
A Universal Point Set for 2-Outerplanar Graphs?

Patrizio Angelini1, Till Bruckdorfer1, Michael Kaufmann1, and Tamara Mchedlidze2

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Germany
2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. A point set S ⊆ R2 is universal for a class G if every graph of G
has a planar straight-line embedding on S. It is well-known that the integer grid
is a quadratic-size universal point set for planar graphs, while the existence of
a sub-quadratic universal point set for them is one of the most fascinating open
problems in Graph Drawing. Motivated by the fact that outerplanarity is a key
property for the existence of small universal point sets, we study 2-outerplanar
graphs and provide for them a universal point set of size O(n logn).

1 Introduction

Let S be a set of m points on the plane. A planar straight-line embedding of an n-
vertex planar graph G, with n ≤ m, on S is a mapping of each vertex of G to a distinct
point of S so that, if the edges are drawn straight-line, no two edges cross. Point set
S is universal for a class G of graphs if every graph G ∈ G has a planar straight-line
embedding on S. Asymptotically, the smallest universal point set for general planar
graphs is known to have size at least 1.235n [11], while the upper bound is O(n2) [3,
8, 12]. All the upper bounds are based on drawing the graphs on an integer grid, except
for the one by Bannister et al. [3], who use super-patterns to obtain a universal point
set of size n2/4 − Θ(n) – currently the best result for planar graphs. Closing the gap
between the lower and the upper bounds is a challenging open problem [6–8].

A subclass of planar graphs for which the “smallest possible” universal point set
is known is the class of outerplanar graphs – the graphs that admit a straight-line pla-
nar drawing in which all vertices are incident to the outer face. Namely, Gritzmann et
al. [10] and Bose [5] proved that any size-n point set in general position is universal
for n-vertex outerplanar graphs. Motivated by this result, we consider the class of k-
outerplanar graphs, with k ≥ 2, which is a generalization of outerplanar graphs. A
planar drawing of a graph is k-outerplanar if removing the vertices of the outer face,
called k-th level, produces a (k−1)-outerplanar drawing, where 1-outerplanar stands for
outerplanar. A graph is k-outerplanar if it admits a k-outerplanar drawing. Note that ev-
ery planar graph is a k-outerplanar graph, for some value of k ∈ O(n). Hence, in order
to tackle a meaningful subproblem of the general one, it makes sense to study the exis-
tence of subquadratic universal point sets when the value of k is bounded by a constant
or a sublinear function. However, while the case k = 1 is trivially solved by selecting
any n points in general position, as observed above [5, 10], the case k = 2 already

? This work has been supported by DFG grant Ka812/17-1. The full version of the paper, in-
cluding all the missing proofs, can be found in [2].

eluded several attempts of solution and turned out to be far from trivial. In this paper,
we finally solve the case k = 2 by providing a universal point set for 2-outerplanar
graphs of size O(n log n).

A subclass of k-outerplanar graphs, in which the value of k is unbounded, but every
level is restricted to be a chordless simple cycle, was known to have a universal point
set of size O(n(logn

log logn)
2) [1], which was subsequently reduced to O(n log n) [3]. It is

also known that planar 3-trees – graphs not defined in terms of k-outerplanarity – have
a universal point set of size O(n5/3) [9]. Note that planar 3-trees have treewidth equal
to 3, while 2-outerplanar graphs have treewidth at most 5.
Structure of the paper: After some preliminaries and definitions in Section 2, we
consider 2-outerplanar graphs in Section 3 where the inner level is a forest and all the
internal faces are triangles. We prove that this class of graphs admits a universal point
set of size O(n3/2). We then extend the result in Section 4 to 2-outerplanar graphs
in which the inner level is still a forest but the faces are allowed to have larger size.
Finally, in Section 5, we outline how the result of Section 4 can be extended to general
2-outerplanar graphs. We also explain how to apply the methods in [3] to reduce the
size of the point set to O(n log n). We conclude with open problems in Section 6.

2 Preliminaries and Definitions

A straight-line segment with endpoints p and q is denoted by s(pq). A circular arc
with endpoints p and q (clockwise) is denoted by a(pq). We assume familiarity with the
concepts of planar graphs, straight-line planar drawings and their faces. A straight-line
planar drawing Γ of a graph G determines a clockwise ordering of the edges incident
to each vertex u of G, called rotation at u. The rotation scheme of G in Γ is the set of
the rotations at all the vertices of G determined by Γ . Observe that, if G is connected,
in all the straight-line planar drawings of G determining the same rotation scheme, the
faces of the drawing are delimited by the same edges.

