Algorithmen auf planaren Graphen
Vorlesungsskript

Dorothea Wagner*

Sommersemester 2001

*Universität Konstanz, Fachbereich Informatik und Informationswissenschaft, Fach D 188, D-78457 Konstanz, Tel. 07531-88 2893, e-mail: Dorothea.Wagner@universitaet-konstanz.de
Inhaltsverzeichnis

1 Planare Graphen — eine anschauliche Einführung 5
2 Grundlegende Eigenschaften planarer Graphen 13
 2.1 Grundlegende Eigenschaften 13
 2.2 Charakterisierung planarer Graphen 17
 2.3 Dualgraph ... 28
 2.4 Suchmethoden in planaren Graphen 30
3 Färbung planarer Graphen 35
4 Separatoren in planaren Graphen 41
5 Matchings 53
6 Mixed-Max-Cut in planaren Graphen und Via-Minimierung 59
 6.1 Mixed-Max-Cut in planaren Graphen 60
 6.2 Das Via-Minimierungs Problem 68
7 Das Menger-Problem 77
 7.1 Das kantendisjunkte Menger-Problem in planaren Graphen 79
 7.2 Das knotendisjunkte Menger-Problem 88
8 Das Problem von Okamura und Seymour 97
Kapitel 1

Planare Graphen — eine anschauliche Einführung

Wir betrachten einen Graph $G = (V, E)$ mit V endliche Menge von Knoten und E endliche Menge von Kanten.

Beispiel:

$K_4 = (V, E)$
$V = \{1, 2, 3, 4\}$
$E = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$

Der K_4 ist “der” vollständige (ungerichtete einfache) Graph über 4 Knoten.

Einbettungen enthalten
Kreuzungen

Abbildung 1.1: Verschiedene Einbettungen des K_4

Ein Graph, der kreuzungsfrei (in die Ebene) eingebettet werden kann, heißt
planar. Der K_4 ist planar. Sind alle (endlichen, einfachen) Graphen planar? Wir “beweisen”, daß K_5 und $K_{3,3}$ nicht planar sind.

$K_5 = (V, E)$

$V = \{1, 2, 3, 4, 5\}$

$E = \{\{i, j\} : 1 \leq i, j \leq 5, i \neq j\}$

Abbildung 1.2: Einbettung des K_5. Ist die Kreuzung notwendig?

Angenommen, der K_5 ist planar. Bette o.B.d.A. Knoten 1 und alle zu 1 inzidenten Kanten planar ein. Es gibt die Kante $\{2, 4\}$, und diese induziert eine Zerlegung der Ebene in zwei “Gebiete”, das Innere des Kreises $\{\{1, 2\}, \{2, 4\}, \{4, 1\}\}$ = 1241 und dessen Äußeres.

Abbildung 1.3: Zerlegung der Ebene in zwei Gebiete.

Jeder Weg aus dem Inneren von 1241 in das Äußere von 1241 muß den “Rand” (1241) kreuzen. Die Kante $\{3, 5\}$ kann also nicht kreuzungsfrei gezogen werden. (Jordan’scher Kurvensatz).
Wir betrachten nun den vollständig bipartiten Graphen auf sechs Knoten, den $K_{3,3}$.

$$K_{3,3} = (V, E)$$

$$V = \{1, 2, 3, w, g, s\}$$

$$E = \\{\{i, j\} : 1 \leq i \leq 3, j \in \{w, g, s\}\}$$

Der $K_{3,3}$ modelliert das "Wasser-Gas-Strom-Problem", d.h. es gibt drei "Quellen" w, g, s und drei "Häuser" 1, 2, 3. Jedes Haus braucht Leitungen zu allen drei Quellen.

Abbildung 1.4: Eine Einbettung des $K_{3,3}$.

Angenommen der $K_{3,3}$ ist planar. Bette o.B.d.A. den Kreis $w1g2s3w$ kreuzungsfrei ein, wobei $\{1, s\}$ im Inneren eingebettet werde. Dann muß $\{2, w\}$ ins Äußere eingebettet werden. Unabhängig davon wie die Kante $\{3, g\}$ eingebettet wird, kreuzt sie den Kreis $w1s2w$. Damit folgt Lemma 1.1

Abbildung 1.5: Inneres und Äußeres des Kreis $w1s2w$.

Lemma 1.1 K_5 und $K_{3,3}$ sind nicht planar.
Allgemeine Fragen im Zusammenhang mit planaren Graphen sind:

- Woran erkennt man planare Graphen? Kann man “effizient” entscheiden, ob ein gegebener Graph planar ist?
- Falls man weiß, daß der gegebene Graph planar ist, kann man dann “effizient” eine kreuzungsfreie/planare Einbettung konstruieren?
- Ist jeder planare Graph so planar einbettbar, daß alle Kanten gerade sind?
 “straight-line embedding”.
- Wieviele planare Einbettungen gibt es zu einem planaren Graph?

Es ist leicht zu sehen, daß eine planare Einbettung nicht notwendig eindeutig ist. Siehe Abbildung 1.6.

Abbildung 1.6: Das innere Gebiet von 5235 wird zum äußeren Gebiet der Einbettung gemacht.

Das Landkartenfärbungsproblem

Äquivalent zum Landkartenfärbungsproblem ist dann folgendes Graphenfärbungsproblem: Färbe die Knoten des Nachbarschaftsgraph so, dass
Abbildung 1.7: Landkarte mit Hauptstädten und der Nachbarschaftsgraph.

zwei Knoten, die durch eine Kante verbunden sind, verschiedene Farben haben.

Der Nachbarschaftsgraph einer Landkarte ist immer planar. Um dies zu sehen betrachten wir folgende Konstruktion.

Verbinde jede Hauptstadt sternförmig mit den “Mittelpunkten” der verschiedenen gemeinsamen Grenzabschnitte mit anderen Ländern. Fülle je zwei Verbindungen zu einer Kante zusammen.

Abbildung 1.8: Färbung des Nachbarschaftsgraph zur Landkarte aus Abbildung 1.7.

Satz 1.2 Jeder planare Graph läßt sich mit höchstens vier Farben färben.

“Hilft” Planarität bei der Lösung algorithmischer Probleme auf Graphen? Gibt es weitere Optimierungsprobleme, die für beliebige Graphen \mathcal{NP}-schwer sind, für planare Graphen aber in \mathcal{P} sind?

Gegeben sei ein Graph $G = (V, E)$. Finde eine Kantenmenge S minimaler oder zumindest kleiner Größe, so daß G durch Entfernen von S in disjunkte Graphen $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$ “zerfällt” mit

$$|V_i| \leq \alpha \cdot |V| \quad \text{für} \quad i = 1, 2; \quad 0 < \alpha < 1.$$

Diese Fragestellung werden wir später wieder aufgreifen, wenn wir das “Planar Separator Theorem” beweisen. Wie kann Planarität bei solchen Schnittproblemen helfen? Es gibt eine schöne Korrespondenz zwischen Wegen und Schnitten in planaren Graphen:

- **Schnitte** in G korrespondieren zu **Wegen** im “Dualgraph” von G.

- Die **Größen von Schnitten** in G korrespondieren zu **Längen von Wegen** im “Dualgraph” von G.

Weitere Vorteile planarer Graphen sind:

Wegen ihrer “guten Zerlegbarkeit” läßt sich sehr gut das “Divide-and-Conquer”-Prinzip anwenden.
Abbildung 1.9: Eine $\frac{1}{3} - \frac{2}{3}$-Zerlegung durch Wegnahme von 4 Kanten und der entsprechende Weg der Länge 4 im Dualgraph.

Es gibt Aussagen über

- die Knotengrade im planaren Graphen,
- die maximale Kantenzahl,
- den maximalen Zusammenhang,
- ... ,

die “direkt” aus der Planarität folgen.
Kapitel 2

Grundlegende Eigenschaften planarer Graphen

2.1 Grundlegende Eigenschaften

Ein Graph $G = (V, E)$ besteht aus einer endlichen Menge V von Knoten und einer endlichen Menge E von Kanten, sowie einer Vorschrift, die jeder Kante $e \in E$ genau zwei Knoten $u, v \in V$, ihre Endknoten, zuordnet ($u = v$ möglich). Sind die beiden Endknoten u, v von e identisch, so heißt e Schlinge; wir sagen allgemein, daß Kante e Knoten u und v verbindet.

Knoten, die durch eine Kante verbunden sind, heißen benachbart. Zu $v \in V$ definiere die Nachbarschaft $N(v) := \{u \in V : u$ ist zu v benachbart$\}$. Ist der Knoten v ein Endknoten der Kante e, so heißen v und e inzident. Ebenso heißen zwei Kanten, die einen gemeinsamen Endknoten haben, inzident. Haben Kanten e_1, \ldots, e_k, $k \geq 2$ beide Endknoten gemeinsam, so heißen sie Mehrfachkanten. Falls $G = (V, E)$ keine Schlingen und keine Mehrfachkanten besitzt, so heißt G einfach. In diesem Fall kann E als Teilmenge von $\{\{u, v\} : u, v \in V, u \neq v\}$ aufgefaßt werden. Der Grad von v, bezeichnet mit $d(v)$, ist die Anzahl der zu v inzidenten Kanten. In einem einfachen Graphen ist also $d(v) := |N(v)|$.

Eine Folge $v_0e_1v_1e_2\ldots v_{k-1}e_kv_k$ von Knoten und Kanten in G, für die v_{i-1} und v_i Endknoten von e_i sind und $e_i \neq e_{i+1}$, ist ein Weg von v_0 (Anfangsknoten) nach v_k (Endknoten). Die Länge des Weges ist die Anzahl der durchlaufenen Kanten. Ist G einfach, so geben wir bei einem Weg in G die Kanten nicht explizit an. Ein Weg ohne Knotenwiederholung heißt einfach. Ein
Weg, für den Anfangs- und Endknoten identisch sind, heißt Kreis oder Zykel. Ein Kreis, an dem (außer Anfangs- und Endknoten) alle Knoten verschieden sind, heißt wiederum einfach. \(G = (V, E) \) heißt zusammenhängend, wenn es zwischen je zwei Knoten aus \(V \) einen Weg in \(G \) gibt, ansonsten ist \(G \) unzusammenhängend. Da die “Wegverbundenheit” eine Äquivalenzrelation ist, zerfällt jeder Graph eindeutig in zusammenhängende Komponenten, seine Zusammenhangskomponenten.

Ein Graph \(G = (V, E) \) kann dargestellt werden, indem man die Knoten aus \(V \) auf Punkte in der Ebene abbildet, und die Kanten aus \(E \) als Jordan-Kurven (stetige sich selbst nicht kreuzende Kurven) zwischen den Endpunkten.

Ein Graph \(G = (V, E) \) heißt planar, wenn es eine Darstellung von \(G \) gibt, in der sich die Kanten nicht kreuzen, also nur in Knoten treffen. Eine solche Darstellung nennen wir dann auch planare Einbettung. Eine planare Einbettung eines Graphen zerlegt die Ebene in Facetten (Gebiete, Flächen).

Offensichtlich gibt es zu jedem Knoten \(v \) bzw. zu jeder Kante \(e \) eines planaren Graphen eine Einbettung, bei der \(v \) bzw. \(e \) auf dem Rand der äußeren Facette liegt:

Betrachte eine Einbettung auf der Kugel und “rolle” diese so in der Ebene aus, daß die/eine Facette, die \(v \) bzw. \(e \) auf ihrem Rand hat, zur äußeren Facette wird.

![Abbildung 2.1: Knoten, Kanten und Facetten eines planaren Graphen.](image)

Jede Kante, die auf einem einfachen Kreis liegt, grenzt an genau zwei Facetten an; alle anderen an genau eine Facette.

Im folgenden bezeichne immer \(n = |V|, m = |E| \) und \(f \) die Anzahl der Facetten. Der Satz von Euler (bewiesen 1750) beschreibt den Zusammenhang zwischen \(n, m \) und \(f \) in einem planaren Graphen.
Satz 2.1 Satz von Euler

In einem zusammenhängenden planaren Graph $G = (V, E)$, mit $|V| = n$, $|E| = m$ und f Anzahl der Facetten gilt für jede seiner planaren Einbettungen

$$n - m + f = 2.$$

Beweis: Wir führen eine Induktion über m durch. Für $m = 0$ besteht G aus einem einzelnen Knoten und $n - m + f = 1 + 1 = 2$ gilt. Sei nun $m \geq 1$.

Fall 1: Wenn G einen Kreis enthält, so gibt es eine Kante e, die wir aus G entfernen können, so daß $G' = (V, E\setminus\{e\})$ immer noch zusammenhängend ist. Die beiden Facetten von G, die an e angrenzen, werden durch Wegnahme von e zu einer Facette, d.h. die Anzahl der Facetten f' von G' erfüllt $f' = f - 1$. Nach Induktionsvoraussetzung ist

$$n - (m - 1) + f' = 2,$$

also folgt die Behauptung für G.

Fall 2: Enthält G keinen Kreis, so zerfällt G durch Wegnahme von einer beliebigen Kante e in zwei zusammenhängende Graphen $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$ mit $n_1 = |V_1|$, $n_2 = |V_2|$, $m_1 = |E_1|$, $m_2 = |E_2|$ und $n_1 + n_2 = n$, $m_1 + m_2 = m - 1$. Für G_1 bzw. G_2 gilt nach Induktionsvoraussetzung, daß

$$n - m + f = n_1 + n_2 - m_1 - m_2 - 1 + 1$$
$$= n_1 - m_1 + n_2 - m_2$$
$$= 1 + 1 = 2$$

\[\square\]

Folgerung 2.2 Ein zusammenhängender planarer Graph ohne Kreise besitzt $n - 1$ Kanten.
Ein zusammenhängender Graph ohne Kreis heißt *Baum* und ist offensichtlich immer planar.

Folgerung 2.3 Ein planarer einfacher Graph mit $n \geq 3$ Knoten hat höchstens $3n - 6$ Kanten.

Beweis: Betrachte einen planaren Graphen G. Wir können annehmen, daß G maximal planar ist, d.h. unter allen Graphen mit n Knoten maximale Kantenzahl hat. In einer Einbettung von G muß dann jede Facette durch genau drei Kanten begrenzt sein. Insbesondere ist G zusammenhängend. Da jede Kante zwei Facetten begrenzt, gilt $3 \cdot f = 2 \cdot m$. Also gilt mit Satz 2.1, daß $m = 3n - 6$.

Lemma 2.4 Sei G ein planarer einfacher Graph mit $n \geq 3$ Knoten, $d_{\text{max}}(G)$ bezeichne den Maximalgrad in G und n_i die Anzahl der Knoten in G mit Grad i, $0 \leq i \leq d_{\text{max}}(G)$. Dann gilt

\[6 \cdot n_0 + 5 \cdot n_1 + 4 \cdot n_2 + 3 \cdot n_3 + 2 \cdot n_4 + n_5 \geq n_7 + 2 \cdot n_8 + 3 \cdot n_9 + \ldots + (d_{\text{max}}(G) - 6) \cdot n_{d_{\text{max}}} + 12. \]

Beweis: Offensichtlich ist $n = \sum_{i=0}^{d_{\text{max}}(G)} n_i$ und $2 \cdot m = \sum_{i=0}^{d_{\text{max}}(G)} i \cdot n_i$.

Da wegen Folgerung 2.3 gilt, daß $6n \geq 2m + 12$ ist, folgt

\[6 \cdot \sum_{i=0}^{d_{\text{max}}(G)} n_i \geq \sum_{i=0}^{d_{\text{max}}(G)} i \cdot n_i + 12. \]

Folgerung 2.5 Jeder planare einfache Graph enthält einen Knoten v mit $d(v) \leq 5$.
2.2 Charakterisierung planarer Graphen

Wir wollen nun untersuchen, wie sich planare Graphen charakterisieren lassen. Eine zentrale Rolle spielt dabei der Satz von Kuratowski, der planare Graphen anhand von verbotenen Subgraphen charakterisiert. Ein Graph $H = (V(H), E(H))$ heißt Subgraph (Teilgraph) von $G = (V, E)$, falls $V(H) \subseteq V$ und $E(H) \subseteq E$. Eine Teilmenge $V' \subseteq V$ induziert einen Subgraph $H = (V', E(H))$ von G durch $E(H) := \{e \in E :$ beide Endknoten von e sind in $V'\}$, genannt knoteninduzierter Subgraph. Jede Teilmenge $E' \subseteq E$ induziert einen Subgraph $H = (V(H), E')$ von G durch $V(H) := \{v \in V :$ es gibt eine Kante $e \in E'$ mit Endknoten $v\}$, genannt kanteninduzierter Subgraph.

Abbildung 2.2: H ist eine Unterteilung von G.

Bemerkungen:

1. Ein Graph, der einen nicht planaren Subgraph besitzt, ist nicht planar.

2. Ein Graph, der eine Unterteilung eines nicht planaren Graphen ist, ist nicht planar.

3. Ein Graph, der eine Unterteilung eines nicht planaren Graphen als Subgraph besitzt, ist nicht planar.
Wir wollen nun die planaren Graphen vollständig durch verbotene Subgraphen charakterisieren. Vorab benötigen wir noch den Begriff des \(k \)-fachen Zusammenhangs. Eine Menge \(S \subset V \) heißt \(\text{Separator} \) von \(G = (V,E) \), falls der durch \(V \setminus S \) induzierte Subgraph von \(G \) unzusammenhängend ist. \(S \) trennt die Knoten \(u, v \in V \setminus S \), falls \(u \) und \(v \) in dem durch \(V \setminus S \) induzierten Subgraph (bezeichnet mit \(G - S \)) in verschiedenen Zusammenhangskomponenten liegen. Siehe Abbildung 2.3. Wir definieren den \(\text{Kantenzusammenhang} \ \kappa_G(u,v) \) zweier Knoten \(u \) und \(v \) bzw. den \(\text{Kantenzusammenhang} \ \kappa(G) \) des Graphen \(G \) wie folgt.

\[
\kappa_G(u,v) := \begin{cases} |V| - 1, & \text{falls } \{u,v\} \in E \\ \min_{S \subset V, \text{Separator von } G} |S|, & \text{sonst.} \end{cases}
\]

\[
\kappa(G) := \min_{S \subset V, \text{Separator von } G} \{|S|, |V| - 1\} = \min_{u,v \in V} \kappa_G(u,v)
\]

Eine Menge \(S \subset E \) heißt \(\text{Schnitt} \) von \(G = (V,E) \), falls der durch \(E \setminus S \) induzierte Subgraph von \(G \) unzusammenhängend ist, d.h. in Graphen \(G_1 = (V_1, E_1), G_2 = (V_2, E_2) \) zerfällt, mit \(V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset, E_1 \cup E_2 = E \setminus S, E_1 \cap E_2 = \emptyset \), wobei alle Kanten aus \(S \) einen Endknoten in \(V_1 \) und einen Endknoten in \(V_2 \) haben. \(S \) trennt die Knoten \(u, v \in V \), falls \(u \) und \(v \) in dem durch \(E \setminus S \) induzierten Subgraph (bezeichnet mit \(G - S \)) in verschiedenen Zusammenhangskomponenten liegen. Entsprechend definieren wir den \(\text{Kantenzusammenhang} \ \lambda_G(u,v) \) zweier Knoten \(u \) und \(v \), bzw. den \(\text{Kantenzusammenhang} \ \lambda(G) \) des Graphen \(G \) wie folgt.

\[
\lambda_G(u,v) := \min_{S \subset E, \text{Schnitt von } G} |S| = \min_{u,v \in V} \lambda_G(u,v)
\]

Ein Schnitt \(S \) mit \(|S| = 1 \) heißt \(\text{Brücke} \). \(G \) heißt \(k \)-fach \(\text{knoten-} \)bzw. \(\text{kantenzusammenhängend} \), falls \(k \leq \kappa(G) \) bzw. \(k \leq \lambda(G) \). Zwei Wege in einem
Graphen G heißen (intern) knotendisjunkt, wenn sie (außer den Endknoten) keine gemeinsamen Knoten enthalten und kantendisjunkt, wenn sie keine gemeinsame Kante enthalten.

Satz 2.6 Satz von Menger (1927)
Seien s und t zwei Knoten eines Graphen G, s und t nicht adjazent bei der knotendisjunkten Version.

\[\kappa_G(s, t) \geq k \text{ genau dann, wenn es } k \text{ paarweise intern knotendisjunkte Wege zwischen } s \text{ und } t \text{ in } G \text{ gibt.} \]

\[\lambda_G(s, t) \geq k \text{ genau dann, wenn es } k \text{ paarweise kantendisjunkte Wege zwischen } s \text{ und } t \text{ in } G \text{ gibt.} \]

Folgerung 2.7 Ist $S \subset V$ ein Separator, der s und t trennt und $|S| = \kappa_G(s, t) = k$, so gibt es auch zwei “Bündel” von jeweils k intern knotendisjunkten Wegen von s nach S und von t nach S, die jeweils zu verschiedenen Knoten in S führen.
Satz 2.8 Satz von Kuratowski (1930)
Ein Graph ist genau dann planar, wenn er keine Unterteilung von K_5 oder $K_{3,3}$ als Subgraph enthält.

