Introduction to Spring Embedder Layouts

Achievement: You can do anything you set your mind to when you have vision, determination, and an endless supply of expendable labor.
Overview

• Motivation

• Spring Embedder

• Variations
Problem: Finding General Layouts

Problem: How can we determine layouts for general graphs without
Problem: Finding General Layouts

Problem: How can we determine layouts for general graphs without

- having structural properties
- preprocessing (to find structural properties)
- solving NP-hard problems

that are
Problem: Finding General Layouts

Problem: How can we determine layouts for general graphs without

- having structural properties
- preprocessing (to find structural properties)
- solving NP-hard problems

that are

- robust
- flexible
- easy to understand.
Solution: Physical Analogies

in physics:

- models consist of objects and interactions (among them)
- stable configurations (instances) are those with minimal energy levels
Solution: Physical Analogies

in physics:

• models consist of object and interactions (among them)

• stable configurations (instances) are those with minimal energie levels

for layout algorithms:

• nodes correspond to (physical) objects

• edges correspond to interactions

• (good?) layouts correspond to stable configurations
Spring-Embedder

spring model:

- node are small balls with electrical charge (same sign)
- edges are springs with given constant (ideal length)
- nodes repel each others (repulsive force)
- edges cannot be arbitrary long (attractive force)
Spring-Embedder (2)

- coordinates p_v for each node v
- lengths l_e for each edge e

$$f_{\text{rep}}(u, v) := \frac{c_1}{\|p_v - p_u\|^2} \cdot \overrightarrow{p_u p_v}$$

$$f_{\text{spring}}(u, v) := c_2 \cdot \log \frac{\|p_u - p_v\|}{l_e} \cdot \overrightarrow{p_u p_v} \quad \text{for } (u, v) = e \in E$$
algorithmic approach:

• choose a random placement (for each node)

• iterate
 – calculate for each node v its force vector $F(v)$
 – move each node v according to its force vector

\[p_v \leftarrow p_v + \delta \cdot F(v) \]
Spring-Embedder (4)
Spring-Embedder (4)
Variation [Fruchtermann, Reingold]

• repulsive force:

\[f_{\text{rep}}(u, v) := \frac{l_{uv}^2}{\|p_u - p_v\|} \cdot \overrightarrow{p_up_v} \]

• attractive force:

\[f_{\text{attr}}(u, v) := \frac{\|p_u - p_v\|^2}{l_e} \cdot \overrightarrow{p_vp_u} \quad \text{for } (u, v) = e \in E \]

advantage: 'spring' force is super linear in \(l \) (better convergence)
Variations

- grid
- clipping
- rotation

- time dependency
- gravitational forces
- approximation of forces
- multi-level approaches