Let [G,H] be a 2-outerplanar graph, where the outer level is an outerplanar graph
G and the inner level is a setH = {G1, . . . , Gk} of outerplanar graphs. We assume that
[G,H] is given together with a rotation scheme, and the goal is to construct a planar
straight-line embedding of [G,H] on a point set determining this rotation scheme. Since
[G,H] can be assumed to be connected (as otherwise we can add a minimal set of
dummy edges to make it connected), this is equivalent to assuming that a straight-line
planar drawing Γ of [G,H] is given. We rename the faces of Γ as F1, . . . , Fk in such
a way that each graph Gh, which can also be assumed connected, lies inside face Fh.
Note that, for each face Fh of G, the graph [Fh, Gh] is again a 2-outerplanar graph;
however, its outer level Fh is a simple chordless cycle and its inner level Gh consists
of only one connected component. In the special case in which Gh is a tree we say
that graph [Fh, Gh] is a cycle-tree graph. We say that a 2-outerplanar graph is inner-
triangulated if all the internal faces are 3-cycles. Note that not every cycle-tree graph
can be augmented to be inner-triangulated without introducing multiple edges.

2

pN = pn+√np1
O

pj+1

pj−1
pj

pNj

p+j

p−j
pCj

p2j

p1j
xl

πj

π

(a) (b)

Fig. 1. (a) Illustration of S, focused on Sj of pj . (b) A cycle-tree graph and its embedding.

3 Inner-Triangulated 2-Outerplanar Graphs with Forest

In this section we prove that there exists a universal point set S of size O(n3/2) for the
class of n-vertex inner-triangulated 2-outerplanar graphs [G,H] whereH is a forest.

3.1 Construction of the Universal Point Set

In the following we describe S (Fig. 1(a)). Let π be a half circle with center O and let
N := n +

√
n. Uniformly distribute points in SM = {p1, . . . , pN} on π. The points

in SD = {pi√n+i : 1 ≤ i ≤ √n} are called dense, while the remaining points in
SM \ SD are sparse3. For j = 2, . . . , N − 1, place a circle πj with its center pCj
on s(pjO), so that it lies completely inside the triangle 4pj−1pjpj+1 and inside the
triangle4p1pjpN . Note that the angles ∠pjpCj pN and ∠pjpCj p1 are smaller than 180◦.
Let pNj be the intersection point between s(pjO) and πj that is closer to O. Also, let
p1j (resp. p2j) be the intersection point of s(pCj pj+1) (resp. s(pCj pj−1)) with πj . Finally,
let p3j (resp. p4j) be the intersection point of πj with its diameter orthogonal to s(pjO),
such that a(p3jp

4
j) does not contain pNj . Now, choose a point p+j on the arc a(p1jp

3
j),

and a point p−j on the arc a(p4jp
2
j). To complete the construction of S, evenly distribute

n − 1 points on each of the three segments sNj := s(pCj p
N
j), s+j := s(pCj p

+
j), and

s−j := s(pCj p
−
j), where n = n if pj is dense and n =

√
n if it is sparse. We refer to the

points on sN , s+, s−, including the points pNj , p
C
j , p

+
j , p

−
j , as the point set of pj , and

we denote it by Sj . Vertex pCj is the center vertex of Sj . The described construction
uses O(n3/2) points and ensures the following property.

Property 1. For each j = 1, . . . , N , the following visibility properties hold:
(A) The straight-line segments connecting point pj to: point p−j , to the points on s−j , to
pCj , to the points on s+j , and to p+j appear in this clockwise order around pj .
(B) For all l < j, consider any point xl ∈ {pl} ∪ Sl (see Fig. 1(a)); then, the straight-
line segments connecting xl to: pNj , to the points on sNj , to pCj , to the points on s−j , to

3 The distribution of the points into dense and sparse portions of the point set is inspired by [1].

3

p−j , and to pj appear in this clockwise order around xl. Also, consider the line passing
through xl and any point in {pj} ∪ Sj ; then, every point in {pq} ∪ Sq , with l < q < j,
lies in the half-plane delimited by this line that does not contain the center O of π.
(C) For all l > j, consider any point xl ∈ {pl} ∪ Sl; then, the straight-line segments
connecting xl to: pNj , to the points on sNj , to pCj , to the points on s+j , to p+j , and to pj
appear in this counterclockwise order around xl. Also, consider the line passing through
xl and any point in {pj} ∪ Sj ; then, every point in {pq} ∪ Sq , with j < q < l, lies in
the half-plane delimited by this line that does not contain O.

3.2 Labeling the Graph

Let [G,H] be an inner-triangulated 2-outerplanar graph whereG is an outerplanar graph
and H = {T1, . . . , Tk} is a forest such that tree Th lies inside face Fh of G, for each
1 ≤ h ≤ k. The idea behind the labeling is the following: in our embedding strategy, G
will be embedded on the half-circle π of the point set S, while the tree Th ∈ H lying
inside each face Fh of G will be embedded on the point sets Sj of some of the points
pj on which vertices of Fh are placed. Note that, since π is a half-circle, the drawing of
Fh will always be a convex polygon in which two vertices have small (acute) internal
angles, while all the other vertices have large (obtuse) internal angles. In particular, the
vertices with the small angle are the first and the last vertices of Fh in the order in which
they appear along the outer face of Γ . Since, by construction, a point pj of Fh has its
point set Sj in the interior of Fh if and only if it has a large angle, we aim at assigning
each vertex of Th to a vertex of Fh that is neither the first nor the last. We will describe
this assignment by means of a labeling ` : [G,H]→ 1, . . . , |G|; namely, we will assign
a distinct label `(v) to each vertex v ∈ G and then assign to each vertex of Th the same
label as one of the vertices of Fh that is neither the first or the last. Then, the number of
vertices with the same label as a vertex of G will determine whether this vertex will be
placed on a sparse or a dense point. We formalize this idea in the following.