Beweis: Wir haben bereits gezeigt, daß K_5 und $K_{3,3}$ nicht planar sind. Damit ist klar, daß ein planarer Graph keine Unterteilung des K_5 bzw. $K_{3,3}$ als Subgraph enthalten kann. Es bleibt zu zeigen, daß jeder Graph, der keine Unterteilung des K_5 bzw. $K_{3,3}$ als Subgraph enthält, planar ist.

Wir führen eine Induktion über die Anzahl n der Knoten des Graphen $G = (V, E)$ durch. Für $n \leq 4$ gilt die Behauptung, da K_4 planar ist. Für $n \geq 5$ führen wir eine Induktion über die Anzahl m der Kanten des Graphen durch.

Wenn G $m = 0$ Kanten enthält, ist G trivialerweise planar. Gelte also die Behauptung für alle Graphen mit weniger als n Knoten oder n Knoten und echt weniger als m Kanten. $G = (V, E)$ sei ein Graph mit $|V| = n \geq 5$ und $|E| = m$. Wir machen eine Fallunterscheidung nach $\kappa(G)$.

Fall 1: $\kappa(G) = 0$
Nach Induktionsvoraussetzung kann jede Zusammenhangskomponente von G planar eingebettet werden; also ist auch G planar.

Fall 2: $\kappa(G) = 1$
Es gibt einen Knoten v, so daß $\{v\}$ ein Separator von G ist. G kann also auch zerlegt werden in zwei kantendisjunkte Graphen $G_1 = (V_1, E_1)$...
und \(G_2 = (V_2, E_2) \) mit \(E_1 \cup E_2 = E \), \(E_1 \cap E_2 = \emptyset \). Nach Induktions-
voraussetzung können \(G_1 \) und \(G_2 \) planar eingebettet werden, und zwar
so, daß \(v \) jeweils auf dem Rand der äußeren Facette liegt. Aus diesen
Einbettungen erhält man dann auch eine planare Einbettung von \(G \).
Siehe Abbildung 2.5.

Abbildung 2.5: \(\{v\} \) ist Separator von \(G \).

Abbildung 2.6: \(\{u, v\} \) ist Separator von \(G \).

Fall 3: \(\kappa(G) = 2 \)
Es gibt einen Separator \(\{u, v\} \) und \(G \) kann zerlegt werden in \(G_1 =
(V_1, E_1) \) und \(G_2 = (V_2, E_2) \) mit \(V_1 \cup V_2 = V \), \(V_1 \cap V_2 = \{u, v\} \), \(E =
E_1 \cup E_2 \) und \(E_1 \cap E_2 = \emptyset \) bzw. \(E_1 \cap E_2 = \{\{u, v\}\} \), falls \(\{u, v\} \in E \).
Siehe Abbildung 2.6.

Falls \(\{u, v\} \in E \), so können nach Induktionsvoraussetzung \(G_1 \) und \(G_2 \)
so planar eingebettet werden, daß \(\{u, v\} \) jeweils auf dem Rand der äußere
ren Facette liegt. Daraus erhält man dann auch eine planare Einbettung
von \(G \).

Falls \(e := \{u, v\} \notin E \), so betrachte \(G_1 + e := (V_1, E_1 \cup \{e\}) \) und \(G_2 + e \).
Wir zeigen, daß auch \(G_1 + e \) und \(G_2 + e \) planar sind. Nach Induktions-
voraussetzung genügt es dazu, zu zeigen, daß sie keine Unterteilung

des \(K_5 \) bzw. \(K_{3,3} \) enthalten. Falls \(G_i + e \) eine Unterteilung des \(K_5 \) oder

der \(K_{3,3} \) enthalten würde, so müßte diese die Kante \(e \) enthalten. Da
\(\kappa(G) = 2 \), ist auch \(\kappa(G_i) \geq 2 \). Es gibt also in \(G_i \) jeweils einen Weg \(P_i \)
von \(u \) nach \(v \), \(i = 1, 2 \). Dann enthielt aber auch \(G_i + P_j \), mit \(i \neq j \) eine Unterteilung des \(K_5 \) bzw. des \(K_{3,3} \), die \(P_i \) enthält. Dies ist ein Widerspruch.

Wir können also wieder \(G_i + e \) so planar einbetten, daß \(e \) auf dem Rand der äußeren Facette liegt, und erhalten daraus eine planare Einbettung für \(G \).

Fall 4: \(\kappa(G) \geq 3 \)
Sei \(e = \{u, v\} \) eine beliebige Kante und \(G' := G - e \). Wir unterscheiden die beiden Fälle \(\kappa_{G'}(u, v) = 2 \) und \(\kappa_{G'}(u, v) \geq 3 \).

Abbildung 2.7: Illustration von Fall 4.1. \(\{a, b\} \) ist Separator von \(G - e \).

Fall 4.1: \(\kappa_{G'}(u, v) = 2 \)
Es gibt einen Separator \(\{a, b\} \), der \(u \) und \(v \) in \(G' \) trennt. \(G' \) kann dann an den Knoten \(a, b \) zerlegt werden in Subgraphen \(G'_1 = (V_1, E_1) \) und \(G'_2 = (V_2, E_2) \) bestehend aus den durch Wegnahme von \(\{a, b\} \) induzierten Subgraphen jeweils zusammen mit \(a, b \) und den dazu inzidenten Kanten zu Knoten im Subgraph. Es ist also \(V_1 \cup V_2 = V \), \(V_1 \cap V_2 = \{a, b\} \), \(u \in V_1 \), \(v \in V_2 \), \(E_1 \cup E_2 = E \setminus \{e\} \) und \(E_1 \cap E_2 = \emptyset \) bzw. \(E_1 \cap E_2 = \{\{a, b\}\} \), falls \(\{a, b\} \in E \).

Da \(n \geq 5 \) ist, existiert ein weiterer Knoten \(c \), wobei o.B.d.A. \(c \) in \(G'_i \) sei. Füge, falls noch nicht vorhanden, die Kanten \(\{a, b\} \), \(\{a, v\} \) und \(\{b, v\} \) ein, und nenne dieses "Dreieck" \(D \). Siehe Abbildung 2.7.
Setze \(G_1 := G'_1 + D + e \) und \(G_2 := G'_2 + D \). Dann haben \(G_1 \) und \(G_2 \) genau \(D \) gemeinsam. Für \(G_1 \) und \(G_2 \) ist die Induktionsvoraussetzung erfüllt, da sie beide echt weniger Knoten als \(G \) haben. Wir gehen nun folgendermaßen vor:
Abbildung 2.8: Illustration von Fall 4.1. Einbettung von G_1 in das Dreieck von G_2.

G_1 und G_2 werden so eingebettet, daß D jeweils eine Facette ist, und zwar die äußere Facette von G_1 und eine innere von G_2. Für G wird dann bewiesen, daß basierend auf diesen Einbettungen ebenfalls eine planare Einbettung existiert. Dabei wird G_1 in G_2 eingebettet. Siehe Abbildung 2.8.

Zunächst muß natürlich gezeigt werden, daß G_1 und G_2 planar sind, d.h. D keinen K_5 oder $K_{3,3}$ „zuläßt“, und darüber hinaus, daß G_1, G_2 geeignet (wie oben) einbettbar sind.

Abbildung 2.9: Illustration von Fall 4.1. $\{a, b, v\}$ ist ein Separator, der u und c trennt.

Da $\kappa(G) \geq 3$ ist, gibt es drei knotendisjunkte Wege in G, die u und c verbinden. Die Menge $\{a, b, v\}$ muß in G ein Separator sein, der u und c trennt. Also gehen alle drei Wege von u nach c durch diesen Separator. Entsprechend existieren die beiden Bündel knotendisjunkter Wege von c nach $\{a, b, v\}$ und von u nach $\{a, b, v\}$. Siehe Abbildung 2.9.
Wir zeigen: Enthielte nun G_1 oder G_2 eine Unterteilung des K_5 oder $K_{3,3}$, die Kanten aus D benutzt, so gäbe es auch in G eine Unterteilung des K_5 bzw. des $K_{3,3}$, die gegebenenfalls über geeignete Wege von c nach a, b und v, bzw. von u nach a, b und v gingen.

Fall 4.1.1: G_1 enthält eine Unterteilung von K_5 oder $K_{3,3}$, die Kanten aus D benutzt.

Wenn sie nur eine der Kanten aus D benutzt, so kann diese leicht durch einen entsprechenden Weg über c in G simuliert werden. Alle drei Kanten aus D können nur bei einem K_5 benutzt werden, in dem v nicht Unterteilungsknoten ist. Ein solcher K_5 kann aber nicht existieren, da $d_G(v) = 3$. Ebenso kann es keinen K_5 geben, der zwei Kanten aus D benutzt und den zu diesen beiden Kanten inzidenten Knoten a, b oder v nicht als Unterteilungsknoten benutzt. Werden zwei Kanten aus D für einen K_5 oder $K_{3,3}$ benutzt, so können diese zusammen mit dem Knoten $(a, b$ oder $v)$, der zu beiden Kanten inzident ist, durch c mit geeigneten Wegen simuliert werden.

![Abbildung 2.10: Illustration zu Fall 4.1.2.](image)

Fall 4.1.2 G_2 enthält eine Unterteilung von K_5 oder $K_{3,3}$, die Kanten aus D benutzt.

Eine einzelne Kante aus D kann wiederum leicht durch einen Weg
über \(u \) simuliert werden. Wenn alle drei Kanten aus \(D \) benutzt werden, so gibt es einen \(K_5 \), also zwei weitere Knoten in \(G_2 \), die knotendisjunkte Wege zu \(a, b \) und \(v \) haben. Dann würde aber \(u \) mit diesen beiden Knoten und den Knoten \(a, b, v \) und den entsprechenden Wegen eine Unterteilung des \(K_{3,3} \) in \(G \) sein. Siehe Abbildung 2.10.

Werden zwei Kanten aus \(D \) für eine Unterteilung des \(K_5 \) benutzt, so kann wiederum ähnlich wie eben eine Unterteilung des \(K_{3,3} \) in \(G \) konstruiert werden. Zwei Kanten aus \(D \) zusammen mit dem Knoten, der zu diesen beiden Kanten in einer Unterteilung des \(K_{3,3} \) inzident ist, können durch entsprechende Wege über \(u \) zusammen mit \(u \) simuliert werden.

Wir können nun \(G_1 \) und \(G_2 \) so planar einbetten, daß \(D \) eine Facette begrenzt. Betrachte dazu eine planare Einbettung von \(G_1 \). Angenommen in dieser Einbettung gibt es Knoten \(x \) und \(y \) im Inneren bzw. Äußeren von \(D \). Da \(\kappa_G(x, y) \geq 3 \) ist, gibt es drei disjunkte Wege in \(G \) von \(x \) zu \(a, b, v \) bzw. \(y \) zu \(a, b, v \). Zusammen mit den Wegen von \(c \) zu \(a, b \) und \(v \) gibt es dann aber einen \(K_{3,3} \) in \(G \). Die Argumentation ist analog für \(G_2 \).

Abbildung 2.11: Illustration zu Fall 4.2.

Fall 4.2: \(\kappa_G(u, v) \geq 3 \)

Nach Induktionsvoraussetzung ist \(G' \) planar. Betrachte also eine planare Einbettung von \(G' \). Liegen \(u \) und \(v \) auf dem Rand einer gemeinsamen Facette, so kann die Kante \(\{u, v\} = e \) innerhalb dieser Facette ebenfalls planar eingefügt werden. Betrachte also
die Facetten, die an \(u \) grenzen. Da \(\kappa_{G'}(u, v) \geq 3 \), gibt es mindestens drei disjunkte Wegen \(W_1, W_2 \) und \(W_3 \) von \(u \) nach \(v \) in \(G' \), also auch mindestens drei Facetten, die an \(u \) grenzen. Die Ränder dieser Facetten induzieren wiederum mindestens drei Wege \(V_1, V_2 \) und \(V_3 \) um \(u \) herum. Wir führen den Beweis für den Fall, daß es genau drei Facetten gibt, die an \(u \) angrenzen. Die Argumentation für den Fall, daß es mehr als drei angrenzende Facetten gibt, ist analog.

Sei \(v_{ij} \) jeweils der gemeinsame Knoten von \(V_i \) und \(W_j \). Wir zeigen, daß nachdem ob die entsprechenden beiden Knoten aus \(W_j \) identisch sind oder nicht, es nun eine Unterteilung des \(K_{3,3} \) oder des \(K_5 \) in \(G \) gibt. Siehe Abbildung 2.11.

Abbildung 2.12: Fall 4.2 a).

Abbildung 2.13: Fall 4.2 b).
a) $v_{ij} = v_{lj}$ für alle $j \in \{1, 2, 3\}$
 Dies ist Unterteilung des K_5.

b) $v_{ij} = v_{l_2}$ für genau zwei der $j \in \{1, 2, 3\}$
 Dann ergibt sich eine Unterteilung des $K_{3,3}$.

Abbildung 2.14: Fall 4.2 c).

c) $v_{ij} = v_{l_j}$ für genau ein $j \in \{1, 2, 3\}$
 Dann ergibt sich eine Unterteilung des $K_{3,3}$.

Abbildung 2.15: Fall 4.2 d).

d) keine Gleichheit
 Dann ergibt sich eine Unterteilung des $K_{3,3}$.
Zu einem beliebigen Graphen $G = (V,E)$ können wir den dazu korrespondierenden einfachen Graphen betrachten, der entsteht, indem alle Schleifen aus G entfernt werden und Kanten mit denselben Endknoten zu einer Kante zusammengefaßt werden.

Offensichtlich ist ein Graph planar genau dann, wenn der korrespondierende einfache Graph planar ist.

Der Satz von Kuratowski liefert also auch eine Charakterisierung nicht einfacher planarer Graphen. Mit dem Satz von Kuratowski haben wir die planaren bzw. nicht planaren Graphen vollständig charakterisiert. Wie nützlich ist der Satz von Kuratowski aus algorithmischer Sicht?

Ein Algorithmus, der basierend auf diesem Satz für einen beliebigen Graphen untersucht, ob dieser planar ist, würde Subgraphen betrachten, und entscheiden, ob diese Unterteilungen des $K_{3,3}$ oder K_5 sind.

Es gibt mindestens 2^m Subgraphen. Dieses Verfahren scheint also nicht effizient zu sein. Es gibt jedoch effiziente Algorithmen zum Testen auf Planarität mit Laufzeit $O(n)$.

2.3 Dualgraph

Betrachte einen planaren Graphen $G = (V,E)$ mit einer festen Einbettung. F sei die Menge der Facetten von G bzgl. dieser Einbettung. Definiere dazu einen Graphen $G^* = (V^*,E^*)$ wie folgt:

Zu jeder Facette aus F gibt es einen Knoten in V^*, und zu jeder Kante $e \in E$ gibt es genau eine duale Kante $e^* \in E^*$, die die beiden Knoten aus V^* verbindet, welche den Facetten aus F entsprechen, an die e angrenzt. G^* heißt geometrischer Dualgraph (oder nur Dualgraph) zu G. Siehe Abbildung 2.16.

Beobachtungen

2. Offensichtlich ist G^* wieder planar und $(G^*)^* = G$.
Abbildung 2.16: Ein planar eingebetteter Graph G und sein Dualgraph G^*.

Abbildung 2.17: Verschiedene Dualgraphen desselben Graphen.

Lemma 2.9 Sei $G = (V, E)$ ein planarer Graph und $G^* = (V^*, E^*)$ sein Dualgraph (bzgl. einer festen Einbettung).

$S \subseteq E$ bildet einen Schnitt in G genau dann, wenn die Menge der entsprechenden Kanten $S^* \subseteq E^*$ Kreise in G^* bildet.
$S \subseteq E$ bildet Kreise in G genau dann, wenn die Menge der entsprechenden Dualkanten $S^* \subseteq E^*$ einen Schnitt in G^* bildet.

\[G \]
\[G^* \]

Abbildung 2.18: Illustration zu Lemma 2.9.

\[\square \]

2.4 Suchmethoden in planaren Graphen

Bekannte Suchmethoden in Graphen sind die *Tiefensuche* (DFS) und die *Breitensuche* (BFS), und werden in der Grundvorlesung “Algorithmen und Datenstrukturen” behandelt.

Die Grundidee der Tiefensuche besteht darin, daß der Graph systematisch “durchsucht” wird, d.h. Knoten und Kanten werden besucht, wobei in einem “Suchschritt” wenn möglich weitergegangen wird zu einem “neuen” Knoten.

Knoten-DFS

Wähle einen beliebigen Knoten aus, markiere ihn und lege ihn auf einen “Stapel”. Solange der Stapel noch einen Knoten enthält, betrachte den obersten Knoten v auf dem Stapel.

Suchschritt an v:
Falls v einen unmarkierten Nachbarn besitzt, markiere ihn und lege ihn auf den Stapel, und “speichere” die entsprechende Kante.

backtrack:
Ansonsten entferne v von dem Stapel.

Wahlfreiheit:
Welcher unmarkierte Nachbar bzw. welche Kante zu einem unmarkierten Nachbar wird ausgewählt?

Abbildung 2.19: Ein Beispiel verschiedener Durchläufe einer Knoten-DFS.

Knoten-BFS

Wähle einen beliebigen Knoten aus, markiere ihn und hänge ihn an eine “Warteschlange” an. Solange die Warteschlange noch einen Knoten enthält, betrachte den vordersten Knoten v in der Warteschlange.
Suchschnitt an v:
Falls v einen unmarkierten Nachbarn besitzt, markiere ihn und hänge ihn an die Warteschlange, und speichere die entsprechende Kante.

backtrack:
Ansonsten entferne v aus der Warteschlange.

Abbildung 2.20: Ein Beispiel verschiedener Durchläufe einer Knoten-BFS.

RIGHT-FIRST Knoten-DFS
Wähle eine beliebige Kante e mit Endknoten u und v aus. Orientiere sie von $u \rightarrow v$ und lege sie auf einen Stapel. Solange der Stapel noch eine Kante enthält, betrachte die oberste Kante e auf dem Stapel.

Suchschnitt an e:
Falls der “Einlaufknoten” von e inzident ist zu einer nichtorientierten Kante, so orientiere die rechteste nichtorientierte Kante relativ zu e und lege sie auf den Stapel.
backtrack:
Ansonsten entferne e vom Stapel.

Abbildung 2.21: RIGHT-FIRST Kanten-DFS.

LEFT-FIRST Kanten-BFS
Wähle eine beliebige Kante mit Endknoten u und v aus. Orientiere sie von $u \rightarrow v$; hänge e an eine Warteschlange, orientiere alle von u ausgehenden Kanten von $u \rightarrow w$, wobei w anderer Endknoten und hänge sie der Reihe nach von links nach rechts relativ zu e an die Warteschlange an. Solange die Warteschlange nicht leer ist, betrachte den Einlaufknoten v der vordersten Kante e.

Suchschritt an e:
Falls dieser inzident ist zu einer nichtorientierten Kante, so orientiere die linkeste nichtorientierte Kante relativ zu e von $v \rightarrow u$, wobei u anderer Endknoten und hänge sie an die Warteschlange an.

backtrack:
Ansonsten entferne e aus der Warteschlange.
Kapitel 3

Färbung planarer Graphen

In der Einführung haben wir bereits das Färbungsproblem angesprochen. In diesem Kapitel werden wir beweisen, daß jeder planare Graph mit fünf Farben gefärbt werden kann. Tatsächlich ist jeder planare Graph sogar vierfärbbar. Der Beweis des Vierfarbensatzes ist allerdings zu aufwendig, um ihn in der Vorlesung zu behandeln.

KNOTENFÄRBUNGSPROBLEM

Gegeben sei ein Graph $G = (V, E)$. Färbe die Knoten aus V mit möglichst wenigen Farben so ein, daß benachbarte Knoten verschiedene Farben haben.

Abbildung 3.1: Beispiele von Knotenfärbungen

Bezeichne $\chi(G)$ die minimale Anzahl an Farben, die benötigt wird um G zulässig zu färben und $\omega(G)$ die Cliquenzahl von G, d.h das maximale
Es gilt $t \leq |V|$, so daß G einen K_t als knoteninduzierten Subgraphen enthält. Offensichtlich ist $\chi(G) \geq cl(G)$. ($\chi(G)$ heißt auch "chromatische Zahl" von G.)

Satz 3.1 Jeder planare Graph kann mit fünf Farben zulässig gefärbt werden.

Beweis: Wir führen eine Induktion über die Anzahl der Knoten n. Für $n \leq 5$ gilt die Behauptung trivialerweise. Sei also jeder planare Graph mit höchstens $n - 1$ Knoten fünffarbar, und G habe n Knoten. G enthält mindestens einen Knoten v mit $d(v) \leq 5$.

Fall 1: Es existiert ein Knoten v mit $d(v) \leq 4$. Betrachte Einbettung von G, mit v, w_1, w_2, w_3, w_4 wie folgt:

![Abbildung 3.2: Illustration von Fall 1.](image)

Entferne v und die entsprechenden Kanten $\{v, w_i\}$ aus G. Dann entsteht der Graph $G - v$ mit $n - 1$ Knoten, der per Induktionsannahme fünffarbar ist. Eine Fünffärbung von $G - v$ induziert dann eine Fünffärbung von G, wobei v gerade mit der Farbe gefärbt wird, die für keinen der w_i benutzt wurde.

