan be t
- Remove “small” items: smaller than $t\varepsilon$
A step in the binary search

- Let current guess for the makespan be t
- Remove “small” items: smaller than $t\varepsilon$
- Round remaining sizes down using geometric rounding
A step in the binary search

1. Let current guess for the makespan be t
2. Remove “small” items: smaller than $t\epsilon$
3. Round remaining sizes down using geometric rounding
4. Find optimal solution in bins of size t
A step in the binary search

- Let current guess for the makespan be t
- Remove “small” items: smaller than $t \varepsilon$
- Round remaining sizes down using geometric rounding
- Find optimal solution in bins of size t
- Extend to near-optimal solution for entire input
A step in the binary search

- Let current guess for the makespan be t
- Remove “small” items: smaller than $t\varepsilon$
- Round remaining sizes down using geometric rounding
- Find optimal solution in bins of size t
- Extend to near-optimal solution for entire input
- More than m bins needed: increase t
- At most m bins needed: decrease t
Geometric rounding

- Each large item is rounded down so that its size is of the form
 \[t\varepsilon(1 + \varepsilon)^i \]
 for some \(i \geq 0 \)

- Since large items have size at least \(t\varepsilon \), this leaves
 \(k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil \) different sizes
Geometric rounding

- Each large item is rounded down so that its size is of the form
 \[t\varepsilon(1 + \varepsilon)^i \]
 for some \(i \geq 0 \)

- Since large items have size at least \(t\varepsilon \), this leaves
 \(k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil \) different sizes

We find a packing for the rounded down items in bins of size \(t \)
Geometric rounding

- Each large item is rounded down so that its size is of the form
 \[t\varepsilon(1 + \varepsilon)^i \]
 for some \(i \geq 0 \)

- Since large items have size at least \(t\varepsilon \), this leaves
 \(k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil \) different sizes

We find a packing for the rounded down items in bins of size \(t \)

This gives a valid packing in bins of size \(t(1 + \varepsilon) \)
Geometric rounding

Each large item is rounded down so that its size is of the form

\[t\varepsilon(1 + \varepsilon)^i \]

for some \(i \geq 0 \)

Since large items have size at least \(t\varepsilon \), this leaves \(k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil \) different sizes

We find a packing for the rounded down items in bins of size \(t \)

This gives a valid packing in bins of size \(t(1 + \varepsilon) \)

We add the small items to those bins (and to new bins if needed)
Comparing to the optimal solution

We use bins of size \(t(1 + \varepsilon) \)

Claim: OPT needs at least as many bins of size \(t \) to pack these items
Comparing to the optimal solution

We use bins of size \(t(1 + \varepsilon) \)

Claim: OPT needs at least as many bins of size \(t \) to pack these items

Proof: If we need no extra bins for the small items, we have found an optimal packing for the rounded down items in bins of size \(t \)
Comparing to the optimal solution

We use bins of size $t(1 + \varepsilon)$

Claim: OPT needs at least as many bins of size t to pack these items

Proof: If we need no extra bins for the small items, we have found an optimal packing for the rounded down items in bins of size t

Else, all bins (except maybe the last one) are full by at least t
Connection between bin packing and scheduling

- We look for the smallest t such that we can pack the items in m bins (machines).
- Suppose that we can find the exact value of t
- Then, OPT also needs m bins of size t to pack these items
- In other words, the makespan on m machines is at least t. (For smaller t, the items cannot all be placed below a level of t.)
The binary search

- We start with the following lower bound on \(\text{OPT} \):\[LB = \max \left\{ \sum_{j} t_j/m, \max_j t_j \right\} \]

- Greedy gives a schedule which is at most twice this value, this is an upper bound for \(\text{OPT} \)

- Each step of the binary search halves this interval

- We repeat until the length of the interval is at most \(\varepsilon \cdot LB \)

- Let \(T \) be the upper bound of this interval

- Then \(T \leq \text{OPT} + \varepsilon \cdot LB \leq (1 + \varepsilon) \cdot \text{OPT} \)

- The makespan of our algorithm is at most \((1 + \varepsilon)T \)
Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm A_ε which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon)\text{OPT}$.
Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm A_ε which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon)\text{OPT}$.

Notes:

- The number of item sizes is $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$
Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm A_ε which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon)\text{OPT}$.

Notes:

- The number of item sizes is $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$
- The number of iterations in the binary search is $\lfloor \log_2 \frac{1}{\varepsilon} \rfloor$
Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm A_ε which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon)\text{OPT}$.

Notes:

- The number of item sizes is $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$
- The number of iterations in the binary search is $\lceil \log_2 \frac{1}{\varepsilon} \rceil$
- The running time of the dynamic programming algorithm is $O(n^{2k})$
Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm \mathcal{A}_ε which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon) \text{OPT}$.

Notes:

- The number of item sizes is $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$
- The number of iterations in the binary search is $\lceil \log_2 \frac{1}{\varepsilon} \rceil$
- The running time of the dynamic programming algorithm is $O(n^{2k})$
- The running time of our algorithm is $O(\lceil \log_2 \frac{1}{\varepsilon} \rceil n^{2k})$

$n = 50, \varepsilon = 1/3 \rightarrow 7.8 \cdot 10^{13}$ options
Conclusion

Theorem 2. For any $\varepsilon > 0$, there is an algorithm A_ε which works in polynomial time in n and which gives a schedule with makespan at most $(1 + \varepsilon)^2 \text{OPT} < (1 + 3\varepsilon) \text{OPT}$.

Notes:

- The number of item sizes is $k = \lceil \log_{1+\varepsilon} \frac{1}{\varepsilon} \rceil$
- The number of iterations in the binary search is $\lceil \log_2 \frac{1}{\varepsilon} \rceil$
- The running time of the dynamic programming algorithm is $O(n^{2k})$
- The running time of our algorithm is $O(\lceil \log_2 \frac{1}{\varepsilon} \rceil n^{2k})$
- There is no FPTAS for this problem