We rename the vertices of G as v1, . . . , v|G| in the order in which they appear along
the outer face of Γ , and label them with `(vi) = i for i = 1, . . . , |G|. Next, we label
the vertices of each tree Th ∈ H. Since trees Th and Th′ are disjoint for h 6= h′, we
focus on the cycle-tree graph [F, T] composed of a single face F = Fh of G and of
the tree T = Th ∈ H inside it. Rename the vertices of F as w1, . . . , wm in such a
way that for any two vertices wx = vp and wx+1 = vq , where p, q ∈ {1, . . . , |G|},
it holds that p < q. As a result, w1 and wm are the only vertices of F with small
internal angles. A vertex of T is a fork vertex if it is adjacent to more than two vertices
of F (square vertices in Fig. 1(b)), otherwise it is a non-fork vertex (cross vertices in
Fig. 1(b)). Since [F, T] is inner-triangulated, every vertex of T is adjacent to at least two
vertices of F , and hence non-fork vertices are adjacent to exactly two vertices of F . We
label the vertices of T starting from its fork vertices. To this end, we construct a tree T ′

composed only of the fork vertices, as follows. Initialize T ′=T . Then, as long as there
exists a non-fork vertex of degree 3 (namely, with 2 neighbors in F and 1 in T ′), remove
it and its incident edges from T ′. The vertices removed in this step are called foliage
(small crosses in Fig. 1(b)). All the remaining non-fork vertices have degree 4 (namely
2 in F and 2 in T ′); for each of them, remove it and its incident edges from T ′ and add
an edge between the two vertices of T ′ that were connected to it before its removal. The

4

vertices removed in this step are branch vertices (large crosses in Fig. 1(b)). A vertex
wx ∈ F is called free if so far no vertex of T ′ has label `(wx). To perform the labeling,
we traverse T ′ bottom-up with respect to a root r that is the vertex of T ′ adjacent to
both w1 and wm. Since [F, T] is inner-triangulated, this vertex is unique. During the
traversal of T ′, we maintain the invariant that vertices of T ′ are incident to only free
vertices of F . Initially the invariant is satisfied since all the vertices of F are free. Let
a be the fork vertex considered in a step of the traversal of T ′, and let wa1 , . . . , wak
be the vertices of F adjacent to a, with 1 ≤ a1 < · · · < ak ≤ m and k ≥ 3. By the
invariant, wa1 , . . . , wak are free. Choose any vertex wai such that 2 ≤ i ≤ k − 1, and
set `(a) = `(wai). For example, the red fork vertex in Fig. 1(b) adjacent to w3, w4,
and w5 in F gets label `(w4). Since vertices wa2 , . . . , wak−1

cannot be adjacent to any
vertex of T ′ that is visited after a in the bottom-up traversal, the invariant is maintained
at the end of each step. When finally a=r, then wa1 = w1 and wak = wm are both free.

Now we label the non-fork vertices of T based on the labeling of T ′. Let b be a
non-fork vertex. If b is a branch vertex, then consider the first fork vertex a encountered
on a path from b to a leaf of T ; set `(b) = `(a). Otherwise, b is a foliage vertex. In this
case, consider the first fork vertex a′ encountered on a path from b to the root r of T . Let
v, w ∈ F be the two vertices of F adjacent to b; assume `(v) < `(w). If `(a′) ≤ `(v),
then set `(b) = `(v); if `(a′) ≥ `(w), then set `(b) = `(w); and if `(v) < `(a′) < `(w),
then set `(b) = `(a′) (the latter case only happens when a′ is the root and b is adjacent to
w1 and wm). Note that the described algorithm ensures that adjacent non-fork vertices
have the same label. We perform the labeling procedure for every Th ∈ H and obtain
a labeling for [G,H]. We say that the subgraph of H induced by all the vertices of H
with label i is the restricted subgraph Hi ofH for all i = 1, . . . , |G| (see Fig. 1(b)).

Lemma 1. Each restricted subgraph Hi of H, 1 ≤ i ≤ |G|, is a tree all of whose
vertices have degree at most 2, except for one vertex that may have degree 3.