Fall 2: Der minimale Grad in G ist fünf und v sei ein Knoten mit $d(v) = 5$. Betrachte wieder eine Einbettung von G wie in Abbildung 3.3.

Entferne v und die entsprechenden Kanten $\{v, w_i\}$ und färbte wieder G induktiv basierend auf einer Fünffärbung von $G - v$.

Fall 2.1: Falls für w_1, w_2, w_3, w_4, w_5 nicht alle fünf Farben bei einer Fünffärbung von $G - v$ verwendet werden, kann G wie in Fall 1 gefärbt werden.
Abbildung 3.3: Illustration zu Fall 2.

Fall 2.2: Jedes w_i hat eine eigene Farbe i, $1 \leq i \leq 5$. Betrachte den Subgraph H von $G - v$, der durch die Knoten mit Farben 1 und 4 induziert wird.

Falls w_1 und w_4 in H in verschiedenen Zusammenhangskomponenten H_1 bzw. H_4 liegen, so vertausche in H_1 die Farben 1 und 4 und färbe v in G mit Farbe 1.

Falls w_1 und w_4 in H verbunden sind, betrachte analog w_2 und w_5 und den durch Farben 2 und 5 induzierten Subgraph H'. Wegen der Planarität von G sind w_2 und w_5 in H' nicht verbunden. Durch Vertauschen der Farben 2 und 5 in der Zusammenhangskomponente von w_2 in H' und Färben von v mit Farbe 2 erhält man dann wieder eine Fünffärbung von G.

Dieser Beweis induziert einen einfachen Algorithmus um planare Graphen mit fünf Farben zu färben.

Fünffärbungsalgorithmus

Schritt 1: Sortiere die Knoten in der Reihenfolge v_1, \ldots, v_n, so daß $d_G(v_i) \leq 5$, wobei $G_1 := G$ und $G_i := G - \{v_1, \ldots, v_{i-1}\}$ für $i \geq 2$.

Schritt 2: Färbe dann zunächst G_n, dann G_{n-1} usw. wie im Beweis von Satz 3.1.
Versuch einer Vierfärbung mittels der gleichen Technik wie in Satz 3.1.

Ist diese Vorgehensweise anwendbar um zu einer Vierfärbung eines planaren Graphen zu kommen? Betrachte einen maximal planaren Graphen \(G = (V, E) \). Existiert ein \(v \in V \), mit \(d(v) \leq 3 \), so kann wie in Fall 1 vorgangen werden. Falls ein \(v \in V \), mit \(d(v) = 4 \) existiert, so kann aus einer Vierfärbung von \(G - v \) eine Vierfärbung von \(G \) analog zum Beweis von Satz 3.1, Fall 2 konstruiert werden. Sei also der minimale Grad eines Knoten 5 und \(v \in V \) mit \(d(v) = 5 \). Angenommen alle vier Farben rot, blau, gelb, grün würden für die Vierfärbung von \(w_1, \ldots, w_5 \) verwendet. Seien o.b.d.A. die Knoten \(w_2 \) und \(w_5 \) mit der Farbe gelb gefärbt, \(w_1 \) rot, \(w_3 \) grün und \(w_4 \) blau und sei \(H \) der Subgraph, der durch rot und blau induziert wird. Sind \(w_1 \) und \(w_4 \) nicht in \(H \) verbunden, so können rot und blau in einer der Komponenten vertauscht werden. Ebenso kann man vorgehen, wenn \(w_1 \) und \(w_3 \) nicht in dem entsprechenden Subgraphen verbunden sind.

Seien also \(w_1 \) und \(w_4 \) und \(w_1 \) und \(w_3 \) jeweils in dem rot-blauen bzw. rot-grünen Subgraphen verbunden. Dann sind \(w_2 \) und \(w_5 \) aber nicht verbunden, und die gelb-grüne Komponente \(H_5 \), die \(w_5 \) enthält, enthält nicht \(w_2 \) und \(w_3 \), und die gelb-blaue Komponente \(H_2 \), die \(w_2 \) enthält, enthält nicht \(w_4 \) und \(w_5 \).

Vertausche also in \(H_5 \) gelb mit grün und in \(H_2 \) gelb mit blau. Dann kann gelb für \(v \) verwendet werden. Dies kann jedoch zu einer unzulässigen Knotenfärbung führen. Siehe Abbildung 3.5.

Abbildung 3.4: Illustration zur Vierfärbung.
Abbildung 3.5: Gegenbeispiel zur Vierfärbung
Kapitel 4

Separatoren in planaren Graphen

Eine Menge $S \subseteq V$ heißt Separator von $G = (V, E)$, falls der durch $V \setminus S$ induzierte Subgraph von G unzusammenhängend ist. S trennt die Knoten $u, v \in V \setminus S$, falls u und v in dem durch $V \setminus S$ induzierten Subgraph (bezeichnet mit $G - S$) in verschiedenen Zusammenhangskomponenten liegen.

$MINIMUM\ BALANCED\ SEPARATOR\ PROBLEM$

Gegeben sei ein Graph $G = (V, E)$. Finde eine Partition von V in drei Mengen V_1, V_2 und S, wobei Separator S minimaler Kardinalität, der V_1 und V_2 trennt mit $|V_1|, |V_2| \leq \alpha \cdot |V|$ und $\frac{1}{2} \leq \alpha < 1$ konstant.

Das Problem ist für beliebige Graphen NP-schwer. Ist $\alpha = \frac{1}{2}$, so nennt man das Problem $MINIMUM\ BISECTION\ PROBLEM$. Es ist nicht bekannt, ob
das MINIMUM BISECTION PROBLEM auch für planare Graphen NP-
schwer ist. Allerdings läßt sich für planare Graphen in linearer Laufzeit ein
Separator finden, für dessen Größe und Balanciertheit der Zerlegung sich
noch eine gewisse Garantie beweisen läßt. Dahinter steht der folgende Satz
von Lipton & Tarjan (bewiesen 1977), der auch als PLANAR SEPARATOR
THEOREM bezeichnet wird.

Satz 4.1 PLANAR SEPARATOR THEOREM

Die Knotenmenge eines zusammenhängenden planaren Graphen $G = (V, E)$,
n = $|V| \geq 5$, kann so in drei Mengen $V_1, V_2, S \subseteq V$ partitioniert werden, daß

1. $|V_1|, |V_2| \leq \frac{2}{3} \cdot n$,
2. S Separator, der V_1 und V_2 trennt,
3. $|S| \leq 4 \cdot \sqrt{n}$.

Diese Partition kann in Laufzeit $O(n)$ berechnet werden.

Abbildung 4.1: Ein Separator, der die Bedingungen des PLANAR SEPARA-
TOR THEOREMs erfüllt.

Zur Illustration des Satzes siehe Abbildung 4.1. Bevor wir Satz 4.1 beweisen,
benötigen wir noch einige Begriffe. Ein Subgraph $T = (V(T), E(T))$ eines
Graphen $G = (V, E)$, heißt aufspannender Baum von G, falls T Baum ist
und $V(T) = V$. Ein beliebiger Knoten eines Baumes T kann als Wurzel w
ausgezeichnet sein. Dann ist das Level oder die Höhe eines Knotens v defi-
niert als die Länge des eindeutigen Weges vom Knoten v zur Wurzel und wird
mit \textit{level}(v) bezeichnet. Die \textit{Höhe von} T ist die Länge des längsten Weges von w zu einem Knoten aus T. Sei G = (V, E) ein planarer (eingebetteter) Graph. \(G' = (V, E') \) heißt \textit{Triangulierung von} G, falls \(G' \) ein kantenmaximaler planarer Graph ist, der \(G \) als Subgraph enthält. In einer Einbettung von \(G' \) sind alle Facetten Dreiecke. Zu einem eingebetteten planaren Graphen kann in Zeit \(O(n) \) eine Triangulierung konstruiert werden (Übung).

Für den Beweis von Satz 4.1 werden wir folgendes Lemma verwenden.

\textbf{Lemma 4.2} Sei \(G = (V, E) \) ein planarer zusammenhängender Graph mit \(|V| = n \geq 5 \) und T = (V, E(T)) ein aufspannender Baum von G mit Wurzel w und Höhe h. Die Knotenmenge von G kann so in drei Mengen \(V_1, V_2 \) und \(S \) partitioniert werden, daß

1. \(|V_1|, |V_2| \leq \frac{2}{3} \cdot n,
2. S \text{ Separator, der } V_1 \text{ und } V_2 \text{ trennt},
3. |S| \leq 2 \cdot h + 1.

Eine solche Partition kann in \(O(n) \) konstruiert werden.

\textbf{Beweis:} G wird zunächst durch Hinzufügen von Kanten trianguliert, d.h. die Facetten werden zu Dreiecken gemacht. Dies ist in \(O(n) \) möglich. Der so konstruierte Graph enthält also genau \(3n - 6 \) Kanten. Dementsprechend hat er nach dem Satz von Euler genau \(2n - 4 \) Facetten. Ein aufspannender Baum T des Ausgangsgraphen ist natürlich auch ein aufspannender Baum des triangulierten Graphen.

Basierend auf einem aufspannenden Baum T der Höhe h mit ausgezeichneter Wurzel suchen wir einen Kreis im triangulierten Graphen, der höchstens Länge \(2 \cdot h + 1 \) hat, und dessen Inneres und Äußeres jeweils höchstens \(\frac{2}{3} n \) Knoten enthalten. Die Knoten dieses Kreises bilden dann den gewünschten Separator S von G. Siehe Abbildung 4.2.

Jede Kante \(\{x, y\} \in E \) ist entweder auch in \(E(T) \), also eine \textit{Baumkante}, oder in \(E \setminus E(T) \), also eine \textit{Nichtbaumkante}. Jede Nichtbaumkante \(\{x, y\} \in E \setminus E(T) \) induziert einen Kreis, den Kreis \(K_{x,y} \) bestehend aus \(\{x, y\} \) und den Wegen von x bzw. y zum gemeinsamen Vorgänger maximalen Levels im Baum. Die Anzahl der Knoten auf \(K_{x,y} \) ist höchstens \(2 \cdot h + 1 \).
Abbildung 4.2: Illustration eines aufspannenden Baumes in einem planaren Graphen und dem durch eine Nichtbaumkante \(\{x, y\} \) induzierten Kreis \(K_{x,y} \). Die gestrichelten Kanten sind bei der Triangulierung zum Graphen hinzugefügt worden, die roten Kanten bilden einen aufspannenden Baum.

Betrachte \(\text{Inneres}(K_{x,y}) \) und \(\text{Außerem}(K_{x,y}) \), d.h. die Knoten und Kanten, die im Inneren von \(K_{x,y} \) bzw. in dessen Äußeren eingebettet sind, und bezeichne mit \(|\text{Inneres}(K_{x,y})| \) bzw. \(|\text{Außerem}(K_{x,y})| \) die Anzahl der Knoten im Inneren bzw. Äußeren von \(K_{x,y} \). Wir wählen eine beliebige Nichtbaumkante \(\{x, y\} \in E \setminus E(T) \), wobei o.B.d.A. \(|\text{Inneres}(K_{x,y})| \geq |\text{Außerem}(K_{x,y})| \). Wenn zusätzlich gilt, daß \(|\text{Inneres}(K_{x,y})| \leq \frac{2}{3}n \) ist, sind wir fertig.

Sei also \(|\text{Inneres}(K_{x,y})| > \frac{2}{3}n \). Wir verkleinern nun systematisch das Innere, indem wir eine geeignete Nichtbaumkante \(e \) im Inneren von \(K_{x,y} \) suchen, für die \(|\text{Inneres}(K_e)| \leq \frac{2}{3}n \) wird, und \(|\text{Außerem}(K_e)| \leq \frac{2}{3}n \) bleibt.

Betrachte zu \(\{x, y\} \) den Knoten \(t \) im \(\text{Inneren}(K_{x,y}) \), der mit \(x \) und \(y \) ein Dreieck bildet. Ein solcher Knoten existiert, denn es können nicht beide Kanten \(\{x, t\} \) und \(\{t, y\} \) Baumkanten sein, da sonst \(|\text{Inneres}(K_{x,y})| = 0 \). Siehe Abbildung 4.3.

Fall 1: Eine der beiden Kanten ist eine Baumkante, o.B.d.A. \(\{y, t\} \in E(T) \). Ersetze \(\{x, y\} \) durch \(\{x, t\} \) und betrachte nun \(K_{x,t} \). Dann gilt:
Abbildung 4.3: Die Nichtbaumkante \(\{x, y\} \) und der Knoten \(t \), der mit \(\{x, y\} \) ein Dreieck im Innen von \(K_{x,y} \) bildet.

\[
|\text{Äußeres}(K_{x,t})| = |\text{Äußeres}(K_{x,y})| \text{ und}
|\text{Inneres}(K_{x,t})| = |\text{Inneres}(K_{x,y})| - 1, \text{ falls } t \notin K_{x,y},
|\text{Äußeres}(K_{x,t})| = |\text{Äußeres}(K_{x,y})| + 1 \text{ und}
|\text{Inneres}(K_{x,t})| = |\text{Inneres}(K_{x,y})|, \text{ falls } t \in K_{x,y}.
\]

Ersetzung von \(\{x, y\} \) durch \(\{x, t\} \) verkleinert also \(|\text{Inneres}(K_{x,y})| \) bzw. läßt \(|\text{Inneres}(K_{x,y})| \) zumindest unverändert, und läßt \(|\text{Äußeres}(K_{x,t})| \) klein genug. Siehe Abbildung 4.4.

Abbildung 4.4: Illustration von Fall 1, \(t \notin K_{x,y} \) bzw. \(t \in K_{x,y} \).
Fall 2: Beide Kanten \(\{x, t\} \) und \(\{y, t\} \) sind Nichtbaumkanten.
O.b.d.A. sei \(|\text{Inneres}(K_{x,t})| \geq |\text{Inneres}(K_{y,t})| \). Ersetze \(\{x, y\} \) durch \(\{x, t\} \). Dann gilt

\[
|\text{Äußeres}(K_{x,t})| \leq n - \frac{1}{2} |\text{Inneres}(K_{x,y})| \leq \frac{2}{3}n, \text{ und}
|\text{Inneres}(K_{x,t})| \leq |\text{Inneres}(K_{x,y})| - 1.
\]

Ersetzung von \(\{x, y\} \) durch \(\{x, t\} \) verkleinert also \(|\text{Inneres}(K_{x,y})| \) und läßt \(|\text{Äußeres}(K_{x,t})| \) klein genug. Siehe Abbildung 4.5.

![Abbildung 4.5: Illustration von Fall 2.](image)

Damit haben wir bewiesen, daß sich eine Partition mit den gewünschten Eigenschaften konstruieren läßt. Wir müssen nun noch deren Implementation in linearer Laufzeit sicherstellen.

Implementation in linearer Laufzeit: Da beim Übergang von einer Nichtbaumkante zu einer neuen Nichtbaumkante im Inneren des betrachteten Kreises sich die Anzahl der Dreiecke im Inneren reduziert, endet das Verfahren nach spätestens \(2n - 4 \) solchen Übergängen. Wäre also jede der Verkleinerungsoperationen in konstanter Zeit realisierbar, wäre damit auch die gesamte Konstruktion in Gesamtlaufzeit \(O(n) \) möglich.

Alle Operationen, bis auf die Entscheidung welches Innere, \(|\text{Inneres}(K_{x,t})| \) oder \(|\text{Inneres}(K_{y,t})| \) größer ist in Fall 2, bzw. zu entscheiden wann das Innere des betrachteten Kreises nur noch höchstens \(\frac{2}{3}n \) Knoten enthält, sind in konstanter Zeit möglich. Allerdings kann eine einzelne Entscheidung ob \(|\text{Inneres}(K_{x,t})| < |\text{Inneres}(K_{y,t})| \) bzw. \(|\text{Inneres}(K_{x,t})| \leq \frac{2}{3}n \) mehr als konstante Zeit erfordern. Daher führen wir eine amortisierte Analyse durch. Wir
überlegen uns zunächst genauer, wie wir für einen Kreis $K_{x,y}$ die Größe $|Inneres(K_{x,y})|$ bestimmen können.

Zu Beginn des Verfahrens wird der Baum T von den Blättern zur Wurzel w hin durchlaufen, und für jeden Knoten gespeichert, wie viele Knoten sein Unterbaum enthält. Beginnend mit der gewählten Nichtbaumkante $\{x,y\}$ werden alle Knoten auf dem Weg von x bzw. y zum gemeinsamen Vorgänger im Baum markiert, und gleichzeitig aus den Unterbäumen im Inneren von $K_{x,y}$ der Wert $|Inneres(K_{x,y})|$ berechnet.

Bei jedem Verkleinerungsschritt entsprechend Fall 2 wird nun zunächst vom Knoten t im Baum nach oben gelaufen bis zum Vorgänger v von t auf $K_{x,y}$. Alle Knoten auf diesem Weg werden dabei markiert und die Anzahl a_t dieser Knoten sowie die Anzahl der Knoten rechts und links des Weges berechnet. Siehe Abbildung 4.6.

Um $|Inneres(K_{x,t})|$ und $|Inneres(K_{y,t})|$ zu berechnen, werden gleichzeitig die Ränder der beiden Kreise bis v entlanggelaufen und zwar abwechselnd Knoten für Knoten beginnend mit x bzw. y, und die Anzahl der Knoten im Inneren ($K_{x,t}$) bzw. Inneren ($K_{y,t}$) aufaddiert. Sobald der Rand eines der beiden Kreise vollständig abgelaufen ist, wird abgebrochen. Die Anzahl der Knoten im Inneren des anderen Kreises kann nun mit den Werten $|Inneres(K_{x,y})|$ und a_t "rückgerechnet" werden.

Abbildung 4.6: Illustration der "Aufsummierung" der Knoten rechts und links des Weges von t zu $K_{x,y}$.

Entscheidend ist nun, daß die Anzahl der Schritte bei dieser Vorgehensweise proportional zur Anzahl der Knoten in dem Teil von $K_{x,y}$ ist, der nicht weiter betrachtet wird. Insgesamt ist die Anzahl der Schritte also amortisiert
linear in der Anzahl der Knoten von G, also in $O(n)$. □

Im Beweis zu Satz 4.1 benutzen wir folgende Eigenschaft eines Breitensuchbaumes (BFS-Baum).

Lemma 4.3 Zu einem Graph $G = (V,E)$ sei $T = (V,E(T))$ ein BFS-Baum ausgehend von einer beliebigen Wurzel. Eine Nichtbaumkante verbindet Knoten desselben Levels oder direkt aufeinander folgender Level, d.h. für ${u,v,} \in E \setminus E(T)$ gilt $|\text{level}(u) - \text{level}(v)| \leq 1$.

Beweis: Angenommen ${u,v,} \in E \setminus E(T)$ mit $|\text{level}(v) - \text{level}(u)| > 1$. Ohne Beschränkung der Allgemeinheit sei $\text{level}(u) < \text{level}(v)$. Der unmittelbare Vorgänger von v in T müßt nach u durchsucht werden, da sein Level mindestens um 1 größer ist als $\text{level}(u)$. Wenn ${u,v} \in E$ müß v dann in der BFS aber bereits von u aus “entdeckt” worden sein. □

Abbildung 4.7: Illustration zu Lemma 4.3.
Wir können nun Satz 4.1 beweisen.

Beweis: Konstruiere eine Triangulierung von G und einen BFS-Baum T mit beliebiger Wurzel. Seien dessen Level angefangen mit der Wurzel die Level $0, 1, \ldots, h$ und bezeichne S_i, $0 \leq i \leq h$, die Menge der Knoten in Level i. Sei $\mu, 0 \leq \mu \leq h$, das Level mit der Eigenschaft

$$
\sum_{i=0}^{\mu-1} |S_i| \leq \frac{n}{2} \quad \text{und} \quad \sum_{i=0}^{\mu} |S_i| > \frac{n}{2}.
$$

Falls $|S_\mu| \leq 4 \cdot \sqrt{n}$ und $\mu < h$, so setze $S := S_\mu$, $V_1 := \bigcup_{i=0}^{\mu-1} S_i$ und $V_2 := \bigcup_{i=\mu+1}^{h} S_i$. Dann ist V_1, V_2 und S eine Partition von V mit den gewünschten Eigenschaften.

Abbildung 4.8: Illustration der Aufteilung der Level.

Ansonsten sei m das unterste Level oberhalb von Level μ und M das oberste Level unterhalb von Level μ, $0 \leq m \leq \mu \leq M \leq h + 1$, mit $|S_m| \leq \sqrt{n}$ und $S_M \leq \sqrt{n}$. Setze $A_2 := \bigcup_{i=m+1}^{M-1} S_i$. Siehe Abbildung 4.8. (Beachte, daß möglicherweise $M = h + 1$ und $S_M = \emptyset$ ist.) Basierend auf S_m, S_M und gegebenenfalls weiteren Knoten wird nun ein Separator S mit den gewünschten
Eigenschaften konstruiert. Dabei hängt von der Größe von A_2 ab, ob noch weitere Knoten aus dem Bereich zwischen S_m und S_M zu S hinzugefügt werden müssen. Um diese zusätzlichen Knoten zu bestimmen, wird Lemma 4.2 angewendet.