Proof sketch. First, Hi has at most one fork vertex a, which is hence the only one with
degree larger than 2. Further, a is incident to at most one path (to no path, if a = r)
of branch vertices, namely the one connecting it to its parent fork vertex. Finally, a is
incident to at most two (if a 6= r) or at most three (if a = r) paths of foliage vertices,
namely the ones whose vertices are incident to the vertex w ∈ F such that `(w) = i. �

3.3 Embedding on the Point Set

We describe an embedding algorithm consisting of three steps (see Fig. 1(b)).
Step a: Let ω : G→ N be a weight function with ω(vi)=|{v ∈ [G,H] | `(v) = i}| for
every vi ∈ G. Note that

∑
vi∈G ω(vi) = n. We categorize each vertex vi ∈ G as sparse

if 1 ≤ ω(vi) ≤
√
n, and dense if ω(vi) >

√
n. There are at most

√
n dense vertices.

Step b: We draw the vertices v1, . . . , v|G| of G on the N := n +
√
n points of π in

the same order as they appear along the outer face of Γ , in such a way that dense (resp.
sparse) vertices are placed on dense (resp. sparse) points. The resulting embedding Γ̃
of G is planar since Γ is planar. The construction of Γ̃ implies the following.

Property 2. Let Q = {pj1 , . . . , pjm} ⊆ π, ji < ji+1, be the polygon representing a
face of G. Polygon Q contains in its interior all the point sets Sj2 , . . . , Sjm−1

.

5

Step c: Finally, we consider forest H = {T1, . . . , Tk}. We describe the embedding
algorithm for a single cycle-tree graph [F, T], where F = w1, . . . , wm is a face ofG and
T ∈ H is the tree lying inside F . We show how to embed the restricted subgraphHi, for
each vertex wx of F with label `(wx) = i, on the point set Sj of the point pj where wx
is placed. We remark that the labeling procedure ensures that |Hi|+1 = ω(wx) ≤ |Sj |;
also, by Property 2, point set Sj lies inside the polygon representing F , except for the
two points where vertices w1 and wm have been placed.

By Lemma 1,Hi has at most one (fork-)vertex a of degree 3, while all other vertices
have smaller degree. We place a, if any, on the center point pCj of pj . The at most three
paths of non-fork vertices are placed on segments s+j , s

−
j , s

N
j starting from pCj ; namely,

the unique path of branch vertices is placed on sNj , while the two paths of foliage
vertices are placed on s+j or s−j based on whether the vertex of G different from wx
they are incident to is wx+1 or wx−1, respectively. If a = r, then the path of foliage
vertices incident to w1 and wm is placed on sNj .

We show that this results in a planar drawing of T . First, for every two fork vertices
a ∈ Hp and a′ ∈ Hq , with p < q, all the leaves of the subtree of T rooted at a have
smaller label than all the leaves of the subtree of T rooted at a′. Then, for each wx ∈ F ,
with `(wx) = i, consider the fork vertex a ∈ Hi, which lies on pCj . Let P be any path
connecting a to a leaf of T and let a∗ be the neighbor of a in P . If P contains a fork
vertex other than a (Fig. 2(a)), then let a′ be the fork vertex in P that is closest to a
(possibly a′=a∗) and let pCq be the point where a′ has been placed. Assume q < j,
the case q > j is analogous. By definition, the non-fork vertices in the path from a to
a′ (if any) are branch vertices, and hence lie on sNq . Then, Property 1 ensures that the
straight-line edge (a, a∗) separates all the point sets Sp with q < p < j from the center
of π. Since the vertices on Sp are only connected either to each other or to the vertices
on s−j and s+q , edge (a, a∗) is not involved in any crossing. If P does not contain any
fork vertex other than a (Fig. 2(a)), then all the vertices of P other than a are foliage
vertices and are placed on a segment s+q or s−q , for some q. In particular, if q < j, then
they are on s−q ; if q > j, then they are on s+q ; while if q = j, then they are either on s+q
or on s−q . In all the cases, Property 1 ensures that edge (a, a∗) does not cross any edge.

Finally, observe that any path of T containing only non-fork vertices is placed on
the same segment of the point set, and hence its edges do not cross. As for the edges
connecting vertices in one of these paths to the two leaves of T they are connected to,
note that by item (A) of Property 1 the edges between each of these leaves and these
vertices appear in the rotation at the leaf in the same order as they appear in the path.

Lemma 2. There exists a universal point set of size O(n3/2) for the class of n-vertex
inner-triangulated 2-outerplanar graphs [G,H] whereH is a forest.

4 2-Outerplanar Graphs with Forest

In this section we consider 2-outerplanar graphs [G,H] whereH is a forest. Contrary to
the previous section, we do not assume [G,H] to be inner-triangulated. As observed be-
fore, augmenting it might be not possible without introducing multiple edges. The main
idea to overcome this problem is to first identify the parts of [G,H] not allowing for

6

pq pj

aa′
a∗

pq pj

a
a′

a∗

(a)

p−j p+j

pNj

pCj

pj−1 pj+1

p1j

p3jp4j

p2j
l(pNz) r(pNz)

r(p+z)

l(p+z)r(p−z)

l(p−z)

(b)

pj

pCj

pj+1

pN

s+

r(p+1)r(p
+
2)

q2q1

p+j

π+
r

p+1 p
+
2

l(p+1) l(p
+
2)

(c)

Fig. 2. (a)(top) P contains a′ 6= a, (a)(bottom) a′ is a leaf of T . (b)–(c) Dark-gray triangles are
used for construction of petal points r(p+z) while light-gray triangles for l(p+z).

the augmentation, remove them, and augment the resulting graph with dummy edges to
inner-triangulated (Section 4.2); then, apply Lemma 2 to embed the inner-triangulated
graph on the point set S; and finally remove the dummy edges and embed the parts of
the graph that had been previously removed on the remaining points (Section 4.3). To
do so, we first need to extend the point set S with some additional points.

4.1 Extending the Universal Point Set

We construct a point set S∗ with O(n3/2) points from S by adding petal points to
segments s+j , s

N
j , s

−
j of the point sets Sj , for every j=2, . . . , N − 1. For simplicity of

notation, we skip the subscript j whenever possible. We denote by pσz the z-th point
on segment sσ , with σ ∈ {+,−, N} and z=1, . . . , n (where n=

√
n or n=n, depending

on whether pj is sparse or dense), so that pσ1 is the point following pC along sσ and
pσn = pσj . For each point pσz we add two petal points l(pσz) and r(pσz) to S∗.

We first describe the procedure for s+, see Fig. 2(c). For each z=1, . . . , n, consider
the intersection point qz between segments s(p+z−1pj+1) and s(p+z pN), where p+z−1 =

pCj when z = 1. By construction, all triangles 4p+z−1p+z qz have two corners on s+,
have the other corner in the same half-plane delimited by the line through s+, and do
not intersect each other except at common corners. Hence, there exists a convex arc π+

r

passing through pCj and p+n = p+j , and intersecting the interior of every triangle. For
each z = 1, . . . , n, we place the petal point r(p+z) on the arc of π+

r lying inside triangle
4p+z−1p+z qz . For the other petal point l(p+z) we use the same procedure by considering
triangles4p+z−1p+z pj instead of4p+z−1p+z qz . Symmetrically we place the petal points
for s−, using points pj−1 and p1 to place l(p−z) and point pj to place r(p−z), and for
sN , using points pj−1 and p1 to place l(pNz) and points pj+1 and pN to place r(pNz).

4.2 Modifying and Labeling the Graph

We now aim at modifying [G,H] to obtain an inner-triangulated graph that can be
embedded on the original point set S (Part A and Part B); in Section 4.3 we describe

7

b1bl

v

. . .

(a)

b1bl . . .

v1 vl′. . .

(b)

b1bl . . .

v1 vl′. . .

f

v2

(c)

v2v1

f
g e

b1

bl

(d)

. . .

ch

w1 wq=v1 v2

b1

e
fg

c1=bl

(e)

Fig. 3. (a)–(c): Insertion of triangulation edges in (a) a petal face, (b) a non-protected big face,
and (c) a big face protected by vertex b1. (d)–(e) Illustration of the two cases for removing bad
faces. Face g is petal in (d) and big in (e). Dummy edges are dashed, the removed edge e is red.

how to exploit this embedding on S to obtain an embedding of the original graph [G,H]
on the extended point set S∗ (Part C). We describe the procedure just for a cycle-tree
graph [F, T] composed of a face F of G and of the tree T inside it.
Part A: We categorize each face f of [F, T] based on the number of vertices of F and
of T that are incident to it. Since T is a tree, f has at least a vertex of F and a vertex
of T incident to it. If f contains exactly one vertex of F , then it is a petal face. If f
contains exactly one vertex of T , then it is a small face. Otherwise, it is a big face. Let
b1, . . . , bl be the occurrences of the vertices of T in a clockwise order walk along the
boundary of a big face f . If either b1 or bl, say b1, has more than one adjacent vertex in
F (namely one in f and at least one not in f), then f is protected by b1. If f is a big
face with exactly two vertices incident to F and is not protected, then f is a bad face.

The next lemma gives sufficient conditions to triangulate G without introducing
multiple edges; we will later use this lemma to identify the “tree components” of T
whose removal allows for a triangulation.

Lemma 3. Let [F, T] be a biconnected simple cycle-tree graph, such that (1) each
vertex of F has degree at most four, and (2) there exists no bad face in [F, T]. It is
possible to augment [F, T] to an inner-triangulated simple cycle-tree graph.

Proof sketch. Each petal (small, respectively) face f can be triangulated by adding ver-
tices between the only vertex of F (of T) incident to f and all the other vertices of f .
Multiple edges are not created since [F, T] is biconnected and there exists no two petal
faces incident to the same vertex v of F , as v has degree at most 4; see Fig. 3(a).