Fall 1: $|A_2| \leq \frac{2}{3}n$

Setze $S := S_m \cup S_M$. S ist Separator von G und zerlegt V in die Knotenmengen $A_1 := \bigcup_{i=0}^{m-1} S_i$, $A_2 = \bigcup_{i=m+1}^{M-1} S_i$ und $A_3 := \bigcup_{i=M+1}^{h} S_i$. Setze dann $V_1 := A_i$ mit A_i kardinalitätsmaximal unter A_1, A_2 und A_3, und $V_2 := V \setminus (V_1 \cup S)$. Nach Wahl von μ, m und M gilt $|A_1| \leq \frac{n}{2}$ und $|A_3| < \frac{n}{3}$. Also ist $|V_1| \leq \frac{3}{2}n$. Außerdem gilt

$$|V_2| \leq n - |V_1| \leq n - \frac{|V_2|}{2}, \text{ da } |V_1| \geq \frac{|V_2|}{2}.$$

Also ist $\frac{3}{2}|V_2| \leq n$ und S, V_1 und V_2 eine Partition von V mit den gewünschten Eigenschaften.

Fall 2: $|A_2| > \frac{2}{3}n$

Verschmelze die Knoten in $\bigcup_{i=0}^{m} S_i$ zu einem Knoten s durch sukzessives Zusammenziehen von Kanten zwischen Knoten aus $\bigcup_{i=0}^{m} S_i$. Entferne alle Knoten aus $\bigcup_{i=M}^{h} S_i$. Dadurch entsteht ein Graph $G' = (V', E')$ mit

$$V' := V \setminus \left(\bigcup_{i=0}^{m} S_i \cup \bigcup_{i=M}^{h} S_i \right) \cup \{s\}$$

und $\{x, y\} \in E'$ genau dann, wenn entweder $x, y \in V' \setminus \{s\}$ und $\{x, y\} \in E$, oder $x, y \in V'$, wobei o.B.d.A. $x = s$ und es existiert ein $z \in \bigcup_{i=0}^{m} S_i$ mit $\{z, y\} \in E$. Dann ist entsprechend $n' := |V'| = |A_2| + 1$. Siehe Abbildung 4.9.

Der BFS-Baum T induziert in G' einen BFS-Baum T' mit Wurzel s. Die Höhe h' von T' ist maximal \sqrt{n}, da für jedes $i, m < i < M$ gilt $|S_i| > \sqrt{n}$ und $|V'| \leq n$.

Mit Lemma 4.2 existiert eine Zerlegung S', V'_1 und V'_2 von V' mit $|V'_1|, |V'_2| \leq \frac{2}{3}n' \leq \frac{2}{3}n$ und $|S'| \leq 2 \cdot \sqrt{n} + 1$.

Setze $S := (S' \cup S_m \cup S_M) \setminus \{s\}$. Dann ist S ein Separator von G mit $|S| \leq 4 \cdot \sqrt{n}$, denn sollte $|S'| = 2 \cdot \sqrt{n} + 1$ sein, so enthält S' die Wurzel s von T'.

Wähle V_1 als die größere der Mengen V_1' und V_2' (gegebenenfalls ohne s) und den Rest von V als V_2 bzw. falls $|V_1'| = |V_2'|$ wähle die Menge, welche nicht s enthält, als V_1, den Rest als V_2. Siehe Abbildung 4.9: Illustration zu Fall 2.

Dann gilt

$$|V_1| \leq \frac{2}{3} n' \leq \frac{2}{3} n \quad \text{und}$$

$$|V_2| \leq n - (|V_1| + |S|) \leq n - \frac{|A_2|}{2} \leq \frac{2}{3} n.$$

\[\square\]

Randfälle des "Planar-Separator-Theorems":

- Falls $n \leq 2$ oder $G = K_4$ oder $G = K_3$, existiert kein (nichttrivialer) Separator von G. Satz 4.1 ist nur relevant für planare zusammenhängende...
Graphen, die einen (nichttrivialen) Separator besitzen, also ab $n \geq 4$ und $G \neq K_1$ bzw. G Pfad mit drei Knoten. Die entsprechenden Fälle für $n \geq 4$ sind Trivialfälle.

- In Fall 1, Beweis zu Satz 4.1 wird immer eine echte Partition S, V_1, V_2 konstruiert, d.h. $S, V_1, V_2 \neq \emptyset$. Zunächst ist per Voraussetzung $|S_\mu| > 4 \cdot \sqrt{n}$ und daher $|A_2| > 4 \cdot \sqrt{n}$. Andererseits ist $|A_2| \leq \frac{2}{3} n$. Dies ist erst für $n > 36$ möglich. Wäre nun $V_2 = \emptyset$, so müßte $m = 0$ und $M = h$ sein. Da $|S_M| \leq \sqrt{n}$ ist, gilt $|A_2| \geq n - (1 + \sqrt{n})$. Für $n > 36$ gilt $1 + \sqrt{n} < \frac{1}{3} \cdot n$, also ist $|A_2| > \frac{2}{3} n$.

Der Beweis des PLANAR SEPARATOR THEOREMs liefert, wie wir gesehen haben, gleichzeitig einen Algorithmus, um einen Separator mit den gewünschten Eigenschaften zu konstruieren. Im folgenden fassen wir diesen Algorithmus noch einmal zusammen und machen uns dabei klar, daß die Laufzeit tatsächlich in $O(n)$ ist.

Zusammenfassung des “Separator-Algorithmus”

Schritt 1: Trianguliere G. $O(n)$

Schritt 2: Berechne einen BFS-Baum. $O(n)$

Schritt 3: Berechne μ, m und M wie im Beweis zu Satz 4.1. $O(n)$

Schritt 4: Falls $\bigcup_{i=m+1}^{M-1} S_i \leq \frac{2}{3} n$, so berechne S, V_1 und V_2 entsprechend Fall 1 des Beweises zu Satz 4.1. $O(n)$

Schritt 5: Ansonsten, d.h. falls $\bigcup_{i=m+1}^{M-1} S_i > \frac{2}{3} n$ ist, konstruiere G' wie in Fall 2 des Beweises zu Satz 4.1. $O(n)$

Schritt 6: Wähle die Nichtbaumkante $\{x, y\}$ und den dadurch induzierten Kreis $K_{x,y}$ in G' wie im Beweis zu Lemma 4.2. Berechne die Größen der “Unterbäume” zu allen Knoten in G'. Berechne $|\text{Inneres}(K_{x,y})|$ und $|\text{Außeres}(K_{x,y})|$ und sei o.B.d.A. $|\text{Inneres}(K_{x,y})| \geq |\text{Außeres}(K_{x,y})|$; $O(n)$

Schritt 7: Solange $|\text{Inneres}(K_{x,y})| > \frac{2}{3} n$ ist, ersetze $\{x, y\}$ und $K_{x,y}$ wie im Beweis zu Lemma 4.2, Fall 1 bzw. Fall 2. Berechne S, V_1 und V_2 geeignet, d.h. $S := S' \cup S_m \cup S_M$ und o.B.d.A. $V_1 := V_1'$ und $V_2 = V \setminus (V_1 \cup \{s\})$. $O(n)$
Kapitel 5

Matchings

Das MATCHING PROBLEM ist auch für beliebige Graphen in \(\mathcal{P} \). Unter Anwendung des Planar-Separator Theorems kann allerdings ein Divide-and-Conquer Algorithmus für das MATCHING PROBLEM in planaren Graphen entworfen werden, der eine kleinere Laufzeit hat, als der effizienteste bekannte Algorithmus zur Bestimmung eines maximalen Matchings in beliebigen Graphen.

In einem Graph \(G = (V, E) \) nennt man eine Menge \(M \subseteq E \) Matching, falls keine zwei Kanten aus \(M \) denselben Endknoten haben. Ein Knoten \(v \) heißt ungematcht, falls \(v \) zu keiner Kante aus \(M \) inzident ist, ansonsten heißt \(v \) gematcht.

MATCHING PROBLEM

Gegeben sei ein Graph \(G = (V, E) \) mit Kantenwägungsfunktion \(w : E \to \mathbb{R} \). Finde in \(G \) ein Matching \(M \) maximalen Gewichts, d.h.

\[
w(M) := \sum_{e \in M} w(e)
\]

sei maximal unter allen Matchings von \(G \).

Ein Spezialfall dieses Problems besteht darin, ein MATCHING MAXIMALER KARDINALITÄT zu berechnen (d.h. \(w(e) := 1 \) für alle \(e \in E \)).

Ein (bezüglich \(M \)) alternierender Weg ist ein einfacher Weg oder einfacher Kreis, dessen Kanten abwechselnd in \(M \) und in \(E \setminus M \) sind. Ein alternierender
Matching M ist nicht maximal.

Vertauchen von $\ldots\ldots$ mit $\ldots\ldots$ auf dem Weg $\ldots\ldots$ induziert wieder ein Matching.

Abbildung 5.1: Illustration der Begriffe Matching und erhöhender Weg.

Weg P, wobei P die Menge der Kanten des Weges bezeichnet, heißt (bezüglich M) erhöhend falls

$$\sum_{e \in P} w(e) - \sum_{e \in P^*} w(e) > 0$$

ist, und P entweder ein Kreis ist oder ein Weg, dessen erste und letzte Kante jeweils in M oder inzident zu einem ungematchten Knoten ist.

Beobachtung

Sei M ein Matching in G und P ein (bezüglich M) erhöhender Weg. Dann ist $M' := (M \setminus P) \cup (P \cap E \setminus M)$ ein Matching von G mit $w(M') > w(M)$.

Lemma 5.1 Sei $G = (V, E)$ Graph mit Kantengewichtsfunktion $w : E \rightarrow \mathbb{R}$. Ein Matching M von G hat genau dann maximales Gewicht, wenn es bzgl. M in G keinen erhöhenden Weg gibt.

Beweis: Falls es zu M einen erhöhenden Weg gibt, so kann M natürlich nicht maximales Gewicht haben. Umgekehrt nehmen wir an, daß M ein Matching ist, zu dem es einerseits keinen erhöhenden Weg gibt, für das aber andererseits $w(M)$ nicht maximal ist. Dann gibt es ein Matching M^*
mit \(w(M^*) > w(M) \). Betrachte den Subgraph von \(G \), der durch die Menge \((M \cup M^*) \setminus (M \cap M^*) \) induziert wird. Dieser Graph hat nur Knoten vom Grad 1 oder 2, besteht also aus einfachen Kreisen und Wegen. Wenn nun keiner der Kreise erhöht bzgl. \(M \) ist, so muß es einen bezüglich \(M \) alternierenden Weg \(P \) geben mit \(w(P \cap M^*) > w(P \cap M) \), da \(w(M^*) > w(M) \). Wenn eine Endkante des Weges nicht in \(M \) ist, so ist sie in \(M^* \), und daher der entsprechende Endknoten \(v \) nicht von \(M \) gmatcht. Also ist \(P \) bzgl. \(M \) erhöhend. Widerspruch. \(\square \)

Lemma 5.2 Sei \(G = (V,E) \) Graph mit Kantengewichtsfunktion \(w : E \rightarrow \mathbb{R} \) und \(v \in V \). \(M \) sei ein Matching maximalen Gewichts in \(G - v \) (dem durch \(V \setminus \{v\} \) induzierten Subgraph von \(G \)).

Falls \(G \) keinen erhöhenden Weg bzgl. \(M \) mit Endknoten \(v \) enthält, so ist \(M \) auch Matching maximalen Gewichts in \(G \).

Ansonsten sei \(P \) Kantenmenge eines erhöhenden Weges bzgl. \(M \) in \(G \) mit \(w(P \cap E \setminus M) - w(P \cap M) \) maximal unter allen erhöhenden Wegen. Dann ist \((M \cup P) \setminus (M \cap P) \) ein Matching maximalen Gewichts in \(G \).

![Diagramm](image)

Abbildung 5.2: Illustration von Lemma 5.2.

Beweis: Betrachte ein Matching \(M \) maximalen Gewicht in \(G - v \). Dann ist \(M \) natürlich auch Matching in \(G \). Jeder erhöhende Weg bzgl. \(M \) in \(G \) muß als Endknoten \(v \) haben, ansonsten hätte \(M \) nicht maximales Gewicht in \(G - v \).
Sei nun M^* ein Matching maximalen Gewichts in G. Wiederum bildet $(M \cup M^*) \setminus (M \cap M^*)$ eine Menge einfacher bezüglich M^* bzw. M alternierender Wege und Kreise in G. Jeder bezüglich M erhöhende Weg im durch $(M \cup M^*) \setminus (M \cap M^*)$ induzierten Graph ist auch erhöhend in G. Der durch $(M \cup M^*) \setminus (M \cap M^*)$ induzierte Graph kann jedoch höchstens einen bezüglich M erhöhenden Weg und zwar mit Endknoten v enthalten, da ansonsten v zu mindestens zwei Kanten aus M^* inzident wäre. Falls P^* ein solcher Weg ist, so hat das durch Erhöhung entlang P^* konstruierte Matching Gewicht

$$w(M) - w(P^* \cap M) + w(P^* \cap E \setminus M) = w(M) - w(P^* \cap M) + w(P^* \cap M^*).$$

Da im durch $(M \cup M^*) \setminus (M \cap M^*)$ induzierten Graph kein weiterer bezüglich M erhöhender Weg existiert, hat die Menge der Kanten aus M, die nicht auf P^* liegen dasselbe Gewicht wie die Menge der Kanten aus M^*, die nicht auf P^* liegen, d.h. $w(M) - w(P^* \cap M) = w(M^*) - w(P^* \cap M^*)$. Dann hat also das durch Erhöhung entlang P^* konstruierte Matching Gewicht

$$w(M) - w(P^* \cap M) + w(P^* \cap M^*) = w(M^*).$$

Daraus folgt die Behauptung. \(\square \)

Basierend auf diesem Lemma kann in einem beliebigen Graph $G = (V, E)$, $|E| = m$, aus einem Matching maximaler Kardinalität bzw. maximalen Gewichts in $G - v$ (für beliebiges $v \in V$) ein Matching maximaler Kardinalität bzw. maximalen Gewichts in G konstruiert werden. Die Laufzeit ist $O(m)$ bzw. $O(m \log n)$. Dies führt für planare Graphen zu einer Laufzeit von $O(n)$ bzw. $O(n \log n)$.

Divide-and-Conquer Algorithmus Max-Matching

Schritt 1: Falls G höchstens drei Knoten enthält bestimme direkt ein Matching maximalen Gewichts.

Schritt 2: Ansonsten zerlege V in V_1, V_2 und S entsprechend dem Planar-Separator Theorem.
G_1, G_2 bezeichne die durch V_1 bzw. V_2 induzierten Subgraphen von G. Wende den Algorithmus rekursiv auf G_1 und G_2 an, und berechne so Matchings maximalen Gewichts M_1 bzw. M_2 von G_1 bzw. G_2. Sei $M := M_1 \cup M_2$, $V' := V_1 \cup V_2$.

Schritt 3: Solange $S \neq \emptyset$ ist, führe aus:
Wähle $v \in S$, und setze $S := S \setminus \{v\}$ und $V' := V' \cup \{v\}$.
Wende Lemma 5.2 an um in dem durch V' induzierten Subgraph von G ein Matching maximalen Gewichts zu berechnen.

Wenn $t(n)$ die Laufzeit zur Berechnung eines Matchings maximalen Gewichts in einem Graph G mit n Knoten aus einem Matching maximalen Gewichts von $G-v$ ist, und $t(n)$ Laufzeit des Divide-and-Conquer Algorithmus bezeichnet, so gilt:

$$t(n_0) = c_0, \text{ für geeignetes } n_0 \in \mathbb{N}$$
$$t(n) \leq t(c_1 \cdot n) + t(c_2 \cdot n) + c_3 \cdot \sqrt{n} \cdot t'(n), \text{ für } n > n_0,$$

wobei c_0, c_1, c_2, c_3 konstant, $c_1, c_2 \leq \frac{2}{5}$ und $c_1 + c_2 < 1$. Man kann mit Techniken zur Analyse von Rekursionsabschätzungen (siehe dazu Vorlesung “Entwurf und Analyse von Algorithmen”) beweisen, dass

$$t(n) \in \mathcal{O}(n^2) \text{ falls } t'(n) \in \mathcal{O}(n),$$
und $t(n) \in \mathcal{O}(n^{3/2} \cdot \log n)$ falls $t'(n) \in \mathcal{O}(n \log n)$.
Kapitel 6

Mixed-Max-Cut in planaren Graphen und Via-Minimierung

Eine Menge \(S \subseteq E \) heißt Schnitt von \(G = (V, E) \), falls der durch \(E \setminus S \) induzierte Subgraph von \(G \) unzusammenhängend ist, d.h. in Graphen \(G_1 = (V_1, E_1), G_2 = (V_2, E_2) \) zerfällt, mit \(V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset, E_1 \cup E_2 = E \setminus S, E_1 \cap E_2 = \emptyset \), wobei alle Kanten aus \(S \) einen Endknoten in \(V_1 \) und einen Endknoten in \(V_2 \) haben. \(S \) trennt die Knoten \(u, v \in V \), falls \(u \) und \(v \) in dem durch \(E \setminus S \) induzierten Subgraph (bezeichnet mit \(G - S \)) in verschiedenen Zusammenhangskomponenten liegen. In einem Graph mit Kantengewichtsfunktion \(w : E \to K \) ist das Gewicht eines Schnittes \(S \) ist definiert als

\[
w(S) := \sum_{e \in S} w(e).\]
MIN-CUT PROBLEM
Gegeben sei ein Graph $G = (V, E)$ mit einer Kantengewichtsfunktion $w : E \rightarrow K$, wobei $K = \mathbb{R}^+$. Finde einen Schnitt $S \subseteq E$ mit $w(S)$ minimal.

Das MIN-CUT PROBLEM ist für beliebige Graphen in polynomialer Zeit lösbar, und zwar in Laufzeit $O(n \cdot m + n^2 \cdot \log n)$. Siehe Vorlesung „Entwurf und Analyse von Algorithmen“.

MAX-CUT PROBLEM
Gegeben sei ein Graph $G = (V, E)$ mit einer Kantengewichtsfunktion $w : E \rightarrow K$, wobei $K = \mathbb{R}^+$. Finde einen Schnitt $S \subseteq E$ mit $w(S)$ maximal.

Das MAX-CUT PROBLEM ist für beliebige Graphen \mathcal{NP}-schwer.

MIXED-MAX-CUT PROBLEM
Gegeben sei ein Graph $G = (V, E)$ mit einer Kantengewichtsfunktion $w : E \rightarrow K$, wobei $K = \mathbb{R}$. Finde einen Schnitt $S \subseteq E$ mit $w(S)$ maximal.

Das MIXED-MAX-CUT PROBLEM ist für beliebige Graphen natürlich auch \mathcal{NP}-schwer. MIN-CUT PROBLEM und MAX-CUT PROBLEM sind Spezialfälle des MIXED-MAX-CUT PROBLEMS. Ersetze dazu beim MIN-CUT PROBLEM $w(e)$ durch $-w(e)$.

6.1 Mixed-Max-Cut in planaren Graphen

Wir werden nun einen Algorithmus für das MIXED-MAX-CUT PROBLEM in planaren Graphen mit Laufzeit $O(n^{3/2} \log n)$ angeben. Dieser basiert auf der Berechnung eines Matchings in planaren Graphen.

Wie zu erwarten, nutzt der Algorithmus für das MIXED-MAX-CUT PROBLEM in planaren Graphen die Planarität ganz entscheidend aus, und zwar die Korrespondenz zwischen einem Schnitt in dem (eingebetteten) planaren Graphen G und einer Menge von Kreisen in dessen Dualgraph G^*.

Aus Lemma 2.9 folgt, dass das \textit{Mixed-Max-Cut Problem} in $G = (V, E)$ äquivalent ist zu dem Problem, im Dualgraph $G^* = (V^*, E^*)$ (bzgl. einer festen Einbettung von G) eine nichtleere Menge von Kanten $S^* \subseteq E^*$ zu finden, die kantendisjunkte Vereinigung von Kreisen ist, und für die $w(S^*)$ maximal ist, wobei $w(e^*) := w(e)$ für e^* Dualkante zu e. Wir benutzen folgenden \textit{Satz von Euler}.

\begin{satz}
\textbf{Satz von Euler}

Für einen Graphen $G = (V, E)$ sind äquivalent

1. G ist Eulersch.
2. E ist kantendisjunkte Vereinigung einfacher Kreise.
3. $d(v)$ ist gerade für alle $v \in V$.
\end{satz}

Das \textit{Mixed-Max-Cut Problem} in planaren Graphen ist also äquivalent zum \textit{Mixed-Max-Kreis Problem}.

\begin{mmp}
\textbf{Mixed-Max-Kreis Problem}

Gegeben sei ein planarer Graph $G = (V, E)$ mit einer Kantengewichtsfunktion $w : E \to K$, wobei $K = \mathbb{R}$. Finde eine nichtleere gerade Menge $E' \subseteq E$ mit $w(E')$ maximal.

Wir werden weiterhin die Äquivalenz des \textit{Mixed-Max-Kreis Problem} zu einem perfekten Matching minimalen Gewichts in einem geeignet definierten Graphen benutzen. Dabei heißt ein Matching M in einem Graphen mit einer geraden Anzahl n von Knoten \textit{perfekt} genau dann, wenn $|M| = \frac{n}{2}$.