Consider a big face f , with vertex occurrences v1, ..., vl′ , b1, ..., bl (with l, l′ > 1),
where v1, ..., vl′ ∈ F and b1, ..., bl ∈ T . If f is protected by a vertex, say b1, then it is
triangulated by adding an edge between bl and every vertex of F , and an edge between
vl′ and every vertex of T ; see Fig. 3(b). The absence of multiple edges is due to the
edge connecting b1 to a vertex of F not incident to f , which implies that vl′ is not
connected to any vertex of T incident to f other than b1. Finally, if f is not protected by
any vertex, we make it protected by adding an edge (bl, v2) and apply the previous case;
see Fig. 3(c). Since f is not a bad face, we have l′ > 2, and hence v2 is not connected
to any vertex of T , which implies that (bl, v2) is not a multiple edge. �

We now describe a procedure to transform cycle-tree graph [F, T] into another one
[F, T ′′] that is biconnected and satisfies the conditions of Lemma 3. We do this in two

8

steps: first, we remove some edges connecting a vertex of F and a vertex of T to trans-
form [F, T] into a cycle-tree graph [F, T ′=T] that is not biconnected but that satisfies the
two conditions; then, we remove the “tree components” of T ′ that are not connected to
vertices of F in order to obtain a cycle-tree graph [F, T ′′ ⊆ T ′] that is also biconnected.

To satisfy condition (1) of Lemma 3, we merge all the petal faces incident to the
same vertex of F into a single one by repeatedly removing an edge shared by two
adjacent petal faces. We refer to these removed edges as petal edges, denoted by EP .

To satisfy condition (2) of Lemma 3, we consider each bad face f = v1, v2, b1, . . . , bl,
where v1, v2 ∈ F and b1, . . . , bl ∈ T . Let g be the face incident to v1 sharing edge
e = (v1, bl) with f . We remove e, hence merging f and g into a single face f ′, that we
split again by adding dummy edges, based on the type of face g, in such a way that no
new bad face is created. Since f is a bad face, it is not protected by bl, and hence g is not
a small face. If g is a petal face, then f ′ is still a big face with two vertices of F incident
to it, namely v1 and v2; see Fig. 3(d). We add edge (v1, b1), splitting f ′ into a petal face
v1, b1, . . . , bl and a triangular face v1, v2, b1. If g is a big face, then f ′ is a big face; see
Fig. 3(e). Let g = w1, . . . , wq, c1, . . . , ch, where w1, . . . , wq ∈ F , with wq = v1, and
c1, . . . , ch ∈ T , with c1 = bl. We add two dummy edges (v1, ch) and (v1, b1), splitting
f ′ into a small face w1, . . . , wq, ch, a petal face v1, b1, . . . , bl = c1, . . . , ch, and a trian-
gular face v1, v2, b1. The edges removed in this step are big face edges, denoted by EB ,
and the added edges are triangulation edges.

In order to make [F, T ′] biconnected, note that [F, T ′] consists of a biconnected
component which contains F , called block-component, and a set TB of subtrees of
T ′, called tree components, each sharing a cut-vertex with the block component. We
remove the tree components TB from [F, T ′] and obtain an instance [F, T ′′ ⊆ T ′], that
is actually the block component of [F, T ′]. Since the removal of TB does not change
the degree of the vertices of F and does not create any bad face, [F, T ′′] is indeed a
biconnected instance satisfying the two conditions of Lemma 3. Thus, by adding further
triangulation edges we augment it to an inner-triangulated instance [F, T∆ = T ′′].

Lemma 4. Let e=(b, v) be an edge of EP ∪EB , where b ∈ T and v ∈ F . Then, either
e is a triangulation edge in [F, T∆] or b belongs to a tree component Tc of TB sharing
a cut-vertex c with [F, T ′′]. In the latter case, (v, c) is a triangulation edge in [F, T∆].

Lemma 5. Let Tc ∈ TB be a tree component such that there exists at least an edge
(b, v) ∈ EP ∪ EB , with b ∈ Tc and v ∈ F . Then, for each edge in EP ∪ EB with an
endvertex belonging to Tc, the other endvertex is v.

Performing the above operations for every cycle-tree graph [F, T] yields an inner-
triangulated 2-outerplanar graph [G,H∆] as outcome of Part A. We then label [G,H∆]
with the algorithm from Section 3.2 and describe next how to extend this labeling to TB .
Part B: We consider the tree components Tc ∈ TB for each face F of G; let [F, T∆]
be the corresponding inner-triangulated cycle-tree graph. We label the vertices of Tc
and simultaneously augment [F, T∆] with dummy vertices and edges, so that [F, T∆]
remains inner-triangulated (and hence can be embedded, by Lemma 2) and the vertices
of Tc can be later placed on the petal points of the points where dummy vertices are
placed. The face of [F, T ′′] to which Tc belongs might have been split into several faces

9

w

a

b

v

(a)

v

a
b

w

(b)

v

a
b

w

(c)

w

a

b

v

(d)

v

a
b

w

(e)

Fig. 4. (a)–(c) Inserting dummy vertices for a tree-component in a face (a, b, v) with v ∈ F and
a, b ∈ T∆, when (a) `(a) = `(b), (b) `(a) 6= `(b) and `(w) < `(v), and (c) `(a) 6= `(b) and
`(w) > `(v). (d)–(e) Moving dummy vertices to petal points if `(a) = `(b) and if `(a) 6= `(b).

of [F, T∆] by triangulation edges. We assign Tc to any of such faces f that is incident
to the root c of Tc. Then, we label Tc based on the type of f ; we distinguish two cases.