\textbf{Der Mixed-Max-Cut Algorithmus von Shih, Wu & Kuo, 1990}

Gegeben sei ein eingebetteter planarer Graph $G = (V, E)$ mit Kantengewichtsfunktion $w : E \to \mathbb{R}$.
Abbildung 6.1: Illustration der Korrespondenz zwischen MIXED-MAX-CUT und MIXED-MAX-KREIS.

Schritt 1: Trianguliere G in $\mathcal{O}(n)$ und ordne den hinzugefügten Kanten Gewicht 0 zu.

Schritt 2: Berechne in $\mathcal{O}(n)$ den Dualgraph $G^* = (V^*, E^*)$ zu der Triangulierung von G, wobei $w(e^*) := w(e)$ mit e^* Dualkante zu e. Dann hat in G^* jeder Knoten Grad 3. Eine gerade Menge in G^* ist also eine knotendisjunkte Vereinigung einfacher Kreise in G^*.

Schritt 3: Konstruiere aus G^* in $\mathcal{O}(n)$ einen Graph $G' = (V', E')$ derart, dass ein perfektes Matching minimalen Gewichts in G' eine gerade Menge maximalen Gewichts in G^* induziert.

Schritt 4: Konstruiere in $\mathcal{O}(n^{3/2} \log n)$ ein perfektes Matching M minimalen Gewichts in G'.

Schritt 5: Falls M eine nichtleere gerade Menge in E^* induziert, gib den dazu dualen Schnitt in G aus. Ansonsten berechne in $\mathcal{O}(n^{3/2} \log n)$ aus M eine nichttriviale gerade Menge in G^* maximalen Gewichts.
Ausführung von Schritt 3: Konstruktion von \(G' = (V', E') \)

Ersetze jeden Knoten \(v \) aus \(G^* \) durch einen Graph \(H_v \) mit 7 Knoten wie in Abbildung 6.2 und erhalte so \(G' = (V', E') \). Die Gewichte der Kanten aus \(E^* \) werden dabei auf die entsprechenden Kanten aus \(E' \) übertragen und neue Kanten aus \(E' \) erhalten Gewicht 0. Wir unterscheiden nicht zwischen den Kanten vom Typ \(e_1, e_2 \) und \(e_3 \) in \(G^* \) und in \(G' \).

\[\begin{align*}
 v &\quad e_1 \\
 &\quad e_2 \\
 &\quad e_3 \\
\end{align*} \]

\[\begin{align*}
 v' &\quad e_1 \\
 u' &\quad e_2 \\
 u'' &\quad e_3 \\
\end{align*} \]

Abbildung 6.2: Ersetzung von \(v \) durch \(H_v \).

Bemerkung: Da \(G^* \) 3-regulär ist bzw. Dualgraph eines maximal planaren Graphen ist \(|V^*| \) gerade, also auch \(|V'| \) gerade. Es existiert also in \(G' \) ein perfektes Matching.

Lemma 6.2 Sei \(G' = (V', E') \) entsprechend Abbildung 6.2 aus \(G^* = (V^*, E^*) \) konstruierter Graph.

Falls \(M \subseteq E' \) ein perfektes Matching in \(G' \) ist, so ist die der Menge \(E' \setminus M \) entsprechende Menge \(M^* \subseteq E^* \) eine gerade Menge in \(G^* \).

Ist andererseits \(E^*_o \) eine gerade Menge in \(G^* \), so induziert die der Menge \(M^* = E^* \setminus E^*_o \) entsprechende Teilmenge von \(E' \) ein perfektes Matching \(M \) in \(G' \).

Beweis: „\(\Rightarrow \)“ Sei \(M \) ein perfektes Matching in \(G' \). Betrachte für jeden Knoten \(v \) in \(G^* \) den entsprechenden Subgraphen \(H_v \) in \(G' \).

Fall 1: Die Kante \(\{u', u''\} \) ist nicht in \(M \). Dann sind die Kanten \(\{v', u'\} \) und \(\{u'', v''\} \) sowie \(e_1, e_2, e_3 \) in \(M \), also \(e_1, e_2, e_3 \) nicht in der durch \(E'' \setminus M \)
induzierten Menge \(M^* \subseteq E^* \). Also ist \(d(v) = 0 \) bzgl. \(M^* \) und damit \(M^* \) gerade Menge. Siehe Abbildung 6.3.

Abbildung 6.3: Illustration von Fall 1.

Fall 2: Die Kante \(\{u', u''\} \) ist in \(M \). Dann sind die Kanten \(\{v', u'\} \) und \(\{u'', v''\} \) nicht in \(M \). Dementsprechend ist jeweils eine der anderen zu \(v' \) bzw. \(v'' \) inzidenten Kanten in \(M \), sowie genau eine der Kanten \(e_1, e_2, e_3 \). Also ist \(d(v) = 2 \) bzgl. der durch \(E^* \setminus M \) induzierten Menge \(M^* \subseteq E^* \) und damit \(M^* \) gerade Menge. Siehe Abbildung 6.4.

Abbildung 6.4: Illustration von Fall 2.

\[\Leftarrow \] Sei \(E^*_v \) eine gerade Menge in \(G^* \). Dann haben alle Knoten in dem Subgraphen \((V^*, E^*_v)\) von \(G^* \) entweder Grad 0 oder Grad 2.
Fall 1: Der Knoten v habe $d(v) = 0$ bzgl. E^*_o. Dann enthalte M alle drei Kanten e_1, e_2, e_3 und die Kanten $\{v', u'\}$ und $\{v'', u''\}$. Siehe Abbildung 6.3.

Fall 2: Der Knoten v habe $d(v) = 2$ bzgl. E^*_o, o.B.d.A. $e_2, e_3 \in E^*_o$. Dann enthalte M die Kante e_1 sowie die Kante $\{u', u''\}$ und die beiden Kanten inzident zu v' und v'', die zu den Kanten e_2 bzw. e_3 adjazent sind. Siehe Abbildung 6.4.

Dann ist M perfektes Matching in G' und die durch M induzierte Menge $M^* \subseteq E^*$ erfüllt $E^* \setminus M^* = E^*_o$.

\[\square \]

Folgerung 6.3 Falls $M \subseteq E'$ ein perfektes Matching minimalen Gewichts in G' ist, so ist die der Menge $E' \setminus M$ entsprechende Menge $M^* \subseteq E^*$ eine gerade Menge maximalen Gewichts in G^*. Ist andererseits E^*_o eine gerade Menge maximalen Gewichts in G^*, so induziert die der Menge $M^* = E^* \setminus E^*_o$ entsprechende Teilmenge von E' ein perfektes Matching M minimalen Gewichts in G'.

\begin{proof}
Es gilt $w(E' \setminus M) = w(E^*) - w(E^* \cap M) = w(E^*) - w(M)$, da alle $e \in M$, mit $e \notin E^*$ Gewicht 0 haben.
\end{proof}

Bemerkung: Die durch M induzierte Menge M^* in G^* kann leer sein! Dazu später.

Ausführung von Schritt 4: Konstruktion eines perfekten Matchings minimalen Gewichts in G'.

Zunächst kann ein perfektes Matching minimalen Gewichts mit einem Algorithmus zur Berechnung eines Matchings maximalen Gewichts folgendermaßen konstruiert werden.

Beobachtung: M ist ein perfektes Matching minimalen Gewichts in einem Graphen $G = (V, E)$ mit Kantengewichten $w : E \to \mathbb{R}$, genau dann, wenn
M ein perfektes Matching maximalen Gewichts in $G = (V, E)$ mit Kanten-

gewichten $\varnothing : E \rightarrow \mathbb{R}$, $\varnothing (e) := W - w(e)$, wobei W geeignete Konstante.

Wir müssen nun noch die „Perfektheit“ von M bei der Berechnung erzwingen.

Wähle dazu W geeignet. Zunächst gilt für ein perfektes Matching M in G, dass

$$\varnothing (M) = \sum_{e \in M} \varnothing (e) = \frac{n}{2} \cdot W - \sum_{e \in M} w(e) \geq \frac{n}{2} \cdot (W - w_{\text{max}}),$$

wobei $w_{\text{max}} := \max_{e \in E} (w(e))$. Für ein nicht-perfektes Matching M' gilt ande-

rerseits $\varnothing (M') \leq \left(\frac{n}{2} - 1\right) \cdot (W - w_{\text{min}})$, wobei $w_{\text{min}} := \min_{e \in E} (w(e))$. Damit also $\varnothing (M) > \varnothing (M')$ gilt für alle perfekten Matchings M und alle nicht-perfekten Matchings M' von G, reicht es aus, W so zu wählen, dass

$$\frac{n}{2} (W - w_{\text{max}}) > \left(\frac{n}{2} - 1\right) (W - w_{\text{min}}),$$

also $W > \frac{n}{2} (w_{\text{max}} - w_{\text{min}}) + w_{\text{min}}$

ist. Aus Kapitel 5 kennen wir einen Algorithmus mit Laufzeit $\mathcal{O}(n^{3/2} \log n)$

um in einem planaren Graphen ein Matching maximalen Gewichts, also auch ein perfektes Matching minimalen Gewichts zu bestimmen.

Ausführung von Schritt 5: Konstruktion des Schnitts.

Falls die durch $E' \setminus M$ in E^* induzierte Menge M^* nicht leer ist, gib den entsprechen-

den dualen Schnitt in G aus.

Wir müssen nun noch den Fall behandeln, dass das berechnete perfekte Match-

ing M minimalen Gewichts in G' die leere Menge in G^* induziert. Dazu berech-

nen wir in $\mathcal{O}(n^{3/2} \log n)$ aus M eine nichttriviale gerade Menge in G^*

maximalen Gewichts . Diese hat dann offensichtlich negatives Gewicht!

Konstruiere zu jedem Knoten $v \in V^*$ aus G' einen Graph G'_v, indem entsprechen-

Abbildung 6.5 in H_v die Kanten $\{w', u'\}$ und $\{w'', u''\}$ zugefügt werden. Die Kanten $\{w', u'\}$ und $\{w'', u''\}$ erhalten wieder Gewicht 0.

Lemma 6.4 M_v ist ein perfektes Matching minimalen Gewichts in G'_v genau dann, wenn die der Menge $E'_v \setminus M_v$ entsprechende Menge in E^* eine gerade
Abbildung 6.5: Konstruktion von G'_v aus G' zu ausgezeichnetem Knoten $v \in V^*$.

Kantenmenge maximalen Gewichts in G^* ist, die eine zu v inzidente Kante enthält.

Beweis: Ein perfektes Matching M_v in G'_v enthält immer $\{w', u'\}$ und $\{w'', u''\}$. Ein solches Matching enthält dann genau eine der Kanten e_1, e_2, e_3 zu v. Das Lemma folgt dann analog zu Lemma 6.2 und Folgerung 6.3. \[\square \]

Ein perfektes Matching M_v minimalen Gewichts in G'_v erhält man in $O(n \log n)$ aus dem Matching M in G'. Wende dazu zweimal (für w' und w'') den Algorithmus aus Kapitel 5 an. Betrachte nun für alle $v \in V^*$ den Graph G'_v. Eine nichttriviale gerade Menge maximalen Gewichts in G^* wird dann durch die Menge M induziert, für die $w(M) = \min_{v \in V} w(M_v)$. Diese Menge M kann „direkt“ in $O(n^2 \cdot \log n)$ bestimmt werden.

Durch Anwenden des PLANAR SEPARATOR THEOREMs kommt man zu einem effizienteren Algorithmus mit Laufzeit $O(n^{3/2} \cdot \log n)$ wie folgt.

Vorüberlegung: Wenn für das in Schritt 4 berechnete perfekte Matching M minimalen Gewichts in G' gilt, dass die durch $E' \setminus M$ induzierte Menge in G^* leer ist, so müssen alle Kreise in G^* negatives Gewicht haben. Die gesuchte nichttriviale gerade Menge in G^* besteht also aus einem einfachen Kreis negativen Gewichts, dessen Gewicht maximal ist unter allen Kreisen in G^*.

Lemma 6.5 In einem planaren Graphen G, der keinen positiven Kreis
enthält, kann ein negativer einfacher Kreis maximalen Gewichts in $O(n^{3/2} \log n)$ bestimmt werden.

Beweis: Wende folgenden Algorithmus an. Berechne eine Partition S, V_1, V_2 in G, die die Bedingungen des PLANAR SEPARATOR THEOREMS erfüllen. Berechne rekursiv negative einfache Kreise maximalen Gewichts, in den durch V_1 und V_2 induzierten Subgraphen von G. Für jedes $v_i \in S$ berechne den negativen einfachen Kreis maximalen Gewichts, der v_i enthält. Dies geht analog zu Lemma 6.4 in $O(n \cdot \log n)$. Gib den Kreis maximalen Gewichts unter allen konstruierten Kreisen aus. Dieser ist der gewünschte Kreis in G, da jeder einfache Kreis in G entweder ganz in G_1, oder ganz in G_2 liegt, oder ein $v_i \in S$ berührt.

Die Gesamtauflaufzeit $t(n)$ ist gegeben durch

$$
t(n_0) = c_0
$$

$$
t(n) = t(c_1 \cdot n) + t(c_2 \cdot n) + c_3 \cdot \sqrt{n} \cdot n \cdot \log n,
$$

wobei c_0, c_1, c_2, c_3 konstant, $c_1, c_2 \leq \frac{2}{3}$ und $c_1 + c_2 < 1$. Damit ist $t(n) \in O(n^{3/2} \log n)$.

Damit haben wir insgesamt folgenden Satz bewiesen.

Satz 6.6 In einem planaren Graphen $G = (V, E)$ mit Kantengewichtsfunktion $w : E \rightarrow \mathbb{R}$ kann in $O(n^{3/2} \log n)$ ein Schnitt $S \subseteq E$ konstruiert werden, mit $w(S)$ maximal.

6.2 Das Via-Minimierungs Problem

Eine von vielen interessanten Anwendungen des MIXED-MAX-CUT PROBLEMS tritt beim Entwurf hochintegrierter Schaltungen auf. Man möchte eine Schaltung möglichst kostengünstig auf einem Chip realisieren. Ein Schritt
in dem entsprechenden Entwurfsprozess besteht darin, ein Layout der Schaltung so innerhalb mehrerer Lagen zu realisieren, dass die Anzahl der Lagenwechsel klein ist. Als Basis der Realisierung einer Schaltung wird üblicherweise ein orthogonales Gitter angenommen.

Eine Schaltung bestehe aus Modulen, auf deren Rändern Terminale liegen und Drähten, die jeweils vorgegebene Terminale verbinden. Ein Layout L ist dann eine Einbettung der Schaltung in ein orthogonales Gitter, bei der Drähte als kantendisjunkte Verbindungen (im allgemeinen Steiner-Bäume) entlang Gitterlinien geführt werden. Wir werden uns hier auf den Fall beschränken, dass jeder Draht genau zwei Terminale verbindet, d.h. die Drähte als kantendisjunkte Wege eingebettet werden können.

Jede Lage ist dann eine Kopie des orthogonalen Gitters, und eine zulässige Lagenzuweisung besteht in einer knotendisjunkten Zuordnung der eingebetteten Drahtstücke zu Lagen, d.h. keine zwei Drähte berühren sich in derselben Lage. Lagenwechsel, sogenannte Vias, sind nur an Gitterpunkten erlaubt. Wenn es zu einem Layout eine zulässige Lagenzuweisung in zwei Lagen gibt, so nennt man das Layout auch in zwei Lagen realisierbar. Siehe Abbildungen 6.6 und 6.7.

Abbildung 6.6: Ein in zwei Lagen realisierbares Layout.
VIA-MINIMIERUNGS PROBLEM

Gegeben sei ein in zwei Lagen realisierbares Layout L.

Finde eine Realisierung von L in zwei Lagen mit minimaler Anzahl an Vias.

Abbildung 6.7: Realisierung des Layouts aus Abbildung 6.6 in zwei Lagen mit 3 Vias.

einerseits in den Konflikten zwischen Drahtstücken und andererseits in der ge-
"igen Wahl von Lagenwechseln durch Vias bestehen, durch einen Graph
ausdrücken. Dazu definieren wir den Konfliktgraph zu einem Layout.

Abbildung 6.8: Ausschnitt eines Layouts und dessen Auflösung in Konflikt-
Segmente und Via-Kandidaten.

Die Drähte eines Layouts können in zwei Typen von Drahtstücken aufgeteilt

Konflikt-Segmente sind Drahtstücke, die in allen Gitterpunkten andere
Drähte berühren.

Die restlichen Drahtstücke sind Via-Kandidaten, d.h. maximale
Drahtstücke, die über mindestens einen Gitterpunkt gehen, über den
kein anderer Draht geht. Dies sind gerade die Drahtstücke, auf denen
Vias plaziert werden können.

Zu einem in zwei Lagen realisierbaren Layout \(L \) definiere den Konfliktgraph
\(G_c(L) = (V_c, E_c) \) wie folgt.

\(V_c \) entsprechen der Menge aller Konflikt-Segmente

\(E_c \) enthält zwei Typen von Kanten

\(\{u, v\} \in E_c \) für Knoten \(u, v \in V_c \), welche Konflikt-Segmenten ent-
sprechen, die sich in einem Gitterpunkt berühren, genannt Konfliktkanten

\(\{u, v\} \in E_c \) für Knoten \(u, v \in V_c \), welche Konflikt-Segmenten ent-
sprechen, die inzident zu demselben Via-Kandidaten sind.
Abbildung 6.9: Der Konfliktgraph zum Layout aus Abbildung 6.6 und der zugehörige Clustergraph.

Die Subgraphen von G_c, die durch Konfliktkanten induziert sind, d.h. Mengen von Konfliktsegmenten, die sich gegenseitig berühren, können zu Konfliktclusern zusammengefaßt werden. Dadurch wird ein bewerteter Clustergraph $CG := (CV, CE)$ induziert, mit Kantenbewertung $c : CE \rightarrow \mathbb{N}$.

CV entspricht der Menge der Konfliktcluster,

$\{a, b\} \in CE$, falls in dem Konfliktcluster zu a und dem Konfliktcluster zu b Konfliktsegmente existieren, die durch denselben Via-Kandidaten verbunden sind,

$c(e) := \#$ der Via-Kandidaten, die e entsprechen für $e \in CE$.

Abbildung 6.9 zeigt den Konfliktgraph und zugehörigen Clustergraph zum Layout aus Abbildung 6.6. Offensichtlich ist CG immer planar.

In einer Realisierung von L in zwei Lagen ist die Lage aller Konfliktsegmente eines Konflikt-Clusters durch die Lage eines einzigen Konfliktsegments dieses Clusters festgelegt. Man kann also einen beliebigen Knoten eines jeden Konflikt-Cluster als Repräsentanten der Lagenzuweisung wählen.

Für eine beliebige, aber feste Realisierung von L in zwei Lagen, d.h. eine Färbung der Knoten von CG mit zwei Farben, sei $v(e)$ die Anzahl der Vias auf Via-Kandidaten, die e entsprechen. Dann gilt

Abbildung 6.10: Festlegung der Lagen aller Konfliktsegmente eines Konfliktclusters durch Festlegung des Repräsentanten.

Abbildung 6.11: Festlegung der Lagen entsprechend einer Zweifärbung im Konfliktgraph.
Abbildung 6.12: Zweifarbigkeit des Cluster-Graph.

Abbildung 6.13: Reduktion um ein Via bzgl. v.

$$v(e) = \begin{cases}
 c(e) & \text{Endknoten von } e \text{ haben verschiedene Farben,} \\
 0 & \text{sonst.}
\end{cases}$$

Definiere für $e \in EC$ die *Via-Reduktion* $v_{\text{red}}(e)$, die bzgl. v durch Vertauschen der Lagenzuweisung für ein Konflikt-Cluster, das mit einem zu e gehörenden Via-Kandidaten inzident ist, für die Via-Kandidaten von e induziert wird. Also

$$v_{\text{red}}(e) := v(e) - (c(e) - v(e)) .$$

Sei $X \subset CV$, dann ist die *Via-Reduktion für X* bzgl. v entsprechend definiert als
Das heißt, dass $v_{\text{red}}(X)$ die Via-Reduktion bzgl. der zu v gehörigen Realisierung in zwei Lagen bei Vertauschen der Lagen für alle Konflikt-Cluster, die Knoten aus X entsprechen, ist.

Abbildung 6.14: Realisierung des Layouts aus Abbildung 6.6 in zwei Lagen mit nur 2 Vias.

MAX-VIA-REDUKTION

Gegeben der planare Clustergraph $CG = (CV, CE)$ mit Kantenzuordnung c zu einem Layout und eine (nicht notwendig echte) Färbung der Knoten von CG mit zwei Farben. Sei $v : CE \to \mathbb{Z}$ die zugehörige Funktion der Via-Anzahl und v_{red} die entsprechende Funktion der Via-Reduktion.

Finde $X \subseteq CV$, so daß $v_{\text{red}}(X)$ maximal ist.
Da jedes $X \subseteq CV$ einen Schnitt in CG induziert, und $v_{red}(X)$ gerade das Gewicht dieses Schnittes bzgl. der Kantengewichtsfunktion $v_{red} : CE \rightarrow \mathbb{Z}$ ist, entspricht dieses Problem gerade dem MIXED-MAX-CUT PROBLEM.
Kapitel 7

Das Menger-Problem

Eine Menge $S \subseteq V$ heißt *Separator* von $G = (V, E)$, falls der durch $V \setminus S$ induzierte Subgraph von G unzusammenhängend ist. S trennt die Knoten $u, v \in V \setminus S$, falls u und v in dem durch $V \setminus S$ induzierten Subgraph (bezeichnet mit $G - S$) in verschiedenen Zusammenhangskomponenten liegen. Siehe Abbildung 2.3. Wir definieren den *Knotenzusammenhang* $\kappa_G(u, v)$ zweier Knoten u und v bzw. den *Knotenzusammenhang* $\kappa(G)$ des Graphen G wie folgt.

$$
\kappa_G(u, v) := \begin{cases}
|V| - 1, & \text{falls } \{u, v\} \in E \\
\min_{S \subseteq V \setminus \{u, v\}} |S|, & \text{sonst.}
\end{cases}
$$

$$
\kappa(G) := \min_{S \subseteq V \setminus \{u, v\}} \{|S|, |V| - 1\} = \min_{u, v \in V} \kappa_G(u, v)
$$

Eine Menge $S \subseteq E$ heißt *Schnitt* von $G = (V, E)$, falls der durch $E \setminus S$ induzierte Subgraph von G unzusammenhängend ist, d.h. in Graphen $G_1 =$
KAPITEL 7. DAS Menger-Problem

\((V_1, E_1), G_2 = (V_2, E_2)\) zerfällt, mit \(V_1 \cup V_2 = V, V_1 \cap V_2 = \emptyset, E_1 \cup E_2 = E \setminus S, E_1 \cap E_2 = \emptyset\), wobei alle Kanten aus \(S\) einen Endknoten in \(V_1\) und einen Endknoten in \(V_2\) haben. \(S\) trennt die Knoten \(u, v \in V\), falls \(u\) und \(v\) in dem durch \(E \setminus S\) induzierten Subgraph (bezeichnet mit \(G - S\)) in verschiedenen Zusammenhangskomponenten liegen. Entsprechend definieren wir den \textit{Kantenzusammenhang} \(\lambda_G(u, v)\) zweier Knoten \(u\) und \(v\), bzw. den \textit{Kantenzusammenhang} \(\lambda(G)\) des Graphen \(G\) wie folgt.

\[
\lambda_G(u, v) := \min_{S \subseteq E, \text{S trennt } u \text{ und } v} |S|
\]

\[
\lambda(G) := \min_{S \subseteq E, \text{S Schnitt von } G} |S| = \min_{u, v \in V} \lambda_G(u, v)
\]

\(G\) heißt \textit{k-fach knoten-} bzw. \textit{kantenzusammenhängend}, falls \(k \leq \kappa(G)\) bzw. \(k \leq \lambda(G)\). Zwei Wege in einem Graphen \(G\) heißen (intern) \textit{knotendisjunkt}, wenn sie (außer den Endknoten) keine gemeinsamen Knoten enthalten und \textit{kantendisjunkt}, wenn sie keine gemeinsame Kante enthalten.

\textbf{Satz 7.1} Satz von Menger (1927)

Seien \(s\) und \(t\) zwei Knoten eines Graphen \(G\), \(s\) und \(t\) nicht adjazent bei der knotendisjunkten Version.

\[
\kappa_G(s, t) \geq k \text{ genau dann, wenn es k paarweise intern knotendisjunkte Wege zwischen } s \text{ und } t \text{ in } G \text{ gibt.}
\]

\[
\lambda_G(s, t) \geq k \text{ genau dann, wenn es k paarweise kantendisjunkte Wege zwischen } s \text{ und } t \text{ in } G \text{ gibt.}
\]

\textbf{Menger-Problem}

Gegeben sei ein Graph \(G = (V, E)\) und Knoten \(s, t \in V\). Finde eine maximale Anzahl paarweise kanten- bzw. intern knotendisjunkter Wege, die \(s\) und \(t\) verbinden.
7.1 Das kantendisjunkte Menger-Problem in planaren Graphen

Kantendisjunkter Menger-Algorithmus

Schritt 1: Ersetze in Linearzeit $G = (V, E)$ durch den *gerichteten Graphen* $\overrightarrow{G} = (V, \overrightarrow{E})$, der entsteht, indem jede Kante $\{u, v\} \in E$ ersetzt wird durch die beiden *gerichteten Kanten* $(u, v), (v, u) \in \overrightarrow{E}$.

Schritt 2: Berechne in Linearzeit eine Menge geeigneter einfacher kantendisjunkter gerichteter Kreise $\overrightarrow{C_1}, \ldots, \overrightarrow{C_i}$, und betrachte den Graph $\overrightarrow{G_C}$, der aus \overrightarrow{G} entsteht, indem alle Kanten, die auf einem $\overrightarrow{C_i}$ liegen, umgedreht werden.

Schritt 3: Berechne in Linearzeit eine maximale Anzahl von kantendisjunkten gerichteten s-t-Wegen in $\overrightarrow{G_C}$.

Schritt 4: Berechne in Linearzeit aus der Menge der kantendisjunkten s-t-Wege in $\overrightarrow{G_C}$ eine Menge kantendisjunkter s-t-Wege in G gleicher Kardinalität.

Ausführung von Schritt 1: Konstruktion von $\overrightarrow{G} = (V, \overrightarrow{E})$

Ersetze $G = (V, E)$ durch den *gerichteten Graphen* $\overrightarrow{G} = (V, \overrightarrow{E})$, der entsteht, indem jede Kante $\{u, v\} \in E$ ersetzt wird durch die beiden *gerichteten Kanten* $(u, v), (v, u) \in \overrightarrow{E}$. Die Begriffe Weg, s-t-Weg und Kreis werden kanonisch übertragen zu den Begriffen *gerichteter Weg*, *gerichteter s-t-Weg* und *gerichteter Kreis*.
Abbildung 7.1: Ersetzung von $G = (V, E)$ durch $\overrightarrow{G} = (V, \overrightarrow{E})$.

Lemma 7.2 Seien p_1, \ldots, p_r kantendisjunkte, gerichtete s-t-Wege in \overrightarrow{G}. Dann enthält die Menge $P \subseteq E$, $P := \{\{u, v\} : \text{genau eine der beiden gerichteten Kanten } (u, v) \text{ oder } (v, u) \text{ gehört zu einem der Wege } p_i, 1 \leq i \leq r\}$ gerade r kantendisjunkte Wege s-t-Wege in G.

Beweis:

1. Wenn p_i beide Kanten (u, v) und (v, u) enthält, so ist p_i nicht einfach. Es gibt zu p_i einen einfachen gerichteten s-t-Weg, der weder (u, v) noch (v, u) enthält.

2. Seien nun p_i, p_j gerichtete s-t-Wege, p_i enthalte die Kante (u, v) und p_j enthalte die Kante (v, u). Dann gibt es zwei gerichtete kantendisjunkte s-t-Wege, die alle Kanten aus p_i und p_j enthalten, außer (u, v) und (v, u).

Damit folgt die Behauptung. Siehe Abbildung 7.2.

Folgerung 7.3 Eine maximale Anzahl kantendisjunkter gerichteter s-t-Wege p_1, \ldots, p_k in \overrightarrow{G} induziert eine maximale Anzahl kantendisjunkter s-t-Wege in G. Diese können offensichtlich in Linearzeit aus p_1, \ldots, p_k konstruiert werden.
Ausführung von Schritt 2: Konstruktion von \(\overrightarrow{G_C} \)

Berechne in Linearzeit eine Menge von einfachen kantendisjunkten gerichteten Kreisen \(\overrightarrow{C_1}, \ldots, \overrightarrow{C_l} \), so daß der Graph \(\overrightarrow{G_C} \), der aus \(\overrightarrow{G} \) entsteht, durch Ersetzen aller Kanten \((u,v)\), die auf einem der \(\overrightarrow{C_i} \) liegen, durch die Kante \((v,u)'\) folgende Eigenschaften hat.

Eigenschaft 1 \(\overrightarrow{G_C} \) enthält keinen Rechtskreis, d.h. keinen einfach gerichteten Kreis, dessen „Inneres“ (\(\equiv \) Menge der vom Kreis umschlossenen Facetten, die nicht äußere Facette enthält) rechts vom Kreis liegt.

Eigenschaft 2 Bildet \(\overrightarrow{P_C} \subseteq \overrightarrow{E_C} \) Menge von kantendisjunkten gerichteten \(s-t \)-Wegen in \(\overrightarrow{G_C} \) und \(\overrightarrow{P} \subseteq \overrightarrow{E} \) sei definiert als

\[
\overrightarrow{P} := (\overrightarrow{P_C} \cap \overrightarrow{E}) \\
\cup \{(u,v) ∈ \overrightarrow{E} : (u,v) \text{ auf einem der } \overrightarrow{C_i} \text{ und } (v,u)' \notin \overrightarrow{P_C}\}.
\]

Dann soll \(\overrightarrow{P} \) genau dann eine maximale Menge kantendisjunkter gerichteter \(s-t \)-Wege in \(\overrightarrow{G} \) sein, wenn \(\overrightarrow{P_C} \) eine maximale Menge kantendisjunkter gerichteter \(s-t \)-Wege in \(\overrightarrow{G_C} \) ist.
Abbildung 7.3: Illustration von Schritt 2.

Bemerkungen:

1. $\vec{G_C}$ kann doppelte Kanten (v, u) und $(v, u)'$ enthalten.

2. \vec{P} entsteht aus $\vec{P_C}$, indem genau die Kanten „herausgenommen“ werden, die in $\vec{P_C}$ liegen und „umgedreht“ wurden, und die Kanten „hinzugenommen“ werden, die nicht in $\vec{P_C}$ liegen und „umgedreht“ wurden.

Konstruktion der $\vec{C_1}, \ldots, \vec{C_l}$

Sei F Menge der Facetten von G. Definiere den Abstand einer Facette $f \in F$ von der äußeren Facette f_0, d.h.

$$\text{dist}(f) := \text{Länge eines kürzesten Weges von dem Dualknoten zu } f \text{ zum Dualknoten der äußeren Facette } f_0 \text{ in } G^*.$$

Sei $l := \max_{f \in F} \text{dist}(f)$, und für $1 \leq i \leq l$ sei C_i Vereinigung der einfachen
Kreise in G, für die alle Facetten f im $\text{Inneren}(C_i)$ erfüllen $\text{dist}(f) \geq i$, und alle Facetten f im $\text{Außen}(C_i)$ erfüllen $\text{dist}(f) < i$. $\overrightarrow{C_1}, \ldots, \overrightarrow{C_l}$ seien die C_1, \ldots, C_l entsprechenden Rechtskreise in \overrightarrow{G}.

Wir beweisen, daß der durch Umkehren der Kreise $\overrightarrow{C_1}, \ldots, \overrightarrow{C_l}$ in \overrightarrow{G} induzierte Graph $\overrightarrow{G_C}$ die gewünschten Eigenschaften hat.

Zu Eigenschaft 1: Offensichtlich enthält $\overrightarrow{G_C}$ keine Rechtskreise, da von jedem Rechtskreis aus \overrightarrow{G} mindestens eine Kante auf einem der $\overrightarrow{C_i}$ liegen muß.

Zu Eigenschaft 2: Wir benutzen folgendes Lemma über kantendisjunkte s-t-Wegen in gerichteten Graphen.

![Diagram](image)

Abbildung 7.4: Illustration von Eigenschaft 2.

Lemma 7.4 Sei $\overrightarrow{H} = (V(\overrightarrow{H}), E(\overrightarrow{H}))$ ein gerichteter zusammenhängender Graph, $s, t \in V(\overrightarrow{H})$. \overrightarrow{H} besteht aus genau k kantendisjunkten gerichteten s-t-Wegen genau dann, wenn gilt:

1. Für alle $v \in V(\overrightarrow{H}) \setminus \{s, t\}$ ist $d^+(v) = d^-(v)$, wobei $d^+(v) := \# \text{ Kanten, die } v \text{ verlassen, und}$ $d^-(v) := \# \text{ Kanten, die in } v \text{ eintreten}$

2. $k = d^+(s) - d^-(s) = d^+(t) - d^+(t)$
Beweis: „⇒“ Da jeder s-t-Weg für jeden Knoten v dieselbe Anzahl Kanten zu \(d^+(v)\) wie zu \(d^-(v)\) beiträgt, gilt 1. Jeder s-t-Weg trägt genau eine Kante zu \(d^+(s) - d^-(s)\), und genau eine Kante zu \(d^+(t) - d^-(t)\). Also gilt auch 2.

„⇐“ Wenn jeder Knoten aus \(V(\overrightarrow{H})\backslash\{s,t\}\) Bedingung 1 erfüllt, und \(d^+(s) - d^-(s) = d^+(t) - d^-(t)\), so gibt es dabei gerade k s-t-Wege. Damit besteht \(\overrightarrow{H}\) also aus k nicht notwendig einfachen, kantendisjunkten s-t-Wegen.

Sei nun \(\overrightarrow{P_c}\) Menge kantendisjunkter gerichteter s-t-Wege in \(\overrightarrow{G_C}\). Beim Übergang von \(\overrightarrow{P_C}\) zu \(\overrightarrow{P}\) ändern sich für jeden Knoten \(v \in V\) \(d^+(v)\) und \(d^-(v)\) um den gleichen Betrag. Nur für v auf einem \(C_i\) ändert sich \(d^+(v)\) bzw. \(d^-(v)\) und zwar für \((v, u), (w, v)\) aus \(C_i\).

1. \((u, v)', (v, w)' \in \overrightarrow{P_c}\) g.d.w. \((v, u), (w, v) \notin \overrightarrow{P}\)

2. \((u, v)' \in \overrightarrow{P_c}, (v, w)' \notin \overrightarrow{P_c}\) g.d.w. \((v, u) \notin \overrightarrow{P}\), \((w, v) \in \overrightarrow{P}\) bzw.
 \((u, v)' \notin \overrightarrow{P_c}, (v, w)' \in \overrightarrow{P_c}\) g.d.w. \((v, u) \in \overrightarrow{P}\), \((w, v) \notin \overrightarrow{P}\)

3. \((u, v)', (v, w)' \notin \overrightarrow{P_c}\) g.d.w. \((v, u) (w, v) \in \overrightarrow{P}\)

In \(\overrightarrow{P_c}\) gilt \(k = d^+(s) - d^-(s) = d^+(t) - d^-(t)\) g.d.w. in \(\overrightarrow{P}\) gilt \(k = d^+(s) - d^-(s) = d^+(t) - d^-(t)\).

Folgerung 7.5 Aus k kantendisjunkten s-t-Wegen in \(\overrightarrow{G_C}\) können in Linearzeit k kantendisjunkte s-t-Wege in \(\overrightarrow{G}\) berechnet werden.

Die \(\overrightarrow{C_1}, \ldots, \overrightarrow{C_k}\) können in Linearzeit konstruiert werden (Übung).

Ausführung von Schritt 3: Berechnung einer maximalen Anzahl von s-t-Wegen in \(\overrightarrow{G_C}\)

Zur Berechnung einer maximalen Anzahl von kantendisjunkten gerichteten s-t-Wegen in \(\overrightarrow{G_C}\) in Linearzeit geben wir eine Prozedur an, die auf einer Right-First-Tiefensuche basiert.
DAS KANTENDISJUNKTE MENGER-PROBLEM

RIGHT-FIRST PROZEDUR ($\overrightarrow{G_C}$, $\overrightarrow{P_C}$)

Seien e_1, \ldots, e_r Kanten aus $\overrightarrow{G_C}$, die aus s herauslaufen; $\overrightarrow{P_C} := \emptyset$.

1. Für $i = 1$ bis r führe aus:
 \[e := e_i \]
 \[p_i := \{e_i\}. \]

2. Solange Einlaufknoten von e nicht s oder t führe aus:
 \[v := \text{Einlaufknoten von } e \]
 \[e' := \text{rechteste freie auslaufende Kante von } v \]
 \[\text{bzgl. } \text{"Referenzkante" von } v \]
 \[p_i := p_i \cup \{e'\}; \ e := e'. \]

3. Falls p_i s-t-Weg, setze $\overrightarrow{P_C} := \overrightarrow{P_C} \cup \{p_i\}$.

Version von Weihe: Referenzkante von v ist jeweils die aktuelle in v einlaufende Kante e.

Version von Coupry: Referenzkante von v ist die allererste Kante über die der Knoten v besucht wird. Diese Kante muß also beim ersten Besuch an v abgespeichert werden.

Laufzeit: Die Version von Coupry kann direkt in Linearzeit realisiert werden. Die rechteste freie auslaufende Kante bzgl. der Referenzkante ist in diesem Fall immer die nächste auslaufende Kante nach der zuletzt besetzten in der Adjazenzliste des Knoten, falls diese im Gegenurzeigersinn angeordnet ist. Die Gesamtläufzeit ist also linear in der Anzahl der Kanten in $\overrightarrow{G_C}$ amortisiert über alle Durchläufe $i = 1$ bis r von 1.

Korrekttheit: Wir beweisen die Korrektheit für die Version von Weihe. Die Schleife 2 der RIGHT-FIRST PROZEDUR endet immer in s oder t, also für jeden Knoten v in $\overrightarrow{G_C}$ per Konstruktion $d^+(v) = d^-(v)$. Wir beweisen, daß am Ende $\overrightarrow{P_C}$ eine maximale Anzahl kantendisjunkter gerichteter s-t-Wege enthält. Dazu benutzen wir die gerichtete, kantendisjunkte Version des Satz von Menger.
Satz 7.6 Die Maximalzahl gerichteter kantendisjunkter s-t-Wege in einem gerichteten Graphen ist gleich der minimalen Kardinalität eines s-t-Schritts. Dabei ist $A \subseteq \overrightarrow{E}$ ein s-t-Schnitt in einem (beliebigen) gerichteten Graphen $\overrightarrow{G} = (V, \overrightarrow{E})$, wenn $\overrightarrow{G} - A$ keinen gerichteten s-t-Weg enthält.

Wir konstruieren basierend auf den in Schleife 2 berechneten p_1, \ldots, p_r (d.h. \overrightarrow{P}_C zusammen mit den p_i, die in s geendet haben) einen gerichteten Kreis \overrightarrow{K} in \overrightarrow{G}_C mit folgenden Eigenschaften:

1. s liegt im Inneren(\overrightarrow{K}) oder auf \overrightarrow{K},
2. t liegt im Äußeren(\overrightarrow{K}),
3. die Anzahl der Kanten, die von \overrightarrow{K} aus ins Äußere(\overrightarrow{K}) zeigen, ist gleich der Anzahl der s-t-Wege in \overrightarrow{P}_C.

Wenn 1. - 3. gelten, so induziert \overrightarrow{K} einen s-t-Schnitt mit der gewünschten Kardinalität.

Konstruktion von \overrightarrow{K}

Seien p_1, \ldots, p_r die Linkskreise und s-t-Wege, die von der RIGHT-FIRST PROZEDUR berechnet werden. \overrightarrow{K} wird ausgehend von einer Kante (v, s), die von einem der p_1, \ldots, p_r besetzt ist, mittels einer rückwärts gerichteten Suche mit Left-First-Auswahlregel konstruiert. Falls es keine solche Kante (v, s) gibt, so setze $\{s\} := \overrightarrow{K}$. Ansonsten ist \overrightarrow{K} eine Folge von Kanten $(v_r, v_{r-1}) \ldots (v_1, v_0)$ mit $(v_r, v_{r-1}) = (v, s)$. Die Kante (v_{i+1}, v_i) ist die im Uhrzeigersinn nächste Kante nach (v_i, v_{i-1}) in der Adjazenzliste von v_i, die von einem der p_1, \ldots, p_r besetzt ist. Der (v_1, v_0) ist entweder die erste Kante nach (v_r, v_{r-1}) mit $v_0 = s$ oder die erste Kante in der Folge, für die die nächste zu wählende Kante bereits zu \overrightarrow{K} gehört.

Nach Konstruktion von \overrightarrow{K} gelten offensichtlich i) und ii).

Lemma 7.7 Betrachte $\overrightarrow{G}_C = (V, \overrightarrow{E}_C)$ und \overrightarrow{K}. Jede Kante $(u, v) \in \overrightarrow{E}_C$ mit u auf \overrightarrow{K} und $v \in \text{Äußeres}(\overrightarrow{K})$ gehört zu einem der s-t-Wege auf \overrightarrow{P}_C.
Beweis: Nach Konstruktion von \overrightarrow{K} zeigt keine Kante, die von einem der Wege und Linkskreise p_1, \ldots, p_r besetzt ist, vom $\overrightarrow{\text{Außeren}}(\overrightarrow{K})$ auf \overrightarrow{K}. Dann kann jedoch auch keine Kante $(u, v) \in \overrightarrow{E_C}$ mit u auf \overrightarrow{K} und $v \in \overrightarrow{\text{Außeres}}(\overrightarrow{K})$ von einem der Linkskreise aus p_1, \ldots, p_r besetzt sein.