Suppose f is a triangular face (c, v, w) with v, w ∈ F and c ∈ T∆; assume `(v) <
`(w). We create a path Pc containing |Tc|−1 dummy vertices and append Pc at c. Then,
we connect every dummy vertex of Pc with both v and w. If `(c) ≤ `(v), then we label
the vertices of Pc with `(Pc) = `(v). If `(c) ≥ `(w), then we label `(Pc) = `(w).

Suppose f is a triangular face (a, b, v) with v ∈ F and a, b ∈ T∆, refer to Fig. 4;
assume `(a) ≤ `(b). Replace edge (a, b) with a path Pc between a and b with |Tc| − 1
internal dummy vertices, and connect each of them to v and to w, where w is the other
vertex of F adjacent to both a and b. For each dummy vertex x of Pc, we assign `(x) =
`(a) if `(v) ≤ `(a); we assign `(x) = `(b) if `(v) ≥ `(b); and we assign `(x) = `(v)
if `(a) < `(v) < `(b). The existence of edge (a, b) ∈ T∆ implies that either a is the
parent of b in T∆ or vice versa. Suppose the former, the other case is analogous. Then,
v and w are the extremal neighbors of b in F , and thus either `(v) ≤ `(b) ≤ `(w)
or `(w) ≤ `(b) ≤ `(v). Also, if `(a) 6= `(b), then `(a) does not lie strictly between
`(v) and `(w). In fact, this can only happen if `(b) strictly lies between `(v) and `(w),
and `(a) = `(b) (which happens only if a is a non-fork vertex). Since `(a) ≤ `(b), by
assumption, this implies that `(a) ≤ `(v), `(w). The two observations before can be
combined to conclude that, if `(a) = `(b), then all the tree components lying inside
faces (a, b, v) and (a, b, w) have the same label as a and b (Fig. 4(a)). Otherwise, either
the tree components inside (a, b, v) have label `(b) and those inside (a, b, w) have label
`(w) (Fig. 4(b)), or the tree components inside (a, b, v) have label `(v) and those inside
(a, b, w) have label `(b) (Fig. 4(c)). All added edges are again triangulation edges.

We apply Part B to every cycle-tree graph of [G,H∆], hence creating an inner-
triangulated 2-outerplanar graph [G,HA] where HA is a forest. Since all the dummy
vertices of Pc are connected to two vertices v, w ∈ F , they become non-fork vertices.
Note that the labeling of the dummy vertices coincides with the one obtained by the
algorithm in Section 3.2, except for the case when f is a triangular face (a, b, v) with
v ∈ F and a, b ∈ T∆, and `(a) < `(v) < `(b). In this case the algorithm would have
labeled either `(Pc) = `(a) or `(Pc) = `(b), depending on whether b is the parent of a
or vice versa. However, since `(a) < `(v) < `(b) holds in [F, T∆], and since (a, b, v)
is a triangular face of [F, T∆], no vertex of [F, T∆] different from v has the same label
as v. Hence, graph Hi, for each i, is a tree with at most one vertex of degree 3. We thus
apply Lemma 2 to obtain a planar embedding ΓA of [G,HA] on S.

10

4.3 Transformation of the Embedding

We remove the all the triangulation edges added in the construction, and then restore
each tree component Tc, which is represented by path Pc. Since the vertices of Pc are
non-fork vertices and have the same label i, by construction, they are placed on the
same segment s ∈ {s+, sN , s−} of Sj , where pj is the point vertex vi is placed on.

We remove all the internal edges of Pc and move each vertex x of Pc from the
point p of s it lies on to one of the corresponding petal points, either l(p) or r(p), as
follows. Let v be a vertex of G connected to a vertex of Tc by an edge in EP ∪ EB ,
if any; recall that, by Lemma 5, all the edges of EP ∪ EB connecting Tc to G are
incident to v. If `(x) < `(v), then move x to r(p); tree components connected to w in
Fig. 4(d) and 4(e). If `(x) > `(v), then move x to l(p); tree component connected to v
in Fig. 4(e). Otherwise, `(x) = `(v); in this case s 6= sN , by construction, and hence we
have to distinguish the following two cases: If s = s+, then move x to l(p), otherwise
move x to r(p) (tree components attached to a and b, respectively, and connected to v
in Fig. 4(e)). If no vertex v ∈ G is connected to Tc, then move x to r(p) if `(c) < `(x)
(tree component attached to a in Fig. 4(e)), and to l(p) otherwise.