Zu einem Knoten u auf \overrightarrow{K} betrachte die Kante (u, w) auf \overrightarrow{K}. Die Referenzkante von u zeigt vom $\overrightarrow{\text{Inneren}}(\overrightarrow{K})$ auf u oder liegt auf \overrightarrow{K}; und deshalb liegt (u, v), mit $v \in \overrightarrow{\text{Außeres}}(\overrightarrow{K})$ rechts von (u, w) bzgl. der Referenzkante von u. Dann muß aber (u, v) durch einen s-t-Weg aus $\overrightarrow{P_C}$ besetzt sein, ansonsten wäre vor (u, w) die Kante (u, v) im Algorithmus durch ein p_i besetzt worden.

Aus Lemma 7.7 folgt dann direkt das folgende Lemma und damit die Korrektheit von Schritt 3.

Lemma 7.8 Die Menge $A := \{(u, v) \in \overrightarrow{E_C} : u$ auf $\overrightarrow{K}, v \in \overrightarrow{\text{Außeres}}(\overrightarrow{K})$ ist ein s-t-Schnitt von $\overrightarrow{G_C}$ und $|A| = |\overrightarrow{P_C}|$.}

Abbildung 7.5: Wege p_1, p_2 (rot und blau) und der Kreis p_3 in $\overrightarrow{G_C}$. \overrightarrow{K} besteht aus der in s hereinführenden Kante von p_3, gefolgt von der zweiten Kante aus p_1 und vier weiteren Kanten aus p_3, und der durch \overrightarrow{K} induzierte Schnitt A.

Folgerung 7.9 Der Algorithmus zu Schritt 3 berechnet eine maximale Anzahl kantendisjunkter s-t-Wege in $\overrightarrow{G_C}$. Damit berechnet der Algorithmus ins-
gesamt in $O(n)$ eine maximale Anzahl kantendisjunkter s-t-Wege im planaren Graphen G.

Ausführung von Schritt 4: Konstruktion einer maximalen Anzahl kantendisjunkter s-t-Wege in G

Berechne in Linearzeit aus der Menge der kantendisjunkten s-t-Wege in \vec{G}_C eine Menge kantendisjunkter s-t-Wege in G gleicher Kardinalität. Dies geht entsprechend Lemma 7.2 und Folgerung 7.5.

7.2 Das knotendisjunkte Menger-Problem

Betrachte wieder einen planaren Graphen $G = (V, E)$ mit einer planaren Einbettung, bei der t auf der äußeren Facette liegt. Wir behandeln einen Linearzeitalgorithmus zur Lösung des knotendisjunkten Menger Problems.

Knotendisjunkter Menger-Algorithmus

Schritt 1: Ersetze $G = (V, E)$ durch den gerichteten Graphen $\vec{G} := (V, \vec{E})$, der entsteht, indem jede Kante $\{u, v\} \in E$ ersetzt wird durch die beiden gerichteten Kanten $(u, v), (v, u) \in \vec{E}$, falls sie nicht mit s oder t inzident ist; Kanten $\{u, s\} \in E$ nur durch (s, u) und Kanten $\{u, t\} \in E$ nur durch (u, t). Wenn $\vec{p}_1, \ldots, \vec{p}_k$ knotendisjunkte s-t-Wege in G gibt, so induzieren diese direkt knoten-disjunkte s-t-Wege p_1, \ldots, p_k in G.

Schritt 2: Seien $e_1, \ldots, e_r \in \vec{E}$ die Kanten aus \vec{G}, die aus s herauslaufen. In einer Schleife über e_1, \ldots, e_r werden knotendisjunkte, gerichtete s-t-Wege mittels einer Suche mit „Right-First“ Auswahlregel konstruiert. Dabei werden „Konflikte“ zwischen bereits besetzten Knoten und dem aktuellen Suchweg geeignet „aufgelöst“.

Ein besetzter Knoten v ist mit genau einer besetzten einlaufenden Kante (u, v) und genau einer besetzten auslaufenden Kante (v, w) inzident. Der Suchweg kann also von links oder von rechts in Bezug auf (u, v), (v, w) auf v treffen.
Abbildung 7.6: Eindeutig in v einlaufende und auslaufende besetzte Kanten (u, v) und (v, w).

Behandlung von Konflikten zwischen Suchweg und besetztem Knoten v.

Abbildung 7.7: Konflikt von links.

1. **Konflikt von links:** Der aktuelle Suchweg trifft von links auf einen besetzten Knoten v. Dann wird ein Backtrack-Remove-Schritt ausgeführt, d.h. die letzte Kante des Suchwegs vom Suchweg und aus \overline{G} entfernt.

2. **Konflikt von rechts:** Der aktuelle Suchweg trifft von rechts auf einen besetzten Knoten v. p sei der Teilweg von s nach v, zu dem die besetzte in v einlaufende Kante gehört, q der Teilweg von v nach t, zu dem die besetzte aus v auslaufende Kante gehört, und r der aktuelle Suchweg. Die Teilwege r und q werden zu einem s-t-Weg zusammengesetzt, und p als aktueller Suchweg betrachtet. Dies kann als eine „Umorganisation von Wegen“ angesehen werden. Danach trifft der aktuelle Suchweg von links auf den besetzten Kno-
ten, d.h. es tritt ein Konflikt von links ein. Dies wird wie gehabt durch einen
Backtrack-Remove-Schritt aufgelöst. Siehe Abbildung 7.8.

Voraussetzung dafür, daß diese „Umorganisation von Wegen“ sinnvoll ist, ist
die Bedingung, daß die zu \(v \) inzidenten besetzten Kanten nicht zu dem aktuel-
len Suchweg gehören. Daher ist der Algorithmus so angelegt, daß diese Situa-
tion erst gar nicht auftritt, d.h. der Suchweg keinen Rechtskreis durchläuft.
Beachte, daß \(\overrightarrow{G} \) selbst Rechtskreise enthält.

Trick 1: Man kann beweisen, daß für eine Kante \((v, w) \), über die der Suchweg
einen Rechtskreis mit Konflikt in \(v \) durchlaufen würde, bereits zu einem
früheren Zeitpunkt des Algorithmus die umgekehrte Kante \((w, v) \) in einem
Linkskreis mit Konflikt in \(v \) durchlaufen wurde.

Daher wird eine Kante \((v, w) \) entfernt, für die gilt:

\[
(v, w) \text{ würde nach Right-First-Auswahlregel als nächste Kante von dem aktuelle-
len Suchweg belegt, und } (w, v) \text{ ist zuvor einmal von dem aktuellen }
\text{Suchweg belegt worden.}
\]

Um diese Bedingung abzutesten, muß für eine Kante bekannt sein, ob sie
bereits von dem aktuellen Suchweg belegt wurde. Es mußte also zu jeder
belegten Kante gespeichert werden, von welchem Weg sie belegt ist.

Problem: Belegte Kanten ändern im Laufe des Algorithmus ihre Zugehörig-
keit zu Wegen, da die Wege selbst im Laufe des Algorithmus jeweils bei einem
Abbildung 7.9: Konflikt von rechts an einem Knoten \(v \) durch einen Rechtskreis im aktuellen Suchweg.

Konflikt von rechts umorganisiert werden. Ein Update für alle betroffenen Kanten bei jeder Umorganisation würde jedoch zu quadratischer Laufzeit führen.

Es gilt dann: Falls Kante \((w, v)\) im Algorithmus bereits zuvor von dem aktuellen Suchweg belegt wurde, so sind bei Betrachtung der Kante \((v, w)\) als eventuelle nächste vom Suchweg zu belegende Kante, die lokalen Zeitstempel von \(v \) und \(w \) identisch.

Insgesamt besteht nun Schritt 2 aus einer RIGHT-FIRST PROZEDUR. Sie beginnt jeweils bei einer aus \(s \) herausführenden Kante, und endet entweder bei \(t \) oder wieder bei \(s \). Im Laufe des Verfahrens werden knotendisjunkte \(s-t \)-Wege konstruiert. Wegen der wiederholt durchgeführten Umorganisation von Wegen, tritt ein einmal konstruierter \(s-t \)-Weg nicht unbedingt als solcher in der endgültigen Lösung auf.

Laufzeit: Die Gesamtzahl der Durchläufe von 3. ist linear in der Anzahl der Kanten von \(\overrightarrow{G} \), denn jede einzelne Kante von \(\overrightarrow{G} \) ist zunächst unbesetzt, wird im Laufe des Algorithmus höchstens einmal besetzt, und höchstens ein-

Invariant 1: Der Suchweg formt zu keinem Zeitpunkt des Algorithmus einen Rechtszykel. (Dies bedeutet, daß Trick 1 und 2 greifen.)

Invariant 2: Die maximale Anzahl knotendisjunkter s-t-Wege in \overrightarrow{G} sei k. \(\{a_1, \ldots, a_m\}\) seien die Kanten aus \overrightarrow{G}, die im Laufe des Algorithmus (in dieser Reihenfolge) entfernt werden. Dann gilt: Der Graph $\overrightarrow{G_i} := (V, \overrightarrow{E}\setminus\{a_1, \ldots, a_i\}), 1 \leq i \leq m$, enthält ebenfalls k knotendisjunkte s-t-Wege.
RIGHT-FIRST PROZEDUR zu Schritt 2

Seien e_1, \ldots, e_r die Kanten von $\vec{G} = (V, \vec{E})$, die aus s herausführen. Die Reihenfolge ist beliebig.

1. Setze $Zähler := 0$.

2. Für $i = 1$ bis r führe aus:
 Aktueller Suchweg bestehe aus Kante $e_i := (s, v)$.
 Setze $Zähler := Zähler + 1$.

3. Solange $v \notin \{s, t\}$ führe aus:

4. \[\text{Setze Zeitstempel}(v) := Zähler.\]

5. Falls der aktuelle Suchweg in v einen Konflikt von links hat, dann
 führe „Backtrack-Remove“ aus.
 Ansonsten:
 Falls der aktuelle Suchweg in v einen Konflikt von rechts hat, dann
 führe „Umorganisation“ aus.
 Setze $Zähler := Zähler + 1$.
 Ansonsten:

7. Falls eine unbesetzte aus v herausführende Kante (verschieden von der Gegenkante zur gerade führenden Kante des aktuellen Suchweges) existiert, dann
 wähle die rechteste freie herausführende Kante bzgl. der führenden Kante des aktuellen Suchweges. (v, w) sei diese Kante.

8. Falls $\text{Zeitstempel}(v) = \text{Zeitstempel}(w)$, dann
 entferne (v, w).
 Ansonsten füge (v, w) zum aktuellen Suchweg hinzu.
 Ansonsten führe „Backtrack-Remove“ mit der führenden Kante des aktuellen Suchwegs aus.

Abbildung 7.12: Die Situation nach dem ersten Suchschritt des zweiten Durchlauf von 2. Der Suchweg (grün gestrichelt), d.h. \(s \rightarrow u \) trifft im Knoten \(u \) von rechts den s-t-Weg, der im ersten Durchlauf konstruiert wurde.
Abbildung 7.13: Der Teilweg von \(s \to u \) des ersten \(s-t \)-Weges wird zum neuen Suchweg (grün gestrichelt), und der vorherige Suchweg wird mit dem Teilweg von \(u \to t \) des ersten \(s-t \)-Weges zu einem \(s-t \)-Weg (rot) zusammengesetzt.

Abbildung 7.14: Alle weiteren Konflikte im zweiten Durchlauf sind Konflikte, bei denen der Suchweg (grün gestrichelt) den konstruierten \(s-t \)-Weg (rot) von links trifft, zweimal in \(v \) und später einmal in \(w \).
Abbildung 7.15: Ein Beispiel, in dem ein Konflikt auftritt, der den vermeintlichen Durchlauf eines Rechtskreises „ankündigt“.

Abbildung 7.16: Nach drei Backtrack-Remove-Schritten. Nun ist \((v, w)\) die nächste Kante, die der Suchweg betrachtet. Die Zeitstempel von \(v\) und \(w\) sind zu diesem Zeitpunkt identisch, also wird \((v, w)\) nicht gewählt, sondern entfernt und stattdessen \((v, x)\) gewählt. Würde der Algorithmus tatsächlich \((v, w)\) wählen, so würde ein Rechtskreis \(v \rightarrow w \rightarrow u \rightarrow v\) durchlaufen. Auflösung des entsprechenden Konflikts von rechts durch Entfernen von \((u, v)\) würde alle optimalen Lösungen zerstören!
Kapitel 8

Das Problem von Okamura und Seymour

Das Menger-Problem kann man als ein „Wegpackungsproblem“ auffassen, d.h. es sollen knotendisjunkte bzw. kantendisjunkte Wege zwischen vorgegebenen Knoten in einen Graph „gepackt“ werden. Ein allgemeineres kantendisjunktes Wegpackungsproblem kann folgendermaßen formuliert werden.

KANTENDISJUNKTES WEGPACKUNGSPROBLEM

Gegeben sei ein Graph $G = (V,E)$ und Paare ausgezeichneter Knoten $\{s_1,t_1\}, \ldots, \{s_k,t_k\}$, $s_i, t_i \in V$ (nicht notwendig paarweise verschieden). Finde paarweise kantendisjunkte s_i-t_i-Wege p_i in G, $1 \leq i \leq k$. Die s_i, t_i werden *Terminale* genannt, die Mengen $\{s_i, t_i\}$ heißen *Netze*.

Dieses Problem ist \mathcal{NP}-vollständig, auch falls G planar ist. Naheliegende Einschränkungen des Problems in planaren Graphen sind:

Die Lage der s_i, t_i ist „eingeschränkt“, etwa alle s_i, t_i, $1 \leq i \leq k$ liegen auf dem Rand derselben Facette.

Sei $D := \{s_1, t_1\}, \ldots, \{s_k, t_k\}$ (Menge der Demand-Kanten), dann soll $G + D := (V,E \cup D)$ planar sein.

Ein wichtiges Kriterium für die Lösbarkeit solcher Probleme ist ähnlich wie beim kantendisjunkten Menger-Problem die „Kapazität“ des Graph.
Definition 8.1 Sei \(G = (V, E) \), \(X \subseteq V \). Dann heißt \(\text{cap}(X) := |\{\{u, v\} \in E : u \in X, v \in V \setminus X\}| \) die Kapazität von \(X \) (Größe des durch \(X \) induzierten Schnittes). Zu \(G = (V, E) \) sei \(D = \{\{s_i, t_i\} : s_i, t_i \in V, 1 \leq i \leq k\} \) gegeben. Dann heißt \(\text{dens}(X) := |\{\{s_i, t_i\} \in D_i : |\{s_i, t_i\} \cap X| = 1\}| \) die Dichte von \(X \). \(\text{fcap}(X) := \text{cap}(X) - \text{dens}(X) \) bezeichne die freie Kapazität von \(X \). \(X \) heißt saturiert, falls \(\text{fcap}(X) = 0 \) und übersaturiert, falls \(\text{fcap}(X) < 0 \).

Abbildung 8.1: Ein Problembeispiel mit Schnitt \(X \), für den \(\text{cap}(X) = 3 \), \(\text{dens}(X) = 4 \) und \(\text{fcap}(X) < 0 \) gilt

Eine notwendige Bedingung für die Lösbarkeit des kantendisjunkten Woppackungsproblems ist offensichtlich

\[\text{fcap}(X) \geq 0 \quad \text{für alle} \quad X \subseteq V. \]

Wir nennen diese Bedingung Kapazitätsbedingung. Im allgemeinen ist die Kapazitätsbedingung keine hinreichende Bedingung für die Lösbarkeit des kantendisjunkten Woppackungsproblems. Siehe Abbildung 8.2.

Ein Graph \(G = (V, E) \) mit \(D = \{\{s_i, t_i\} : s_i, t_i \in V, 1 \leq i \leq k\} \) erfüllt die Geradheitsbedingung (auch Euler-Bedingung genannt), falls

\[\text{fcap}(X) \quad \text{gerade ist für alle} \quad X \subseteq V. \]
Abbildung 8.2: Ein Problembeispiel, das die Kapazitätbedingung erfüllt, d.h. $\text{cap}(X) = 2$ für alle $\emptyset \neq X \subseteq V$ und $\text{dens}(X) \in \{1, 2\}$, aber nicht lösbar ist.

Wir betrachten ab jetzt folgenden Spezialfall des kantendisjunkten Wegpackungsproblems:

OKAMURA & SEYMOUR-PROBLEM

Gegeben sei ein planarer Graph $G = (V, E)$ und Paare ausgezeichneter Knoten $\{s_1, t_1\}, \ldots, \{s_k, t_k\}, s_i, t_i \in V$, wobei alle s_i, t_i auf dem Rand derselben Facette liegen. O.B.d.A. sei G so planar eingebettet, daß s_i, t_i, $1 \leq i \leq k$ auf der äußeren Facette liegen. Außerdem sei die Geradheitsbedingung erfüllt. Finde paarweise kantendisjunkte s_i-t_i-Wege p_i in G, $1 \leq i \leq k$.

Lemma 8.2 Sei $G = (V, E)$, $D := \{\{s_i, t_i\} : s_i, t_i \in V, 1 \leq i \leq k\}$. Es gilt $f_{\text{cap}}(X)$ gerade für alle $X \subseteq V$ genau dann, wenn $f_{\text{cap}}(v) := f_{\text{cap}}(\{v\})$ gerade für alle $v \in V$.

Beweis: „\Rightarrow“ ist trivial.

„\Leftarrow“ Sei also $f_{\text{cap}}(v)$ gerade für alle $v \in V$. Es gilt für $X \subseteq V$

\[
\text{cap}(X) = \sum_{v \in X} \text{cap}(v) - 2 \cdot |\{\{u, v\} \in E : u, v \in X\}| \quad \text{und}
\]

\[
\text{dens}(X) = \sum_{v \in X} \text{dens}(v) - 2 \cdot |\{s_i, t_i\} \in D : s_i, t_i \in X\}|
\]

Dann ist
\[
f \text{cap}(X) = \sum_{v \in X} \text{cap}(v) - \sum_{v \in X} \text{dens}(v) - 2 \cdot \left| \left\{ \{u, v\} \in E : u, v \in X \right\} \right| \\
+ 2 \left| \left\{ s_i, t_i \in D : s_i, t_i \in X \right\} \right| \\
= \sum_{v \in X} f \text{cap}(v) - 2 \cdot \left(\left| \left\{ \{u, v\} \in E : u, v \in X \right\} \right| \\
+ \left| \left\{ s_i, t_i \in D : s_i, t_i \in X \right\} \right| \right)
\]

Damit ist \(f \text{cap}(X) \) gerade, falls alle \(f \text{cap}(v) \) für \(v \in X \) gerade sind.

\[\square\]

Satz 8.3 Satz von Okamura & Seymour (1981)

Gegeben sei ein planar eingebetteter Graph \(G = (V, E) \) und \(D = \{s_1, t_1, \ldots, s_k, t_k\} \), wobei \(s_1, \ldots, s_k, t_1, \ldots, t_k \) auf dem Rand der äußeren Facette von \(G \) liegen. Die Kapazitätsbedingung und die Geradheitsbedingung seien erfüllt. Dann existieren paarweise kantendisjunkte \(s_i \)-\(t_i \)-Wege in \(G \).

Der Beweis von Okamura & Seymour zu Satz 8.3 führt direkt zu einem \(O(n^5) \) Algorithmus zur Lösung des kantendisjunkten Wegpackungsproblems in Graphen, die die Bedingungen von Satz 8.3 erfüllen. Dieser kann auf \(O(n^2) \) verbessert werden (Becker & Mehlhorn 1986; Matsumoto, Nishizeki & Saito 1985). Dabei werden explizit Kapazitäten und Dichten von Schnitten untersucht unter Benutzung der Dualität zwischen Schritten und Kreisen.

Wir werden hier einen Linearzeitalgorithmus behandeln, der wiederum auf einer Tiefsuche mit Right-First-Auswahlregel basiert.

Sei im folgenden \(G = (V, E) \) planar eingebettet, so daß \(s_1, t_1, \ldots, s_k, t_k \) auf dem Rand der äußeren Facette liegen und die Geradheitsbedingung sei erfüllt. O.B.d.A. sei \(G \) zweifach zusammenhängend; diese Annahme dient nur der Vereinfachung der Darstellung.

Linearzeitalgorithmus für das Okamura & Seymour-Problem

Schritt 1: Konstruieren aus $G = (V, E)$ mit $D = \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ ein Problem bestehend aus $G = (V, E)$ mit $D' = \{\{s'_1, t'_1\}, \ldots, \{s'_k, t'_k\}\}$ mit „einfacherer“ Struktur.

Schritt 2: Gegeben sei $G = (V, E)$ und $D' = \{\{s'_1, t'_1\}, \ldots, \{s'_k, t'_k\}\}$. Berechne in $O(n)$ kantendisjunkte $s'_i \cdot t'_i$-Wege mittels Right-First-Tiefensuche und Orientierung der entsprechenden Wege von s'_i nach t'_i. Diese induzieren einen gerichteten Graph $\overrightarrow{G} = (\overrightarrow{V}, \overrightarrow{E})$.

Schritt 3: Gegeben sei nun der durch Schritt 2 induzierte Graph $\overrightarrow{G} = (\overrightarrow{V}, \overrightarrow{E})$ und $D = \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$. Berechne in $O(n)$ kantendisjunkte gerichtete $s_i \cdot t_i$-Wege p_i in \overrightarrow{G}, welche kantendisjunkte $s_i \cdot t_i$-Wege in G induzieren.

Definition 8.4 $G = (V, E)$ mit $D' = \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ hat Klammerstruktur, falls $G + D$ so planar eingebettet werden kann, dass die Kanten aus D kreuzungsfrei in die äußere Facette der entsprechenden Einbettung von G eingebettet sind. Siehe Abbildung 8.3.

Ausführung von Schritt 1: Konstruktion von D' mit Klammerstruktur.

Konstruieren aus $G = (V, E)$ mit $D = \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\}$ ein Problem bestehend aus $G = (V, E)$ mit $D' = \{\{s'_1, t'_1\}, \ldots, \{s'_k, t'_k\}\}$, so dass $\{s_1, \ldots, s_k, t_1, \ldots, t_k\} = \{s'_1, \ldots, s'_k, t'_1, \ldots, t'_k\}$ und die $\{s'_1, t'_1\}, \ldots, \{s'_k, t'_k\}$ Klammerstruktur haben.

Zu einem Problembeispiel $G = (V, E)$ mit $D = \{s_1, t_1, \ldots, s_k, t_k\}$ (ohne Klammerstruktur) kann ein Problembeispiel G, D' mit Klammerstruktur leicht in $O(n)$ konstruiert werden. Wählen dazu ein beliebiges Terminal (s_i oder t_i) als Startterminal s. Beginnend bei s gehe im Gegenurzeigersinn um die äußere Facette. Dem jeweils ersten Terminal eines $\{s_i, t_i\}$ ordne eine öffnende Klammer zu und dem jeweils zweiten eine schließende Klammer. Die korrekte Klammernung dieser Klamern beginnend mit der Klammer zu s induziert D'. (Realisierung mit STACK siehe Übung.)
Abbildung 8.3: Beginnend mit einem beliebigen \(s_i \), z.B. \(s_6 \) haben die Netze Klammerstruktur d.h. Paarung der \(\{s_i, t_i\} \) entspricht einer korrekten Klammerung der entsprechenden Klammern.

Ausführung von Schritt 2: Berechnung der \(s'_i \rightarrow t'_i \)-Wege \(q_1, \ldots, q_k \)

Gegeben sei \(G = (V, E) \) und \(D' = \{\{s'_i, t'_i\}, \ldots, s'_k, t'_k\} \) mit Klammerstruktur. Berechne in \(O(n) \) kanten-disjunkte \(s'_i \rightarrow t'_i \)-Wege mittels Right-First-Tiefensuche und eine Orientierung der entsprechenden Wege von \(s'_i \) nach \(t'_i \).

Abbildung 8.4: Aus technischen Gründen hinzugefügte „Dummy-Kanten“.

Die \(s'_i, t'_i \) seien, beginnend beim Startterminal \(s \) im Gegenuhrzeigersinn so angeordnet, daß jeweils \(s'_i \) vor \(t'_i \) und \(t'_i \) vor \(t'_{i+1} \). Aus technischen Gründen füge jeweils Kanten wie in Abbildung 8.4 hinzu.
RIGHT-FIRST PROZEDUR \((G = (V, E), D' = \{s_i', t'_i\})\)

1. Für \(i = 1 \text{ bis } k\) führe aus:

 Füge zu \(q_i\) die eindeutige zu \(s_i'\) inzidente Kante ausgehend aus \(s_i'\) orientiert als führende Kante hinzu.

 Setze \(v := \text{eindeutiger zu } s_i' \text{ adjazenter Knoten.}\)

2. Solange \(v \notin \{s_j', t'_j, 1 \leq j \leq k\}\) führe aus:

 Sei \(\{v, w\}\) rechtste freie Kante bzgl. der führenden Kante von \(q_i\),

 dann füge \((v, w)\) zu \(q_i\) als führende Kante hinzu.

 Setze \(v := w\).

3. Falls \(v \neq t_i'\), gib „unlösbar“ aus.

4. Gib \(q_1, \ldots, q_k\) aus.

Offensichtlich endet wegen der Geradheitsbedingung jeder Durchlauf von 1. bei einem Terminalknoten.

Beobachtung 8.5 Wegen der Right-First-Auswahlregel können an einem Knoten \(v\) Reihenfolgen von Kanten wie in Abbildung 8.5 nicht vorkommen. Daher gilt für die Wege \(q_i\):

1. Keine zwei Wege \(q_i\) und \(q_j\) kreuzen sich.

2. Kein Weg \(q_i\) kreuzt sich selbst.

Abbildung 8.5: Reihenfolgen von Kanten, die wegen der Right-First-Auswahlregel nicht vorkommen können.

Sei \(\overrightarrow{G} = (\overrightarrow{V}, \overrightarrow{E})\), \(\overrightarrow{V} \subseteq V\), der Graph, der durch die von \(q_1, \ldots, q_k\) belegten Kanten zusammen mit der Orientierung induziert wird. Dann gilt für \(v \in \overrightarrow{V} \setminus \{s_i', t'_i : 1 \leq i \leq k\}\), daß \(d^+(v) = d^-(v)\) in \(\overrightarrow{G}\).
Corollar 8.6 \(\overrightarrow{G} = (V, E) \) enthält keinen Rechtskreis.

Beweis: Wenn \(\overrightarrow{C} \) Kanten eines Rechtskreises in \(\overrightarrow{G} \) sind, so gehören nicht alle Kanten aus \(\overrightarrow{C} \) zu demselben Weg \(q_i \). Seien \(q_i, q_j \) Wege, die Kanten aus \(\overrightarrow{C} \) besetzen. Da \(q_i \) und \(q_j \) sich nicht kreuzen, müssen die Terminale \(s_i, t_i \) und \(s_j, t_j \) in der Reihenfolge \(s_i, t_j, s_j, t_i \) im Gegenurzeigersinn auf der äußeren Facette von \(G \) liegen. Dies ist ein Widerspruch. Siehe Abbildung 8.6. \[\square\]

Abbildung 8.6: Durch einen Rechtskreis induzierte Reihenfolge der Terminale \(s_i, t_i, s_i, t_i \).

Lemma 8.7 Für ein lösbares Problem des Wegpackungsproblems \(G = (V, E) \) und \(D' = \{s_1, t_1', \ldots, s_k, t_k'\} \), wobei \(D' \) Klammerstruktur hat, \(s_i, t_i \) auf dem Rand der äußeren Facette liegen und die Geradheitsbedingung erfüllt ist, berechnet die RIGHT-FIRST PROZEDUR\((G, D') \) kantendisjunkte \(s_i-t_i \)-Wege \(q_i \), für \(1 \leq i \leq k \).

Beweis: Betrachte eine beliebige kreuzungsfreie Lösung \(q_1', \ldots, q_k' \). Eine solche Lösung existiert immer! Dann können wir für jedes \(q_i' \) deren linke und deren rechte Seite betrachten. Ebenso können wir für die von der RIGHT-FIRST PROZEDUR konstruierten Wege \(q_i \) linke und rechte Seite betrachten.

Wenn \(q_1', \ldots, q_k' \) kreuzungsfrei ist, so gilt für jedes \(q_i' \), daß es vollständig zur linken Seite aller \(q_1', \ldots, q_{i-1}' \) gehört. Induktiv über \(i, 1 \leq i \leq k \), gilt
für jedes \(q_i \), da es mittels Right-First-Auswahlregel und entsprechend der Klammerstruktur von \(D' \) bestimmt wurde, daß die linke Seite von \(q_i \) ganz enthalten ist in der linken Seite von \(q_i \). Daraus folgt insbesondere, daß \(q_i \) die Terminale \(s'_i \) und \(t'_i \) verbindet.

\(\square \)

Laufzeit: Offensichtlich ist Schritt 2 amortisiert in \(O(n) \) realisierbar, da die rechteste freie Kante bzgl. der führenden Kante immer die nächste Kante nach der führenden Kante in der (aktuellen) Adjazenzliste ist, und damit in konstanter Zeit gefunden werden kann.

Ausführung von Schritt 3: Berechnung der \(s_i-t_i \)-Wege \(p_1, \ldots, p_k \)

Gegeben sei nun der durch Schritt 2 induzierte Graph \(\overrightarrow{G} = (V, E) \) und \(D = \{\{s_1, t_1\}, \ldots, \{s_k, t_k\}\} \), wobei ausgehend vom Startterminal \(s \) aus Schritt 1 im Gegenurzeigersinn \(s_i \) vor \(t_i \) liegt, und o.B.d.A. die Indizierung so ist, daß \(t_i \) vor \(t_{i+1} \). Berechne in \(O(n) \) kantendisjunkte \(s_i-t_i \)-Wege \(p_i \) in \(\overrightarrow{G} \) mittels gerichteter Right-First-Tiefensuche, und zwar der Reihe nach entsprechend der Indizierung der \(\{s'_i, t'_i\} \) (also entsprechend dem Auftreten der \(t_i \) ausgehend von \(s \) im Gegenurzeigersinn).

RIGHT-FIRST PROZEDUR (\(\overrightarrow{G}, D \))

1. Für \(i = 1 \) bis \(k \) führe aus:
 - Füge zu \(p_i \) die eindeutige aus \(s_i \) herausführende Kante von \(\overrightarrow{G} \) als führende Kante hinzu.
 - Setze \(v := \) Einlaufknoten dieser Kante.

2. Solange \(v \notin \{s_j, t_j : 1 \leq j \leq k\} \) führe aus:
 - Sei \((v, w) \) die rechteste freie Kante, die aus \(v \) herausführt bzgl. der führenden Kante von \(p_i \), dann füge \((v, w) \) zu \(p_i \) als führende Kante hinzu.
 - Setze \(v := w \).

3. Falls \(v \neq t_i \) gib aus „ unlösbar“.

4. Gib \(p_1, \ldots, p_k \) aus.
Korrektheit: Um zu beweisen, daß Schritt 3 korrekte s_i-t_i-Wege p_i konstruiert für ein lösbares Problem geben wir einen Linearzeitalgorithmus an, der für jedes p_i einen Weg p angibt mit der Eigenschaft:

i. Falls p_i korrekt s_i mit t_i verbindet, so induziert p einen saturierten Schnitt in G.

ii. Falls p_i Terminal s_i nicht mit t_i verbindet, aber jedes p_j, $1 \leq j \leq i$ korrekt s_j mit t_j verbindet, so induziert p einen übersaturierten Schnitt in G.

Mit ii. ist im Fall, daß ein p_i nicht s_i mit t_i verbindet, die Kapazitätsbedingung, und damit eine notwendige Bedingung für Lösbarkeit, verletzt.

Sei p_i der i-te Weg, der konstruiert wurde, p_j, $1 \leq j < i$ seien die zuvor konstruierten Wege und verbinden jeweils s_j und t_j. Weg p_i ende bei Knoten t. Dann ist $t \in \{t_i, \ldots, t_k\}$. Folgende Prozedur besteht aus einer „Left-First-Tiefensuche“ rückwärts und berechnet einen Weg p, der einen Schnitt mit den gewünschten Eigenschaften induziert.

Schnitt-Prozedur (p_1, \ldots, p_k)

1. p sei die eindeutige in t einlaufende Kante und $v :=$ Auslaufknoten dieser Kante.

2. Solange $v \neq \{s_1, \ldots, s_k\}$ führe aus:

 Sei (v, x) die letzte zu p hinzugefügte Kante und (u, v) die im Uhrzeigersinn erste Kante nach (v, x), die nicht durch p besetzt ist,

 dann füge (u, v) zu p hinzu.

 Setze $v := u$.

Offensichtlich kann die SCHRITT-PROZEDUR in $O(n)$ realisiert werden.

Lemma 8.8 Der Weg p, der von der SCHRITT-PROZEDUR konstruiert wird, enthält keine Kreuzung. Insbesondere sind seine linke und rechte Seite wohndefiniert.

Beweis: Angenommen p würde sich selbst kreuzen. Dann gibt es einen einfachen Rechtskreis oder einen einfachen Linkskreis auf p mit Kreuzung in einem Knoten v. Da \overrightarrow{G} nach Corollar 8.6 keinen Rechtskreis enthält, gibt es in v einen einfachen Linkskreis, wobei die entsprechenden Kanten von p, die zu v inzident sind, die in Abbildung 8.7 gezeigte Konstellation bilden.

Abbildung 8.7: Illustration zu Lemma 8.8.

Dies ist ein Widerspruch zur Vorgehensweise in 2. der SCHRITT-PROZEDUR.

Lemma 8.9 Sei A die Menge der Kanten $\{u,v\}$ aus G mit u auf p und v rechts von p. Jede Kante $\{u,v\} \in A$ mit u auf p gehört zu \overrightarrow{G}, und zwar in der Orientierung (u,v) genau dann, wenn sie von einem der p_j, $1 \leq j < i$, besetzt ist.

Beweis: Sei $\{u,v\} \in A$ mit u auf p. Falls $\{u,v\}$ von einem der p_j, $1 \leq j < i$ besetzt ist, so ist deren Orientierung (u,v) in \overrightarrow{G}, nach Konstruktion von p.

Fall 1: Angenommen $\{u,v\} \in A$ mit u auf p habe Orientierung (u,v) in \overrightarrow{G}, und sei nicht durch eines der p_i besetzt.

Betrachte die zu p gehörenden Kanten (x,u), (u,y) inzident zu p, für die $\{u,v\}$ rechts von (x,u) und (u,y) liegt. Die Kante, die bei der Berechnung
der p_1, \ldots, p_k unmittelbar vor (u, y) gewählt wurde, ist dann (x, u) oder liegt links von (x, u) und (u, y). Dann ist aber die Wahl von (u, y) ein Widerspruch zur Right-First-Auswahlregel. Siehe Abbildung 8.8.

Gl. 8.8: Illustration zu Fall 1 aus Lemma 8.9.

Fall 2: Betrachte nun eine Kante $\{u, v\} \in A$, mit u auf p, die nicht zu \overrightarrow{G} gehört. Dann können wegen der Right-First Auswahlregel die Kanten (x, u), (u, y) von p, für die $\{u, v\}$ rechts liegt, nicht beide zu demselben Weg q_i' aus \overrightarrow{G} gehören. Gehöre (x, u) also zu q_j' und (u, y) zu q_i', $j \neq l$. Dann liegt die Vorgängerkante von (u, y) auf q_i' rechts von $\{u, v\}$ und (u, y), und kann daher von keinem der p_1, \ldots, p_k besetzt sein. Dann muß es eine weitere Kante (z, u) in \overrightarrow{G} geben, die von einem der p_1, \ldots, p_k besetzt ist und links von (x, u) und (u, y) liegt, und eine weitere Kante (u, w), die Nachfolgerkante von (z, u) auf dem entsprechenden Weg q_r' in \overrightarrow{G} ist, und auch links von $(x, u), (u, y)$ liegt. Dann liegt aber die Kante $\{u, v\}$ rechts von q_r' im Widerspruch zur Right-First-Auswahlregel. Siehe Abbildung 8.9.

Gl. 8.9: Illustration zu Fall 2 aus Lemma 8.9.
Lemma 8.10 Sei \(X \subseteq V \) Menge der Knoten rechts von \(p \). Falls \(p_i \) ein \(s_i-t_i \)-Weg ist, ist \(X \) saturiert, ansonsten ist \(X \) übersaturiert.

Beweis: Alle Kanten \(\{u,v\} \) mit \(u \) auf \(p \) und \(v \in X \) gehören entweder zu einem Weg \(p_j, 1 \leq j < i \), mit \(s_j \in V \setminus X \) und \(t_j \in X \), oder zu einem Weg \(q_j', \) mit \(s_j' \in X \) und \(t_j' \in V \setminus X \). Wenn \(p_i \) ein \(s_i-t_i \)-Weg ist, dann ist damit

\[
\operatorname{cap}(X) = \left| \{s_j, t_j \} : s_j \in V \setminus X, t_j \in X, 1 \leq j \leq i \} \right| + \left| \{s_j', t_j' \} : s_j' \in X \right| + \left| \{s_1, t_1 \}, \ldots, \{s_i, t_i \} \right| = \operatorname{dens}(X).
\]

Wenn \(p_i \) kein \(s_i-t_i \)-Weg ist, so verbindet \(p_i \) das Terminal \(s_i \) mit einem Terminal \(t \in \{t_j ; i < j \leq k \}. \) Da \(s_i \in V \setminus X \) und \(t_i \in X \) ist, dann gilt \(\operatorname{cap}(X) \leq \operatorname{dens}(X) - 1. \)

\[\square\]

Abbildung 8.10: Illustration der SCHNITT-PROZEDUR. Der Weg \(p \) (rot durchgezogen), der von der SCHNITT-PROZEDUR berechnet wird, darunter der durch \(p \) induzierte Schnitt, der in diesem Fall übersaturiert ist, da er zusätzlich zu bereits verbundenen Terminalpaaren noch \(\{s_i, t_i \} \) trennt. Wge \(p_i \) sind rot gestrichelt, Wege \(q_j \) grün.

Laufzeit: Mit UNION-FIND kann die RIGHT-FIRST PROZEDUR zu Schnitt 3 in \(O(n) \) realisiert werden.

Abbildung 8.12: Der erste Weg, den die RIGHT-FIRST PROZEDUR für das Problembeispiel mit Klammerstrukturberechnet.
Abbildung 8.13: Der zweite Weg, den die RIGHT-FIRST PROZEDUR für das Problembeispiel mit Klammerstrukturberechnet.

Abbildung 8.14: Der dritte Weg, den die RIGHT-FIRST PROZEDUR für das Problembeispiel mit Klammerstruktur berechnet.
Abbildung 8.15: Der vierte Weg, den die RIGHT-FIRST PROZEDUR für das Problembeispiel mit Klammerstruktur berechnet.

Abbildung 8.16: Der fünfte und letzte Weg, den die RIGHT-FIRST PROZEDUR für das Problembeispiel mit Klammerstruktur berechnet.
Abbildung 8.17: Der in Schritt 2 berechnete Hilfsgraph \overrightarrow{G}, in dem die RIGHT-FIRST PROZEDUR für G und D arbeitet.

Abbildung 8.18: Der erste Weg, den die RIGHT-FIRST PROZEDUR für G und D berechnet, verbindet Terminalpaar 4.
Abbildung 8.19: Der zweite Weg, den die RIGHT-FIRST PROZEDUR für G und D berechnet, verbindet Terminalpaar 5.

Abbildung 8.20: Der dritte Weg, den die RIGHT-FIRST PROZEDUR für G und D berechnet, verbindet Terminalpaar 3.
Abbildung 8.21: Der vierte Weg, den die RIGHT-FIRST PROZEDUR für G und D berechnet, verbindet Terminalpaar 2.

Abbildung 8.22: Der fünfte Weg, den die RIGHT-FIRST PROZEDUR für G und D berechnet, verbindet Terminalpaar 1.
KAPITEL 8. DAS PROBLEM VON OKAMURA UND SEYMOUR
Literaturliste

Literaturangaben zu den Kapiteln der Vorlesung

Kap. 1 Einführung [Aig84, RSST96]
Kap. 2 Grundlegende Eigenschaften [Aig84, Kapitel 4]
Kap. 3 Färbung [Aig84, Kapitel 3]
Kap. 4 Planar Separator Theorem [LT79]
(Der in der Vorlesung vorgestellte Beweis ist wesentlich vereinfacht. Die garantierte Maximalgröße eines Separators ist dadurch unwesentlich größer als in der Originalarbeit.)
Kap. 5 Matching maximalen Gewichts [LT80]
Kap. 6 Mixed-Max-Cut-Algorithmus [SWK90]
Via-Minimierung [Pin84, KCS88]
Kap. 7 Kantendijsunkter Menger-Algorithmus [Wei94, Cou97]
Knotendijsunkter Menger-Algorithmus [RLWW97]
Kap. 8 Das Okamura-Seymour-Problem [OS81, WW95]
Übersichtsartikel zu Wegpackungsproblemen [Wag93]
Zusätzliche Literaturangaben zu ausgewähltem Übungsstoff

<table>
<thead>
<tr>
<th>Isomorphie</th>
<th>vergl. [BM76, Abschnitt 1.2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einbettung in verschiedene Flächen</td>
<td>[Whi84, Kapitel 5]</td>
</tr>
<tr>
<td>Maße für die Nähe zur Planarität</td>
<td>[Lie96]</td>
</tr>
<tr>
<td>Satz von Whitney</td>
<td>[Aig84, Satz 4.7]</td>
</tr>
<tr>
<td>Satz von Steinitz</td>
<td>[Grü67, Kapitel 13]</td>
</tr>
<tr>
<td>Choosability</td>
<td>[Tho94, Voi93]</td>
</tr>
<tr>
<td>Straight line embedding</td>
<td>[Fár48]</td>
</tr>
<tr>
<td>Satz von Menger</td>
<td>[Aig84, Satz 4.4 und Folgerung 4.5]</td>
</tr>
<tr>
<td>Satz von Vizing</td>
<td>[Aig84, Satz 5.6]</td>
</tr>
<tr>
<td>Dualer Graph im Sinne von Whitney</td>
<td>[Aig84, Satz 4.11]</td>
</tr>
</tbody>
</table>
Literaturverzeichnis

119