We prove that this operations maintain planarity. The internal edges of Tc do not
cross since the petal points, together with the point where c lies, form a convex point
set, on which it is possible to construct a planar embedding of every tree [4]. As for
the edges connecting vertices of Tc to v, by Lemma 4, v has visibility to the root c of
Tc, since (v, c) is a triangulation edge; by Property 1, this visibility from v extends to
all the segment s where Pc had been placed on; and by the construction of S∗, to all
the corresponding petal points. The proof for the edges (a, b) that had been subdivided
when merging tree component Tc (green edges in Fig. 4(d) and 4(e)) is in [2].

Claim 1 Reinserting every edge (a, b) such that there existed a path Pc between a and
b does not introduce any crossing.

To complete the transformation it remains to insert the edges of EP ∪ EB which
were not inserted in the previous step. Since by Lemma 4 all of these edges were also
triangulation edges, their insertion does not produce any crossing.

Lemma 6. There exists a universal point set of size O(n3/2) for the class of n-vertex
2-outerplanar graphs [G,H] whereH is a forest.

5 General 2-Outerplanar Graphs

In this section we give a high-level idea of how to extend the result of Lemma 6 to any
arbitrary 2-outerplanar graph [G,H]. The complete description can be found in [2].

The idea is to convert every graphGh ∈ H into a tree Th; embed the resulting graph
on S∗; and finally revert the conversion from each Th to Gh. Each tree Th is created by
substituting each biconnected block B of Gh by a star, centered at a dummy vertex and
with a leaf for each vertex of B, where leaves shared by more stars are identified. This
results in a 2-outerplanar graph whose inner level is a forest.

The embedding of this graph on S∗ is performed similarly as in Lemma 6, with
some slight modifications to the labeling algorithm, especially for the vertices of Th

11

corresponding to cut-vertices of Gh, and to the procedure for merging the tree compo-
nents. These modifications allow us to ensure that the vertices of each block of Gh lie
on a convex portion of S∗, where they can thus be drawn without crossings [5, 10].

We finally reduce the size of S∗ toO(n log n) by using the super-pattern sequence ξ
from [3], which is a sequence of integers ξj , with

∑
j=1,...,n ξj = O(n log n). Sequence

ξ majorizes every sequence of integers that sum up to n. We hence assign the size of
each point set Sj based on this sequence, instead of using dense or sparse point sets.

Theorem 1. There exists a universal point set of size O(n log n) for the class of n-
vertex 2-outerplanar graphs.

6 Conclusions

We provided a universal point set of sizeO(n log n) for 2-outerplanar graphs. A natural
question is whether our techniques can be extended to other meaningful classes of pla-
nar graphs, such as 3-outerplanar graphs. We also find interesting the question about the
required area of universal point sets. In fact, while the integer grid is a universal point
set for planar graphs with O(n2) points and O(n2) area, all known point sets of smaller
size, even for subclasses of planar graphs, require a larger area. We thus ask whether
universal point sets of subquadratic size require polynomial or exponential area.

References

1. P. Angelini, G. D. Battista, M. Kaufmann, T. Mchedlidze, V. Roselli, and C. Squarcella.
Small point sets for simply-nested planar graphs. In M. van Kreveld and B. Speckmann,
editors, Graph Drawing, volume 7034 of LNCS, pages 75–85. Springer, 2012.

2. P. Angelini, T. Bruckdorfer, M. Kaufmann, and T. Mchedlidze. A universal point set for
2-outerplanar graphs. CoRR, abs/1508.05784, 2015.

3. M. J. Bannister, Z. Cheng, W. E. Devanny, and D. Eppstein. Superpatterns and universal
point sets. J. Graph Algorithms Appl., 18(2):177–209, 2014.

4. C. Binucci, E. Di Giacomo, W. Didimo, A. Estrella-Balderrama, F. Frati, S. Kobourov, and
G. Liotta. Upward straight-line embeddings of directed graphs into point sets. CGTA,
43:219–232, 2010.

5. P. Bose. On embedding an outer-planar graph in a point set. CGTA, 23(3):303–312, 2002.
6. S. Cabello. Planar embeddability of the vertices of a graph using a fixed point set is NP-hard.

J. Graph Algorithms Appl., 10(2):353–366, 2006.
7. H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting fáry embeddings of planar

graphs. In J. Simon, editor, STOC ’88, pages 426–433. ACM, 1988.
8. H. Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica,

10:41–51, 1990.
9. R. Fulek and C. D. Tóth. Universal point sets for planar three-trees. J. Discrete Algorithms,

30:101–112, 2015.
10. P. Gritzmann, B. M. J. Pach, and R. Pollack. Embedding a planar triangulation with vertices

at specified positions. American Mathematical Monthly, 98:165–166, 1991.
11. M. Kurowski. A 1.235 lower bound on the number of points needed to draw all n-vertex

planar graphs. Information Processing Letters, 92(2):95–98, 2004.
12. W. Schnyder. Embedding planar graphs on the grid. In D. S. Johnson, editor, SODA ’90,

pages 138–148. SIAM, 1990.

12

